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Stability of moving solitons in trans-polyacetylene in an electric field
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In this work, we study the dynamics and stability of charged solitons in trans-polyacetylene (tPA), and revisit
the issue of the stability of these nonlinear excitations under the effect of an external electric field applied
parallel to the polymer. Using the formalism of the Su-Schrieffer-Heeger model, we solve the coupled dynamical
equations for electrons and classical nuclei at the mean-field level and in the regime of low external electric field
E , where the dynamics of the moving soliton is adiabatic. Analyzing observable quantities in real space and
frequency space, we identify the microscopic mechanisms triggering the dynamical instabilities of the soliton.
In addition, we put forward the definition of a proper quantitative measure of its stability, an issue which to the
best of our knowledge has remained an open question. Besides its intrinsic interest from the fundamental point
of view, our work might be relevant for the design of novel organic electronic devices based on soliton-mediated
transport.
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I. INTRODUCTION

Trans-polyacetylene (tPA), a linear chain of carbon atoms
with alternating single and double bonds, has attracted the
interest of the scientific community for more than 40 years
[1]. Apart from being the simplest of organic conductors, a
fascinating feature of this system is the presence of solitonic
excitations (i.e., self-trapped combinations of localized elec-
tronic states and ion-lattice distortions) with fractional charge
e/2 and spin S = 0 which originate in its doubly degenerate
ground state. The presence of these solitonic excitations in tPA
was indirectly established via optical spectroscopy [2,3] and
magnetic electron paramagnetic resonance (EPR) experiments
[4,5]. Recently, scanning tunneling microscopy has enabled
the direct observation of solitonlike structures for the first time
on individual tPA molecules synthesized on top a Cu(111)
surface [6]. This constitutes an important achievement in the
experimental study of solitons in condensed-matter physics,
with potential applications to organic electronics [7].

On the theoretical side, the so-called Su-Schrieffer-Heeger
(SSH) Hamiltonian [8], a simple model encoding the in-
teraction between electronic and classical ionic degrees of
freedom, has successfully accounted for many of the ex-
perimentally observed properties of tPA, and theoretically
explains the emergence of fractional solitons. The SSH model
is one of the most paradigmatic models in condensed-matter
physics as it realizes the simplest example of a topologi-
cal insulator in one dimension [9,10]. Within this theoretical
framework, particular attention has been devoted to the un-
derstanding of moving solitons in tPA in out-of-equilibrium
conditions. In this respect, several works [11–14] stud-
ied transient phenomena in tPA chains with photogenerated
soliton-antisoliton excitations, and pointed to the existence
of a maximum velocity vmax � 2.7vs, with vs the velocity of

sound along the tPA chain, beyond which the moving soli-
ton solution becomes unstable [13,14]. Later, other authors
[15–17] studied the motion of individual charged solitons on
tPA under the effect of an external uniform electric field E .
An important conclusion in those works is that at high enough
electric fields, the electronic degrees of freedom decouple
from the lattice distortions, rendering the soliton unstable. In
particular, based on their numerical results, Ono and Terai
[15] concluded that the center-of-mass velocity of the moving
soliton reaches a saturation value vsat � 4vs (slightly above
the previous prediction), which is independent of the applied
electric field. This result has remained as an empirical upper
limit for the soliton velocity in the presence of an electric field
E . However, an intuitive argument suggests that the saturation
velocity vsat should drop to zero in the limit of vanishing field
E → 0 in order to continuously match with the equilibrium
condition. Therefore, a more careful study in this regime is
desirable.

In addition to its intrinsic interest for fundamental physics,
understanding soliton-mediated transport might have impor-
tant implications for technological applications in organic
electronic devices (photovoltaic cells, field-effect transistors
(FETs), light-emitting diodes (LEDs), etc.). However, the
nonlinear dynamics of moving solitons represents a major
theoretical challenge due to its inherent complexity and the
large number of interacting degrees of freedom. Some of the
open questions in this context are as follows: How can one
quantitatively determine the stability of dynamical solitons in
an out-of-equilibrium situation? What are the main mecha-
nisms driving the instability?

Motivated by these recent experimental developments and
by these open questions, in this work we revisit the issue of the
stability of solitons in tPA under nonequilibrium conditions.
In particular, we focus on the effect of an external electric field
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applied parallel to the tPA chain, and on the experimentally
relevant question of the maximum electric field (instead of
the maximal velocity) that a solitonic excitation can support
in ideal conditions. We solve the coupled dynamical equa-
tions for electrons and classical nuclei at the mean-field (i.e.,
Ehrenfest approximation) level and study the motion of an
externally driven charged soliton. We focus in the regime of
low external electric field E , where the dynamics of the mov-
ing soliton is adiabatic and electronic interband transitions are
frozen. In addition, in order to simplify the numerical calcula-
tions, we assume the regime of extremely low doping, where
essentially the tPA hosts only a single soliton excitation. By
comparing the time-dependent lattice deformation field, and
the instantaneous energy spectrum of in-gap electronic exci-
tations, we conclude that the main destabilizing mechanism in
the adiabatic regime is the proliferation of soliton-antisoliton
pairs along the chain, originated in large-amplitude oscilla-
tions of the lattice deformation field (i.e., dynamically excited
phonon modes). We put forward a quantitative indicator of
soliton stability, suitable for a dynamical situation, and obtain
a criterion of stability as a function of the applied longitudinal
field E . This result might be important for the design of
polymer-based electronic circuits.

We stress that our assumptions are conceptually different
from previous works where the moving soliton was assumed
to travel at a constant velocity v in the absence of external
fields (see, e.g., Refs. [13,18–20]). Finally, our work resolves
inconsistencies in previous works regarding the saturation ve-
locity at very low fields, where we recover the physical result
vsat → 0 in the limit E → 0.

This article is organized as follows: In Sec. II, we present
the theoretical framework of the SSH Hamiltonian and the
theoretical tools used in this work. In Sec. III, we give
technical details of the numerical methods tools used in the
integration of the equations of motion. In Sec. IV, we present
the main results, and in Sec. V, we study the finite-size effects
on the stability and dynamics of the mobile soliton. Finally, in
Sec. VI, we give our conclusions and perspectives.

II. THEORETICAL FRAMEWORK

We model an isolated finite tPA chain with N-(CH) (carbon
and hydrogen) groups by means of the SSH model [8,15]

HSSH(φ) = −
∑

s

N∑
n=1

{
[t0 − α(un+1 − un)]e−iφc†

n+1,scn,s

+ H.c.
} + K

2

N∑
n=1

(un+1 − un)2 + M

2

N∑
n=1

u̇2
n. (1)

Here, the effective site n represents the nth group -(CH)n in
the tPA chain. The classical variable un is the displacement
of the -(CH)n group along the axis of the polymer from its
equilibrium position, and c†

n,s(cn,s) is the creation (annihila-
tion) operator for an electron in the 2pz orbital at the C atom
on site n, with spin projection s =↑,↓ along the z axis. The
term in brackets in the first line corresponds to the hopping
transference integral tn+1,n, expanded to first order in terms of
the small parameter (un+1 − un), t0 is the zeroth-order hopping
parameter, and α is the electron-phonon coupling. The phase

factor eiφ(t ) appears due to the Peierls substitution, where
φ(t ) = eaA(t )/h̄c depends on the vector potential A(t ), whose
time derivative is the electric field E = −Ȧ/c. Here, a is the
lattice parameter in the tPA chain. The second line in Eq. (1)
corresponds to the potential and kinetic energy of the -(CH)
groups, respectively, where K is the effective spring force
constant of the C-C bonds and M is their mass. To simplify
the calculations, in what follows we assume the system at zero
temperature, and periodic boundary conditions uN+1 = u1 and
cN+1,s = c1,s are imposed.

We use standard values generally accepted for experi-
mental tPA systems [15]: t0 = 2.5 eV, K = 21 eV/Å2, α =
4.1 eV/Å, and a = 1.22 Å. Then, the bare optical phonon fre-
quency ω0 = √

4K/M is equal to 2.5×1014 s−1, and the sound
velocity of acoustic phonons vs = ω0a/2 equals 1.53×106

cm/s. In what follows, we use the parameters a and ω−1
0 as

the units of length and time, respectively. In addition, the
parameter E0 = h̄ω0/ea is the unit of electric field estimated
for the present case as 1.3×107 V/cm.

In order to obtain a physically meaningful initial condi-
tion, we focus on the equilibrium properties of the system
and we therefore set φ = 0 (i.e., absence of external field).
To that end, we define the lattice deformation field for a
given configuration of the -(CH) groups as the vector of
distances between neighboring sites, yn ≡ un+1 − un. In ad-
dition, denoting the many-particle ground state as |�gs〉 and
the ground-state energy as Egs, the stability condition given
by the Hellmann-Feynman theorem becomes [21]

∂Egs

∂yn
=

〈
�gs

∣∣∣∣∂HSSH

∂yn

∣∣∣∣�gs

〉
= 0. (2)

This expression results in the self-consistent equation

yn = −2
α

K

∑
s

occ∑
ν=1

[
ψν,s(n)ψν,s(n + 1)

− 1

N

N∑
n=1

ψν,s(n)ψν,s(n + 1)

]
, (3)

where “occ” stands for occupied states, which correspond to
Nel electrons, and ψν,s(n) is the amplitude of the νth eigenstate
|ψν,s〉 ≡ ∑N

n=1 ψν,s(n)c†
n,s|0〉 satisfying the eigenvalue equa-

tion

HSSH|ψν,s〉 = Eν,s|ψν,s〉. (4)

Note that this equation is solved for a given specific configura-
tion of the lattice deformation field yn. We numerically solve
Eqs. (3) and (4) by an iterative method until convergence of
the lattice deformation field, obtained when the modulus of
the vector (	y)n ≡ y(k)

n − y(k−1)
n , with k the iteration index,

is ‖	y‖ < 10−9a. From the solution of these equations, the
ground-state configuration of the complete system (Nel elec-
trons plus N ions) is obtained.

Interestingly, when the system is filled with Nel electrons
equal to the number of sites, N (i.e., neutral system at half
filling of the conduction band), the self-consistent solution
of Eq. (3) reproduces the well-known Peierls instability with
a stable dimerized lattice configuration given by the expres-
sion yn = (−1)ny0 [22], with y0 = 0.06a. Concomitantly, a
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single-particle gap of size 2	g = 4αy0 = 1.31 eV opens at
the Fermi energy, and the system becomes an insulator. At
this point, we note that periodic boundary conditions have
important consequences in the nature of the ground state
of the system: whereas for an even N the aforementioned
length alternation of the C-C bonds is compatible with the
periodic boundary conditions, for odd N this is not possible
and a domain wall in the lattice deformation field yn naturally
emerges. In this last case, a midgap zero-energy state localized
at the domain wall appears in the single-particle spectrum
[1,8]. The presence of this state can also be understood due
to the chiral (or sublattice) symmetry of the SSH model in
the dimerized phase, which generates a symmetric spectrum
around the Fermi energy: since for every finite-energy state
at Eν,s, another state with energy −Eν,s must exist, in the
presence of an odd number of sites N , a state with Eν,s = 0
must emerge [9,10].

We now turn to the dynamics of the system under the action
of an external electric field E , which we assume to be sud-
denly turned on at t = 0. The reason why this is compatible
with an adiabatic time evolution of the moving soliton is that
the Hamiltonian (1) does not depend on the bare field E (t ), but
on the vector potential A(t ), which is an integrated quantity
(a more detailed discussion on the adiabatic approximation
is given below). The dynamical equations for electronic and
lattice degrees of freedom are solved self-consistently within
the Ehrenfest approach [15,23]. We introduce the usual Born-
Oppenheimer approximation, in which the electrons “move”
according to the instantaneous potential generated by the ions.
Additionally, we treat the ions as classical particles obeying
Newton’s law. The effect of the electrons appears in the form
of a “quantum force,” obtained by solving the Hamilton-
Jacobi equations in the mean-field approximation,

ṗn(t ) = −〈�e(t )|∂HSSH

∂un
|�e(t )〉,

u̇n(t ) = pn(t )/M. (5)

Here, |�e(t )〉 is the many-electron state vector obeying the
time-dependent Schrödinger equation,

ih̄|�̇e(t )〉 = HSSH({yn(t )}, t )|�e(t )〉. (6)

Alternatively, introducing the time-evolution operator
U (t, t0), which satisfies the equation

ih̄U̇ (t, 0) = HSSH({yn(t )}, t )U (t, 0), (7)

and whose formal solution is

U (t, 0) = Te− i
h̄

∫ t
0 dτ HSSH({yn(τ )},τ ), (8)

with T the time-ordering operator, the evolved many-particle
state can be expressed as |�e(t )〉 = U (t, 0)|�gs〉.

Solving Eqs. (5) and transforming from {un} to the {yn}
basis, we obtain [15]

ÿn(t ) = − K

M
[2yn(t ) − yn−1(t ) − yn+1(t )] + α

M

∑
s

occ∑
ν

eiφ

× {ψ∗
ν,s(t, n + 1)ψν,s(t, n + 2) − 2ψ∗

ν,s(t, n)

× ψν,s(t, n + 1) + ψ∗
ν,s(t, n − 1)ψν,s(t, n)} + H.c.

(9)

Note that Eq. (9) reduces to Eq. (3) in the static case and in
the absence of external fields. Equations (7) and (9), with the
solution of Eq. (3) as the initial condition at time t = 0, form
a coupled set of nonlinear differential equations. This theoret-
ical approach is usually known as “Ehrenfest dynamics.”

1. Moving soliton in the adiabatic approximation

In addition to the above considerations, in this work we
will focus on the regime of low field E . This enables one
to introduce the adiabatic approximation [24]. Under the hy-
pothesis of sufficiently slow changes of the Hamiltonian from
HSSH(0) to HSSH(2π ), and in the case of a discrete and non-
degenerate spectrum, the adiabatic approximation provides a
way to describe the time-dependent wave functions in terms
of the instantaneous eigenfunctions of HSSH(φ). In particular,
the independent single-particle states evolve according to the
expression given by the adiabatic theorem [24],

|ψν,s(t )〉 � eiθν (t )eiγν (t )|φν,s(t )〉, (10)

where the states |φν,s(t )〉 are the instantaneous eigenstates of
HSSH(t ), i.e., HSSH(t )|φν,s(t )〉 = εν (t )|φν,s(t )〉, where the time
appears as a parameter, and

θν (t ) = −1

h̄

∫ t

0
dτ εν (τ ),

γν (t ) = i
∫ t

0
dτ 〈φν,s(τ )| ∂φν,s

∂τ
(τ ) 〉

are the dynamical and Berry phases, respectively. For a
generic dynamical state vector |ψ (t )〉 expressed as a lin-
ear combination of the instantaneous eigenstates, |ψ (t )〉 =∑

ν αν (t )|φν (t )〉 (we omit spin indices for simplicity), the
validity of the adiabatic theorem given by Eq. (10) can be
ensured as long as the matrix elements,

〈φν (t )|ḢSSH(t )|φμ(t )〉
h̄[εν (t ) − εμ(t )]2

� 1, (11)

are small enough [24]. An important observation for our case
is that this condition is generically violated for bulk states in a
system in the thermodynamical limit (i.e., N → ∞) since the
energy difference becomes infinitesimally small, 	ε ∝ N−2.
However, a key point is that the zero-energy state localized
at the domain wall, which is separated from the bulk states
by half the quasiparticle gap 	g, does not suffer from this
problem. In other words, the energy gap 	g dynamically “pro-
tects” the zero-energy state. This is not surprising given the
topological nature of the zero-energy state in the SSH Hamil-
tonian [9,10]. Therefore, particularizing condition (11) for
the zero-energy instantaneous state, we obtain the following
order-of-magnitude estimation for the field E in the adiabatic
regime (see details in the Appendix):

E � Ec = 	2
g

4t0ea
� 0.260E0. (12)

In this regime, a moving soliton will evolve adiabatically
and therefore as a stable quantum object. For the present
parameters, this is within the regime of interest of electronic
devices [25]. Note that the above condition is essentially the
same condition to avoid the electric breakdown of an insulator,
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given by the expression [26]

E � 	2

t0ea
, (13)

with 	 = 2	g.

III. NUMERICAL METHODS

In order to solve the coupled dynamics of the lattice-
electron system, we first define a time step 	t , chosen
sufficiently small so that all the dynamical observables of
interest converge within acceptable tolerance, and discretize
the time variable in Nstep steps as t → tm = m	t , where m =
0, 1, . . . , Nstep − 1. In particular, to solve the dynamics of the
-(CH) groups [Eq. (9)], we implemented the Verlet’s velocity
algorithm,

yn(tm+1) = yn(tm) + ẏn(tm)	t + 1

2
ÿn(tm)	t2, (14)

ẏn(tm+1) = ẏn(tm) + ÿn(tm+1) + ÿn(tm)

2
	t, (15)

which allows one to obtain the new quantities yn(tm+1) and
ẏn(tm+1) in terms of the old ones, i.e., yn(tm) and ẏn(tm), and
the force given in Eq. (5). As mentioned before, the initial
condition for our simulations corresponds to the lattice con-
figuration yn(0) taken from the static solution of Eq. (3), and
ẏn(0) = 0 [zero initial velocity of the -(CH) groups].

The time-evolution operator given by Eq. (8) can be Taylor
expanded for sufficiently small 	t using a midpoint scheme
(i.e., the Crank-Nicolson algorithm [27]),

U (tm+1, tm) �
[

I + i	t

2h̄
HSSH(tm+1/2)

]−1

×
[

I − i	t

2h̄
HSSH(tm+1/2)

]
, (16)

where I is the identity operator, and the Hamiltonian is evalu-
ated at the midpoint tm+1/2 ≡ tm + 	t/2 by means of a simple
Euler step integration. After some algebra, a time evolution 	t
for the electronic wave functions can be expressed as

|ψν,s(tm+1)〉 = 2

[
I + i	t

2h̄
HSSH(tm+1/2)

]−1

|ψν,s(tm)〉

− |ψν,s(tm)〉. (17)

The Crank-Nicolson method has the advantage of being very
simple to implement, while avoiding the need to diagonalize
the spectrum at each time step [27]. In practical terms, the
actual value of 	t used in our simulations emerges from a
compromise between the pursuit of numerical convergence
of the quantities of interest (which is satisfied for a large
Nstep) and the numerical cost (which is minimized for a small
Nstep). We have numerically confirmed that the choice 	t =
0.01 ω−1

0 is sufficient to reach convergence in all the observ-
ables within a tolerance of 0.2%.

IV. RESULTS AND DISCUSSION

Our goal is to solve the equations of motion in the presence
of a uniform external field E , which is turned on at t = 0, and

to study the dynamics and stability of the moving solitonic
excitation. To that end, it is customary to focus on certain
specific dynamical quantities, in particular, the “optical” (i.e.,
staggered) lattice configuration, defined as [8,11,13,15]

ȳn(t ) ≡ (−1)nyn(t ). (18)

This quantity allows the identification of the specific alterna-
tion pattern at site n and, therefore, to determine the location
of the domain walls in the system at a particular time t . In
the static case and in the continuum limit, this quantity cor-
responds to the well-known expression 	(x) = u0 tanh(x/ξ )
for a domain wall of width ξ centered at x = 0 [1]. The
constant values ±u0 at x → ±∞, respectively, correspond to
the two different degenerate minima of the energy (i.e., the
two possible Peierls dimerizations). We mention in passing
that the related formula [13,18–20,28],

	(x, t ) = u0 tanh

(
x − vt

ξ (v)

)
, (19)

has been used in previous works as an ansatz to study the
stability of a moving kink traveling at a constant velocity v

by means of analytical methods.
In addition, the (smoothened) dynamical electronic excess

charge, defined as

ρ̄n(t ) ≡ 1
4 [2ρn(t ) + ρn+1(t ) + ρn−1(t )], (20)

where the excess charge density ρn(t ) =∑
s

∑occ
ν=1 |ψν,s(t, n)|2 − 1 verifies the sum rule

∑
n ρn(t ) = 0,

intuitively provides information about the localization of the
extra charge in real space.

Most of the simulations in this work have been obtained for
N = 99 ions and Nel = 100 electrons (doped tPA with excess
charge Q = −e). Therefore, under these conditions, we ensure
that our simulations start with a single charged soliton in the
system at t = 0. In order to compare simulations obtained
for different values of the external field E , we look at the
accumulated Peierls phase φ(t ) = eaA(t )/h̄c = −Etω0/E0 in
each case, where the fact that the external field is uniform and
constant is used. Analyzing the dynamical state of the system
in terms of the Peierls phase (instead of directly looking at the
simulation time) provides a more systematic way to compare
different physical situations originated from the different val-
ues of E . In particular, we define a complete evolution cycle
in the system for a total accumulated Peierls phase equal to
2π and, therefore, t f = 2πE0/Eω0.

Phenomenologically, whenever the solitonic excitation
evolves in time as a single stable quantum object, the cen-
ter of mass of the domain wall and the maximum of the
electronic excess charge coincide. This can be clearly seen
in Fig. 1, where we simultaneously show both ȳn(t ) and
ρ̄n(t ) for different times. These “snapshots” correspond to a
simulation obtained for a constant and uniform external field
E = 0.01E0, so that t f = 628ω−1

0 . At t = 0, the deformation
field ȳn shows a kink which connects the two different minima
corresponding to the two possible Peierls distortions at equi-
librium (i.e., the two possible vacuum states of the continuum
field theory). Note that since the system has periodic boundary
conditions, yn(t ) = yn+N (t ), the staggered lattice field ȳn(t )
must satisfy antiperiodic boundary conditions when N is odd,
as in the case in Fig. 1, and periodic boundary conditions for
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FIG. 1. Staggered lattice deformation field ȳn (dashed red line) [Eq. (18)] and electronic excess charge ρ̄n (continuous blue line) [Eq. (20)]
vs site index n of the tPA chain. An external electric field E = 0.01E0 is suddenly turned on at time t = 0 and both ȳn and ρ̄n are computed
at different times (or, equivalently, at different values of the Peierls phase φ from 0 to 2π ). At φ = 0, ȳn(t ) shows a kink (i.e., domain wall)
connecting the two minima given by the Peierls dimerization instability, and the excess charge ρ̄n localizes precisely at the center of the domain
wall. As the system evolves, despite the noticeable development of a periodic structure (i.e., phonon mode with well-defined wavelength), the
domain-wall profile of ȳn is roughly preserved, and the center of mass of ρ̄n follows the position of the center of the domain wall. This
self-organized soliton structure is stable and moves as a single object until the end of the simulation (Peierls phase φ = 2π ).

even N . Along the whole simulation, we see that the center of
mass of ρ̄n(t ) coincides with the center of the domain wall in
ȳn(t ), meaning that the moving soliton excitation evolves as
a stable self-organized quasiparticle. As the system evolves,
the lattice deformation field develops oscillations due to the
excitation of phonon modes with well-defined wave number.
The dynamical emission of phonons in nonequilibrium situ-
ations has been reported before [11,13–15,19]. Interestingly,
the presence of these phonon modes does not seem to (neces-
sarily) affect the stability of the soliton in the sense that the
excess charge remains rigidly attached to the domain wall.

While the stability of a moving soliton is self-evident in
Fig. 1, we note that the “matching” of the center of mass of
ρ̄n(t ) and the center of the domain wall ȳn(t ) does not repre-
sent a rigorous nor a quantitative criterion for soliton stability.
To illustrate this point, in Fig. 2 we show a similar calculation
for a larger value of the electric field E = 0.1E0. Although in
the initial steps the soliton evolves as a well-defined object,
it clearly breaks down within a complete evolution of the
Peierls phase, φ = 2π . Several questions naturally arise here:
Why does the soliton appear to be stable for E = 0.01E0,
while it breaks down for E = 0.1E0? And precisely when
does the instability occur? One of the goals in this work is
to obtain a microscopic understanding of the destabilizing
mechanisms of moving solitons, and to “measure” its stability
by means of a suitable theoretical quantity. This would enable
one to determine the parameter regime within which a moving
soliton behaves as a stable self-organized object in a generic
out-of-equilibrium situation, therefore complementing the in-
formation given by the analytical estimate in Eq. (12).

To fix ideas, it is instructive to study the evolution of
the single-particle dynamical states of the problem. To that

end, we define an “instantaneous” spectral density of states
(iDOS),

�ν,s(t, ω) = − 1

π
Im 〈ψν,s(t )|Ĝr (ω, t )|ψν,s(t )〉

= − 1

π

∑
ν ′,s

|〈ψν,s(t )|φν ′,s(t )〉|2δ
[h̄ω − εν ′,s(t )]2 + δ2

, (21)

where the dynamical state |ψν,s(t )〉 is calculated using
Eq. (17), and where the operator Ĝr (ω, t ) is the instantaneous
retarded Green’s function, defined in the complex frequency
plane z as

Ĝr (z, t ) ≡
∑
ν ′,s′

|φν ′,s′ (t )〉〈φν ′,s′ (t )|
z − εν ′,s′ (t )

, (22)

written in terms of the instantaneous eigenvalues and eigen-
vectors of HSSH(t ), i.e., εν ′,s(t ) and |φν ′,s(t )〉, respectively. A
small imaginary part δ has been introduced in Eq. (21) in
order to avoid the nonanalyticities given by the instantaneous
spectrum in the real ω axis.

In addition to giving information about the occupancy
nν ′,s(t ) of the instantaneous eigenstate |φν ′,s(t )〉, intuitively
speaking, the iDOS provides a measure of adiabaticity in
the system: if a given dynamical state |ψν,s(t )〉 evolves adi-
abatically from the eigenstate |ψν,s(0)〉, then there will be
a one-to-one correspondence given by Eq. (10) with the in-
stantaneous eigenstate |φν ′,s(t )〉 at all times. Quantitatively,
this correspondence will be measured by the projection
|〈ψν,s(t )|φν ′,s(t )〉|2 in the numerator of Eq. (21), and devi-
ations of this quantity from the Kronecker delta δν,ν ′ can
therefore be interpreted as a breaking of adiabaticity.
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FIG. 2. Staggered lattice deformation field ȳn (dashed red line) and electronic excess charge ρ̄n (continuous blue line) vs site index n of
the tPA chain, computed for an electric field E = 0.1E0 (an order of magnitude larger than that of Fig. 1). Initially, the soliton moves like a
well-defined single object, but for φ � π , it becomes unstable and breaks down.

In Fig. 3, we show the iDOS �ν,s(t, ω) at different times
and for the same parameters as in Fig. 1. At each time
(which coincide with those in Fig. 1), we show color maps
of �ν,s(t, ω) as a function of frequency ω (vertical axis) for
each of the evolved states (labeled ν in the horizontal axis).
Therefore, each plot is a snapshot of the full evolved spectrum.
At t = 0, the state |ψν,s(t )〉 and the instantaneous eigenstate
|φν ′,s(t )〉 coincide (i.e., |〈ψν,s(t )|φν ′,s(t )〉|2 = δν,ν ′) and, as ex-
pected, the one-to-one correspondence is explicit in Fig. 3.

Note in this figure the presence of the Peierls gap from ω =
−0.27t0 to ω = 0.27t0, separating valence and conduction
bands. In addition, note the presence of the zero-energy state
(single bright dot at ω = 0) which appears as a consequence
of the domain wall in the lattice distortion field ȳn. Since
the instantaneous eigenstates |φν,s(t )〉 have been sorted as a
function of increasing instantaneous eigenvalues εν,s(t ), the
first 49 states in the horizontal axis correspond to the va-
lence band, while the last 49 states form the conduction band.

FIG. 3. Color maps of the instantaneous density of states (iDOS) [Eq. (21)] at different values of the Peierls phase φ. The electric field
E = 0.01E0 and the values of the Peierls phase are the same as those in Fig. 1. Each figure in the panel corresponds to a snapshot of the
instantaneous electronic structure as a function of the frequency ω (ordinates) and the instantaneous eigenstate index ν (abscissas). The
(instantaneous) Peierls gap, delimited by white dashed lines, separates the conduction from the valence bands. The bright spot in the center of
the Peierls gap corresponds to the instantaneous zero-energy eigenstate. During the whole simulation, both the Peierls gap and the weight of
the zero-energy state remain unperturbed, despite the fact that the evolution of bulk states (valence and conduction states) is nonadiabatic.
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FIG. 4. Color maps of the instantaneous density of states (iDOS) [Eq. (21)] computed for E = 0.1E0, and for the same values of the Peierls
phase as in Fig. 2. In contrast to the situation in Fig. 3 (computed for E = 0.01E0), here after some time the Peierls gap becomes populated with
new states originated in large-amplitude oscillations in staggered field ȳn. As a result, the gap becomes poisoned and the adiabatic condition
given by Eq. (11) for the zero-energy state is eventually violated. The evolution of the zero-energy state becomes nonadiabatic and the soliton
becomes unstable.

The zero-energy state is therefore the instantaneous eigenstate
with ν = 50.

At times t > 0, the nonadiabatic time evolution becomes
apparent for the bulk states (as mentioned previously), which
spectrally decompose into several instantaneous eigenstates.
Roughly speaking, in the absence of electron-phonon inter-
action [i.e., parameter α = 0 in Eq. (1)], the expected time
evolution of the valence- and conduction-band k states can
be understood in simple terms according to the semiclassical
equation of motion k̇ = −eEt/h̄ [26], and a single valence
or conduction band is expected. However, for finite α, the
excitation of a phonon mode with momentum q produces
“replicas” of the spectrum due to the interaction of states with
momentum k and k + q, and a nontrivial electronic structure
with several new anticrossings emerges. After some time, the
original one-to-one correspondence at t = 0 is completely lost
for the bulk states. Note that this breaking of adiabaticity
does not imply the generation of electron-hole excitations in
the system, as is evident from the lack of population in the
diagonal blocks in Fig. 3. In other words, valence-band states
only mix among themselves and similarly for valence-band
states. This is in good agreement with the low-field conditions
given in Eqs. (12) and (13).

Note that while adiabaticity is lost for the bulk states, the
exception to this picture is precisely the zero-energy state, for
which the projection onto the zero-energy instantaneous state
remains close to 1 (see Fig. 6 for more details).

On the other hand, in Fig. 4 we present the same calculation
for E = 0.1E0 as in Fig. 2, for which the moving soliton
solution breaks down within a period 2π of the Peierls phase
φ. We therefore ask the question: How does this unstability
“look” in the instantaneous spectrum? Interestingly, in addi-
tion to the different evolution of the bulk states (i.e., a more
“diabatic” evolution due to the larger field E , and the hint

of some electron-hole excitations), there is a striking differ-
ence with respect to Fig. 3 concerning the gap region. Note
that after some time (t � 46.3ω−1

0 ), the original gap becomes
populated with new states, which were absent before. The
emergence of these new in-gap states can be rationalized in the
following way: as a consequence of the large-amplitude oscil-
lations in the staggered field ȳn(t ) (i.e., large oscillations of the
phonon mode) of the order of ∼y0, new kink-antikink pairs
are produced along the chain and new low-energy electronic
states appear. When these kink-antikink pairs proliferate, they
generate more and more low-lying electronic states which
“poison” the gap 	g, effectively reducing it and destabilizing
the topological protection of the zero-energy state. This is
more clearly seen in Fig. 5, where we show both the configu-
ration of the lattice deformation field ȳn(t ) and the electronic
excess charge ρ̄n(t ) (left panel) along with the corresponding
instantaneous spectrum of in-gap states. Note that this connec-
tion between real-space maps and the (instantaneous) energy
spectrum in the adiabatic regime provides a lot of information.
Interestingly, the results in Fig. 5 have been obtained for a
field E = 0.03E0 < Ec, which is sufficiently small for the
instability to appear at very long times (i.e., the simulation
time is φ = [0, 12π ]), but which is nevertheless large enough
for the instability to eventually occur.

Building upon these ideas, we now propose that the quan-
tity

p0(t ) = |〈ψ0(t )|φ0(t )〉|2, (23)

i.e., the projection of the evolved zero-energy state (here,
for simplicity, the state ν = 50 is indicated by the subindex
“0”) onto the instantaneous zero-energy state, is a bona fide
measure of the stability of a dynamical soliton. In Fig. 6,
we show p0(t ) as a function of time (measured in terms of the
Peierls phase φ) for several values of the external field E . We
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FIG. 5. Left panel: Staggered lattice deformation field ȳn (dashed
red line) and electronic excess charge ρ̄n (continuous blue line) vs
site index n, computed for E = 0.03E0 and at different values of
the Peierls phase. Right panel: Energy spectrum of instantaneous
in-gap states vs eigenstate index ν, computed for the same values
of the Peierls phase. As the system evolves, the dynamical instability
evidenced in the real-space quantities correlates with the closing of
the Peierls gap.

note that p0(t ) remain stable and close to 1 for E = 0.03 E0

for most of the simulation, but eventually drops and deviates
from 1 around φ ≈ 10π . The onset of this deviation (indicated
as black spots A, B, and C for each value of E ) is relatively
abrupt and coincides with the onset of the instability observed
in the real-space maps of yn(t ) and ρ̄n(t ) (see Fig. 5). There-
fore, we postulate that p0(t ) can be used as a simple indicator
of the stability of dynamical solitons in the SSH model. To

FIG. 6. Projection p0(t ) [Eq. (23)] vs the Peierls phase φ for
different values of E . A stable evolution of the soliton excitation
as a single quantum object is evidenced in p0(t ) � 1. After some
time (which strongly depends on the value of E ), the value of p0(t )
suddenly drops, meaning that the evolution of the zero-energy state
becomes nonadiabatic (see black dots indicated A, B, and C). This
drop in p0(t ) is correlated with the soliton breakdown manifested in
the real-space variables ȳn and ρ̄n (see Figs. 5 and 7), and allows one
to consider p0(t ) as a reliable quantitative indicator of the stability of
out-of-equilibrium solitonic excitations.

substantiate this claim, we present in Fig. 7 the real-space
maps for both ȳn(t ) and ρ̄n(t ) before and after the instability
of p0(t ) (black dots) for each value of the external field. In-
terestingly, the excess charge before the instability in p0(t ) is
more or less concentrated around the original domain wall and
retains the main features of a stable moving soliton. However,
after p0(t ) falls below p0(t ) � 0.8, the excess charge spreads
over the whole system and the soliton breaks down.

2. Saturation velocity analysis

In this section, we focus on the analysis of the saturation
velocity of the moving soliton. When a charged soliton is
accelerated in an external field, the interaction with acoustic
phonons is known to introduce friction [15,29,30]. This damp-
ing takes place even at zero temperature and in the absence
of thermally excited phonons since the phonon emission is
originated in the motion of the soliton itself. Therefore, after a
characteristic time τ , the soliton eventually attains a saturation
velocity vsat [15]. Alternatively, if the field is suddenly turned
off, its velocity relaxes to vsat → 0. According to Ref. [30],
this relaxation time is minimal (i.e., friction is therefore more
efficient) when the initial velocity v of the soliton is approx-
imately equal to the sound velocity of acoustic phonons in
tPA, vs. In particular, in Ref. [15], Ono and Terai have shown
this friction effect by computing the position of the center of
mass of the excess charge distribution ρ̄n(t ) as a function of t ,
i.e.,

xc(t ) = Na

2π
tan−1

( ∑
n ρ̄n(t ) sin θn∑
n ρ̄n(t ) cos θn

)
, (24)

with θn = 2πn/N , and from here the velocity of the soliton is
obtained taking the numerical derivative. Note that the defini-
tion (24) is consistent with the periodic boundary conditions
imposed in the system.

One conclusion in Ref. [15] is that the velocity of the
soliton reaches a saturation value vsat which is independent of
the value of the applied external field E . We believe that this
conclusion is unphysical because it cannot reproduce the nec-
essary requirement that vsat → 0 in the limit E → 0. On the
other hand, at sufficiently large fields, the soliton eventually
breaks down and is no longer a meaningful concept.

Therefore, here we revisit the issue of the saturation ve-
locity in the context of our previous stability analysis. We
computed the center-of-mass position as a function of time
as in Ref. [15], for different values of the external field.
Our results are shown in Fig. 8. All the curves show, after
a time which depends on the particular value of E , a clear
linear dependence which is indicative of the saturation of the
soliton velocity, as expected from the previous considerations.
In addition, note the abrupt upturn deviation from linearity
in the plots corresponding to E � 0.03 E0, which can be
associated (but as we show below, does not correspond) to
the soliton breakdown. In order to compare with our results,
here we have indicated the occurrence of the same instabilities
observed in Fig. 6 in p0(t ) (black spots A, B, and C) for each
curve. Quite surprisingly, we note that the instability in p0(t )
always occurs before the upturn in each of the curves xc(t ).
Moreover, the value of xc(t ) computed from Eq. (24) remains
well defined and continuous even after the instability in p0(t ).
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FIG. 7. Staggered lattice deformation field ȳn (dashed red lines)
and electronic excess charge ρ̄n (continuous blue lines) vs site index
n, computed for different values of constant electric field E . For each
value of E , we evaluate the fields ȳn and ρ̄n before and after the
instabilities marked with black dots in Fig. 6 (see the corresponding
insets for details). An evident change of behavior (i.e., delocalization
of the electronic excess density and larger amplitude in the lattice
deformation field) occurs in the figures after the instability.

FIG. 8. Center of mass of the electronic excess charge, xc(t )
[Eq. (24)], as a function of time. After a while, the behavior of xc(t )
shows a linear behavior in t , indicating the presence of damping
due to the interaction with phonons (see Ref. [30]). The breakdown
of the soliton is manifested as an abrupt upturn of the curves. For
comparison, we also show the occurrence of the instabilities in Fig. 6,
obtained from the analysis of p0(t ). In all cases, the behavior of p0(t )
is able to predict the breakdown of the soliton and, in some cases
(e.g., for E = 0.07E0), the parameter p0(t ) is actually a more reliable
indicator of the soliton instability.

In the case of E = 0.07 E0, this behavior even continues
for a quite significant part of the simulation, and therefore it
becomes meaningless to refer to the “soliton velocity” in this
regime. A possible explanation for this phenomenon is that
the position of the center of mass xc(t ), being an averaged
quantity, is less sensitive to the variations in the excess charge
ρ̄n(t ) and therefore cannot capture the true soliton breakdown.
One conclusion of this analysis is that the behavior of xc(t ) vs
t cannot be taken as an indicator of the soliton stability, and
therefore must be complemented with additional information
[e.g., with that of p0(t )]. This point has been overlooked in
previous works.

From the data points in Fig. 8, we have obtained the satu-
ration velocity via two methods: (a) by taking the average of
the numerical derivative when it reaches the saturation regime
(this method is similar to Ref. [15]), and (b) by fitting the data
of Fig. 8 with the formula

xc(t ) = p1(p2 + t2)p3 + p4, (25)

where p1, p2, p3, p4 are fitting parameters, obtained by the
least-squares method. Here, p3 is approximately 1/2 in or-
der for xc(t ) to reproduce a linear behavior at large t . Once
we obtain these parameters, we take the analytical derivative
and take the limit t → ∞. This is numerically more robust
and less noisy than the numerical derivative implemented in
Ref. [15]. Our results are shown in Fig. 9. Note that at variance
with that work, we obtain a saturation velocity which actually
depends on the applied field. Our numerical results, especially
those corresponding to very low fields, have been checked
against very long simulations corresponding to a total Peierls
phase φ(tmax) = 6π (i.e., 40–50 times longer than the time
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FIG. 9. Saturation velocity of the soliton, vsat, computed from
the results in Fig. 8 using different numerical methods (see text).
The behavior of vsat rapidly saturates to a value ∼4vs, with vs the
sound velocity of acoustic phonons, in agreement with Ref. [15].
However, at variance with that work, we reproduce the physically
required behavior vsat → 0 in the limit E → 0.

required to reach vsat, given by the empiric formula (4.5) in
Ref. [15]),

τω0 = −17.1 ln

(
E

E0

)
− 45.1. (26)

In this way, we are sure we are well in the saturated regime.
In addition, the convergence of these curves has been checked
for different values of 	t = 0.01ω−1

0 , 0.001ω−1
0 , 0.0001ω−1

0 .
For 	t = 0.01ω−1

0 , all of the computed quantities converge
within a tolerance of 0.2%. Our results are indeed consistent
with the physically intuitive limit vsat(E → 0) → 0. However,
in the regime E > 0.03 E0, we note a rapid convergence to a
constant value which is approximately vsat ∼ 4vs, as obtained
by Ono and Terai. It is probably this rapid saturation which
explains the conclusions obtained by those authors.

V. ANALYSIS OF FINITE-SIZE EFFECTS

In this last section, we study the effects on the stability
of the moving soliton due to the finite-size N of the system.
Generically speaking, since the soliton is a spatially localized
excitation within a length ξ , equilibrium properties (i.e., in the
absence of external field E = 0) are not expected to change as
long as the system size L = Na is much larger than the width
of the soliton, ξ . However, the case of moving solitons is quite
different, as we show below.

To study the dynamics and stability of moving solitons
as a function of N , we have computed the following: (a)
the soliton center-of-mass position xc(t ), (b) the projection
p0(t ) = |〈ψ0(t )|φ0(t )〉|2, and (c) the total energy of the lattice,
Elatt(t ) = ∑N

n=1[ M
2 u̇n(t )2 + K

2 y2
n(t )], for different system sizes

(N = 99, N = 149, and N = 199), and for a fixed value of
the external field E = 0.03 E0 (see Fig. 10). In addition, in
Fig. 11 we show the excess charge density ρ̄n(t ) and lattice
deformation profile ȳn(t ) at the final step of the simulation for

FIG. 10. Time evolution of (a) the center of mass xc(t ), (b) the
projection p0(t ) = |〈ψ0(t )|φ0(t )〉|2, and (c) the total potential energy
of the lattice for three different system sizes N = 99, 149, and 199,
and for an external field E = 0.03 E0. These plots suggest that an
increase of the number of sites, N , results in an increase of the soliton
stability.

each of the aforementioned values of N . In all cases, we have
assumed Nel = N + 1 (total excess charge equal to Q = −e)
in order to compare to our results in previous sections.
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FIG. 11. Spatial profiles of the excess charge density ρ̄n(t ) and
the lattice deformation profile ȳn(t ) at the final time step of the
simulation for each value of N .

These calculations are in qualitative agreement with our
previous results with similar parameters. In the case of xc(t )
vs t [see Fig. 10(a)], we even obtain quantitative agreement
up to the point in which the soliton breaks apart. However,
we note an increase of the soliton stability as the system
size N increases. This effect can be rationalized by recalling
that the soliton, being a localized excitation, produces in all
cases a similar perturbation as it travels through the system.
In particular, it transfers the same amount of energy into the
lattice as a function of time, independently of the system size
[note the similarity between the different curves of the total
lattice energy Elatt(t )]. However, since the lattice phonons are
delocalized excitations, the amount of energy injected by the
soliton must be redistributed over chains of different size in
each case and, consequently, the amplitude of the deformation
profile ȳn(t ) becomes smaller for larger N . This is exactly
what suggests the results shown in Fig. 11. In other words, the
amount of energy transferred to the lattice per site decreases.

The results shown in these figures confirm one of the
main conclusions in this work: the mechanism which triggers
the instability of the moving soliton is the large-amplitude
fluctuation of the phonon field, which eventually makes ȳn(t )
cross zero and generate new electronic states that poison the
(instantaneous) Peierls gap.

Finally, note that a naive theoretical extrapolation of these
results would suggest that in an infinite system N → ∞,
the soliton would always be stable (at least in the adiabatic
regime of low-field E ). However, this might be an artifact of
our highly idealized model. Other effects, such as disorder,
finite temperatures, electron-electron interactions, etc., could
change this result and therefore more studies are necessary.
In any case, in a real system, the finite length of the polymer
should set the actual value of N .

VI. SUMMARY AND CONCLUSIONS

In this work, we have theoretically studied, within the
framework of the SSH model, the dynamics of a moving
charged soliton in an external electric field, with particular
focus on the issue of its stability. While the theoretical study
of moving solitons is not new [11–20], we stress that many
previous works have focused on the stability of solitons mov-
ing at a constant velocity v (see, e.g., Refs. [13,14,18–20]), a
situation which is conceptually different from ours. To the best
of our knowledge, a proper definition of an out-of-equilibrium
stability criterion has remained an open question.

Our work has been motivated by recent experimental devel-
opments where direct evidence of solitonic excitations in tPA
molecules deposited on surfaces have been reported [6]. These
results have triggered renewed interest in this field [31–33],
with promising prospects for the application of solitonic ex-
citations in electronic devices. In this respect, the issue of the
stability of a soliton excitation under the effect of an electric
field is a relevant question for the design of novel devices
based on molecular electronics.

One of the goals of our work has been to obtain a detailed
description of the microscopic mechanisms triggering the
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dynamical instability of an out-of-equilibrium soliton. While
we have focused on the regime of a single soliton (i.e.,
extremely low-dopant concentration in experimental tPA sys-
tems), we mention that a finite concentration of dopants has
important additional effects in tPA, such as the presence of
a finite density of solitons and formation of soliton bands,
presence of soliton-(anti)soliton interactions, formation of
polarons, metallic behavior, etc. Due to their enormous com-
plexity, these effects are beyond the scope of our work and
our conclusions cannot be extrapolated to the limit of finite-
dopant concentrations. For a comprehensive review of the
effects of finite doping, we refer the reader to Ref. [34] and
references therein.

We have focused on the regime of low external electric
field E in which particle-hole excitations are frozen, there-
fore inducing an adiabatic evolution of the charged solitonic
excitation. Within the framework of the adiabatic approxi-
mation, the projection onto the instantaneous eigenstates of
HSSH has enabled us to get useful insight into the microscopic
mechanisms triggering the instability during the dynamical
evolution of the “electron + lattice” system. In particular,
we have been able to obtain a “back-to-back” comparison
between the time-dependent lattice deformation field yn(t )
and the instantaneous energy spectrum of electronic excita-
tions, and to identify the proliferation of soliton-antisoliton
pairs, originated in large-amplitude oscillations of the lattice
deformation field, as the main destabilizing mechanism. In
this context, the projection p0(t ) = |〈ψ0(t )|φ0(t )〉|2 [Eq. (23)]
represents a bona fide indicator of the stability of a moving
soliton. Indeed, the criterion p0(t ) � 1 can be interpreted as
a “similarity” requirement between the evolved zero-energy
state |ψ0(t )〉 and the instantaneous zero-energy eigenvector of
the SSH Hamiltonian, |φ0(t )〉, which is the “optimal” zero-
energy state for a given configuration of the deformation field
ȳn(t ). Note that this criterion is generic and valid beyond
the adiabatic approximation (as long as the evolution of the
quantum states is unitary), and can therefore be applied either
in equilibrium or in out-of-equilibrium conditions.

From the electronic point of view, the zero-energy state
is “dynamically protected” by the Peierls gap, and this pro-
tection is ensured as far as the instantaneous gap remains
stable. Our results suggest (in agreement with previous works
[29,30]) that the energy from the electric field is pumped into
the phonon degrees of freedom, and eventually the oscilla-
tions of the deformation field ȳn(t ) acquire enough energy
to produce kink-antikink pairs. The proliferation of these
kink-antikink pairs “poison” the gap and eventually destroy
the aforementioned dynamical protection. This conclusion is
consistent with the results obtained in Sec. V, where we have
found that solitons moving in larger systems are more robust
due to a smaller energy per site injected into the lattice.

A simplifying approximation used in this work is the mean-
field treatment of Eqs. (9), an approximation usually known
as the “Ehrenfest dynamics.” This is a very common method
also used in previous works (see, e.g., [11–20]) to solve the
dynamical equations of motion of classical ions coupled to
electrons. In particular, although Ehrenfest dynamics can cor-
rectly describe the effects of heating of cold electrons by hot
ions (a fact that makes it a suitable approximation for comput-
ing, e.g., electron friction in radiation damage simulations),
it is well known to fail to reproduce the heating of the ions

by hot electrons [35]. This asymmetry arises from the ab-
sence of quantum fluctuations and the suppression of quantum
noise. Therefore, a method that goes beyond the mean-field
level would be highly desirable in future works. Different
alternative frameworks, such as higher-order expansions of
the nonequilibrium Green’s functions [36] or the so-called
correlated electron-ion dynamics (CEID) method [37], are
expected to perform better than the Ehrenfest dynamics in this
regard. In any case, we expect that the qualitative aspects of
our results are not affected by the limitations of the mean-
field approximation, as the microscopic soliton destabilization
mechanism is a generic feature, not related to any specific
approximation scheme.

As an application, we have revisited previous studies where
the dynamics of out-of-equilibrium solitons have been stud-
ied [15]. In particular, we have studied the evolution of the
electronic “center of mass” xc(t ) [Eq. (24)] and the saturation
velocity vsat of charged solitons as a function of the electric
field E . We concluded that the behavior of xc(t ) by itself
does not provide reliable information about the stability of the
soliton excitation (in fact, in some cases it is even misleading,
as we have shown in Fig. 8), and that it must be complemented
by the information provided by p0(t ). In the process of this
study, we have obtained different results which are at variance
with those of Ref. [15], but which are in agreement with the
physical requirement that the saturation velocity of the soliton
vsat → 0 in the limit E → 0.

Our results have been obtained for a regime of electric
fields in the range E ∈ [0.01, 0.1]E0, which corresponds to
E ∈ [0.13, 1.3] mV/Å. These values are in the regime of
operation of optoelectronic devices [25]. Therefore, our find-
ings may be of interest for experimental and/or technological
applications. In addition, note that these values of the electric
fields are well below the value required for the electrical
breakdown of the dielectric [see Eq. (13)]. This is consistent
with Figs. 3 and 4, where we do not see electron-hole excita-
tions (conduction and valence bands do not mix).

Finally, in our study, we have crucially assumed the system
to be isolated and closed. This simplifying assumption, which
is also made in previous works, is clearly unrealistic consider-
ing experimental situations. Therefore, the results presented in
this work are of interest from the fundamental point of view,
but they need to be reconsidered in order to apply them to
more realistic systems. In that sense, a very interesting line of
research would be to extend these ideas to open systems (e.g.,
a model of a tPA molecule coupled to a metallic substrate, as
in Ref. [6]). Additionally, we have assumed zero temperature
and the absence of other experimentally important interactions
such as disorder, electron correlation, quantum phonons, etc.
These are non-negligible effects that need to be carefully
taken into account in more realistic situations (e.g., as in
Refs. [38,39]).
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APPENDIX: CRITICAL ELECTRIC FIELD IN
ADIABATIC APPROXIMATION

Let |ψη(t )〉 be the dynamical single-particle state vector
evolved from the initial condition |ψη(t = 0)〉 = |ψη〉, where
the |ψη〉 is an eigenstate of the Hamiltonian with energy Eη

[see Eq. (4)],

HSSH|ψη〉 = Eν |ψη〉, (A1)

where we have omitted the spin indices for simplicity. In ad-
dition, let {|φν (t )〉} be the set of instantaneous eigenvectors of
Hamiltonian of Eq. (1), which verify the eigenvalue equation

HSSH(t )|φν (t )〉 = εν (t )|φν (t )〉, (A2)

where εν (t ) are the instantaneous eigenvalues and where the
time appears as a parameter. We assume this basis to be dis-
crete and nondegenerate. Expanding the state vector |ψη(t )〉
in the basis |φν (t )〉 yields

|ψη(t )〉 =
∑

ν

aν (t )eiθν (t )|φν (t )〉, (A3)

where θν (t ) = − ∫ t
0 εν (τ )dτ/h̄ is the dynamical phase factor.

Replacing Eq. (A3) into the Schrödinger equation and con-
tracting with 〈φμ(t )| yields the equation for the coefficients
aμ(t ):

ȧμ = −
∑

ν

aνei[θν (t )−θμ(t )]〈φμ(t )|φ̇ν (t )〉. (A4)

Differentiating Eq. (A2) with respect to time yields

〈φμ(t )|φ̇ν (t )〉 = 〈φμ(t )|ḢSSH(t )|φν (t )〉
εν (t ) − εμ(t )

∀ μ �= ν. (A5)

Now, we can rewrite Eq. (A4) as

ȧμ(t ) =
∑
ν �=μ

〈φμ(t )|ḢSSH(t )|φν (t )〉
εν (t ) − εμ(t )

ei(θν (t )−θμ(t ))aν (t ), (A6)

where we have assumed 〈φμ(t )|φ̇μ(t )〉 = 0, using the gauge
freedom of the instantaneous basis |φμ(t )〉 → eiγμ(t )|φμ(t )〉.

Note that this can always be done, with the exception of
Hamiltonians performing a closed loop in parameter space
[40]. To a very good approximation, we can assume that this
situation never occurs in our system in the regime of param-
eters of our simulations (indeed, this has been numerically
verified).

The formal solution of Eq. (A6) can be written in vector
form as

−→a (t ) = T exp

{∫ t

0

←→
M (τ )dτ

}
−→a (0), (A7)

where T is the time-ordering operator, −→a (t ) ≡
[a1(t ), a2(t ), . . . ]T , and the matrix

←→
M (τ ) is defined as

[
←→
M (τ )]μν≡〈φμ(τ )|ḢSSH(τ )|φν (τ )〉

εν (τ ) − εμ(τ )
× e− i

h̄

∫ τ

0 [εμ(t ′ )−εν (t ′ )] dt ′
.

(A8)

The adiabatic theorem given by Eq. (10) is recovered in terms
of these quantities if

T exp

{∫ t

0

←→
M (τ )dτ

}
≈ 1, (A9)

i.e., the dynamical states are essentially the instantaneous
eigenstates of the Hamiltonian. In order for this to occur,
the matrix elements in Eq. (A8) must be very small. More
precisely, assuming that the quantities εμ(t ) are essentially
time independent under the integral

∫ τ

0 dτ , the integration in
Eq. (A8) can be done very easily, and we obtain the result [24]

h̄
〈φμ(t )|ḢSSH(t )|φν (t )〉

[εν (t ) − εμ(t )]2

[
2 − 2 cos

(
εμ − εν

h̄
t

)]
� 1,

(A10)
which is essentially the adiabatic condition Eq. (11).

In order to estimate the matrix element
〈φμ(t )|ḢSSH(t )|φν (t )〉, we expand the local site-basis vectors
in terms of the instantaneous eigenvector basis using the
formula c†

n = ∑
ν[αν

n (t )]∗c†
ν , where the coefficients αν

n (t ) are
the matrix elements of the unitary change of basis operator
A(t ). We therefore write

〈φμ(t )|ḢSSH|φν (t )〉 = 〈0|cμ

{ ∑
n

[
it0

eaE

h̄
− iαyn(t )

eaE

h̄
− αẏn(t )

]
ei eaE

h̄ t c†
n+1cn + H.c.

}
c†
ν |0〉

= ei eaE
h̄ t

{
2it0

eaE

h̄
Aμ,ν

1 (t ) − 2iα
eaE

h̄
Aμ,ν

2 (t ) + 2αAμ,ν
3 (t )

}
+ H.c.,

where we have defined the quantities

Aμ,ν
1 (t ) ≡

N∑
n=1

[
αμ

n (t )
]∗

αν
n+1(t ),

Aμ,ν
2 (t ) ≡

N∑
n=1

yn(t )
[
αμ

n (t )
]∗[

αν
n+1(t )

]
,

Aμ,ν
3 (t ) ≡

N∑
n=1

(
dyn(t )

dt

)[
αμ

n (t )
]∗[

αν
n+1(t )

]
,

for which the upper limits |Aμ,ν
1 (t )| < 1, |Aμ,ν

2 (t )| < 2u0 can
be imposed. Assuming a quasistatic motion of the ions, we

can set dyn(t )/dt ≈ 0. Then, the following upper limit for the
matrix element results:

∣∣〈φμ|ḢSSH|φν

〉∣∣ <

√(
4t0eaE

h̄

)2

+
(

8αu0eaE

h̄

)2

=
(

4t0eaE

h̄

)√
1 +

(
2αu0

t0

)2

.

For the parameters used in this work, the term ( 2αu0
t0

)2 ≈ 0.04
and can be safely neglected. Finally, particularizing for the
zero-energy instantaneous state, the smallest energy differ-
ence εν (t ) − εμ(t ) corresponds to the Peierls gap 	g, and we
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arrive at the expression

4t0eaE

	2
g

� 1, (A11)

which results in the condition given by Eq. (12),

E � 	2
g

4t0ea
. (A12)
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