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Quantum anomalous layer Hall effect in the topological magnet MnBi2Te4
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Recently, a type of Hall effect due to an unusual layer-locked Berry curvature called the layer Hall effect
(LHE) has been reported in the even-layered two-dimensional antiferromagnetic (AFM) MnBi2Te4 [A. Gao
et al., Nature (London) 595, 521 (2021)]. In this paper, we report that the quantization of LHE, which we call
the quantum anomalous layer Hall effect (QALHE), can be realized in MnBi2Te4. The QALHE originates from
kicking a layer-locked Berry curvature monopole out of the Fermi sea by a vertical electric field. Remarkably,
we demonstrate that electric-field reversal can switch the sign of the quantized Hall conductance of QALHE in
the even-layered AFM phase. The QALHE can also be realized in the ferromagnetic phase. These results provide
a promising way toward the electric engineering of Berry curvature monopoles and quantized-layered transport
in topological magnets.
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I. INTRODUCTION

The quantum Hall effect observed in strong magnetic fields
is one of the most striking phenomena in condensed matter
physics [1,2]. Recently, the notion of the quantum Hall ef-
fect was generalized to the quantum spin Hall effect [3–8]
and quantum valley Hall effect [9,10] by utilizing spin and
valley degrees of freedom. They can be used to transport
spin and valley current without dissipation, having potential
applications in designing low-power devices. Yet, electrons
of opposite spin or valley indices in real materials spatially
overlap with each other, leading to inevitable backscattering
and thus short lifetimes of electron states [6,8,11], which
hinders the development of these areas. Therefore, a new class
of robust quantum Hall effect characterized by a spatially
resolved topological index is highly desirable.

Recently, significant progress has been achieved to realize
layered topologically magnetic systems [12–18]. In particular,
the intrinsic antiferromagnetic (AFM) topological insulator
(TI) MnBi2Te4 has become a highly tunable platform to real-
ize various exotic topological phenomena due to the interplay
between the Berry phase and its rich internal magnetic struc-
tures [19–26]. Notably, an intriguing Hall effect named the
layer Hall effect (LHE) [27,28] has been identified in the
even-layered AFM MnBi2Te4. As shown in Fig. 1(a), the LHE
manifests emerging layer-dependent Hall current flowing in
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different directions, because the opposite Berry curvature is
locked to the top and bottom layers of MnBi2Te4. If the net
Berry curvature is generated under an electric field, a layer-
polarized anomalous Hall effect (AHE) arises in the LHE
system. This creates a new pathway to the spatial tailoring
of the Berry curvature via electric manipulation. It is natural
to conceive of further generalizing the LHE to its quantized
version.

In this paper, we propose a layer-polarized quantum
anomalous Hall effect (QAHE) in the disordered topological
magnet MnBi2Te4 under electric field, where a net Berry
curvature monopole [29] is locked to the top or bottom layer
[see Fig. 1(b)]. This can be regarded as a quantized version of
the LHE, so we call it the quantum anomalous layer Hall effect
(QALHE). Remarkably, in the even-layered AFM MnBi2Te4,
we demonstrate that electric-field reversal can switch the sign
of the quantized total Hall conductance, where the quantized
layer-dependent Hall conductance is switched between the
top and bottom layers [see Fig. 1(c)]. That is because an
electric field along the z axis can transfer a net layer-locked
topological monopole to above the Fermi level on the top or
bottom layer [Figs. 1(d) and 1(f)]. Here, the Berry curvature
monopole manifests as disorder-induced quantized Berry cur-
vature in the energy space, which is locked to the layer index
[Fig. 1(e)] and will shift in the energy space under electric
fields. To capture the underlying physics, we investigate the
evolution of the Berry curvature and the ratio of the geometric
mean density of states (DOS) ρtyp to the arithmetic mean
DOS ρave. Furthermore, we calculate the local current induced
by the chiral edge state to provide intuitive pictures for the
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FIG. 1. (a), (b) Electric manipulation of the LHE and QALHE in
even-layered AFM MnBi2Te4. (a) Opposite Berry curvature locked
to the top and bottom layers, which are depleted in different layers
under a vertical E field. Thus, the electrons deflecting in opposite di-
rections cannot cancel, creating a net anomalous Hall current [27,30].
(b) Quantum switch of the QALHE (quantization of the LHE) with
opposite layer-locked Berry curvature monopoles, under a vertical
E field. (c) The Hall conductance of the whole system (solid line)
σ tot

xy and of each layer (dashed lines) σxy(z) vs the vertical E -field
strength VE in a four-layer AFM MnBi2Te4. The Fermi energy is
Ef = 1.2 and system size Nx = Ny = 48. The parameters are set
as g−

z = (−1)z, M0 = −0.22, M1,2 = −0.22, A = 0.78, Am = 0.44,
Az = 0.1, B0 = 1.1, B1,2 = 0.92, Bz

0 = 0.2 [23,24], and other param-
eters are equal to zero unless specified. (d)–(f) Schematic plots of the
layer-locked positive (red sphere) and negative (blue sphere) Berry
curvature monopoles for different VE . The open spheres in (d) and (f)
indicate E -field-triggered Berry curvature monopoles transitioning
across the Fermi level Ef .

layer-dependent Chern number. In addition, we show that
QALHE can also be realized in the ferromagnetic (FM)
MnBi2Te4.

II. MODEL HAMILTONIAN

The disordered MnBi2Te4 under E field can be described
by a 4 × 4 effective Hamiltonian H = HN (k) + gμ

z Hm(k) +
U (z) [23–25]. Here, the nonmagnetic part and the magnetic

part gμ
z Hm in momentum space are respectively given by

HN = E (k) +

⎛
⎜⎜⎜⎝

m0(k) Azkz 0 Ak−
Azkz −m0(k) Ak− 0

0 Ak+ m0(k) −Azkz

Ak+ 0 −Azkz −m0(k)

⎞
⎟⎟⎟⎠

and

Hm =

⎛
⎜⎜⎜⎝

m1(k) 0 0 Amk−
0 m2(k) −Amk− 0

0 −Amk+ −m1(k) 0

Amk+ 0 0 −m2(k)

⎞
⎟⎟⎟⎠,

where g+
z = 1 and g−

z = (−1)z describe the FM and AFM
order, respectively. Here, the wave vectors k± = kx ± iky,
E (k) = Dzk2

z + D(k2
x + k2

y ), mν (k) = Mν + Bz
νk2

z + Bν (k2
x +

k2
y ). U (z) = VE [−(Nz + 1)/2 + z] represents the zth-layer po-

tential in Nz the layer sample caused by the electric field along
the z axis. The magnetic disorder is included as HW (r) =
V (r)σz, where the random potential V (r) ∈ [−W/2,W/2] and
the disorder strength W = 3.5 unless specified. The Pauli
matrix σz acts on the spin subspace.

III. E-FIELD-TRIGGERED BERRY CURVATURE
MONOPOLES AND QALHE

Due to the parity-time (PT ) symmetry, the total Hall cur-
rent of the even-layered AFM MnBi2Te4 system vanishes
without external fields [30]. However, unlike nonmagnetic
topological systems, an electric field can induce net Berry
curvature and Hall currents in the AFM TI by breaking the
PT symmetry. To investigate the E -field-induced Hall ef-
fect, we evaluate the total Hall conductance σ tot

xy = ∑
z σxy(z),

where the layer-dependent Hall conductance in the zth layer
σxy(z) = Cze2/h and the layer-dependent Chern number Cz is
given by [31–33]

Cz = 2π i〈Tr{PE f [−i[x̂, PE f ],−i[ŷ, PE f ]]}z〉W , (1)

with PE f being the projector onto the occupied states of H
below the Fermi energy E f . x̂ (ŷ) is the coordinate operator,
and 〈· · · 〉W means averaging over different disorder configu-
rations.

Figure 1(c) plots the Hall conductance versus the E -field
strength VE . Remarkably, it is found that electric-field re-
versal can flip the Hall conductance σ tot

xy plateaus of the
QAHE (see the black line). This is closely analogous to the
electric-field-reversible anomalous Hall effect experimentally
observed in the LHE system [27,30], so we call it QALHE.
Further, we compare the total Hall conductance σ tot

xy with
the layer-dependent Hall conductance σxy(z). For VE > 0, the
σ tot

xy = e2/h plateau is attributed to the σxy(z = 4) of the top
layer (see the red line), while (for VE < 0) the σ tot

xy = −e2/h
plateau comes from the σxy(z = 1) of the bottom layer (see
the blue line). This means that the increase in the upward (+z)
and downward (−z) electric field can drive the top and bottom
layer from a topologically trivial phase into the QAHE phase
of σxy(z) = ±e2/h, respectively. Since the Hall conductance
arises from the total Berry curvature of all the occupied states,
there exist Berry curvature monopoles under the Fermi level

245425-2



QUANTUM ANOMALOUS LAYER HALL EFFECT IN THE … PHYSICAL REVIEW B 106, 245425 (2022)

FIG. 2. Evolutions of Berry curvature monopoles in AFM
MnBi2Te4 when the E field increases from (a) VE = 0 to (b) VE =
0.55. Corresponding, (c), (d) the layer-dependent Berry curvature �z

vs the energy ε, and (e), (f) the layer-dependent Cz and the total Chern
numbers Ctot = ∑

z Cz. The Fermi energy Ef = 1.2 is fixed with size
48 × 48 × 4.

in the QALHE. To this end, we provide a phenomenological
explanation by using Berry curvature monopoles. In Fig. 1(e),
at zero electric field (VE = 0), there exist a pair of positive and
negative Berry curvature monopoles and the PT -symmetric
partner on the top and bottom layers, respectively. Here, two
degenerate Berry curvature monopoles are of opposite values
on the top and bottom layers due to the PT symmetry. As
shown in Fig. 1(f), the monopoles of the top layer are lifted up
in the energy space due to the upward electric field (VE > 0),
and they are transferred to above the Fermi energy E f when
VE > 0.55, leaving a net (+1) Berry curvature monopole in
the top layer and the whole system under E f . This explains
why the upward electric field can drive the top-layer Hall con-
ductance from σxy(z) = 0 into the σxy(z) = 1 phase. A similar
process can give rise to a net (−1) Berry curvature monopole
in the bottom layer and the whole system under a negative
electric field [see Fig. 1(d)]. To quantitatively elucidate the
evolution of the Berry curvature monopoles under the elec-
tric field, we calculated the layer-locked Berry curvature in
energy space according to Cz(ε) = ∫ ε

−∞ �z(ε)dε [34], where
�z(ε) is the Berry curvature of the zth layer in energy space
ε. Figure 2 plots the Berry curvature and Chern numbers,
and sketches the corresponding Berry curvature monopole. In
Fig. 2(c) when VE = 0, the top-layer-locked Berry curvature
�z=4(top) has two peaks for each layer, one positive and one
negative, in the whole energy band. Each peak corresponds
to a topological phase transition between Cz = ±1 to Cz = 0
at a critical energy εc [see Fig. 2(e)], which will become a
delta function δ(ε − εc) in the thermodynamic limit. So each
positive (negative) Berry curvature peak manifests as a Berry

curvature monopole with charge +1 (−1) in energy space as
shown in Fig. 2(a).

In Fig. 2(a), there exists one pair of Berry curvature
monopoles for the top and bottom layers, each below the
Fermi energy E f = 1.2, in accordance with those in Fig. 1(e).
By increasing VE to 0.55 in Fig. 2(b), the top-layer-locked
Berry curvature monopoles (peaks) ascend to the +ε di-
rection, while the bottom layer-locked monopoles (peaks)
descend to the −ε direction in the energy space, due to
the layer-dependent potential U (z) = VE [−(Nz + 1)/2 + z].
When a negative monopole in the top layer moves across
the Fermi surface [see the blue ball in Fig. 2(b)], the AFM
system reaches a top-layer-polarized QAHE phase with Ctot =
Cz=4(top) = 1 [see Fig. 2(f)], since there is only one positive
monopole from the occupied states in the top layer and no
net monopoles in the other layers. This explains the E -field-
induced monopole transition discussed in Fig. 1(f). Similarly,
a downward E field will transfer a positive monopole in the
bottom layer to above the Fermi energy [see Fig. 1(d)] due to
the PT symmetry [30].

IV. QUANTUM SWITCH AND SCALING BEHAVIOR

The E -field switchable QALHE is accompanied by the
switch of chiral edge channels on the boundary and layer-
resolved topological phase transitions in the bulk [see
Fig. 1(b)]. To verify this point, we first evaluate the local
current using the recursive Green’s function method [35], and
then calculate the geometric mean DOS ρtyp and the arithmetic
mean DOS ρave during the phase transition process. Here, ρtyp

and ρave are defined as [36–40]

ρave(E f ) = 〈〈ρ(i, E f )〉〉,
ρtyp(E f ) = exp[〈〈ln ρ(i, E f )〉〉], (2)

where 〈〈· · · 〉〉 denotes the arithmetic average over the
sample sites and disorder realizations. The local DOS
on the Fermi energy E f is determined by ρ(i, E f ) =∑

l,n,α |〈il|nα〉|2δ(E f − En) where i, l denote the site index,
orbital index, and n is the eigenvalue index. To calculate ρtyp

and ρave, we approximate δ(x) ≈ η/[π (x2 + η2)] with η =
10−4, and diagonalize the lattice Hamiltonian with periodic
boundary conditions in the x and y directions. For an extended
state that uniformly distributes over the sample, ρtyp is almost
the same as ρave. In contrast, for a localized state concen-
trated on certain sites, ρtyp will be extremely small. The ratio
ρtyp/ρave remains finite for extended states, while ρtyp/ρave

approaches zero for localized states, in the thermodynamic
limit.

Figures 3(a) and 3(b) show the local current of the QALHE
at E f = 1.2. When the E field is reversed from VE = −0.55
to 0.55, the chiral edge mode is switched from the bottom
to top layer. The nonzero local current in the bulk indicates
the existence of the disorder-induced localized states. Also,
the finite scaling-independent ρave in Figs. 3(c) and 3(d)
and vanishing ρtyp/ρave with increasing size N in Figs. 3(e)
and 3(f) at VE = ±0.5 verify the existence of localized states.
Furthermore, in Fig. 3(f), there exists one fixed point for the
top layer at V c

E ≈ 0.4 where ρtyp/ρave is independent of N .
This is coincident with the layer-resolved transition point from
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FIG. 3. Local current of the QALH when the E field is reversed
from (a) VE = −0.55 to (b) 0.55, with system size 64 × 64 × 4.
(c), (d) The arithmetic mean DOS ρave, and (e), (f) the ratio of
the geometric mean DOS ρtyp to ρave for the bottom layer and the
top layer, respectively. The different colored lines indicate different
system sizes N × N × 4. Other parameters are the same as in Fig. 2.

Ctop = 0 to Ctop = 1 of the top layer (see the red line) in
Fig. 1(c), where the Berry curvature monopole is crossing the
Fermi level [Fig. 1(f)]. Similarly, the fixed point of ρtyp/ρave

for the bottom layer at V c
E ≈ −0.4 in Fig. 3(e) agrees with the

transition of the bottom layer (see the blue line) in Fig. 1(c).
Therefore, the quantum switch process of the QALHE is ac-
companied by switching the layer-polarized edge states on the
boundary and the layer-dependent Anderson transitions in the
bulk.

V. QALHE AND QUANTUM SWITCH IN FM PHASE

Recently, the high Chern number QAHE was experi-
mentally discovered in the FM MnBi2Te4 [20] and in the
two-dimensional (2D)-layered TI heterostructures [17,18],
which suggests a new platform to realize richer topological
phenomena including the QALHE. As shown by Fig. 4(c),
the layer-dependent Chern numbers (C1,C2,C3) are tuned
from (1, 0, 0) to (0, 1, 0) and then to (0, 0, 1) by varying the
energy ε = E f = −1.25, to 0 and then to 1.25, where the
edge channel is switched from the bottom to the middle and
then to the top layer [see Figs. 4(a)–4(c)]. That is because
the layer-dependent Chern numbers change values when the
Fermi energy goes across the discrete locations of the Berry
curvature monopoles [Fig. 4(b)], which are determined by the
layer-dependent Berry curvature in Fig. 4(d). Furthermore, we
plot ρtyp/ρave of the whole system versus energy in Fig. 4(e),
and find that the locations of critical points and the Berry
curvature monopoles coincide. These results suggest that the
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FIG. 4. (a) Schematic plots of the QALHE in the FM MnBi2Te4

with the Fermi energies Ef = −1.25, 0, and 1.25. (b) The layer-
dependent Berry curvature monopoles, (c) the layer-dependent and
total Chern numbers, and (d) the layer-dependent Berry curvature
vs the energy ε. (e) The ratio of the geometric mean DOS to the
arithmetic mean DOS ρtyp/ρave of the whole system for different
system sizes N × N . The dashed lines indicate that the locations of
critical points in (e), and Berry curvature monopoles in (b) and (d) co-
incide. We set g+

z = 1, M0 = −0.3, M1,2 = −0.1, A = 0.78, Am =
0.46, Az = 0.1, B0 = 1.1, B1,2 = 0.9, Bz

0 = 0.2, Dz = 0.06 [23]. The
E -field strength VE = 1.25.

Anderson localization plays an important role in the quantum
switch process of the QALHE.

In reality, the QAHLE can be realized in the much
thicker FM topological magnet samples with higher Chern
number (see the Supplemental Material [30]) such as the
FM MnBi2Te4 [20] and 2D-layered TI heterostructures [17].
Meanwhile, we propose that the quantum switch of the layer-
dependent edge channel can be detected by a four-terminal
device in experiments [30].

VI. DISCUSSIONS AND CONCLUSIONS

The QAHLE can be viewed as a localization-driven coun-
terpart to the recently reported LHE by Gao et al. [27]. As a
comparison, we have shown the LHE in the clean or weak
disordered AFM MnBi2Te4 [30]. Moreover, the 3D AFM
MnBi2Te4 was originally predicted to be an axion insulator
exhibiting a topological magnetoelectricity effect when the
Fermi energy is inside the band gap [15,16]. In contrast, to re-
alize the QAHLE in the quasi-2D AFM MnBi2Te4, the Fermi
energy is tuned to the 2D Anderson-localized bulk states. In
summary, we have revealed that the QALHE, a quantized
version of the LHE, can be realized in both AFM and FM
MnBi2Te4. The QALHE is attributed to electrically tunable
Berry curvature monopoles. Further, we show that the electric
field can switch the QALHE edge channel among different
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layers. Our work paves the way to electrically tunable layer-
resolved disspationless transport in topological magnets.
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