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Shot noise in resonant tunneling: Role of inelastic scattering
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We study the influence of inelastic processes on shot noise and the Fano factor for a one-dimensional
double-barrier structure, where resonant tunneling takes place between two terminals. Most studies to date
have found, by means of various approximate or phenomenological methods, that shot noise is insensitive to
dephasing caused by inelastic scattering. In this paper, we explore the status of this statement by deriving a
general Landauer-Büttiker-type formula that expresses the current noise and Fano factor in a one-dimensional
conductor through inelastic scattering amplitudes. For a double-barrier structure, exact scattering amplitudes
are calculated in the presence of a time-dependent potential that acts in the region between the barriers. This
allows us to rigorously analyze the role of dephasing in the current noise generated by applying a finite
bias voltage to the resonant level. As an example of the dephasing potential, we consider the one induced
by equilibrium phonons. We show that for phonons propagating in one dimension, the random phase of the
electron wave function, which is induced by the electron-phonon coupling, exhibits diffusionlike dynamics. At
the same time, for higher-dimensional phonons, the electron phase dynamics turns out to be nondiffusive, such
that the average square of the phase grows logarithmically with time. We calculate transmission coefficients
of a double-barrier structure for these two types of phonon-induced dephasing. In the case of diffusive phase
relaxation, the resonant level has a Lorentzian shape with the broadening determined by a sum of the elastic
linewidth and the phase breaking rate. Logarithmic dephasing leads to an unusual shape of the size-quantized
level: the transmission coefficient is characterized by the two energy scales, one governed by the transparency
of barriers and the other by the phonon correlation time. We further calculate the Fano factor for these types of
dephasing, using exact expressions for inelastic transmission and reflection amplitudes. It turns out that when an
integer number of levels falls into the energy window of width eV, where V is the voltage applied to the structure,
the Fano factor is really insensitive to inelastic processes inside the structure and coincides with the prediction of
phenomenological models with an accuracy of small corrections depending on these processes. On the contrary,
at low voltages, when the eV window is smaller than the level width, this dependence is particularly pronounced
and the phenomenological formula does not work.
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I. INTRODUCTION

Phase coherence of electron waves plays an essential role
in low-dimensional transport [1]. Inelastic electron scattering
processes, such as electron-electron or electron-phonon colli-
sions, break down the phase coherence, leading to dephasing
of electron waves. With decreasing intensity of such collisions
(e.g., with lowering temperature), an electron system exhibits
a crossover from the classical regime to the quantum one,
where interference effects become prominent.

One of the simplest and most important for practice in-
terference phenomena is the so-called resonant tunneling
through a quantum dot with tunnel contacts. At very low
temperatures, the role of inelastic collisions is negligible
and the conductance of the dot demonstrates a narrow high
peak whenever the Fermi level coincides with one of the
size-quantization levels. The appearance of these conductance
peaks is due to interference of electron waves inside the quan-
tum dot. The width of the resonant peaks is determined by the
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transparency of the contacts that represent tunneling barriers
for electrons. With increasing temperature, the interference
breaks down because of the inelastic collisions, the peaks
widen and gradually disappear. When the phase coherence is
completely destroyed, the conductance of the double-barrier
structure is given by a classical formula containing only the
probabilities of tunneling through the contacts.

This phenomenon of resonant tunneling was studied exper-
imentally in various systems, such as carbon nanotubes [2–6]
and nanowires with tunnel contacts, bulk structures with dou-
ble barriers [7–11], and many others. Theoretically, the effect
of inelastic scattering on resonant tunneling was considered
in detail in Ref. [12]. It was shown there, in particular, that
although the width of the resonant levels is determined both
by the transparency of the barriers and by the rate of inelastic
processes, the conductance at temperatures exceeding this
width is determined solely by the transparency of the barriers.

Another important characteristic of such structures is the
current-noise power [13,14]. Current noise consists of two
terms: thermal and nonequilibrium noise. The Landauer-
Büttiker scattering formalism, considering a system attached
to Fermi leads and characterizing the structure by the
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scattering amplitudes, is a common tool for the analysis of
the current noise. The thermal (or Johnson-Nyquist) noise is
proportional to the product of the temperature T and the con-
ductance G of the structure (proportional to its transparency):

ST (ω = 0) = 2T G.

The nonequilibrium noise at zero temperature (shot noise) is
proportional to the product of the transmission coefficient T
and the reflection coefficient R = 1 − T of the scatterer:

S ∝ T (1 − T ).

The convenient measure of shot noise is the Fano factor—the
ratio of zero-frequency noise power to the Poissonian noise:

F = S(ω = 0)/SP. (1)

The Poissonian noise is proportional to the average current:

SP = e〈I〉 (2)

(here, we considered spinless particles with charge e).
For resonant tunneling through a double-barrier structure

in the nonlinear transport regime (the temperature is smaller
than the applied bias voltage), the Fano factor is given by [13]

F = �2
L + �2

R

(�L + �R)2
= T 2

L + T 2
R

(TL + TR)2
. (3)

Here, �L ∝ TL and �R ∝ TR quantify the strength of the left
and right barriers in energy units. The width of the resonant
level in the absence of inelastic processes is given by �L + �R:
the stronger the barrier, the smaller its contribution to the
level width. The Fano factor given by Eq. (3) can take val-
ues between 1/2 and 1. Expression Eq. (3) was obtained in
Refs. [15,16] using complementary approaches.

Remarkably, when written in terms of the transmission
coefficients TL,R, the expression for the Fano factor can be
interpreted both quantum-mechanically and classically. Thus,
an interesting feature of the resonant double-barrier structure
is the apparent insensitivity of the Fano factor to inelastic
processes in the system. This statement has been widely
discussed in literature and tested by various methods. The
classical tunneling picture based on the master equation (de-
scribing fully incoherent transport) employed in Refs. [17,18]
or the approach based on the Langevin equation [13] led to
Eq. (3). Within the quantum coherent picture of transport, a
solution of the quantum master equation [19] and calculations
based on nonequilibrium Green’s functions [20,21] yielded
the same result Eq. (3) for the Fano factor.

Since in both the limits of fully coherent and fully incoher-
ent transport, the Fano factor is given by the same formula, it
is tempting to argue that coherence and its breaking by inelas-
tic processes does not play any role here. However, this does
not, of course, prove that, in the intermediate case of finite
dephasing, the result remains unchanged. Indeed, considering
all the interference-induced terms separately, one can imagine
the situation when this coherent contribution is exactly zero
(complete destructive interference). Any finite dephasing, de-
stroying such a cancellation, would lead to corrections to
Eq. (3), whereas extremely strong dephasing would kill all the
interference terms, thus restoring Eq. (3) in the classical limit.

Several works indeed found nonuniversality of the Fano
factor for the double-barrier structure. In particular, Ref. [22]

found corrections to this expression within the sequential-
tunneling picture. Another work, Ref. [23], demonstrated
strong deviation from result Eq. (3) by phenomenologically
adding random (completely uncorrelated) phases to the quan-
tum amplitudes that describe electron propagation between
the barriers. However, importantly, these papers used various
assumptions and simplifications in the consideration of inelas-
tic scattering. Thus, the question of the influence of inelastic
scattering on the Fano factor for resonant tunneling is still
open. This calls for the analysis of inelastic processes within
an exact quantum-mechanical model. The main goal of this
paper is to develop such a formalism and to finally resolve the
question about the influence of inelastic processes on the Fano
factor of a double-barrier structure.

Another interesting current noise contribution is so-called
delta-T noise [24]. The latter is similar to shot noise but exists
at zero applied voltage and nonequal temperature of the leads.
Derived in this paper, the shot noise equation can also help
analyze such experiments with a more complex scatterer. As
shown in Ref. [25], delta-T noise can be used to probe the
nature of collective excitations in interacting one-dimensional
(1D) systems, which have been intensively studied theoreti-
cally [26] and experimentally [27] on fractional quantum Hall
edges. Another interesting application of shot noise is probing
Majorana physics. In Refs. [28,29], current noise through
quantum dots coupled to Majorana zero modes was studied.
Also, tunneling currents through coupled quantum dots and
current noise are sensitive to correlated electronic states [30].
An alternative way to investigate nonstationary processes in
low dimension transport is the Keldysh Green’s function for-
malism, for example, a current through a localized state in a
phonon bath was analyzed in Ref. [31]. Spin-orbit interaction
in quantum dots also leads to changes in the shot noise. In
Ref. [32], the suppression of shots with increasing spin-orbit
interactions was found. The study of dephasing processes is
also important in the frame of quantum processing. As shown
in Ref. [33], bilayer graphene is a promising material for
this task, The authors performed a single spin reading in a
graphene quantum dot.

In this paper, we obtain a general expression for the noise
power for transport through a 1D scatterer in the presence of
inelastic processes. The current noise is expressed in terms of
inelastic transmission and reflection amplitudes, which allows
us to take dephasing into account exactly. Next, we obtain the
inelastic transmission amplitudes for a double-barrier struc-
ture with a random time-dependent potential acting between
the barriers. Within this scattering formalism, we calculate
shot noise for resonant tunneling in the presence of inelas-
tic scattering. After averaging over the random potential, we
obtain the structure’s Fano factor and analyze it for different
types of dephasing of the electron wave function. Specif-
ically, we investigate phonons as a source of the random
potential leading to dephasing. For dephasing caused by 1D
phonons, the dispersion of the random wave-function phase
ϕ f possesses a diffusion growth with time t , characterized
by the dephasing time τϕ : 〈ϕ2

f 〉 ∼ t/τϕ . Remarkably, for
two-dimensional (2D) and three-dimensional (3D) phonons,
dephasing is logarithmic: 〈ϕ2

f 〉 ∼ ln(T t/h̄).
In the case of diffusive phase dynamics, the resonant levels

in a double-barrier structure have a Lorentzian shape with the

245421-2



SHOT NOISE IN RESONANT TUNNELING: ROLE OF … PHYSICAL REVIEW B 106, 245421 (2022)

FIG. 1. Schematics of the structure. The four electron operators
of the right- and left-moving plain waves (shown by arrows) on both
sides of the sample are related by the scattering matrix, Eq. (41).
There are only two independent operators, âL and âR supplied by the
terminals; the other two, b̂L and b̂R, are expressed through them by
means of scattering amplitudes.

broadening determined by a sum of the elastic linewidth and
the phase breaking rate. Logarithmic dephasing leads to an
unusual shape of the size-quantized level: the transmission co-
efficient is characterized by two energy scales, one governed
by the transparency of barriers and the other by the phonon
correlation time. When the voltage exceeds the characteristic
resonant level width, the leading contribution to the Fano
factor, in agreement with the predictions of phenomenolog-
ical models, becomes insensitive to the inelastic scattering;
the influence of inelastic processes is only reflected in the
presence of small corrections to this result. On the contrary,
when the voltage is smaller than the level width, the Fano
factor depends strongly on the type of dephasing and the
phenomenological formula does not work.

II. CURRENT NOISE AND FANO FACTOR

We start by deriving general formulas for the current in the
1D geometry within the scattering theory approach. In this
section, we obtain the noise power in a 1D conductor with an
inelastic scatterer, see Fig. 1. The current noise is determined
by the current fluctuations,

S(t − t ′, x, x′) = 1
2 〈δÎ (x, t )δÎ (x′, t ′) + δÎ (x′, t ′)δÎ (x, t )〉,

(4)

where

δÎ (x, t ) = Î (x, t ) − 〈Î (x, t )〉; (5)

Î is the current operator, which takes the form

Î (x, t ) = h̄e

2mi

[
�̂†(x, t )

∂�̂(x, t )

∂x
− ∂�̂†(x, t )

∂x
�̂(x, t )

]
(6)

for a single parabolic band characterized by mass m, �̂ is the
electron field operator, and 〈. . .〉 denotes the expectation value
determined by the statistical operator.

On the left of the scatterer, the wave-function operator for
free waves is written as

�̂L(x, t ) =
∫ ∞

0

dk√
2π

e−iEkt [eikxâL(k) + e−ikxb̂L(k)], (7)

where âL(k) and b̂L(k) are fermionic annihilation operators
of the right- and left-moving waves with wave vector k and
energy Ek on the left (hence index L) part of the structure.
Similarly, we define the the fermion field operator �̂L(x, t ) to
the right of the sample through the operators âR(k) and b̂R(k)
describing the right- and left-moving waves, respectively, in
the right (hence R) part of the setup.

To obtain the expectation value of the current, we need to
express the field operators through the independent operators
corresponding to the incident waves, âL(k) and âR(k), sup-
plied by the two terminals. The scattered waves are expressed
through those incident waves by means of the scattering ma-
trix describing the sample (see Fig. 1). Below, we will first
consider the case of elastic scattering and then generalize the
scattering approach to include inelastic processes.

A. Elastic scatterer

To set the stage and introduce the formalism, we first an-
alyze the case of elastic scattering and reproduce the known
results for the current noise. In this case, the scattering matrix
connects the incident and outgoing waves with the same wave
vector and is given by(

b̂L(k)
b̂R(k)

)
=

(
rL(k) t(k)
t(k) rR(k)

)(
âL(k)
âR(k)

)
. (8)

Here, the amplitudes rR(k) and rL(k) describe the reflec-
tion of the waves arriving from the right and left terminals,
respectively. In the general case, these complex amplitudes
differ by the phase, leading to the same reflection coefficient
R = |rR|2 = |rL|2. The transmission amplitudes t(k) for the
scattering of waves on both sides of the sample are identical
when the time-reversal symmetry is preserved. The unitarity
of the scattering matrix requires

T + R = 1, rRt
∗ + r∗

Lt = 0, (9)

where T = |t|2 is the elastic transmission coefficient. The
scattering amplitudes for the elastic scatterer may depend
on wave-vector k labeling the incoming waves (the same k
labels the outgoing waves). In what follows, for simplicity, we
have assumed here that the right and left reflection amplitudes
have the same phase and omit their subscripts (R/L). In fact,
the phases of reflection amplitudes are of no importance for
the averaged current and noise in the elastic case. We will
return to this point in the case of inelastic scattering below.

Using scattering matrix Eq. (8), we can write the current
operator to the left of the scatterer through the operators âL(k)
and âR(k) that describe the left and right terminals (Fig. 1),
respectively:

Î (x, t ) = h̄e

4πm

∫
dk dk′ ei(Ek′ −Ek )t

× [â†
L(k′)âL(k)CLL(k′, k; x)

+ â†
R(k′)âR(k)CRR(k′, k; x)

+ â†
L(k′)âR(k)CLR(k′, k; x)

+ â†
R(k′)âL(k)CRL(k′, k; x)]. (10)

245421-3



KRAINOV, DMITRIEV, AND AVERKIEV PHYSICAL REVIEW B 106, 245421 (2022)

Here, the coefficients Ci j (k, p; x) are expressed in terms of the
scattering amplitudes as follows:

CLL = (k + k′)[ei(k−k′ )x − r∗(k′)r(k)e−i(k−k′ )x]

− (k − k′)[r∗(k′)ei(k+k′ )x − r(k)e−i(k+k′ )x], (11)

CRR = −(k + k′)ei(k′−k)xt∗(k′)t(k), (12)

CLR = −(k + k′)ei(k′−k)xr∗(k′)t(k)

+ (k − k′)e−i(k′+k)xt(k), (13)

CRL = −(k + k′)ei(k′−k)xt∗(k′)r(k)

+ (k′ − k)e−i(k′+k)xt∗(k′). (14)

The current operator is represented as a double integral
over the wave vectors. Averaging over the states emanating
from the left and right leads (independent terminals, i, j =
L, R) produces

〈â†
i (k)â j (p)〉 = δi jδ(k − p) fi(k), (15)

where fi is the electron distribution function of terminal i. The
delta function in Eq. (15) removes one of the integrals over
the wave vectors in Eq. (10). In what follows, we will focus
on the case of equilibrium terminals described by the Fermi-
Dirac distribution. Using Eq. (15), one obtains the average
current, which is now a single integral over the energy E of
the scattering states:

〈Î (x, t )〉 = e

h

∫
dE T (E )[ fL(E ) − fR(E )]. (16)

Next, we turn to the calculation of the current-noise
power. The statistical average of the fourth power of
creation/annihilation operators reads

〈â†
i â j â

†
nâm〉 − 〈â†

i â j〉〈â†
nâm〉 = δimδ jn fm(1 − fn), (17)

where, for brevity, we denote by a single index the wave vec-
tor and the terminal. The averaged correlation of the current
fluctuations can be then written as

〈δÎ (x, t )δÎ (x′, t ′)〉

=
(

h̄e

4πm

)2 ∫
dk d p e−i(Ek−Ep)(t−t ′ )

×[ fL(p)[1 − fL(k)]CLL(p, k; x)CLL(k, p; x′)

+ fR(p)[1 − fR(k)]CRR(p, k; x)CRR(k, p; x′)

+ fL(p)[1 − fR(k)]CLR(p, k; x)CRL (k, p; x′)

+ fR(p)[1 − fL(k)]CRL(p, k; x)CLR(k, p; x′)]. (18)

The noise power for elastic scattering, i.e., the zero-
frequency noise [34], is calculated from the current correlation
function Eq. (18) with both current fluctuations are taken on
one side of the scatterer:

S = e2

h

∫
dE {T (E )[ fL(1 − fL ) + fR(1 − fR)]

+ T (E )[1 − T (E )]( fL − fR)2}. (19)

In this formula, the first term describes thermal noise. In the
limit of zero applied bias voltage, the fluctuations are propor-
tional to the temperature multiplied by the susceptibility—the
conductance in this case, in accordance with the fluctuation-
dissipation theorem. The second term is the shot noise, which
is sensitive to the energy dependence of the transmission
coefficient. If the temperature is zero, only the shot-noise
contribution is nonzero and one gets [35]

S = e2

h

∫ μ+eV

μ

dE T (E )[1 − T (E )], (20)

where the energy integral is restricted to the window deter-
mined by the bias voltage V and μ is the chemical potential of
one of the terminals. Shot noise is quantitatively characterized
by a single number—the Fano factor, Eq. (1),

F =
∫

dE T (E )[1 − T (E )]∫
dE T (E )

, (21)

where the integration is performed over the energy difference
between the left and right terminals.

B. Inelastic scatterer

Let us now turn to the case of an inelastic scatterer. To take
into account inelastic processes (caused, for example, by the
electron-phonon interaction), we consider a general form of
the scattering matrix:

b̂L(k) =
∫

dk′[rL(k, k′)âL(k′) + tL(k, k′)âR(k′)], (22)

b̂R(k) =
∫

dk′[tR(k, k′)âL(k′) + rR(k, k′)âR(k′)]. (23)

Here, the scattering amplitudes, which are now functions of
the two wave vectors, are labeled by the indexes correspond-
ing to the outgoing waves. Dependence on two wave vectors
will be in the case of a time-dependent potential of scatter,
which we calculate in the next section. In this case, inelastic
processes break down the time-reversal symmetry. Hence, we
introduce distinct transmission amplitudes for the waves scat-
tered to the right and to the left. Scattering amplitudes satisfy
the unitary relations, which are now of the integral form

δ(k − k′) =
∫

d p [r∗
L(k, p)rL(k′, p) + t∗

L(k, p)tL(k′, p)],

(24)

and the same with R ↔ L.
The current operator to the left of the scatterer can be

written as

Î (x, t ) = h̄e

4πm

∫
dkdk′d pd p′ei(Ek′ −Ek )t

× [â†
L(p)âL(p′)CLL(k, k′; p, p′; x)

+ â†
R(p)âR(p′)CRR(k, k′; p, p′; x)

+ â†
L(p)âR(p′)CLR(k, k′; p, p′; x)

+ â†
R(p)âL(p′)CRL(k, k′; p, p′; x)], (25)
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where the coefficients Ci j (k, k′; p, p′; x) read

CLL = (k + k′)[ei(k−k′ )xδ(k′ − p) δ(k − p′)

− e−i(k−k′ )xr∗
L(k′, p) rL(k, p′)]

+ (k′ − k)
[
e−i(k+k′ )xδ(k′ − p) rL(k, p′)

− ei(k+k′ )xδ(k − p′) r∗
L(k′, p)], (26)

CRR = −(k + k′)e−i(k−k′ )xt∗
L(k′, p) tL(k, p′), (27)

CLR = −(k + k′)e−i(k−k′ )xr∗
L(k′, p) tL(k, p′)

+ (k′ − k)e−i(k+k′ )xδ(k′ − p) tL(k, p′), (28)

CRL = −(k + k′)e−i(k−k′ )xrL(k, p′) t∗
L(k′, p)

− (k′ − k)ei(k+k′ )xδ(k − p′) t∗
L(k′, p). (29)

For the current to the right of the scatterer, one obtains an anal-
ogous expression with R ↔ L. After the statistical averaging,
the current in the left lead takes a form

〈Î (x, t )〉 = h̄e

4πm

∫
dk dk′ d p ei(Ek′ −Ek )t [ fL(p)CLL(k, k′; p, p; x) + fR(p)CRR(k, k′; p, p; x)]. (30)

Note that, in the presence of inelastic scattering, the expectation value of the current depends on time. In real experiments,
to obtain the average current, one also performs the time averaging. We assume that this time averaging is done with a function
gT (t ) defining a wide time window τav—the characteristic time of averaging. This time is the largest timescale in the problem.
The window function gT (t ) has the following properties:∫ ∞

−∞
dt gT (t ) = 1, (31)

τav

∫ ∞

−∞
dt gT (t )ei(Ek−Ek′ )t ∼ δ(Ek − Ek′ ). (32)

We will denote the averaging with gT (t ) as 〈. . .〉t . With the help of this averaging, a useful relation can be obtained from the flow
conservation for each incident p:∫

dk dk′ 〈ei(Ek−Ek′ )t 〉t [CLL(k, k′; p, p; x) + CRR(k, k′; p, p; x)] = 0. (33)

Let us now define time-dependent scattering amplitudes ( j = R, L):∫
dk e−iEktt j (k, p) = t̃ j (t, p), (34)∫
dk e−iEktr j (k, p) = r̃ j (t, p). (35)

The flow conservation Eq. (33) can then be cast into the following form [cf. Eq. (24)]:

1 = 〈r̃∗
L(t, p)r̃L(t, p)〉t + 〈t̃∗

L(t, p)t̃L(t, p)〉t . (36)

Using this, we can find the average current,

〈〈Î (x, t )〉〉t = e

h

∫
d pv(p) 〈t̃∗

L(t, p)t̃L(t, p)〉t · [ fL(p) − fR(p)], (37)

where v(p) is the velocity at momentum p. From now on, we will assume, for simplicity, a linearized dispersion relation for
electrons, so v will not depend on p. The transmission coefficient in the inelastic case does not depend on whether the waves are
supplied by the left terminal or by the right one:

T (p) = 〈t̃∗
R(t, p)t̃R(t, p)〉t = 〈t̃∗

L(t, p)t̃L(t, p)〉t . (38)

With this transmission coefficient, we get the conventional Landauer formula for the average current:

〈〈Î (x, t )〉〉t = ev

h

∫
d pT (p)[ fL(p) − fR(p)]. (39)

Next, we derive the expression for the correlation function of current fluctuations in the left lead in the inelastic scattering
case:

〈δÎ (x, t )δÎ (x′, t ′)〉 =
(

h̄e

4πm

)2 ∫
dk dk′ d p d p′ dq dq′ei(Ek′ −Ek )t+i(Eq′ −Eq )t ′

× [ fL(p)[1 − fL(p′)]CLL(k, k′; p, p′; x)CLL(q, q′; p′, p; x′)

+ fR(p)[1 − fR(p′)]CRR(k, k′; p, p′; x)CRR(q, q′; p′, p; x′)
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+ fL(p)[1 − fR(p′)]CLR(k, k′; p, p′; x)CRL(q, q′; p′, p; x′)

+ fR(p)[1 − fL(p′)]CRL(k, k′; p, p′; x)CLR(q, q′; p′, p; x′)]. (40)

The noise power in the inelastic case is define through the time-average of the correlation function Eq. (40) as follows:

S(ω = 0) =
∫

dt ′〈〈δÎ (x, t + t ′)δÎ (x′, t )〉〉t . (41)

Substituting Eq. (40) into Eq. (41) and using Eqs. (26)–(29), (34), and (35), we obtain a general expression for the current noise
in the left lead in terms of inelastic scattering amplitudes:

SL = Stherm + Sshot, (42)

Stherm = e2

h

∫
dk v 〈t̃∗

L(t, k)t̃L(t, k)〉t { fL(k)[1 − fL(k)] + fR(k)[1 − fR(k)]}, (43)

Sshot = e2

h

∫
d p d p′ dk v { fL(p)[1 − fR(p′)] r∗

L(k, p)tL(k, p′) 〈t̃∗
L(t, p′)r̃L(t, p)〉t

+ fR(p)[1 − fL(p′)] t∗
L(k, p)rL(k, p′) 〈r̃∗

L(t, p′)t̃L(t, p)〉t

− fL(p)[1 − fL(p′)] r∗
L(k, p)rL(k, p′) 〈t̃∗

L(t, p′)t̃L(t, p)〉t

− fR(p)[1 − fR(p′)] r∗
L(k, p)rL(k, p′) 〈t̃∗

L(t, p′)t̃L(t, p)〉t }. (44)

Here we split the total noise into the thermal part Stherm, which
vanishes exactly when the temperatures of the reservoirs are
sent to zero, and the remaining shot-noise part Sshot, which
remains finite in this limit. When the scattering is elastic,
i.e., when t j (k, p) = δ(k − p)t(p) and the same holds for the
reflection amplitudes, Eqs. (42)–(44) reduce to Eq. (19). In
particular, when contacts are kept at T = 0, Eq. (44) becomes,
for elastic scattering, Eq. (20).

For the noise in the right lead, one performs a replacement
R ↔ L, as usual. Equations (42)–(44) are the central result
of this paper. In what follows, they will be used to calculate
the shot noise in a double-barrier structure in the presence of
inelastic electron-phonon scattering.

III. TRANSMISSION COEFFICIENT WITH DEPHASING

In Sec. III, we have derived a general formula, Eq. (38), for
the transmission coefficient describing an inelastic scatterer.
In this section, we will obtain an expression for the trans-
mission coefficient for a 1D double-barrier structure in the
presence of a time-dependent potential. We will then use this
result to compute the transmission coefficient for the case of
inelastic scattering due to electron-phonon interaction. This
will allow us to calculate the conductance of the structure
and to analyze the role of phonon-induced dephasing in reso-
nant tunneling. As a warmup, we analyze in Appendix A the
case of a time-dependent single barrier modeled by a delta-
function potential. Next, we generalize that consideration to
the spatially extended double-barrier setup and introduce two
microscopic models of phonon-induced dephasing.

A. Transmission coefficient for a double barrier structure
with time-dependent potential

We have considered a simple example of transmission
through a time-dependent delta barrier in Appendix A and de-
rived the inelastic transmission amplitude t(p, k) for this toy
model. In this section, we obtain the transmission coefficient

T (p) of a 1D quantum dot with tunnel contacts in the pres-
ence of a random time-dependent potential V (x, t ) and then
perform averaging over realizations of the phonon-induced
potential.

We assume that the random potential is applied only inside
the quantum dot formed by the two barriers. We further as-
sume that the magnitude of the potential is smaller than the
electron’s kinetic energy. Next, the potential is considered to
be smoothly varying both in space and in time. This will allow
us to neglect the electron backscattering induced by the poten-
tial (rck � 1, where k is the wave vector of an electron and rc

is a characteristic spatial scale of the potential) and transitions
between the levels of size quantization inside the dot,

∂V (x, t )/∂t � V (x, t )/τ f ,

where τ f = 2L/v is the time of flight back and forth between
the barriers separated by distance L.

Under these assumptions and upon linearization of the
electron’s dispersion, Ek ≈ h̄vk, the influence of the random
potential on the electron wave function reduces to the appear-
ance of a random phase factor,

ψ (x, t ) = exp
(

ikx − i
E

h̄
t
)

× exp

[
− i

h̄

∫ t

dτ V (x − vt + vτ, τ )

]
, (45)

for �τc � h̄, k rc � 1, |V (x, t )| � h̄vk, (46)

where

� = 2π h̄/τ f

is the interlevel energy spacing inside the quantum dot formed
by the barriers. We can introduce here the already mentioned
random addition to the electron wave function phase:

ϕ f = 1

h̄

∫ t

dτ V (x − vt + vτ, τ ).

245421-6



SHOT NOISE IN RESONANT TUNNELING: ROLE OF … PHYSICAL REVIEW B 106, 245421 (2022)

With this form for the wave function, we obtain a general
expression for transmission amplitude for a double barrier
structure in the presence of a given realization of weak ran-
dom potential Eq. (46). The two pointlike barriers labeled by
i = 1, 2 are located at x = 0 and x = L and are characterized

by their individual transmission and reflection amplitudes, ti

and ri, respectively (for each of the barriers, its right and left
reflection amplitudes are equal). As shown in Appendix B, the
inelastic transmission amplitude tR for electrons transmitted
to the right lead is given by

tR(p, k) =
∫ ∞

−∞
dy ei(k−p)yt1t2

∞∑
n=0

(
r1r2e2ikL

)n
exp

[
− i

h̄

∫ 0

−τ f n
dτ V (xin(τ ), τ − y/v)

]
, τ f = 2L/v, (47)

where xin(t ) is the trajectory of a particle between the barriers, which consists of ballistic segments of length L. Using Eq. (47),
the transmission coefficient (38) takes the following form:

T (k) = 〈t∗
R(t, k)tR(t, k)〉t = |t1|2|t2|2

∑
n1,n2

(
r1r2e2ikL

)n1
(
r∗

1r
∗
2e−2ikL

)n2

〈
exp

[
− i

h̄

∫ −τ f n2

−τ f n1

dτV (xin(τ ), τ + t )

]〉
t

, (48)

The transmission coefficient Eq. (48) in the absence of de-
phasing potential reduces to the well-known expression

T (k) = |t1t2|2
|1 − r1r2e2ikL|2 .

Now the task is to perform the averaging of the exponential
factor in Eq. (48) over the random field. For the Gaussian
distribution of V (x, t ), the averaging can be done exactly.
Furthermore, assuming that the characteristic correlation time
τc for the variation of V (x, t ) is longer than the flight time
τ f , one can first average V (xin(τ ), τ + t ) over the position
between the barriers, yielding an effective time-dependent
potential U (τ + t ). Then the averaging over fluctuations of
this potential gives rise to the dephasing factor,

f (t ) ≡ 〈ei
∫ t

0 dτU (τ )〉 (49)

= exp

{[∫ t
0 dτK (τ )

]2

2K (0)
− 1

2

∫ t

0

∫ t

0
dτdτ ′K (τ − τ ′)

}

=
{

1, t � τc

e− ∫ t
0

∫ t
0 dτdτ ′K (τ−τ ′ )/2, t � τc,

(50)

expressed through the correlation function

K (τ − τ ′) = 〈U (τ )U (τ ′)〉U, (51)

where averaging is performed over the random potential fluc-
tuations. In the case of the phonon potential, this implies
averaging over the random phases of phonon modes (in the
classical approach) or with the phonon density matrix (quan-
tum).

Dephasing processes can affect the transmission coefficient
only when the correlation time of the potential fluctuations
is smaller than time τin that the particle spends between the
barriers, i.e., time flight multiplied by resonator quality factor.
Therefore, we further assume the following time hierarchy:

τ f � τc � τin,

and use, in what follows, the second line of Eq. (50) for f (t ).
The applicability of Eq. (47) in a parabolic spectrum is

limited by the use of a quasiclassical wave function corre-
sponding to the linearized dispersion and classical external
potential V (x, t ). This assumes that the change of particle’s

velocity v is small in the process of the backscattering off
the barriers in the presence of a fluctuating field, leading
to the heating or cooling of the particle in addition to dephas-
ing. The corresponding condition can be expressed through
the quality factor Q of the resonator, as follows:

Q � vτc

min[rc, L]

(E

V

)2

,

where V is the characteristic magnitude of the fluctuating
potential. Indeed, if the resonator’s quality factor is very high
and the particle is influenced by the random potential for a
very long time, its speed (and, hence, energy) may change.
When considering the case of electron-phonon interaction, a
rather small rate of quantum spontaneous phonon emission is
also required to justify the quasiclassical approach.

B. Transmission for the diffusion type of dephasing

Equation (49) can be simplified in the case of diffusion-
type phase dynamics when Kτ 2

c /h̄2 � 1, where K = K (0)
is the square of a characteristic magnitude of the effective
random potential, see Eq. (51). In this regime, the random-
sign changes, δϕ f , of the phase of the electron wave function,
caused by the potential during time τc, are small: δϕ f � 1.
The total change of the electronic phase ϕ f , i.e., the sum of
these random elementary changes, will then show a phase
diffusion at long times:

〈[(ϕ f (t ) − ϕ f (0)]2〉 ∝ t .

For t � τc in the diffusion regime of dephasing, we can
rewrite the dephasing factor, Eq. (50), in the conventional
exponential form:

f (t ) ≈ e−t/τϕ . (52)

Here we introduced the dephasing time τϕ according to

1

τϕ

=
∫ ∞

0

dτ

h̄2 K (τ ). (53)

The inverse dephasing time is the phase diffusion coefficient
in this case. It may turn out that the time integral of the
correlator Eq. (51) that enters Eq. (53) vanishes. We will see
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below that this situation is realized for the phonon-induced
potential. In this case, as we will show below, one needs to
calculate exactly the double time integral entering Eq. (49).

Now let us calculate the transmission coefficient Eq. (48)
for diffusion-type phase dynamics Eq. (52). In this case, the
transmission coefficient can be calculated exactly:

T (k) = |t1|2|t2|2[1 − |r1|2|r2|2 exp(−2τ f /τϕ )]

(1 − |r1|2|r2|2)[1 − r1r2 exp(2ikL − τ f /τϕ )][1 − r∗
1 r∗

2 exp(−2ikL − τ f /τϕ )]
. (54)

Equation (54) can be expanded near one resonant level, where
it acquires the following, valid for an arbitrary dephasing rate:

T (δE ) = �1�2

��

h̄
τ f

sinh(τ f /τϕ ) + �� e−τ f /τϕ[
2h̄
τ f

sinh
( τ f

2τϕ

) + �� e−τ f /2τϕ

]2
+ δE2

. (55)

Here, �1 = |t1|2h̄/τ f and �2 = |t2|2h̄/τ f are the transmission
coefficients of individual barriers, �� = (�1 + �2)/2, and δE
is the deviation of the electron’s energy from the resonance
(we assumed a small transparency for both barriers, |ti| � 1).

Transmission across the double barrier structure can be
considered in three regimes depending on the dephasing rate.
If the dephasing rate is small, τin ∼ τϕ , the resonant coherent
tunneling is realized and we can transform Eq. (55) into the
conventional Breit-Wigner form:

T (δE ) = �1�2

��

�� + h̄/τϕ

(�� + h̄/τϕ )2 + δE2
. (56)

Such a dephasing-broadened Breit-Wigner resonance was first
obtained for this model by Stone and Lee [12]. It is seen that
the resulting quasilevel’s width consists of two parts:

�̃ = �� + h̄/τϕ,

governed by the transparency of barriers and the dephasing
rate.

In the case of strong dephasing h̄/τϕ ∼ �, the regime
of classical tunneling sets in. In this case, particles transmit
across the double-barrier structure like a classical object and
the total transmission coefficient is determined by the classical
transmission probabilities of individual barriers. It is worth
noting that in this regime Eq. (54) is formally not applicable,
since transitions between the size-quantization levels start to
play an important role in the quantum-mechanical description.
However, Eq. (54) still yields a correct classical result for
T (k):

T = |t1|2|t2|2
1 − |r1|2|r2|2 = T1T2

T1 + T2 − T1T2
. (57)

The result is obtained from Eq. (54) and is valid for an arbi-
trary transparency of the barriers. For strong barriers, one can
directly use Eq. (55), which, in the limit of strong dephasing,
yields

T ≈ �1�2

�1 + �2

2π

�
. (58)

For intermediate values of the dephasing rate, 1/τ f > 1/τϕ >

1/τin, the regime of coherent sequential tunneling is realized,
where the transmission coefficient is described by Eq. (55).

C. Transmission for nondiffusive dephasing

In some cases, the diffusion approximation for the phase
dynamics may fail. In particular, for the case of electron-
phonon interaction considered in detail in Sec. V below,
logarithmic phase dynamics,

〈[ϕ f (t ) − ϕ f (0)]2〉 = γ ln(t/τc),

occurs for t > τc instead of phase diffusion. This gives rise
to a power-law time dependence of the dephasing factor in
Eq. (49):

f (t ) ≈ e−γ ln(t/τc ) =
(τc

t

)γ

. (59)

We will refer to this type of dephasing as logarithmic
dephasing.

Now we calculate the transmission coefficient for
logarithmic-type phase dynamics Eq. (59). The calculation
is a somewhat less straightforward. First, Eq. (48) with the
power-law dephasing factor Eq. (59) yields

T (k) = |t1|2|t2|2
∑
n1,n2

(r1r2e2ikL )n1 (r∗
1 r∗

2 e−2ikL )n2

×
(

1

|n1 − n2|τ f /τc + 1

)γ

. (60)

Near the resonance, the summation over n1 and n2 in Eq. (60)
can be performed, leading to

T (δE ) = �1�2τc

2h̄
[eλEγ (λ) + eλ∗Eγ (λ∗)], (61)

where we introduced

λ = �� + iδE

h̄/τc
, (62)

and

Eγ (λ) =
∫ ∞

1
dx x−γ e−λx (63)

is the exponential integral function. Specifically, to calculate
the sum in Eq. (60) we used the following integral representa-
tion of a power-law function:

1

zγ
= 1

�(γ )

∫ ∞

0
dx xγ−1e−zx, (64)

with �(γ ) the gamma function. This amounts to introducing
an effective exponential dephasing factor Eq. (52) with τϕ de-
pending on x, followed by averaging over x. By using this, we
calculated the sum in Eq. (60) for a given value of x, exactly
as was done for the exponential dephasing factor in Eq. (54).
The last integral over x in Eq. (64) can be calculated exactly
for one size quantization level. We expanded the integrand
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FIG. 2. Transmission coefficient Eq. (61) for the logarithmic de-
phasing has two energy scales: one is determined by the transparency
of barriers through �� and the other by the correlation time τc.

near the resonant level Eq. (56), multiply it with x−γ , and
obtain Eq. (61) after the integration over x. The integral can
be converted to the integral Eq. (63) which starts from unity
instead of zero.

The transmission coefficient Eq. (61) for logarithmic
dephasing is not described by a standard Lorentzian Breit-
Wigner energy dependence. Instead, it is characterized by two
energy scales, �� and h̄/τc, see Fig. 2. Assuming γ � 1, we
can simplify Eq. (61):

T (δE ) ≈ �1�2τc

2h̄

[(
h̄/τc

�� + iδE

)1−γ

+
(

h̄/τc

�� − iδE

)1−γ ]
.

(65)

For energies δE � �� , the transmission coefficient gradually
decreases on scale h̄/τc.

When Kτ 2
c /h̄2 � 1, yet another regime of wave function

phase growing is realized, which we term the ballistic regime.
This means that the random change of the wave-function
phase is large, δϕ f � 1, on the potential correlation timescale.
In the ballistic case, the dephasing exponent in the dephasing
factor is given by

ln f (t ) ≈ − t2K (0)

2h̄2 ,

which leads to the characteristic phase decay rate:

1/τϕ ≈
√

K (0)/h̄.

D. Conductance

The linear conductance across a system is calculated by
means of the Landauer formula that follows from Eq. (39),

G = −e2

h

∫
dE

∂ f

∂E
〈T (E )〉, (66)

where f is the Fermi-Dirac distribution function. At low tem-
peratures T � �̃ � �, one finds

G = e2

h

∑
n

�1�2

��

�̃

�̃2 + (En − μ)2
, (67)

where μ is the Fermi level in the leads and En is the energy of
the nth quasilevel. Here, one needs to make a remark that, for
logarithmic dephasing, the result may, in general, depend on
the ratio of T and h̄/τc. If T � h̄/τc, one has to use in Eq. (67)
the transmission coefficients in the form of Eq. (65). However,
for the relevant case of phonon-induced dephasing, as we
show later in Sec. V, the correlation time τc is determined by
the temperature, h̄/τc = T . As a consequence, for T � ��

the transmission coefficient Eq. (61) results in Eq. (67) with
replacing �̃ → �� .

If the temperature exceeds the level width, �̃ � T � �,
we get

G = e2

h

�1�2

�1 + �2

∑
n

π

2T cosh2
(En−μ

2T

) . (68)

Note that the conductance is independent of the dephasing
rate, and hence on the mechanism of dephasing, already in
this regime. For temperatures that are higher than the level
spacing, � � T , the conductance reads

G = e2

h

�1�2

�1 + �2

2π

�
. (69)

This result can also be obtained by means of the classical
consideration that corresponds to Eq. (58) for the classical
transmission coefficient.

IV. SHOT NOISE

In this section, we analyze shot noise in the double barrier
structure. As we mentioned before, the Fano factor is defined
by shot noise at zero temperature. Therefore, in this section we
will assume that the leads are kept at T = 0. Also, to simplify
equations we assume that applied voltage is 2V . We start from
the fully coherent case:

F =
∫ μ+eV
μ−eV dE T (E )[1 − T (E )]∫ μ+eV

μ−eV dE T (E )

= �2
1 + �2

2

(�1 + �2)2
− 2�1�2

(�1 + �2)2

eV��

�2
� + (eV)2

1

arctan(eV/�� )
.

(70)

Here and in what follows, we have assumed that the Fermi
level is exactly at one of the size quantization levels. This
equation is valid irrespective of the relation between eV
and �.

For the inelastic case, in the presence of random potential,
it is useful to write the numerator of Eq. (70), i.e., shot noise
Eq. (44), using the sum representation. As shown in Ap-
pendix B, reflection amplitudes for the double barrier structure
can be represented as

rR,L(k, p) = r2e2ikL − r∗
1

t∗
1t2

tL,R(k, p). (71)
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Using this, we have for T = 0:

SL = e2

h

∫ (μ+eV)/v

(μ−eV)/v
dk v |r1eikL − r∗

2e−ikL|2

×
∑
{ni}

(r1r2e2ikL )n1+n3 (r∗
1r

∗
2e−2ikL )n2+n4

×
〈
exp

(
− i

h̄

∫ τ f (n1−n2 )

τ f (n4−n3 )
dτU (τ )

)〉
t

. (72)

For U (τ ) = 0, we immediately arrive at Eq. (70).
Let us now analyze the shot noise for diffusion-type

dephasing: 〈
exp

(
− i

h̄

∫ τ f (n1−n2 )

τ f (n4−n3 )
dτU (τ )

)〉
t

= exp

(
−τ f

τϕ

|n1 − n2 + n3 − n4|
)

. (73)

We can represent this exponential factor as follows:

exp(−|n|τ f /τϕ ) =
∫

dy

π

τ f /τϕ

(τ f /τϕ )2 + y2
einy. (74)

Next, we use �ϕ = h̄/τϕ to simplify equations. With this
representation, we can use the expression for shot noise in
the coherent case [i.e., Eq. (72) with U (τ ) = 0], replace there
k → k + y, and perform the integration over δ = yh̄/τ f :

SL = e2

h

∫ μ+eV

μ−eV
dE

∫ ∞

−∞

dδ

π

�ϕ

�2
ϕ + δ2

× T (E + δ)[1 − T (E + δ)]. (75)

This results in the following Fano factor for diffusive
dephasing:

Fdiff = �2
1 + �2

2

(�1 + �2)2

− 2�1�2

(�1 + �2)2

eV��

(�� + �ϕ )2 + (eV)2

1

arctan
(

eV
��+�ϕ

) .

(76)

Compared with the result for the coherent case, Eq. (70), the
diffusive dephasing leads to the replacement �� → �� + �ϕ

everywhere except for the numerator of the second term.
Now we calculate the shot noise for the case of the loga-

rithmic dephasing. For this, we use the same trick as for the
calculation of the transmission coefficient:〈

exp

(
− i

h̄

∫ τ f (n1−n2 )

τ f (n4−n3 )
dτU (τ )

)〉
t

=
(

1

|n1 − n2 + n3 − n4|τ f /τc + 1

)γ

=
∫ ∞

0
dy

yγ−1e−y

�(γ )

×
∫

dx

π

yτ f /τc

(yτ f /τc)2 + x2
ei(n1−n2+n3−n4 )x. (77)

For logarithmic dephasing, we can introduce the dephasing
strength, similarly to the diffusion type:

�ϕ = h̄/τc.

Then, for the calculation of the Fano factor, we can perform
the same procedure as for diffusion-type phase dynamics:

Flog = �2
1 + �2

2

(�1 + �2)2
− 2�1�2

(�1 + �2)2

G

H
, (78)

G =
∫

dy

�(γ )
yγ−1e−y eaV ��

(eV)2 + (�� + y�ϕ )2
, (79)

H =
∫

dy

�(γ )
yγ−1e−y arctan

(
eV

�� + y�ϕ

)
. (80)

Using these equations, we can distinguish three different
regimes:

�� � �ϕ � eV :

Flog = Fdiff = �2
1 + �2

2

(�1 + �2)2
− 2�1�2

(�1 + �2)2

2

π

(
��

eV

)
, (81)

�� � eV � �ϕ :

Flog = �2
1 + �2

2

(�1 + �2)2
− 2�1�2

(�1 + �2)2

2

π

(
��

�ϕ

)γ (
��

eV

)1−γ

,

(82)

Fdiff = �2
1 + �2

2

(�1 + �2)2
− 2�1�2

(�1 + �2)2

��

�ϕ

, (83)

eV � �� � �ϕ :

Flog = �2
1 + �2

2

(�1 + �2)2
− 2�1�2

(�1 + �2)2
, (84)

Fdiff = �2
1 + �2

2

(�1 + �2)2
− 2�1�2

(�1 + �2)2

��

�ϕ

. (85)

The main difference between the logarithmic and diffusion
types of dephasing is now clearly seen. For the diffusion
type of dephasing, the Fano factor is insensitive to the ap-
plied voltage when it is lower then the dephasing-induced
contribution to the level width �ϕ . For larger voltages, the
Fano factor is given by the well-known result, with a small
correction ∝ 1/eV. The Fano factor in the case of logarithmic
dephasing has three different regimes depending on applied
voltage. If the voltage is lower than the dephasing width
�ϕ but higher than the elastic width �� , the Fano factor
depends on the voltage, in contrast to Fdiff. This difference
can be seen in Fig. 3. In both cases, when the voltage ex-
ceeds the elastic width �� , the Fano factor approaches the
universal value Eq. (3) that can be obtained in the classical
consideration.

V. PHONON INDUCED DEPHASING

In this section, we will study the influence of acoustic
phonons on the transmission and current fluctuations. We as-
sume sufficiently low temperatures when both backscattering
and electron transitions between levels of quantization in the
double-barrier structure due to their interaction with phonons
can be neglected [36]. Cases of 1D, 2D, and 3D phonons will
be considered. In experiment, all three possibilities can be
realized.
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FIG. 3. The Fano factor for different types of dephasing as a
function of applied voltage. Red solid line is for diffusion-type
dephasing, Eq. (76); blue dashed line is for the logarithmic type,
Eq. (78). Parameters for the plot: �1 = �2 = �� , �ϕ/�� = 10, and
γ = 0.1.

Interaction with acoustic phonons is governed by the
Hamiltonian:

V̂e-ph = gϕ(r, t ), (86)

ϕ(r, t ) =
∑

k

√
ωk

2V
(ibkeikr−iωkt − ib∗

ke−ikr+iωkt ), (87)

where in the last equation only longitudinal phonons are in-
cluded, s is the speed of longitudinal phonons, and ωk = sk.
Note that g has different dimensions in the three cases. The
average of phonon field amplitudes is given by

〈bkb∗
p〉 = 〈b∗

pbk〉 = nkδkp,

where nk is the Bose distribution function. The correlators of
the phonon fields for different spatial dimensions are

1D: K1D(x, t ) = g2s

4πr2
c

[
r2

c

(x + st )2
− π2

sinh2
(

π (x+st )
rc

)
+ r2

c

(x − st )2
− π2

sinh2
(

π (x−st )
rc

)
]
, (88)

2D: K2D(x, t ) = g2

2π

∫
dk kωknk cos(ωkt )J0(kx), (89)

3D: K3D(x, t ) = − 1

2πx

∂K1D(x, t )

∂x
, (90)

where

τc = h̄

Tph
, rc = sτc, (91)

x = |x1 − x2| and t = |t1 − t2|, and xi is the coordinate along
the 1D channel. In the case of 1D phonons, they propagate
along the same direction as electrons. In general, phonons are
characterized by the temperature Tph that may differ from the
electronic temperature in the leads. This allows us to consider
the zero-temperature electronic noise at finite phonon temper-
ature (finite τc).

A. Ballistic regime: Kτ2
c /h̄2 � 1

Here we summarize the expressions for dephasing rate in
the ballistic regime for different phonon dimensionalities:

1D:

√
πsg2

12h̄2r2
c

, 2D:

√
ζ (3)sg2

2π h̄2r3
c

, 3D:

√
π2sg2

60h̄2r4
c

, (92)

where ζ (x) is the Riemann zeta function.

B. Diffusive and logarithmic dephasing: Kτ2
c /h̄2 � 1

1D case. The phonon-induced dephasing rate is be calcu-
lated using Eq. (53):

1

τϕ

= g2

2h̄2rc
= g2

2h̄3s
Tph. (93)

In this calculation, we assume that phonons could transmit
across barriers. The 1D dephasing rate grows linearly with the
phonon temperature. The transmission coefficient is given by
Eq. (54). Interestingly, this dephasing rate has a peculiar limit
of zero sound speed:

1

τϕ

∼
∫

dτK (τ ) ∼ T

s
−−→
s→0

∞. (94)

More accurately, there are two different cases:

s

L
� T : K (τ ) ∼ T 2

s
e−T τ , ∀ τ, (95)

s

L
� T : K (τ ) ∼

⎧⎪⎨
⎪⎩

T

L
e−sτ/L, τ � L

s

T 2

s
e−T τ , τ � L

s .

(96)

Thus, if we start to decrease the sound speed to zero, even-
tually the second regime (s/L � T ) is established. Then the
correlator becomes time independent for Q � v/s, which
leads to

〈ei
∫ t

0 dτV (τ )〉 ≈ e−t3g2T s/L2
,

1

τϕ

−−→
s→0

0. (97)

2D case. For phonons in the plane, the direct calculations
of the dephasing rate by means of Eq. (53) gives zero,∫ ∞

0
dτK (τ ) = 0, (98)

as can be easily seen from the phonon correlator in two di-
mensions, Eq. (89).

In this case, we need to analyze more accurately the double
integral in Eq. (49), which depends on the ratio between the
structure size and the phonon correlation length. For short
structures, one obtains∫ t

0

dτ

h̄

∫ τ

0

dτ ′

h̄
K (τ ′) ≈ γ2D ln

( t

τc

)
,

L

rc
� 1, (99)

γ2D = g2

2π h̄2rcs
= g2

2π h̄3s2
Tph. (100)

For long structures, L/rc � 1, at short times t � L/s, one
gets a linear growth and for larger times a logarithmic grows,
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same as in Eq. (99):∫ t

0

dτ

h̄

∫ τ

0

dτ ′

h̄
K (τ ′) ≈

{
γ2D

πs
2L t, t � L

s
γ2D ln

(
t
τc

)
, t � L

s .
(101)

This means that the random phase induced by the interaction
with 2D phonons grows slower with time than for the diffu-
sive phase dynamics. This is the reason why we get zero for
the dephasing rate in Eq. (52). For γ � 1, we can use the
logarithmic result regardless of the relation between L and rc.

The typical value of electron-phonon coupling constant is
λ ∼ 5 × 10−11 erg, the material density is ρ3D = 5 g/cm3, and
the surface phonon localization length κ is an order of atomic
length: κ ∼ 1 nm−1. With these values, one estimates

γ2D/T ∼ 1 × K−1.

3D case. In this case, we have the same scenario as for 2D
phonons, but γ3D is now quadratic in the phonon temperature:

γ3D = g2

2π2h̄2r2
c s

= g2

2π2h̄4s3
T 2

ph. (102)

The limit of zero sound velocity for 2D and 3D phonons is
taken in the same way as for 1D phonons. The conductance
has a non-Breit-Wigner form. It is quite close to e2/h, when
the phonon temperature is the same as that for electrons in
the contacts, since the characteristic dephasing-induced level
broadening is of the same order as temperature.

C. Fano factor for logarithmic dephasing

As was shown above, for 2D and 3D phonons the loga-
rithmic dephasing takes place. To calculate the Fano factor in
this case, we assume that the leads are at zero temperature,
while the phonons between the barriers are kept at nonzero
temperature Tph = T > 0. We then apply Eq. (78) for the Fano
factor for logarithmic dephasing. For example, in a system
with the equal barriers, � ≡ �1 = �2, for 2D phonons at
� � eV � T we get from Eq. (82):

F = 1

2

[
1 − 2

π

(
�

T

)T g2/π h̄3s2(
�

eV

)1−T g2/π h̄3s2]
. (103)

VI. CONCLUSION

In this paper, we have addressed the problem of influence
of inelastic processes on the Fano factor for a double-barrier
structure. We have derived a general expression for the
shot-noise power for a 1D conductor with arbitrary inelas-
tic scattering. Next, we have considered the transmission of
electrons through a double-barrier resonator with a random
nonstationary potential inside it. We have derived exact in-
elastic transmission and reflection amplitudes that depend on
the random time-dependent potential. We have analyzed the
transmission coefficient and the Fano factor for this structure,
assuming two types of dynamics of electronic wave-function
phases: diffusion type, 〈ϕ2

f 〉 ∼ t/τϕ , and logarithmic, 〈ϕ2
f 〉 ∼

ln(t/τc). For the transmission coefficient, diffusion-type dy-
namics leads to a Lorentzian shape with the width determined
by a sum of elastic and dephasing contributions. The loga-
rithmic type of dephasing leads to an unusual shape of the
transmission coefficient as a function of energy, with the

two scales given by the elastic width and the inverse corre-
lation time of the fluctuating potential. The Fano factor for
such a structure also depends on the dephasing type. For
diffusion-type dephasing, the Fano factor is largely insensitive
to dephasing up to small corrections at low bias voltage. For
the logarithmic type, there is a strong dependence of the Fano
factor on the dephasing rate at low voltages, when the bias is
within a single broadened level. Finally, we have applied our
general formalism to the case when the fluctuating potential
is produced by phonons. For 1D phonons, the dephasing is
of the diffusion type with the rate proportional to the phonon
temperature. For 2D and 3D phonons, we have found that
dephasing is of the logarithmic type, which leads to an unusual
temperature dependence of the Fano factor. To conclude, a
quantum-mechanical derivation of shot noise through inelastic
transmission and reflection amplitudes and averaging over
random potential reveals a dependence of the Fano factor on
the type of wave-function phase dynamics.
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APPENDIX A: EXAMPLE: TRANSMISSION ACROSS
TIME-DEPENDENT DELTA BARRIER

We start from a simple example: Obtain transmission am-
plitudes across scattering from time-dependent delta barrier,
assuming that this time dependence is random but a well-
defined function in time. The Schrodinger equation is

− h̄2

2m

∂2ψ

∂x2
+ f (t )δ(x)ψ = ih̄

∂ψ

∂t
. (A1)

Defining the wave function in the basis of incident waves, we
can write it in next form:

ψ< = eikx−iEkt/h̄ +
∫

d p r(p, k)e−ipx−iEpt/h̄, x < 0, (A2)

ψ> =
∫

d pt (p, k)eipx−iEpt/h̄, x > 0, (A3)

where we assume that the k wave incident from the left side
and all energies contribute to transmission and backscattering.
From the Schrodinger equation, we can find conditions at the
delta function position:

ψ<(0) = ψ>(0), (A4)

2m

h̄2 f (t )ψ<(0) = ∂ψ>

∂x
(0) − ∂ψ<

∂x
(0). (A5)

These conditions should be valid for any time and we can
obtain the system of equations by integrating with eiEqt/h̄.
Next we use one approximation which will allow us to solve
the task exactly—linearizing spectra Ek ≈ vh̄k. With these
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assumptions, we can find the next equations defining trans-
mission and reflection amplitudes:

δ(q − k) + r(q, k) = t (q, k), (A6)∫
d p

2mv

h̄2 f (q − p)t (p, k)

= iq[t (q, k) − δ(q − k) + r(q, k)], (A7)

f (q − p) =
∫

dt f (t )eiv(q−p)t . (A8)

Solving these equations, we obtain transmission amplitude
through a random but well time-defined function f (t ):

t (p, k) = −ik
∫

dx
∫ x

dy eipx−iky exp

(
−

∫ x

y
dz

m

h̄2 f
( z

v

))
.

(A9)

If a particle’s energy change is small due to time-dependent
potential |p − k|/k � 1, we can replace the prefactor on the
right side of Eq. (A7) on q → k and obtain the next equa-
tion for the transmission amplitude:

t (p, k) =
∫

dx
ik

ik − f (x/v)/h̄
ei(p−k)x. (A10)

For the case of stationary barrier f (t ) = λ, this leads to the
well-known result:

t (p, k) = ik

ik − λ/h̄
δ(p − k). (A11)

APPENDIX B: TRANSMISSION AND REFLECTION
AMPLITUDE FOR A DOUBLE-BARRIER STRUCTURE

WITH DEPHASING

In this Appendix, we obtain transmission coefficients
through the double barrier structure with a random nonstation-
ary potential. As we mentioned in the main text for the weak
and smooth potential wave function, we take an additional
phase only, see Eq. (45).

For a system with barriers, the general wave function mov-
ing from the left with incident wave vector k is

ψI = eik(x−vt ) +
∑

p

rpke−ip(x+vt ),

ψII = α(x, t )
∑

p

apkeip(x−vt ) + β(x, t )
∑

p

bpke−ip(x+vt ),

ψIII =
∑

p

tpkeip(x−vt ),

α(x, t ) = exp

(
−i

∫ t

dτV (x + vt − vτ, τ )

)
,

β(x, t ) = exp

(
−i

∫ t

dτV (x − vt + vτ, τ )

)
.

Here regions I, II, and III correspond to regions before, be-
tween, and after double barriers. To obtain transmission and
reflection coefficients, we need to use scattering matrices of
barriers linking ingoing and outgoing waves. At this step, we
can assume that barriers are pointlike and add some extra

phases to reflection and transmission amplitudes without loss
of generality. Barriers located at the 0 and L points. The
condition on the left barrier is(

t1 r1

r1 t1

)(
ψ>

I
ψ<

II

)
=

(
ψ>

II
ψ<

I

)
, (B1)

where index > (<) corresponds to the right (left)-moving
parts of the wave function. We neglect the dependence of the
barrier transmission/reflection amplitude on the wave vector,
assuming that the random potential weak and transmitted par-
ticle wave vector changes are small |p − k|/k � 1. So, we can
take it on incident wave vector, i.e., ti = ti(k). From Eq. (B1)
and the same one on the second barrier, we can obtain

α(0, t )

t1

∑
p

apke−ipvt − r1β(0, t )

t1

∑
p

bpke−ipvt = e−ikvt ,

∑
p

tpkeip(L−vt ) = t2α(L, t )
∑

p

apkeip(L−vt ),

r2α(L, t )
∑

p

apkeip(L−vt ) = β(L, t )
∑

p

bpke−ip(L+vt ).

Using these equations, one can obtain the transmission coeffi-
cient:

tpk =
∫

dt veipvt t1t2(1 − r1r2F (t )e−τ f
∂
∂t )−1G(t )e−ikvt , (B2)

F (t ) = α(L, t + τ f /2)β(0, t )

α(0, t )β(L, t − τ f /2)
, G(t ) = α(L, t + τ f /2)

α(0, t )
.

(B3)

By expanding this equation in a series of reflections between
barriers, assuming that a random potential varying slowly on
time flight scale ∂V (x, t )/∂t � V (x, t )/τ f :

tpk =
∫

dx ei(k−p)xt1t2

∞∑
n=0

(r1r2ei2kL )n (B4)

× exp

(
−i

∫ 0

−τ f n
dτ V (xin(τ ), τ − x/v)

)
, (B5)

with xin(t ) the trajectory of a particle between barriers, de-
scribing reflecting motion.

Using the same method, we can obtain the reflection am-
plitude:

rpk =
∫

dtdq vei(p−q)vt r2F (t )ei2qL − r∗
1

G(t )t∗
1 t2

tqk . (B6)

For small potential (Kτ 2
c � 1), F (t ) ≈ G(t ) ≈ 1 and we ob-

tain a simple relation between reflection and transmission
amplitudes:

rpk = r2eipL − r∗
1 e−ipL

e−ipLt∗
1 t2

tpk . (B7)
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