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Effects of leakage on the realization of a discrete time crystal in a chain of singlet-triplet qubits
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We consider the effects of leakage on the ability to realize a discrete time crystal (DTC) in a semiconductor
quantum dot linear array being operated as a chain of singlet-triplet (ST) qubits. This system realizes an
Ising model with an effective applied magnetic field, plus additional terms that can cause leakage out of the
computational subspace. We demonstrate that, in the absence of these leakage terms, this model theoretically
realizes a DTC phase over a broad parameter regime for six and eight qubits, with a broader parameter range
for the eight-qubit case. We then reintroduce the leakage terms and find that the DTC phase disappears entirely
over the same parameter range if the system is only subject to a uniform magnetic field, which does not suppress
leakage. However, we find that the DTC phase can be restored if the system is instead subject to a magnetic field
that alternates from qubit to qubit, which suppresses leakage. We thus show that leakage is a serious problem for
the realization of a DTC phase in a chain of ST qubits, but is by no means insurmountable. Our work suggests
that experiments manifesting small-system stable DTC should be feasible with currently existing quantum dot
spin qubits.

DOI: 10.1103/PhysRevB.106.245419

I. INTRODUCTION

Even though the system size and gate fidelities in
semiconductor-based spin qubits lag behind those of other
platforms (e.g., superconducting or ion trap) for quantum
computation, much progress has been made in improving the
fidelities of single- and two-qubit gates, with experiments
coming close to, or even exceeding, the 99.9% thresh-
old needed to implement some error-correcting techniques
[1–13], which are essential to building a functioning quantum
computer. The systems used in these experiments, however,
are small, with the largest only having six qubits [13]. One
may ask what else can be done with these small systems
besides quantum computation experiments. One possibility is
to realize a discrete time crystal (DTC) with them, which is
the application that we will focus on.

In recent years, DTCs have been a topic of great interest,
both theoretically and experimentally. The general concept of
a time crystal was first proposed in 2012 by Wilczek [14,15]
as an analog to a conventional (space) crystal; just as crystals
break continuous space translation symmetry, a time crystal
breaks continuous time translation symmetry. It would later
be proved that the spontaneous breaking of continuous time
translation symmetry needed to realize a time crystal in ther-
mal equilibrium, as envisioned by Wilczek, is impossible in a
large class of systems because of a no-go theorem explicitly
ruling out the breaking of the continuous time translation
symmetry [16–18]. However, it should be possible, under
well-defined conditions, to spontaneously break a discrete
time translation symmetry, found in periodically driven sys-
tems, leading to a DTC phase. A number of theoretical works
have already investigated the existence of DTC phases in such
periodically driven systems [19–24]. In addition, a number

of experiments have found evidence for DTCs in periodi-
cally driven qubit systems [25–28], and another experiment
reported a time crystal state in a Bose-Einstein condensate
[29]. In the current work, we do not ask whether a stable
and robust time crystal can exist for infinite time in the ther-
modynamic limit (it now appears that most likely DTC is
a long-lasting transient rather than a thermodynamic phase),
which is an important question of principle, but focus on the
possible laboratory realization of DTC in small systems (of
semiconductor quantum dots) for reasonably long times of
experimental relevance.

A DTC phase is defined by two properties that must be
satisfied for any initial condition. First, the Hamiltonian must
be periodic with period T , but the system’s response must not
itself be periodic with the same period, i.e., H (t ) = H (t +
T ), but |ψ (t )〉 �= |ψ (t + T )〉. Instead, |ψ (t )〉 = |ψ (t + nT )〉,
where n is an integer and n > 1. Typically, n = 2, so that we
observe period doubling. Second, and most importantly, the
period of the response must be robust against imperfections
in the drive (e.g., fluctuations in amplitude or timing of the
drive). This, of course, parallels the rigidity of a space crystal;
just as a small perturbation to the position of an atom in a
crystal will not destroy the crystalline structure, a small distur-
bance to the perfect periodicity of a drive should not eliminate
the periodic response. In the context of a qubit system, the
(ideal) drive is a perfectly periodic sequence of pulses that
implement π rotations of all of the qubits, so an imperfection
could include a mistiming of a pulse or a pulse that instead
implements a (1 − ε)π rotation. A number of criteria have
been identified for qubit systems that exhibit a DTC phase
[30], which we summarize here. The system must exhibit
many-body localized (MBL) behavior, have a long coherence
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FIG. 1. Top: Example plot of the three components of the qubit state Px , Py, and Pz for the leftmost qubit, σJ ′ = 10−0.1J ′
0, and for ε = 0.04.

Bottom: Absolute values of the Fourier transforms of these components.

time, have short-ranged interactions that are predominantly
Ising in nature, and be Ising even, i.e., the interaction terms
must be of the form,

∑
i j Ji jZiZ j , and the full Hamiltonian

must commute with the Ising operator,
∏

i Xi.
We consider here a chain of Heisenberg exchange-coupled

spins in semiconductor quantum dots subject to an applied
magnetic field, with the exchange couplings and magnetic
field arranged so that the system operates as a chain of
singlet-triplet (ST) qubits [31,32]. We assume the presence
of quasistatic noise in the exchange couplings and magnetic
field gradients, modeled here as Gaussian distributions. We
set the interqubit exchange couplings to be much larger than
the intraqubit couplings, and we set the intended magnetic
field gradients to zero (i.e., field gradients only occur be-
cause of noise). If we rewrite the Hamiltonian in terms of
the computational states, |0〉 = 1√

2
(|↑↓〉 − |↓↑〉) and |1〉 =

1√
2
(|↑↓〉 + |↓↑〉), and the leakage states, |L+〉 = |↑↑〉 and

|L−〉 = |↓↓〉, of the qubits, then we find that the system would
realize an Ising model if not for the leakage terms. Such a
model would be ideal for realizing a DTC, as it meets the
criteria listed above: we obviously have an Ising interaction
and can tune the parameters to make the Hamiltonian (at least
approximately) Ising-even, and the exchange interactions are
short-ranged. We will see that the Ising interaction has the
form −∑

i j Ji jXiXj , which is just the form given earlier in a
rotated basis; in this case, the Ising operator is instead

∏
i Zi.

We are thus interested in what the effects of these leakage

terms are and whether or not it is possible to mitigate their
detrimental effects.

FIG. 2. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for six qubits in the
no-leakage limit. The three points labeled on this plot correspond to
a DTC phase (A), a “prethermal” phase (B), and a “thermal” phase
(C).
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FIG. 3. Plot of the Fourier transforms of Px for all six qubits for point A (DTC phase) in Fig. 2 and for the initial condition |ψ0,4〉. The
plots for the other three initial conditions are similar to these, also showing peaks at ω = π/T for all six qubits.

To this end, we consider the periodic application of pulses,
with period T , to this system that implement a (1 − ε)π
rotation on all qubits (we thus have included in error term ε

in what would ideally be a π rotation). We consider systems
consisting of six and eight qubits, and consider four different
initial conditions for each system size. We fix the strength of
the noise in the magnetic field gradients σδh, defined here as
the standard deviation of the Gaussian distribution, and vary
the strength of the noise in the interqubit exchange couplings
σJ ′ and ε. We calculate the Bloch sphere positions of all
qubits as a function of the number of Floquet periods. We
then determine which initial conditions, if any, exhibit DTC
behavior. We make this determination by finding the Fourier
transforms of the Bloch sphere positions of all of the qubits
and looking for a peak corresponding to oscillations of period
2T . If all qubits have this peak for all four initial conditions,
then we declare the system to be in a DTC phase. If only some
of the initial conditions show such behavior in all qubits, then
we consider the system to be in a “pre-thermal” phase. Finally,
if none of the intial conditions exhibit DTC behavior, then we
conclude that the system is in a “thermal” phase with no DTC
at all.

We first consider the limit in which the leakage terms are
dropped, yielding a pure Ising model in an (effective) applied
magnetic field. This is the ideal starting point, which is nec-

essary for benchmarking the realistic experimentally relevant
situations. In this case, we find a DTC phase over a large
parameter range for both six and eight qubits. Increasing the
number of qubits expands the parameter range over which the
DTC phase appears. We then introduce the leakage terms. We
find that the DTC phase disappears completely if the system
is subject only to a uniform magnetic field, thus showing
that leakage is a serious problem for the realization of a
DTC in a chain of ST qubits. In general, ST qubit systems
would not manifest DTC although the Hamiltonian is mostly
Ising-like. However, we show that it is possible to restore
the DTC phase by applying a strong alternating magnetic
field to each qubit; if the applied alternating magnetic field
has an energy scale much larger than the interqubit exchange
coupling, then the phase diagram that we obtain is hardly
distinguishable from that found for the ideal no-leakage limit.
This happens because the alternating magnetic field helps to
freeze out the leakage states. We also consider other magnetic
field configurations, including “two up, two down” (i.e., apply
a magnetic field +B to the leftmost two qubits, then −B to the
next two qubits, and so on), “three up, three down” (analogous
to “two up, two down”), and (for eight qubits specifically)
“four up, four down.” In these cases, we also find suppression
of the DTC phase. We therefore believe that DTC should be
realizable in quantum-dot-based spin qubits.
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FIG. 4. Plot of the Fourier transforms of Px for all six qubits for point B (“prethermal” phase) in Fig. 2 and for the initial condition |ψ0,4〉.
Note the split peaks for qubits 2 and 5 for this initial condition. The other three initial conditions yield similar results as for point A, i.e., they
show DTC-like behavior.

The rest of the paper is organized as follows. We introduce
our model in detail in Sec. II. We then look for DTC states in
this model both with and without the leakage terms present in
Sec. III. Finally, we present our conclusions in Sec. IV.

II. MODEL

The underlying physical model that we employ is that of
a chain of electron spins with nearest-neighbor Heisenberg
exchange couplings and applied magnetic fields:

H =
L−1∑

i=1

Ji �σi · �σi+1 +
L∑

i=1

hiσi,z, (1)

where Ji is the exchange coupling between spins i and i + 1,
and hi is the Zeeman energy of spin i in the presence of an
applied magnetic field. We arrange the values of these terms
to realize a chain of coupled singlet-triplet qubits as follows.
Let N be the number of qubits that we want to realize, so that
there are L = 2N spins. We let spins 1 and 2 form one qubit, 3
and 4 the next qubit, and so on. We set the exchange coupling
between the two spins in qubit j (i.e., spins 2 j − 1 and 2 j)
to a value Jj , with j = 	 i

2
, where 	·
 is the ceiling function,
and the exchange coupling between the second spin of qubit

j and the first of qubit j + 1 (i.e., spins 2 j and 2 j + 1) to J ′
j .

We assume a “staggered” magnetic field; i.e., the magnetic
field experienced by spin i is given by hi = Bj + 1

2 (−1)iδh j ,
so that there is a magnetic field gradient δhj on qubit j.

We now rewrite our Hamiltonian in terms of the com-
putational and leakage states of the singlet-triplet qubits.
The computational states are |0〉 = |S〉 = 1√

2
(|↑↓〉 − |↓↑〉)

and |1〉 = |T0〉 = 1√
2
(|↑↓〉 + |↓↑〉), and the leakage states are

|L+〉 = |T+〉 = |↑↑〉 and |L−〉 = |T−〉 = |↓↓〉. We obtain H =
Hq + Hint + HL, where

Hq =
N∑

j=1

(2JjZ j − δh jXj + Jj12, j + 2BjZ̃ j ) (2)

are the single-qubit terms (note that, here and in the next
equation, j runs over qubits rather than spins),

Hint =
N−1∑

j=1

J ′
j (−XjXj+1 + Z̃ jXj+1 − XjZ̃ j+1 + Z̃ j Z̃ j+1) (3)

are the interaction terms, and HL, which will be fully defined
shortly, are the leakage terms. Here, Xj , Yj , and Zj are the Pauli
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FIG. 5. Plot of the Fourier transforms of Px for all six qubits for point C (“thermal” phase) in Fig. 2 and for the initial condition |ψ0,4〉. The
plots for the other three initial conditions are similar to these.

operators acting within the computational subspace, while X̃ j ,
Ỹj , and Z̃ j are those acting within the leakage subspace.

We now define the leakage terms via their action on all
possible states of two neighboring qubits j and j + 1. Their
action in the case where both qubits are in computational
states is

HL|s〉 j |s′〉 j+1 = J ′
j[|L+〉 j |L−〉 j+1 + (−1)s+s′ |L−〉 j |L+〉 j+1];

(4)
in the case where one of the qubits is in a leakage state it is

HL|s〉 j |LS′ 〉 j+1 = − (−1)s(1−s′ )2J ′
j |LS′ 〉 j

1√
2

[|0〉

− (−1)s|1〉] j+1, (5)

HL|LS〉 j |s′〉 j+1 = − (−1)ss′
2J ′

j

1√
2

[|0〉

+ (−1)s′ |1〉] j |LS〉 j+1, (6)

where S′ (S) in Eq. (5) [Eq. (6)] is − for s′ (s) equal to 0 and
+ if it is 1; and in the case where both qubits are in leakage
states it is

HL|L+〉 j |L+〉 j+1 = HL|L−〉 j |L−〉 j+1 = 0, (7)

HL|L+〉 j |L−〉 j+1 = 2J ′
j

1√
2

[|0〉 + |1〉] j
1√
2

[|0〉 + |1〉] j+1,

(8)

HL|L−〉 j |L+〉 j+1 = 2J ′
j

1√
2

[|0〉 − |1〉] j
1√
2

[|0〉 − |1〉] j+1.

(9)

Note that we allow the exchange couplings and magnetic
Zeeman terms to vary from qubit to qubit. This is because we
introduce quasistatic noise in all of these parameters, which is
mathematically equivalent to disorder. We sample the values
of the Jj , J ′

j , and δh j from Gaussian distributions:

fJ (J ) ∝ e−(J−J0 )2/2σ 2
J , Jj ∈ [0,∞), (10)

f j′ (J
′) ∝ e−(J ′−J ′

0 )2/2σ 2
J′ , J ′

j ∈ [0,∞), (11)

fδh(δh) ∝ e−(δh)2/2σ 2
δh . (12)

We truncate the distributions for the exchange couplings to
positive values because, for experimentally realistic situa-
tions, only positive values can be realized. However, we do
not expect that allowing negative values of the exchange cou-
plings would alter our results.
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FIG. 6. Plot of the Fourier transforms of Px for all six qubits for point C (“thermal” phase) in Fig. 2 and for the initial condition |ψ0,4〉. The
plots for the other three initial conditions are similar to these.

III. DISCRETE TIME CRYSTAL (DTC) STATES

We now look for DTC states in the model just described,
both in the absence of leakage terms and in their presence. We
will be considering systems of six and eight qubits and four
different initial conditions for each. If we let |±x〉 = 1√

2
(|0〉 ±

|1〉), these four conditions are, for six qubits,

|ψ0,1〉 = |+x〉1|+x〉2|+x〉3|+x〉4|+x〉5|+x〉6, (13)

|ψ0,2〉 = |+x〉1|−x〉2|+x〉3|−x〉4|+x〉5|−x〉6, (14)

|ψ0,3〉 = |+x〉1|+x〉2|+x〉3|−x〉4|−x〉5|−x〉6, (15)

|ψ0,4〉 = |+x〉1|−x〉2|−x〉3|−x〉4|−x〉5|+x〉6, (16)

and, for eight qubits,ts,

|ψ0,1〉 = |+x〉1|+x〉2|+x〉3|+x〉4|+x〉5|+x〉6|+x〉7|+x〉8,

(17)

|ψ0,2〉 = |+x〉1|−x〉2|+x〉3|−x〉4|+x〉5|−x〉6|+x〉7|−x〉8,

(18)

|ψ0,3〉 = |+x〉1|+x〉2|+x〉3|+x〉4|−x〉5|−x〉6|−x〉7|−x〉8,

(19)

|ψ0,4〉 = |+x〉1|+x〉2|−x〉3|−x〉4|−x〉5|−x〉6|+x〉7|+x〉8.

(20)

For our numerical calculations, we fix σδh = 0.01J ′
0, J0 =

0.01J ′
0, and σJ = 0.01σJ ′ . We then vary σJ ′ from 10−2J ′

0 to
10−0.1J ′

0 and ε from 0 to 0.26. We use 5040 realizations of
noise, steps of 0.1 for log10(σJ ′/J ′

0), and steps of 0.02 for ε for
the six-qubit case and the eight-qubit case without leakage,
while we use 160 realizations, steps of 0.2 for log10(σJ ′/J ′

0),
and steps of 0.04 for ε in the eight-qubit case with leakage.

We then determine whether or not our system is in a DTC
phase for given values of σJ ′ and ε in the following way.
For each of the above initial conditions, we let the system
evolve under its Hamiltonian for a time T , and then apply
a (1 − ε)π rotation. Here, ε represents an error in the qubit
rotation; the ideal case, given by ε = 0, is a π rotation of
all qubits. We perform 100 of these Floquet cycles (evolution
under the Hamiltonian followed by rotation of all qubits) and
determine the components of the qubits’ states on the Bloch
sphere, denoted here as Px, Py, and Pz, as a function of the
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number of cycles. We then determine the Fourier transforms
of these components. The signature of DTC behavior for a
given initial condition that we look for is a peak at ω = π/T in
|Px(ω)| for all qubits, corresponding to oscillations of period
2T . We require that the system display DTC behavior for
ε �= 0 and for all four of the above initial conditions in order to
demonstrate robustness of the 2T -periodic oscillations against
errors in the rotations and thus to declare the system to be in a
DTC phase.

A. No-leakage limit

We will first consider the no-leakage limit, in which we
drop all leakage terms and terms that act on leakage states, so
that the Hamiltonian becomes

H =
N∑

j=1

(2JjZ j − δh jXj + Jj12, j ) −
N−1∑

j=1

J ′
jXjXj+1. (21)

We note that this is just the Ising model in the presence of
an (effective) magnetic field. We thus see that, if not for the
leakage terms, a chain of singlet-triplet qubits would be a
perfect system for realizing the Ising model and thus a DTC
phase. This Hamiltonian satisfies all of the conditions listed
earlier for finding a DTC phase. Note that the Ising interation
is of the form −∑

i j Ji jXiXj , rather than
∑

i j Ji jZiZ j , so that
now the Ising operator is

∏
i Zi. This operator commutes with

all of the terms in this Hamiltonian except for −∑
j δh jXj ; it

is for this reason that set the intended magnetic field gradients
to zero, so that any such gradient that appears in the system is
due to noise.

We show plots of the three components of the Bloch sphere
position of one of the qubits along with the absolute values
of their Fourier transforms in Fig. 1 to illustrate the peak at
ω = π/T , and then plot the phase diagram for six qubits as a
function of σJ ′ and ε in Fig. 2.

We note that this phase diagram has three regions: a DTC
region, a “prethermal” region in which only some of the initial
conditions yield DTC-like behavior, and a “thermal” region in
which none of the initial conditions display such behavior. We
label three points, A, B, and C, that respectively represent each
of these three regions. We show plots of |Px(ω)| for all qubits
for one initial condition, |ψ0,4〉, and for six qubits, in Figs. 3–5
to show examples of how the qubits behave in each of these
three regions. We use this initial condition as an example in
particular because it is the one initial condition that fails to
show DTC-like behavior at point B (the “prethermal” region)
in Fig. 2.

We also investigate the effects of the number of Floquet
cycles and of system size on the presence or absence of a DTC
phase. We show a comparison between our results for 100
Floquet cycles and the corresponding results for 200 cycles in
Fig. 6. We see that the results have not changed qualitatively;
the only difference is that the peaks are sharper, as expected
for a larger number of Floquet cycles. The phase diagram is
also unchanged if we use 200 cycles instead of 100. On the
other hand, a larger system size does have a significant effect
on the phase diagram; we show the results for eight qubits
in Fig. 7. We see that, for the larger system size, one obtains
a DTC phase for larger values of ε for a given value of σJ ′ .

FIG. 7. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for eight qubits in
the no-leakage limit. We include the same three points, A, B, and C,
as we do in the corresponding result for six qubits shown in Fig. 2.

We thus conclude that the larger system size helps to further
stabilize a DTC phase.

B. Effects of leakage

We now turn our attention to the effects of leakage, adding
back in the leakage terms HL and the terms in Hq and Hint that
we dropped in the no-leakage limit. We begin with the case
of a uniform overall applied magnetic field. This is in fact the
worst-case scenario for leakage. While an overall magnetic

FIG. 8. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for six qubits with
leakage and with a uniform magnetic field B = 0.5J ′

0 applied to the
system. Note the difference in scale from the other figures.
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FIG. 9. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for eight qubits
with leakage and with a uniform magnetic field B = 0.5J ′

0 applied to
the system.

field on one qubit will split off the two leakage states, as can
be seen from Eq. (2), thus making it difficult for the qubit to
enter these states on its own, the fact that the z component of
the total spin of the underlying Heisenberg exchange-coupled
spin chain must be conserved means that qubits must “leak”
in nearest-neighbor pairs and enter opposite leakage states
(i.e., one must go into the |L+〉 state, while the other must
go into the |L−〉 state). This means that the energy cost for
one qubit to enter a leakage state is “paid” by the other
qubit entering the opposite leakage state, and thus the overall

FIG. 10. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for six qubits with
leakage and with an alternating magnetic field of magnitude |B| = J ′

0

applied to the system.

FIG. 11. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for six qubits with
leakage and with an alternating magnetic field of magnitude |B| =
2J ′

0 applied to the system.

magnetic field actually has no effect on leakage. In short,
there is no energy difference between an overall system state
in which two given nearest-neighbor qubits are both in the
computational subspace and the same state, but with the two
qubits in opposite leakage states. We demonstrate this fact by
repeating our previous calculations for six and eight qubits
with the leakage terms added back in, and show our results
for an applied overall magnetic field of B = 0.5J ′

0 in Figs. 8
and 9, respectively. We see that leakage completely eliminates

FIG. 12. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for six qubits with
leakage and with an alternating magnetic field of magnitude |B| =
10J ′

0 applied to the system.
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FIG. 13. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for eight qubits
with leakage and with an alternating magnetic field of magnitude
|B| = 10J ′

0 applied to the system.

the DTC phase; at most, the system will be in a “pre-thermal”
phase.

The natural question that one may ask is whether there is
any way to restore the DTC phase, even with leakage. The
answer is that it is indeed possible; configuring the overall
magnetic field B to alternate between qubits hinders leakage
because, in this case, there is now an overall energy differ-
ence between the state with two given nearest-neighbor qubits
in computational states and that with the qubits in leakage
states, thus separating the leakage states of the overall system

FIG. 14. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for six qubits with
leakage and with a magnetic field of magnitude |B| = J ′

0 in a “two
up, two down” arrangement applied to the system.

FIG. 15. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for six qubits with
leakage and with a magnetic field of magnitude |B| = 10J ′

0 in a “two
up, two down” arrangement applied to the system.

from the purely computational states. We show results for an
alternating magnetic field of magnitude |B| = J ′

0 in Fig. 10.
We see that the DTC phase is restored, but for larger values
of σJ ′ and lower values of ε; we have thus mitigated, but
not completely eliminated, the effects of leakage. We also
consider larger alternating magnetic fields. We show results
for |B| = 2J ′

0 for six qubits in Fig. 11 and for |B| = 10J ′
0 in

Fig. 12. We note that, for |B| = 2J ′
0, the system no longer

displays a DTC phase, but, for |B| = 10J ′
0, the results are

FIG. 16. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for six qubits with
leakage and with a magnetic field of magnitude |B| = J ′

0 in a “three
up, three down” arrangement applied to the system.
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FIG. 17. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for six qubits with
leakage and with a magnetic field of magnitude |B| = 10J ′

0 in a “three
up, three down” arrangement applied to the system.

hardly distinguishable from the no-leakage limit. We see that,
as expected, if the energy scale associated with the alternat-
ing magnetic field is much larger than that of the exchange
couplings, then the alternating field “freezes out” the leakage
states, thus effectively restoring the system to the no-leakage
limit. We find similar results for eight qubits in an alternating
magnetic field of magnitude |B| = 10J ′

0; we show our results
in Fig. 13.

In addition to the alternating magnetic field arrangement,
we also investigated two other arrangements—a “two up, two

FIG. 18. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for eight qubits
with leakage and with a magnetic field of magnitude |B| = 10J ′

0 in a
“two up, two down” arrangement applied to the system.

FIG. 19. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for eight qubits
with leakage and with a magnetic field of magnitude |B| = 10J ′

0 in a
“three up, three down” arrangement applied to the system.

down” arrangement in which the first two qubits are subject
to a field +B, then the next two are subject to a field −B,
and so on, and a “three up, three down” arrangement in which
the first three qubits are subject to a field +B, then the next
three are subject to a field −B. We plot our results for the
“two up, two down” arrangement for |B| = J ′

0 in Fig. 14 and
for |B| = 10J ′

0 in Fig. 15, and give the corresponding results
for the “three up, three down” arrangement in Figs. 16 and
17, respectively. We see that, for |B| = 10J ′

0, the “two up,
two down” arrangement partially restores the DTC phase, but

FIG. 20. Plot of the number of states that display discrete time
crystal (DTC) behavior as a function of ε and σJ ′ for eight qubits
with leakage and with a magnetic field of magnitude |B| = 10J ′

0 in a
“four up, four down” arrangement applied to the system.
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only for the largest σJ ′ value considered, while the “three
up, three down” arrangement does not restore it at all. We
give the corresponding phase diagrams for all arrangements
considered above for eight qubits and for |B| = 10J ′

0 in the
nonuniform cases, plus results for a “four up, four down”
arrangement (analogous to the “two up, two down” and “three
up, three down” arrangements), in Figs. 18–20.

We note that the results for |B| = J ′
0 and |B| = 2J ′

0 are
seemingly strange; they would imply that the “three up, three
down” arrangement is better at restoring the DTC phase than
either the “two up, two down” or alternating arrangements in
some cases. However, it is not surprising that we would see
such behavior since the energy scale of the magnetic field
is comparable to that of the interqubit exchange coupling,
and thus the system’s leakage states are not well separated
from the purely computational states as they would be for
|B| = 10J ′

0.

IV. CONCLUSION

We investigated the possibility of realizing a discrete time
crystal (DTC) phase in a chain of Heisenberg exchange-
coupled quantum dot spins in an applied magnetic field being
operated as a chain of singlet-triplet (ST) qubits. Our main
concern is leakage of the qubits out of the computational
subspace. Without the leakage terms present, the system
would provide a realization of an Ising model with an applied
magnetic field, which is a perfect system for realizing a DTC
phase. We considered systems with six and eight qubits and
assumed the presence of quasistatic noise in both the exchange
couplings and the magnetic field gradients, modeled as Gaus-
sian distributions of the relevant terms in the Hamiltonian.

To determine whether or not the system is in a DTC phase,
we considered how the system evolved, starting in four differ-
ent initial conditions. We then let the system evolve naturally
for a time T , apply a pulse that performs a (1 − ε)π rotation
about the z axis on all qubits, and repeat for 100 iterations
(Floquet cycles). Here, ε represents an error in the rotation;
ideally, the pulse would perform a π rotation. We determine
the components of each qubit’s state on the Bloch sphere as
a function of the number of cycles and take the Fourier trans-
form. We fix the strength of the noise σδh in the magnetic field
gradients (i.e., the standard deviation of the Gaussian distribu-
tion) and vary the strength of the interqubit exchange coupling
noise σJ ′ and the error in the qubit rotations ε, determining
how many of the initial conditions display DTC behavior. In
order for the system to be in a DTC phase for a given value
of σJ ′ , two criteria must be met: all four initial conditions
must show a peak at a frequency ω = π/T , corresponding to
oscillations of period 2T , for all qubits, and this peak must
persist for ε > 0.

Based on our results, we constructed phase diagrams for a
number of cases. We begin with the no-leakage limit, in which
all terms involving the leakage states are dropped, leaving

only the effective Ising model terms. We find a DTC phase
in both cases for a large range of parameters for both six
and eight qubits. In fact, we find that the DTC phase exists
over a larger parameter range in the eight-qubit case, showing
that a larger system size helps to stabilize the DTC phase.
We then add back in the leakage terms. We find that if we
only apply a uniform magnetic field to the system, then the
leakage terms completely eliminate the DTC phase over the
parameter range that we investigated. Fortunately, we find that
it is possible to mitigate the effects of the leakage terms by
instead applying an alternating magnetic field; if the energy
scale for the applied field is much larger than the interqubit
exchange coupling, then we find that the resulting phase dia-
gram is almost indistinguishable from the no-leakage case. We
also considered other arrangements of the magnetic fields that,
rather than alternating at each qubit, alternate at every other
qubit (“two up, two down”), every three qubits (“three up,
three down”), and, in the eight-qubit case specifically, every
four qubits (“four up, four down”).

We note that there is prior theoretical and experimental
work on the realization of a DTC phase in an Ising model
[19,26–28], the model that we consider here, but our work
focuses on a specific implementation of an Ising model, a
chain of ST qubits, and on the issue of leakage out of the
computational subspace that is specific to this implementa-
tion. We also note that, in particular, the work of Ref. [19] also
considers a method by which a Heisenberg spin chain may
be converted into an effective Ising spin chain. The method
used there involves a special pulse sequence that converts the
time evolution operator from that of a Heisenberg model to
approximately that of an effective Ising model. In contrast,
we propose operating the Heisenberg spin chain as a chain of
ST qubits, which, in the presence of an alternating magnetic
field, realize an Ising model in the computational states. We
have shown that, even though leakage is a serious problem
for the realization of a DTC in a chain of ST qubits, it is
not insurmountable. Given current experimental capabilities,
it would be possible to realize a sufficiently strong alternating
magnetic field to freeze-out the leakage states, thus allowing
the realization of a DTC phase over a large range of param-
eters. Our work thus suggests an experimental application
of noisy intermediate-scale quantum (NISQ) systems, in this
case systems consisting of 12 or 16 spins. The observation of
our predicted quantum dot DTC would bring spin qubits into
the NISQ era of considerable current interest where qubits are
used to achieve quantum tasks which are difficult (but not yet
impossible) on classical computers.
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