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Sublattice-sensitive Majorana modes
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For two- and three-dimensional topological insulators whose unit cells consist of multiple sublattices, the
boundary terminating at which type of sublattice can affect the time-reversal invariant momentum at which the
Dirac points of helical boundary states are located. By incorporating a generic theory and a representative model,
we reveal that this interesting property allows the realization of Majorana modes at sublattice domain walls
forming on the boundary when the boundary Dirac points of the topological insulator are gapped by appropriate
superconductivity in proximity. Remarkably, we find that the sensitive sublattice dependence of the Majorana
modes allows their positions to be precisely manipulated by locally controlling the terminating sublattices or
boundary potential. Our work reveals that the sublattice degrees of freedom commonly found in materials open
a different route to realize and manipulate Majorana modes.
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I. INTRODUCTION

As a class of topological excitations, Majorana modes in
topological superconductors (TSCs) have attracted tremen-
dous research enthusiasm since a connection between these
modes and fault-tolerant quantum computation was built
[1,2]. On the road to the final application in quantum com-
putation, it is widely believed that a milestone will be the
implementation of braiding Majorana zero modes (MZMs)
[3], a type of bound-state Majorana modes. Historically, as
MZMs were first revealed to appear in the vortex cores of two-
dimensional chiral p-wave superconductors in the topological
regime [4], the initial scenario for braiding MZMs is based
on the natural idea of moving and exchanging vortices [5].
Later, theorists showed that the braiding process could also be
carried out in networks of one-dimensional TSC wires [6,7].
Despite being viewed as the two most promising routes, an
experimental realization of either remains elusive as unequiv-
ocally detecting and controllably manipulating vortex-core or
wire-end MZMs remain challenging, even though steady and
remarkable progress has been witnessed in many Majorana-
candidate platforms, ranging from semiconductor nanowires
[8–18] and magnetic atom chains [19–21] to superconducting
topological insulators [22–24] and iron-based superconduc-
tors [25–27].

In the past few years, the study of higher-order TSCs
provides different perspectives for both the implementation
[28–65] and manipulation of MZMs [66–68] and other prop-
agating Majorana modes [69–82]. A unique characteristic of
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higher-order TSCs is that the concomitant Majorana modes
have a codimension (dc) larger than one and their locations
in real space depend on the boundary geometry. This is
fundamentally distinct from conventional TSCs (also dubbed
first-order TSCs) protected by internal symmetries only [83],
where the Majorana modes have dc = 1 and their locations
do not rely on the boundary geometry as they appear every-
where on the whole boundary. Because of the freedom on
the boundary, the positions of Majorana modes in a higher-
order TSC are in principle allowed to move if the Majorana
modes are not pinned by any crystalline symmetry [31,33].
Indeed, previous works have shown that the positions of
MZMs in two-dimensional second-order TSCs can be tuned
by rotating the orientation of magnetic field [49,68,84] or
changing the boundary potential via electrical gating [48,67],
accordingly opening other routes to manipulate and braid
MZMs [85–87]. In this work, we reveal that the sublattice
degrees of freedom commonly appearing in materials admit
an intriguing scheme for the realization and manipulation of
Majorana modes with dc = 2. This scheme can be applied to
systems both with and without time-reversal symmetry (TRS),
and remarkably allows the positions of Majorana modes to
be precisely manipulated, thus holding great promise for the
detection, manipulation, and braiding of Majorana modes.

To date, there already exist many proposals for the
implementation of second-order TSCs, including topolog-
ical insulator (TI)/superconductor heterostructures [34–43]
and their generalizations [44–48,69–74], odd-parity super-
conductors [49,50, 52–56], spin-orbit coupled systems with
mixed pairings [57,58], etc. In this work we consider
TI/superconductor heterostructures, whose implementation
is already feasible in experiments [22–24], to illustrate the
physics. The physical picture can be roughly described as
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follows. For a d-dimensional (dD) first-order TI with d � 2,
although the appearance of helical states does not depend on
the terminating sublattice type on the boundary [88,89], a
fact, interesting but having attracted little attention, is that the
terminating sublattice type can affect the time-reversal invari-
ant momentum (TRIM) at which the Dirac points of helical
boundary states are located. Interestingly, such a dependence
of boundary Dirac points on sublattice terminations can affect
both the magnitude and the sign of the boundary Dirac mass
induced by superconductivity in proximity [90,91]. Under
appropriate conditions, such a property allows the emergence
of highly controllable Majorana modes at the domain walls
of two distinct sublattice terminations on the same boundary.
Below we first formulate the generic theory, and then demon-
strate the physics via a concrete model.

II. GENERIC THEORY FROM A BOUNDARY
PERSPECTIVE

Within the mean-field framework, a supercon-
ducting system can be described by a corresponding
Bogoliubov–de Gennes (BdG) Hamiltonian of the form
H = 1

2

∑
k �

†
k [HN (k) + HSC (k)]�k, where �k denotes the

Nambu basis, HN describes the normal state, and HSC

describes the superconducting pairing. When HN describes
a first-order topological insulator with d � 2, one knows
that helical states will appear on the boundary and form
(d − 1)-dimensional Dirac points at TRIMs of the reduced
boundary Brillouin zone [88,89]. Consider a boundary with a
given type of sublattice terminations; if the chemical potential
is set to cross the boundary Dirac point, then the low-energy
boundary Hamiltonian will take the standard form [92]

H�s (q) =
d−1∑
i=1

viqiγi, (1)

where �s denotes the TRIM at which the boundary Dirac
point is located, q is the momentum measured from �s, vi

is the velocity along the ith direction, and the γi matrices
satisfy the Clifford algebra, i.e., {γi, γ j} = 2δi j . The effect
from the superconducting pairing to the helical states can be
determined by projecting HSC onto the subspace spanned by
the orthogonal wave functions of helical boundary states. In
general, if one only considers the leading-order contribution,
what the superconducting pairing induces is a constant Dirac
mass term that gaps out the Dirac point. Accordingly, the
low-energy physics on the boundary is described by a massive
Dirac Hamiltonian of the form

H̃�s (q) =
d−1∑
i=1

viqiγi + m�sγd , (2)

with {γd , γi=1,...,d−1} = 0 and m�s representing the induced
Dirac mass. Mathematically, the Dirac mass term is given by

[m�sγd ]αβ =
∫

dxdψ
†
α (xd )HSC(−i∂xd ,�s)ψβ (xd ), (3)

where {ψα (xd )} denote the wave functions for the helical
states localized at the xd -normal boundary [93]. Focusing on
the same boundary, if the boundary Dirac point changes from
�s to �s′ due to a change of sublattice terminations, then the

boundary Hamiltonian will accordingly change to

H̃�s′ (q
′) =

d−1∑
i=1

v′
iq

′
iγi + m�s′ γd , (4)

where q′ denotes the momentum measured from �s′ . While the
value of Fermi velocity for the helical states on a given bound-
ary may change, the sign cannot change as each branch of the
helical states must propagate in a fixed direction. However, the
superconductivity-induced Dirac mass can change its magni-
tude as well as the sign if the pairing has certain momentum
dependence or sublattice dependence, e.g., extended s-wave
pairing, d-wave pairing, etc. Without loss of generality, let
us now consider a nonuniform boundary consisting of two
parts which take different sublattice terminations. For the con-
venience of discussion, we dub the interface separating two
distinct types of sublattice terminations as sublattice domain
wall. Assuming that the sublattice domain walls only break
the translation symmetry of the given boundary in the xd−1

direction, the boundary Hamiltonian becomes

H(−i∂xd−1 , q′
‖) = −i

γd−1

2
{vd−1(xd−1), ∂xd−1} + m(xd−1)γd

+
d−2∑
i=1

viq
′
iγi, (5)

where q′
‖ = (q′

1, . . . , q′
d−2) denotes the momentum parallel to

the sublattice domain walls and {. . .} denotes symmetrization
of the operators. Notably, if m�s and m�s′ have opposite signs,
then the Dirac mass m(xd−1) will change sign across the
sublattice domain walls. In other words, the sublattice domain
walls are Dirac-mass domain walls. As a result, Majorana
modes with dc = 2 will emerge at the sublattice domain walls
according to the Jackiw-Rebbi theory [94], corresponding to
the realization of an extrinsic time-reversal invariant second-
order TSC. As TRS is conserved, the resulting Majorana
modes will be Majorana Kramers pairs (two MZMs related by
TRS) in 2D [34,35] and propagating helical Majorana modes
in 3D [69].

The above generic theory can be straightforwardly gener-
alized to systems without TRS. Without loss of generality, let
us consider that the TRS is broken by a Zeeman field. It is
known that the Zeeman field can also induce a Dirac mass
to the helical edge states, which will compete with the Dirac
mass induced by superconductivity. Accordingly, this raises
the possibility that the two sides of one sublattice domain
wall are dominated by Dirac masses of different nature, thus
leading to the emergence of MZMs in 2D and chiral Majorana
modes in 3D [93]. It is worth noting that when TRS is broken,
Majorana modes at sublattice domain walls can be realized
even with conventional s-wave superconductivity [95,96], re-
flecting that the revealed physics is generic and feasible in
current experiments. With the established generic theory in
mind, below we focus on the case with TRS and consider a
concrete realization to demonstrate the discussed physics.
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III. MAJORANA KRAMERS PAIRS AT THE SUBLATTICE
DOMAIN WALLS

Since 2D honeycomb lattices with just two types of sublat-
tices allow a simple illustration of the essential physics, below
we consider the representative Kane-Mele model to realize the
first-order TI and further assume a proximity-induced spin-
singlet pairing. The full Hamiltonian has the form

H = t
∑
〈i j〉,α

c†
i,αc j,α + iλso

∑
〈〈i j〉〉,α,β

νi jc
†
i,α (sz )αβc j,β

−μ
∑
i,α

c†
i,αci,α +

[
�0

∑
i

c†
i,↑c†

i,↓ +
∑
〈i j〉

�1;i jc
†
i,↑c†

j,↓

+
∑
〈〈i j〉〉

�2;i jc
†
i,↑c†

j,↓ + H.c.

]
, (6)

where 〈i j〉 and 〈〈i j〉〉 refer to nearest-neighbor and next-
nearest-neighbor sites; α, β = {↑,↓} are spin indices; t , λso,
and μ are the nearest-neighbor hopping constant, spin-orbit
coupling strength, and chemical potential, respectively. The
first line corresponds to the Kane-Mele model which real-
izes a 2D first-order TI as long as λso is nonzero [97,98].
�0, �1;i j , and �2;i j represent the on-site, nearest-neighbor,
and next-nearest-neighbor pairings, respectively. The reason
to consider an extended s-wave pairing is due to the fact
that when the TRS is preserved, a uniform on-site s-wave
pairing cannot realize any topological superconducting phase
[99]. Nevertheless, according to the generic theory, there is no
constraint on the pairing type (a demonstration of the physics
via d-wave pairing as well as staggered on-site s-wave pairing
is provided in the Supplemental Material [93]). Without loss
of generality, below we assume �1;i j = �1 and �2;i j = �2

for simplicity, corresponding to an extended s-wave pairing
which preserves all crystalline symmetries of the normal-state
Hamiltonian.

By a Fourier transformation to the momentum space
and choosing the basis to be �

†
k = (ψ†

k , ψ−k) with ψ
†
k =

(c†
A,k,↑, c†

B,k,↑, c†
A,k,↓, c†

B,k,↓), the BdG Hamiltonian reads

H(k) = t
∑

i

[cos(k · ai )τzs0σx + sin(k · ai )τzs0σy]

+2λso

∑
i

sin(k · bi )τ0szσz − μτzs0σ0

−�1

∑
i

[cos(k · ai )τysyσx + sin(k · ai )τysyσy]

−
[
�0 + 2�2

∑
i

cos(k · bi )

]
τysyσ0, (7)

where the Pauli matrices τi, si, and σi act on the particle-
hole, spin (↑,↓), and sublattice (A, B) degrees of freedom,
respectively. The sum runs over i = 1, 2, 3, with the nearest-
neighbor vectors a1 = a(0, 1), a2 = a

2 (
√

3,−1), and a3 =
a
2 (−√

3,−1), and a being the lattice constant (below we set
a = 1 for notational simplicity). The next-nearest-neighbor
vectors b1 = a2 − a3, b2 = a3 − a1, and b3 = a1 − a2 [100].
The Hamiltonian has TRS (the time-reversal operator T =

FIG. 1. Sensitive dependence of boundary Dirac points on the
terminating sublattice type. (a) The upper and lower zigzag edges
of the lattice respectively terminate with sublattice B (red dots) and
A (blue dots). (b) The lower edge keeps to be the same as in (a),
but the upper edge changes to be a beard type, with the terminating
sublattice type changing from B to A. Panels (c) and (d) show the
corresponding normal-state energy spectra when the y-normal open
boundaries follow the structures shown in (a) and (b), respectively.
In (c) and (d), periodic boundary conditions are imposed in the x
direction and parameters are t = 1 and λso = 0.1.

iτ0syσ0K with K the complex conjugate operator), particle-
hole symmetry (P = τxs0σ0K), and inversion symmetry (I =
τ0s0σx). Because the coexistence of TRS and inversion sym-
metry enforces Kramers degeneracy to the bulk bands, the
first-order topology of the BdG Hamiltonian will always be
trivial for the concerned spin-singlet pairing [46,74,101]. In
previous works, it has been shown that a first-order TI with
square lattice in proximity to an extended s-wave super-
conductor can realize a second-order TSC with Majorana
Kramers pairs localized at the corners of a square sample
[34]. Notably, therein the topological criterion requires either
the hopping or the pairing to have crystalline anisotropy,
because otherwise Dirac-mass domain walls cannot form on
the boundary due to symmetry constraint. However, as we
will show below, even though both the hopping and pairing
are considered to be isotropic in Eq. (7), here Dirac-mass
domain walls can emerge on the boundary due to the sublattice
degrees of freedom.

For the 2D honeycomb lattice, there are two kinds of sim-
ple edges whose outermost terminations only contain one type
of sublattice, which are known as zigzag and beard edges [see
Figs. 1(a) and 1(b)]. Let us first investigate how the change of
sublattice termination on a given boundary affects the helical
edge states of the normal state. To be specific, we consider
a cylindrical geometry with periodic boundary condition in
the x direction and open boundary condition in the y direc-
tion. When the upper edge terminates with type-B sublattices
and the lower edge terminates with type-A sublattices [see
Fig. 1(a)], one finds that the boundary Dirac points for both
upper and lower edges are located at kx = π/

√
3, as shown

in Fig. 1(c). By only changing the terminating sublattice type
on the upper edge, one finds that one boundary Dirac point
is immediately shifted from kx = π/

√
3 to kx = 0, as shown

in Figs. 1(b) and 1(d). Since nothing changes in the bulk as
well as on the lower edge, the shifted Dirac point apparently
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FIG. 2. Energy spectrum of the BdG Hamiltonian for a cylin-
drical geometry with open (periodic) boundary conditions in the
y(x) direction. The upper (lower) edge in the y direction is chosen
to be the beard (zigzag) type. In (a)–(d), t = 1, λso = 0.1, μ = 0,
and pairing amplitudes are as follows: (a) �0 = 0.2, �1 = �2 = 0;
(b) �1 = 0.2, �0 = �2 = 0; (c) �2 = 0.2, �0 = �1 = 0; (d) �0 =
0.1, �1 = 0, �2 = 0.2.

corresponds to the upper edge, confirming the sensitive sub-
lattice dependence of boundary Dirac points.

Taking the superconductivity into account, numerical re-
sults show that the on-site pairing, nearest-neighbor pairing,
and next-nearest-neighbor pairing have rather different effects
on the helical edge states, as shown in Fig. 2. The on-site
pairing, as expected, will induce a Dirac mass to gap out the
Dirac points, irrespective of whether the edge is zigzag type or
beard type, as shown in Fig. 2(a). In sharp contrast, Fig. 2(b)
shows that the boundary Dirac points are intact to the nearest-
neighbor pairing. Lastly, the next-nearest-neighbor pairing
turns out to open a gap for the Dirac point of the zigzag
edge but not for that of the beard edge, as shown in Fig. 2(c).
These results indicate when both �0 and �2 are finite, the
gaps opened for the Dirac points at kx = 0 and kx = π/

√
3

can be different, as shown in Fig. 2(d).
As the effect of nearest-neighbor pairing on the helical

edge states is negligible, below we set �1 = 0 for simplic-
ity. To obtain the topological criterion for the emergence of
domain walls binding Majorana modes, we follow the generic
theory and derive the low-energy boundary Hamiltonians for
both zigzag and beard edges [93]. Focusing on the upper
y-normal boundary and considering the case with μ = 0 for
illustration, we find that the boundary Hamiltonian for the
beard-type edge (terminating with type-A sublattices) is

Hu,beard(qx ) = vqxτ0sz − �0τysy, (8)

where the subscript “u” stands for “upper edge,” v = 3
√

3λso,
and qx is measured from kx = 0. The boundary Hamiltonian
for the zigzag-type edge (terminating with type-B sublattices)
is

Hu,zigzag(q′
x ) = v′q′

xτ0sz + (2�2 − �0)τysy, (9)

where v′ ≈ 6
√

3λso if λso/t 
 1 and q′
x is measured from

kx = π/
√

3 [93]. It is easy to find that the Dirac masses in the
two Hamiltonians will take opposite signs if |�2| > |�0|/2 >

0. This is the topological criterion for sublattice domain walls

FIG. 3. Majorana Kramers pairs bounded at sublattice domain
walls. Chosen parameters are t = 1, λso = 0.1, μ = 0, �0 = �2 =
0.3, and �1 = 0. With periodic boundary conditions in the x di-
rection except for the uppermost beard-type part, the two insets in
(a) and (b) show the corresponding energy spectra. The four dots
highlighted by red indicate the existence of two Majorana Kramers
pairs. The shade of the red color on the lattice sites reflects the weight
of the probability density of Majorana Kramers pairs.

to host Majorana Kramers pairs at μ = 0. Due to the robust-
ness of topology, this topological criterion will hold as long as
μ is lower than the critical value at which the boundary energy
gap gets closed [93].

To validate the established topological criterion, we again
consider a cylindrical geometry with periodic boundary con-
dition in the x direction and only let the upper edge be
nonuniform, where one part terminates with B-type sub-
lattices (zigzag) and the other part terminates with A-type
sublattices (beard). Accordingly, there are two sublattice do-
main walls on the upper edge, while the lower edge remains
uniform. As shown in Fig. 3, when the topological criterion
is fulfilled, a diagonalization of the real-space Hamiltonian
shows the existence of four MZMs, corresponding to two
Majorana Kramers pairs. As expected, the wave functions
of Majorana Kramers pairs are strongly localized around the
sublattice domain walls. In addition, comparing Fig. 3(a) with
Fig. 3(b), it is readily seen that the positions of Majorana
Kramers pairs directly follow the change of the positions of
sublattice domain walls, indicating that the positions of Ma-
jorana Kramers pairs can be adjusted site by site by a precise
control of the terminating sublattices. Remarkably, even when
the positions of sublattice domain walls are fixed, we find that
the same goal can also be achieved by electrically tuning the
local boundary potential [93].

As a final remark, it is worth mentioning that, because
of the protection from particle-hole symmetry, the Majorana
Kramers pairs at the sublattice domain walls are stable against
time-reversal invariant disorders, e.g., random chemical po-
tential or boundary imperfections, as long as the strength of
the disorder is below the threshold [34]. Moreover, as our
theory is based on helical boundary states whose robustness
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is protected by TRS, the predicted physics is also expected to
be at least robust against weak interactions.

IV. DISCUSSION AND CONCLUSION

While our theory is exemplified in terms of the 2D
honeycomb lattice, its generality admits a wide application
as sublattice degrees of freedom are ubiquitous in mate-
rials, e.g., materials with kagome lattice [95], Lieb lattice
[102,103] (a study of the Lieb lattice is provided in the
Supplemental Material [93]), etc. Besides quantum materi-
als, another potential approach to realize our proposal is to
create artificial lattices on the surface of superconductors
[104], just like these experiments which deposited magnetic
atom chains on a superconductor to realize 1D topological
superconductivity [19–21]. As a different scheme for the im-
plementation of extrinsic second-order TSCs and Majorana

modes, one remarkable advantage is that the sensitive sub-
lattice dependence allows the positions of Majorana modes
to be manipulated in a highly controllable and precise way.
For experimental realization, we suggest the use of scan-
ning tunneling/force microscopy to manipulate the sublattice
terminations [105,106] and detect the comoving Majorana
modes.
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