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Designer meron lattice on the surface of a topological insulator
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We present a promising route to realize spontaneous magnetic order on the surface of a 3D topological
insulator by applying a superlattice potential. The superlattice potential lowers the symmetry of the surface
states and creates tunable van Hove singularities, which, when combined with strong spin-orbit coupling and
Coulomb repulsion, give rise to a topological meron lattice spin texture. The periodicity of this designer meron
lattice can be tuned by varying the periodicity of the superlattice potential. We employ Ginzburg-Landau
theory to classify the different magnetic orders and show that the magnetic transition temperature reaches
experimentally accessible values. Our work introduces another direction to realize exotic quantum order by
engineering interacting Dirac electrons in a superlattice potential, with promising applications to spintronics.
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I. INTRODUCTION

Three-dimensional topological insulators (TIs) host gap-
less surface Dirac cones protected by time-reversal symme-
try [1–11]. In the presence of strong interactions, time-reversal
symmetry can be spontaneously broken, gapping the Dirac
cone. The result is an exotic magnetically ordered surface
exhibiting the quantized anomalous Hall effect [5,12–18].
However, for all measured TIs, the Coulomb interaction is too
weak to induce the magnetically ordered phase [5,12,14,18].

In this paper, we show that a superlattice potential en-
hances correlation effects and provides an experimentally
accessible route to realize spontaneous magnetic order on
the surface of a TI as depicted in Fig. 1(a). The superlattice
potential downfolds and strongly renormalizes the low-energy
band structure, creating satellite Dirac cones without open-
ing a gap [19] and inducing strong van Hove singularities
(VHSs) [20]. We show that the superlattice-induced VHSs
drive a spin density wave instability that results in an ex-
otic meron lattice taking place at arbitrarily small values
of the electron-electron interaction. A meron, as shown in
Fig. 1(b), is topologically equivalent to half a skyrmion: Mag-
netic moments in its core point up or down, but magnetic
moments along its boundary are in-plane [21]. While topo-
logical spin textures such as skyrmions have been observed
in noncentrosymmetric magnets [22–25], ultrathin magnetic
films [26–28]m and multiferroic insulators [29,30], a meron
lattice has only been observed recently [31,32].

The meron lattice we describe on the surface of the TI is
stabilized by the interplay between the superlattice potential
and the strong spin-orbit coupling (SOC) on the TI surface
that “locks” the spin to the momentum, forcing the magnetic
moments to rotate in space about an in-plane axis. It features
several novel aspects: (1) it leaves the surface Dirac cone
gapless; (2) each unit cell exhibits two merons with opposite

topological charge; and (3) the meron lattice periodicity is
determined by the applied potential, i.e., it can be chosen by
design. These features make it distinct from other magnetic
textures induced on [5,12–18] or proximity-coupled [33–37]
to the surface of a TI.

In this work we focus on the experimental setup shown in
Fig. 1(a), which depicts a superlattice potential imposed on
the surface of a TI by gating a patterned dielectric stacked
above the TI surface. This approach was introduced to re-
alize a superlattice potential on graphene with periodicity
down to 35 nm and strength ∼50 meV [38,39]. It offers
great tunability: The periodicity, strength, and symmetry of
the potential can be engineered. A superlattice potential has
been studied theoretically to band-engineer topological mate-
rials [19,20,40–49]. Strain has also been employed to modify
the dispersion of surface states [50,51].

II. MODEL OF AN INTERACTING TI SURFACE

We consider interacting electrons on the surface of a TI
described by the Hamiltonian Ĥ = Ĥ0 + Ĥint. The noninter-
acting Hamiltonian Ĥ0 = ∫

d2r �̂†(r)H0(r)�̂(r) describes a
spin-momentum-locked Dirac cone subject to a superlattice
potential,

H0(r) = vF (−i∇r × σ )z + σ0 w(r), (1)

where ∇r = (∂x, ∂y), σ = (σx, σy, σz ) are the Pauli matrices,
σ0 is the identity, and w(r) = 2w

∑3
j=1 cos(q j · r) is the

hexagonal superlattice potential, with amplitude 2w and wave
vectors q1,2,3 illustrated as red vectors in Fig. 2(a). The wave
vectors satisfy |q1,2,3| = 4π/

√
3L, where L is the periodicity

of the potential. We set the Fermi velocity to vF = 2.55 eV Å,
the experimentally measured value in Bi2Te3 [7,8]. For the
moment we neglect higher-order corrections [5] to the Dirac
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FIG. 1. Schematic of experiment and meron spin texture. (a) The
experiment consists, from top to bottom, of a metallic gate, a
patterned dielectric, and a topological insulator. Applying a bias
between the metallic gate and the topological insulator imposes a
modulated potential on the surface of the TI. (b) Magnetization
exhibiting half-integer winding characteristic of a meron spin texture.
Merons pinned by the superlattice potential form a meron lattice.

cone dispersion (1). Then Eq. (1) depends only on a single
dimensionless parameter w/(vF /L).

The superlattice potential has a profound effect on the
Dirac cone. The dispersion of the first band above charge
neutrality [red line in Fig. 2(b)] becomes nearly flat at the K
and K′ points of the moiré Brillouin zone. Specifically, near
K and K′, symmetry constrains the Taylor expansion of the
dispersion to the form ε±(k) = αk2 ± η(k3

x − 3kxk2
y ), where

± indicates valley; expressions for the coefficients α and η

are given in Appendix A. This yields three VHSs near K
and K′ that map onto each other under C3z and provide the
large diverging density of states (DOS) shown in Fig. 2(c). In
addition, there is a local maximum (minimum) for α < 0 (>0)
at k = 0. At a critical value of w/(vF /L) where α = 0, the
three nearby VHSs merge to form higher-order VHSs at K
and K′ with a power-law diverging DOS [52–55], as found in
Ref. [20]. Our results do not require fine-tuning to the critical
value of w/(vF /L). Instead, we focus on the vicinity of the
VHSs that produce a sharp peak in the DOS [highlighted by
the horizontal line in Fig. 2(b)].

To describe the magnetic instability with momentum K′ −
K we consider the electron-electron interaction coupling the
hot-spot regions around K and K′. Note that screening by low-
energy electrons at momentum transfer q = K′ − K is weak
because electrons at K and K′ occupy orthogonal Bloch states
(see discussion at the end of Appendix C).

For simplicity we focus on the Hubbard interaction:

Ĥint = U
∫

d2r �̂
†
↑(r)�̂†

↓(r)�̂↓(r)�̂↑(r), U > 0, (2)

where �̂↑,↓(r) is the electron annihilation operator, �̂σ (r) =∑
k,G ei(k−G)r ĉk,G,σ /

√
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FIG. 2. Superlattice Brillouin zone, electronic properties of sur-
face states, and magnetic ordering basis. (a) Black and cyan lines
show the superlattice and magnetic Brillouin zones, respectively. The
red and green arrows represent the wave vectors q j and the nesting
vectors δ j , respectively. (b) Density of states and electronic disper-
sion for w/(vF /L) � 1.54 (L = 20 nm, w = 20 meV). Dashed lines
show the density of states and the band structure of the TI Dirac cone
folded into the superlattice Brillouin zone. (c) Momentum-resolved
spectral function displaying the Fermi surface at the energy of the
VHS with w/(vF /L) � 1.54. (d) Decomposition of the order param-
eter into vμ j .

label the Bloch momentum and reciprocal lattice vector of
the moiré Brillouin zone, respectively, and ĉ†

k,G,σ creates an
electron at k − G with spin σ . Notice that Ref. [20] consid-
ered an attractive interaction (U < 0) and found that the VHS
enhances the superconducting critical temperature.

A. Spin density wave operators

The interaction term Ĥint drives an instability toward den-
sity wave ordering, modulated by the nesting vectors, δ j ,
which connect the K and K′ regions where the DOS diverges
at the VHS. The nesting vectors are indicated by green vectors
in Figs. 2(a) and 2(c), and define a magnetic Brillouin zone
[solid cyan line in Fig. 2(a)] three times smaller than the
original one. Spin-momentum locking is expected to drive
the formation of an exotic spin density wave (SDW) [41].
To study the SDW, we decompose the order parameters for
each modulation δ j [5] into an in-plane direction parallel to
the nesting vector, v‖ j = e j ≡ δ j/|δ j |; an in-plane direction
perpendicular to the nesting vector, v⊥ j = −i(z×e j ); and an
out-of plane part, vz j = −iz. Correspondingly, for each wave
vector δ j , the SDW operator can be decomposed as

Ŝμ j =
∑

k

∑
G

ĉ†
k+δ j ,G,σ

vμ j · σσσ ′ ĉk,G,σ ′ , (3)

which represents the three types of magnetic order illustrated
in Fig. 2(d). We observe that we have 9 independent spin
density waves corresponding to different combinations of δ j

and vμ j .
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TABLE I. Symmetries of the SDW operator Ŝμ j playing a key
role in determining the Ginzburg-Landau free energy. The transfor-
mation my acts differently on μ =‖, z and ⊥.

SDW C3z mx T my

Ŝμ1 Ŝμ2 Ŝ†
μ1 −Ŝ†

μ1 If z, ‖: −Ŝμ1; else Ŝ⊥1

Ŝμ2 Ŝμ3 Ŝ†
μ3 −Ŝ†

μ2 If z, ‖: −Ŝμ3; else Ŝ⊥3

Ŝμ3 Ŝμ1 Ŝ†
μ2 −Ŝ†

μ3 If z, ‖: −Ŝμ2; else Ŝ⊥2

B. Symmetries

The interacting Hamiltonian Ĥ composed by Ĥ0 (1) and
Ĥint (2) is invariant under time-reversal T = σyK , where K
indicates complex conjugation, as well as a threefold rota-
tional symmetry, C3z = eiπσz/3, and the mirror symmetries,
my = iσy and mx = iσx, which act on both spin and spatial
coordinates. Combinations of these imply invariance under
two- and sixfold rotation symmetries, C2z = iσz, C6z = eiπσz/6,
respectively. In order to determine the leading spin density
wave instability it is crucial to notice that the Bloch states |uK〉
and |uK′ 〉 of the Hamiltonian (1) at the hot spots are singly
degenerate and have opposite mirror my eigenvalues. This can
be readily understood observing that the time-reversal sym-
metry T sends K → K′ and T myT −1 = my. Thus, given |uK〉
with my|uK〉 = i|uK〉, it follows that my|uK′ 〉 = myT |uK〉 =
−iT |uK〉 = −i|uK′ 〉. The potential w(r) breaks particle-hole
symmetry. The action of the symmetries of the model on the
spin density wave operators Ŝμ j is illustrated in Table I.

III. GINZBURG-LANDAU MEAN-FIELD THEORY

We study the magnetic order by deriving a Ginzburg-
Landau theory. We decouple the local interaction (2)
introducing the Hubbard-Stratonovich fields n(r, τ ) and
m(r, τ ) [56–58] for the charge and the magnetization densities
to obtain the Lagrangian:

L =
∫

d2r�̄(∂τ + H0(r) − μ)�

+ U

2

∫
d2r[n ρ − m · S] + U

4

∫
d2r[m2 − n2], (4)

where for the sake of space we omit the dependencies of the
fields on the imaginary time τ and position r, and we have in-
troduced the fermionic operators ρ̂(r) = ∑

σ �̂†
σ (r)�̂σ (r) and

Ŝa(r) = �̂†(r)σa�̂(r). Integrating out the electronic degrees
of freedom of Eq. (4) we obtain the effective action for n(τ, r)
and m(r, τ ). Then, we take the semiclassical limit of a static
order parameter. More specifically, we assume a homogenous
electron density n and a spatially modulated magnetization
m(r) = ∑3

j=1(mδ j e
iδ j r + m−δ j e

−iδ j r ) where mδ j is the Fourier
amplitude associated to the modulation δ j . Since m(r) is real,
mδ j = m∗

−δ j
≡ m j . We expand m j = ∑

μ sμ jvμ j where vμ j

are the normal modes in Fig. 2(d) and the order parameter
sμ j = 〈Ŝμ j〉/A is the average value of Ŝμ j with A area of the

FIG. 3. Saddle-point solution, real-space magnetization, and
electronic structure in the meron lattice phase. (a) Blue and red data
show the total magnetization |M| and the lowest eigenvalue of Mμν

jl ,
respectively. (b) Contour plot of the magnetization in real space.
Color indicates the out-of-plane component. (c) Winding number
m · (∂xm×∂ym)/4π in real space. Black and cyan lines show the
superlattice and magnetic unit cells, respectively. (d) Density of
states and electronic dispersion of the meron lattice state. The dashed
line shows the density of states of the normal phase. The horizontal
line shows the Fermi energy EF ; 
E denotes the induced gap at
�m. Inset shows the Fermi surface of the magnetic state. The bands
are obtained from the Hartree-Fock solution at w/(vF /L) � 1.54,
2w = 40 meV, U = 30 meV, and T = 1.5 K.

sample. As a result we find the free energy:

F = A

2

⎛
⎝∑

μ j

|sμ j |2 − n2

2

⎞
⎠ +

∞∑
m=1

Tr

[
(−G0 X )m

m U

]
, (5)

where G0 = (−∂τ − H0 + μ)−1 is the noninteracting single-
particle Green’s function and X = Um(r) · σ/2 − Un/2 de-
scribes the interaction between the order parameter and the
electrons.

The self-consistency equations are obtained by minimizing
the free energy (5) with respect to the variational parameters n
and sμ j , i.e., δF/δn = 0 and δF/δs∗

μ j = 0. The magnetic order
is determined by finding the roots of these equations numeri-
cally, as detailed in Appendix B. We find that in the range of
filling between n ∼ 0.61 and n ∼ 0.8 the minimum of the free
energy (5) develops a SDW magnetic ordering. The blue data
in Fig. 3(a) show the magnitude of the total magnetization
density, |M| =

√∑
μ j |sμ j |2 , as a function of the filling per

unit cell of the superlattice.
In real space, the magnetic order m(r) obtained from the

saddle-point solution forms a Néel-type meron lattice [25]
with two merons in each unit cell, as shown in Fig. 3(b).
The merons are well defined because the magnetic moment is
forced to be in-plane along mirror-invariant lines. Each meron
can be characterized by the Pontryagin density �(r) = m̂(r) ·
[∂xm̂(r)×∂ym̂(r)]/4π shown in Fig. 3(c) where m̂ is a unit
magnetization vector. We find

∫
S d2r�(r) = ±1/2, where S
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is the triangular domain illustrated by the orange dashed line
in Fig. 3(c). In the center of each unit cell is an intermediate
region of destructive interference with vanishing magnetiza-
tion. The magnetic order spontaneously breaks the translation
symmetry of the potential, giving rise to a magnetic unit cell
[cyan line in Fig. 3(b)] three times larger (

√
3×√

3) than the
original one [black solid line in Fig. 3(b)].

Hartree-Fock Hamiltonian

In this section we discuss the properties of the electronic
band structure in the magnetic phase. We treat the effect of the
magnetization on the electronic spectrum at the Hartree-Fock
level by replacing H0(r) in Eq. (1) with

HHF(r) = H0(r) − U

2
m(r) · σ. (6)

Despite breaking time-reversal symmetry, the resulting elec-
tronic spectrum remains gapless because the magnetic order
preserves C2zT symmetry. The dispersion is plotted in the
right panel of Fig. 3(d) in the magnetic Brillouin zone: The
original red band in Fig. 2(b) is decomposed into three differ-
ent bands given by the red, blue, and green lines in Fig. 3(d).
The Dirac cones at Km between the red and blue bands and
at K′

m between the blue and the green ones are protected by
C2zT . Thus, they give rise to a gapless electronic spectrum
whose Fermi surface is shown in the inset of Fig. 3(d).

Although the order parameter m(r) does not open a full
gap, it significantly reduces the DOS at the Fermi level [hor-
izontal black dashed line in Fig. 3(d)] by opening a gap
between the blue and green bands at �m of order 
E ∝ U |M|.
The gap splits the peak in the DOS resulting from the VHS
into two peaks above and below, as shown in the left panel of
Fig. 3(d). The significant decrease in the kinetic energy from
splitting the large peak in the DOS makes the magnetic state
energetically favorable with respect to the normal one.

In the following we discuss the symmetries of the magnetic
phase and we determine the region of stability of the spin
density wave order.

IV. PHASE DIAGRAM

The instability of the Dirac cone surface state is determined
by expanding the free energy for small values of the order
parameter sμ j . As time-reversal symmetry acts on the order
parameter by T : sμ j → −s∗

μ j (see Table I), only even powers
of sμ j are allowed in the free energy (5), so that to second or-
der in sμ j at fixed density n, F(2) = ∑

μν

∑3
jl=1 s∗

μ jM
μν

jl sνl/2,
where

Mμν

jl = δμνδ jl − U

2
χ

μν

jl , (7)

and χ
μν

jl ≡ ∫ β

0 dτ 〈Ŝ†
μ j (τ )Ŝνl (0)〉/A is the thermodynamic spin

susceptibility with τ imaginary time and β inverse tem-
perature. The matrix Mμν

jl contains both diagonal terms
( j = l), which come from momentum-conserving scattering
processes, and off-diagonal terms ( j �= l) from umklapp pro-
cesses with momentum δ j − δl ∈ G with G a reciprocal lattice
vector. The matrix Mμν

jl is constrained by the symmetries of
the Hamiltonian as discussed in Appendix C.

2/3

FIG. 4. Magnetic instability, critical temperature, and interac-
tion. (a) Solid lines show the components of the second-order free
energy Lμν . Red and cyan dashed lines illustrate the eigenvalues
λ−,2 and λ+,2, respectively, while λ1 = L⊥⊥ is the solid green line.
The calculations were performed at T = 1.5 K, U = 30 meV, and
w/(vF /L) � 1.54. (b) Critical temperature for the magnetic tran-
sition as a function of w/(vF /L) for U = 30 meV. For a given
w/(vF /L), the filling n is set so that the Fermi level is at the energy
of the VHS. (c) Evolution of the energy of the VHS singularity as a
function of w/(vF /L). Inset shows the electron filling per superlattice
unit cell at the VHS versus w/(vF /L). (d) Critical interaction Uc as a
function of the filling n at several temperatures, fixing 2w = 40 meV
and w/(vF /L) � 1.54.

An instability exists when one of the eigenvalues of the ma-
trix Mμν

jl becomes negative, which comprises a generalization
of the Stoner criterion [59]. The corresponding eigenvector
indicates the magnetic configuration of the instability and
is classified by how it transforms under symmetry. Since
the saddle-point solution is C3z-symmetric, we consider a
C3z-invariant eigenvector of Mμν

jl , which implies the magne-

tization takes the form sμ j = MUμ/
√

3. It follows that

F(2) = |M|2
2

⎛
⎝U‖

U⊥
Uz

⎞
⎠

†⎛
⎝L‖‖ 0 L‖z

0 L⊥⊥ 0
L‖z 0 Lzz

⎞
⎠

⎛
⎝U‖

U⊥
Uz

⎞
⎠, (8)

where the elements Lμν = ∑
jl M

μν

jl /3 are shown in Fig. 4(a)
as a function of the density at T = 1.5 K. The perpendic-
ular (U⊥) component of the magnetic order is decoupled
from the other components (U‖,Uz) because it is even un-
der the mirror my, while the parallel and z components are
odd. This property can be readily understood by looking at
the last column of Table I, where we show the action of
the symmetry my on the different components of the spin
density wave order. From Eq. (8), the surface Dirac cone is
unstable when either λ1 = L⊥⊥ < 0, which corresponds to in-
plane order purely in the “spiral-xy” channel and even under
my, or when one of the eigenvalues λ±,2 = (L‖‖ + Lzz )/2 ±√

(L‖‖ − Lzz )2/4 + L2
‖z < 0, which corresponds to a generi-

cally noncoplanar SDW with “120-xy” and z components, and
breaking my [see Fig. 2(d)]. In order to characterize the mag-
netic instability we compute the spin susceptibility introduced
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in Eq. (7):

χ
μν

jl = −T

A

∑
k,εn

Tr[G0(k, iεn) O†
μ j V δ j−δl G0(k+ δl , iεn) Oνl ],

(9)
where G0(k, iεn) is the single-particle Green’s function

G0(k, iε) =
∑

n

|unk〉〈unk|
iε − ξnk

, (10)

where |unk〉 are the Bloch states of H0, for simplicity we
have introduced the operator Oμ j = vμ j · σ, and V G is the
sewing matrix V G

Q,Q′ = δQ,Q′+G. We find that for a range of
filling near 2/3 electrons per unit cell, the dominant instability
occurs in the channel corresponding to λ−,2, as shown by the
region where the red solid line in Fig. 3(a) goes negative, and
in agreement with our saddle-point solution. This solution,
which breaks my, is energetically favored over the in-plane
spin solution that is even in my because it allows a gap to
open at �m in the magnetic BZ, indicated by 
E in Fig. 3(d).
Indeed, the latter solution being odd under my allows mixing
between the Bloch states |uK〉 and |uK′ 〉 at the hot-spot regions
which are characterized by opposite mirror my eigenvalues
as detailed in Appendix C. The resulting magnetic state is
a pattern of half-integer topological vortices, with the same
winding and opposite polarities corresponding to a meron
lattice. The other magnetic state, with eigenvalue λ+,2, also
breaks my, but is energetically unfavorable because it exhibits
a clockwise magnetization winding inconsistent with the in-
trinsic SOC of the surface state in Eq. (1). We have also
studied the C3z-breaking magnetic orders. Since these orders
do not hybridize the states |uK〉 and |uK′ 〉, they do not lead to
a magnetic instability. The symmetry of the magnetic orders
is further discussed in Appendix C.

The critical temperature and interaction strength occur at
precisely the point where one of the eigenvalues of Mμν

jl
changes sign. Figure 4(b) shows the critical temperature for
a range of fillings around the VHS at U = 30 meV. The
magnetic dome peaks at Tc ∼ 7 K near an optimal value of
w/(vF /L) � 1.54: Surprisingly, the peak does not coincide
with the higher-order VHS [20] at w/(vF /L) � 1.36. Fig-
ure 4(c) shows the evolution of the energy and the number of
electrons per superlattice unit cell where the VHS occurs as
a function of w/(vF /L). The maximum critical temperature
for the magnetic transition takes place around n ∼ 2/3 filling,
denoted as the horizontal green line in the inset of Fig. 4(c).

Figure 4(d) shows the critical interaction Uc necessary to
induce the magnetic instability as a function of the filling n for
different temperatures T . Lowering T reduces the magnetic
transition to arbitrarily weak repulsive interactions. In con-
trast, in the absence of the superlattice potential, spontaneous
magnetization of the surface state [5,12–18] in the Bi2Se3

family requires a critical value of the Coulomb interaction, on
the order of 2 eV [13,14,18]. We expect our results are robust
to weak disorder, which will reduce the transition tempera-
ture [60–62] without eliminating the magnetic state.

Hexagonal warping

Beyond the linear momentum dependence of the Dirac
cone (1) the dispersion develops a hexagonal warping term

Hw(k) = λ(k3
x − 3kxk2

y )σz [5]. Despite being small in λ/vF L2

this correction gives rise to a series of interesting effects that
are experimentally relevant. The hexagonal warping breaks
my and C2zT symmetries which gives a finite U⊥ component
in the magnetization pattern. While the average magnetic
moment in the unit cell continues to vanish,

∫
d2r mi = 0,

the explicitly broken my symmetry gives rise to a finite out-
of-plane toroidal moment Tz = ∫

d2r (xmy − ymx )/2 [63–65]
which typically manifests in the magnetoelectric susceptibil-
ity αxy = −αyx [66,67].

V. CONCLUSIONS

We have shown that a superlattice potential on the surface
of a TI provides a route to spontaneously breaking time-
reversal symmetry on the TI surface. The magnetic order
realizes a meron lattice exhibiting pairs of merons with op-
posite topological charge in the unit cell. The periodicity of
the meron lattice is determined by the period of the poten-
tial; consequently, the meron lattice periodicity is completely
tunable. Although the magnetic order breaks time-reversal, it
preserves C2zT and thus does not open a gap on the TI surface.

The meron lattice phase can be measured by imaging
the magnetization in real space through Lorentz transmission
electron microscopy [26,68] and nitrogen vacancy magnetom-
etry [69] or in reciprocal space via x-ray diffraction [22,70–
75]. The magnetization can also be measured through the
magneto-optical Kerr effect [76,77] and reflective magnetic
circular dichroism [78]. In addition, the magnetoelectric sus-
ceptibility αxy is observed either by measuring an in-plane
magnetization in response to an electric field, or a current
resulting from an in-plane magnetic field. The reduced density
of states resulting from the magnetic order gives a drastic
variation of the electronic compressibility across the transi-
tion. Finally, we also expect that the response to a magnetic
field [79–85] gives rise to distinctive signatures of the meron
state.

This finding has far-reaching consequences, as this uncon-
ventional magnetic state will have implications both on the
experimental and on the theoretical level. First, the topological
spin texture realizes an electromagnetic field on the scale of
the superlattice that can be employed by proximity effects to
modify band structure and topological properties of electronic
systems [33,35,37,86–89]. Second, the broken mirror symme-
try that results from hexagonal warping of the Fermi surface
implies that the meron lattice might host a magnetoelectric
response with potential application to spintronics [88–93].
This effect can be enhanced by strain [94–96] and lattice
relaxation [97]. Finally, the interplay between the spin density
wave ordering and possible superconducting instabilities [20]
is an open problem which is left to future studies.

ACKNOWLEDGMENTS

We have benefited from discussions with Y.-Z. Chou, M.
Michael Denner, S. Fang, J. Zang, A. J. Millis, Zhentao Wang,
Tiancheng Song, and Justin Wilson. We are grateful to Lucy
Reading-Ikkanda for creating the figure of the experimental
setup and the sketch of the magnetic state. We also acknowl-
edge the support of the Flatiron Institute, a division of the

245417-5



GUERCI, WANG, PIXLEY, AND CANO PHYSICAL REVIEW B 106, 245417 (2022)

Simons Foundation. This work was partially supported by
the Air Force Office of Scientific Research under Grant No.
FA9550-20-1-0260 (J.C.) and Grant No. FA9550-20-1-0136
(J.H.P.) and the Alfred P. Sloan Foundation through a Sloan
Research Fellowship (J.H.P.). J.H.P. and J.C. acknowledge
hospitality of the Aspen Center for Physics, where some of
this work was developed and which is supported by National
Science Foundation Grant No. PHY1607611.

APPENDIX A: THE k · p EXPANSION AROUND K AND K′

The origin of the high-order van Hove singularities [52–55]
can be derived from the lattice symmetries of the Hamil-
tonian H0(r). We define the small deviation from the K
point, q = k − K, and the linear combinations q± = qx ± iqy,
which transform under C3z as q± → e±i2π/3q±. At second
order in q the only allowed term in the energy dispersion is
q+q− = q2. The next contributions invariant under C3z are
q3

+ and q3
−. As a consequence of the mirror my symmetry

the cubic term is (q3
+ + q3

−)/2 = q3
x − 3q2

y qx. Thus, to cubic
order in q the dispersion around K reads [20] εK(q) = ε0 +
αq2 + η(q3

x − 3qxq2
y ) + · · · . Applying time-reversal symme-

try we find that the expansion at K′ reads εK′ (q) � ε0 +
αq2 − η(q3

x − 3qxq2
y ). The values of the coefficients α and η

are obtained from the k · p perturbation theory at K. Given
H0(K + q) − H0(K), expanding to the third order in the small
deviation q = k − K yields

α = 2
∑
m �=n

Re[〈unK|σ+|umK〉〈umK|σ−|unK〉]
εnK − εmK

(A1)

and

η =
∑

m, j �=n

2 Im

[
〈unK|σ−|umK〉〈umK|σ−|u jK

〉
(εnK − εmK )(εnK − ε jK )

〈
u jK|σ−|unK

〉]
,

(A2)

where |unK〉 and εnK are the Bloch state and the eigenvalue,
respectively, of H0(r) at K, n is the first positive energy band,
and σ± = σx ± iσy. The evolution of the couplings α and η

is shown in Fig. 5. The higher-order van Hove singularity
occurs when the quadratic term α in Eq. (A1) vanishes at
w/(vF /L) � 1.36, highlighted by the vertical green line in
Fig. 5. The result is a power-law divergence in the den-
sity of states ρ(ε) ∼ |ε|−1/3. By looking at the solutions of
∇qε±(q) = 0 (± for K and K′, respectively), we find that q =
0 is a maximum for α < 0, a minimum for α > 0, and, finally,
a higher-order critical point for α = 0. Away from the origin
there are three further solutions at κ±, j = ∓2αC j−1

3z (1, 0)/3η,
which are saddle points. Approaching the higher-order VHS
at α → 0, these three saddle points merge at q = 0, i.e., at K
or K′.

APPENDIX B: SOLUTION OF THE SADDLE-
POINT EQUATIONS

In this section we detail the mean-field solution of the
interacting electrons on the surface of the TI subject to the
superlattice potential w(r). Minimizing F (5) with respect to
the filling n and the magnetic configurations m(r), we find the

0.8 1.0 1.2 1.4 1.6 1.8 2.0
w/(vF/L)

-0.4

-0.2

0.0

0.2

0.4
α
η

FIG. 5. Parameters α and η of the k · p expansion of the dis-
persion relation around K. The vanishing of α at w/(vF /L) = 1.36
highlighted by the green line implies a high-order van Hove
singularity.

saddle-point equations:

δF

δn
= 0 ⇒ n = 1

A
Tr[

(
G−1

0 + X
)−1

] (B1)

and

δF

δs∗
μ j

= 0 ⇒ sμ j = 2

UA
Tr

[
δX

δs∗
μ j

(
G−1

0 + X
)−1

]
. (B2)

In the main text we show the result of the numerical solution
of Eqs. (B1) and (B2), which was obtained as follows. Equa-
tions (B1) and (B2) take a simple form in the basis of the
eigenstates |φnk〉 of the Hartree-Fock Hamiltonian in Eq. (6)
with eigenvalues ε̄nk:

n = 1

3N

∑
nk

f (ξ̄nk ) − n0, (B3)

where ξ̄nk = ε̄nk − μ∗ and μ∗ = μ − Un/2, and

sμ j = 1

3N

∑
nk

f (ξ̄nk )
〈
φnk|O†

μ jV
δ j |φnk

〉
, (B4)

where the filling n is measured with respect to the charge
neutrality point n0, N is the number of points sampling the
Brillouin zone, and the factor of three takes into account
the size difference between the original and the magnetic
Brillouin zone. Moreover, the function f (ε) = 1/(eβε + 1) is
the Fermi-Dirac distribution function, and V G is the sewing
matrix satisfying V G

Q,Q′ = δQ,Q′+G, V G|φnk〉 = |φnk+G〉. The
self-consistent equations are performed by a find-root algo-
rithm.

APPENDIX C: SYMMETRIES OF THE FREE ENERGY
AND CLASSIFICATION OF MAGNETIC ORDERINGS

In this Appendix we discuss the symmetries of the
second-order matrix Mμν

jl and classify the different magnetic
orderings according to their symmetry properties. The second-
order tensor is constrained by the symmetries in Table I. The
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TABLE II. Character table of C3v . E , C3, and m represent the
conjugation classes of the identity, C3z, and my, respectively.

E 2C3 3m

�1 1 1 1
�2 1 1 −1
�3 2 −1 0

threefold rotation about the z axis, C3z : sμ j → sμ j+1, gives
Mμν

jl = Mμν

j+1l+1. As a result Mμν

jl is expressed in terms of
two three-dimensional matrices: �μν = Mμν

j, j , �μν = Mμν
j, j+1

while Mμν
j+1, j = �∗

νμ since the free energy F(2) is real. In
addition, the mirror symmetry mx (given in Table I) implies
that �μν is real and symmetric, �μν = �νμ but with complex
elements �∗

μν �= �νμ. Finally, the remaining my symmetry
imposes that the matrix elements �‖⊥ = 0 and �⊥z = 0, �‖⊥
and �⊥z are purely imaginary, while the other components
of �μν are real. The latter constraint implies that the C3z-
symmetric spiral-xy order decouples from the 120-xy and
out-of-plane orderings. As a result by projecting the second-
order free energy F(2) on the C3z-symmetric configuration
sμ j = ξ Uμ/

√
3 we find the expression in the main text Eq. (8)

where Lμν = �μν + 2Re�μν .
We now characterize the spectrum of Mμν

jl and we classify
the magnetic states with respect to their symmetry behav-
ior under the point-group symmetries of the model. The

magnetic ordering is described by the real order parameter
m(r) = ∑

j m j eiδ j ·r + c.c. which is completely determined
by the Fourier amplitudes m j = ∑

μ sμ jvμ j . The nine mag-
netic configurations originating from sμ j are decomposed into
one one-dimensional representation �1, two one-dimensional
representations �2, and three two-dimensional representations
�3 given in Table II. The one-dimensional representations �1

and �2 are symmetric under C3z and correspond to equal su-
perpositions of the modulations δ1,2,3. The parity of �1 under
my is even consistently with the spiral-xy order. On the other
hand, �2 is odd under my like the 120-xy and out-of-plane
orderings. Due to the intrinsic spin-orbit coupling in-plane
120-xy and out-of-plane orderings mix to form the meron
lattice state. Finally, we have the two-dimensional represen-
tation �3. Here, we find two eigenstates of C3z characterized
by eigenvalues ω = e2π i/3 and ω∗ and my is off-diagonal in
this basis. Two-dimensional degeneracy is implied from this
symmetry.

In the normal state the two valleys K and K′ are equally
occupied giving rise to a time-reversal-symmetric state with
vanishing magnetization. It is important to notice that the two
valleys are characterized by nondegenerate Bloch states, |uK〉
and |uK′ 〉 (first band above charge neutrality), with opposite
mirror eigenvalues. The meron lattice state belonging to �2

breaks the mirror symmetry my of K and K′ and couples |uK〉
and |uK′ 〉. The resulting Hartree-Fock orbitals at �m of the
magnetic moiré Brillouin zone are eigenstates of the mirror
symmetry mx and correspond to a coherent superposition of
the two valleys K and K′.
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