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We propose a mechanism to explain the quantum anomalous Hall (QAH) effect and the electric-field-induced
topological phase transition in AB-stacked MoTe2/WSe2 moiré heterobilayers at ν = 1 hole filling. We suggest
that the Chern band of the QAH state is generated from an intrinsic band inversion composed of the highest two
moiré hole bands with opposite valley numbers and a gap opening induced by two Coulomb-interaction-driven
magnetic orders. These magnetic orders, including an in-plane 120◦-Néel order and an in-plane ferromagnetic
order, interact with moiré bands via corresponding in-plane exchange fields. The Néel order ensures the insulat-
ing gap, the ferromagnetic order induces the nonzero Chern number, and both orders contribute to time-reversal
symmetry breaking. The Néel order is acquired from the Hartree-Fock exchange interaction and the formation
of ferromagnetic order is attributed to interlayer-exciton condensation and exciton ferromagnetism. The exciton
ferromagnetism can be demonstrated by excitonic Bose-Hubbard physics and Berezinskii-Kosterlitz-Thouless
transition. In low electric fields, the equilibrium state is a Mott-insulator state. At a certain electric field, a
correlated insulating state composed of the hole-occupied band and the exciton condensate becomes the thermo-
dynamically stable phase and the topological phase transition occurs as the ferromagnetic order emerges. The
consistency between the present theory and experimental observations is discussed. Experimental observations,
including the spin-polarized/valley-coherent nature of the QAH state, the absence of charge gap closure at the
topological phase transition, the canted spin texture, and the insulator-to-metal transition are interpreted by the
mechanism.
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I. INTRODUCTION

Recently, quantum anomalous Hall (QAH) insulators and
related topological materials have drawn a lot of attention
from scientists for their fundamental importance and potential
to design quantum devices [1–5]. A QAH (insulating) state
is a two-dimensional insulator that carries a chiral edge state
exhibiting a quantized Hall conductance in the unit of e2/h,
and the quantum Hall conductance along with zero longitudi-
nal resistance in the absence of an external magnetic field is
known as the QAH effect [2–5]. Moiré material is an emerging
platform for studying the QAH effect [6–10]. Recently, a
QAH state in AB-stacked MoTe2/WSe2 moiré heterobilayers
and an electric-field-induced topological phase transition were
observed at ν = 1 hole filling under an out-of-plane electric
field [11–13]. Some experimental observations, such as the
spin-polarized/valley-coherent nature of the QAH state [12]
and the absence of charge gap closure at the topological phase
transition [11], are unique among related materials. Several
theories have been proposed to explain the mechanism and
observations [14–22], but some questions remain.

A suitable theory to explain the QAH effect in AB-stacked
MoTe2/WSe2 heterobilayers should meet certain theoretical
criteria and be able to explain related experimental obser-
vations. Theoretically, for an insulator exhibiting the QAH
effect, it must contain at least an occupied band that is

topological nontrivial and carries a nonzero Chern number
(i.e. a Chern band), and time-reversal symmetry (TRS) of the
insulator must be broken [2–5]. Experimentally, in addition
to the QAH effect, AB-stacked MoTe2/WSe2 heterobilayers
also show the following properties:

(i) A small electric field and ν = 1 hole filling—the longi-
tudinal resistance diverges rapidly as temperature decreases,
indicating a Mott-insulator state [11].

(ii) The MoTe2 valence band maximum is about 300 meV
above the WSe2 valence band maximum in the absence of
an electric field. A topological phase transition between a
topological trivial insulating state and the QAH state occurs
at ν = 1 hole filling as the electric field contributes about
−172 meV shift (with 0.66 V/nm electric-field strength and
2.6 e·Å interlayer dipole moment [23]) to the valence-band
energy offset. However, no charge gap closure is found at the
transition [11].

(iii) The magnetic-field dependence of transverse resis-
tances of the QAH state was studied. A magnetic hysteresis
with a sharp magnetic switching in low temperature was ob-
served, and the onset of magnetic ordering is at approximately
5 ∼ 6 K [11].

(iv) The charge gap of the insulating state decreases
continuously as the electric field increases. An insulator-to-
metal transition occurs as the electric-field strength reaches
0.70 V/nm. The metallic state seems to follow a Fermi liquid
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behavior at low temperatures and converges to a finite resis-
tance in the zero-temperature limit [11].

(v) The relative alignment of the spontaneous spin (valley)
polarization in the moiré heterobilayer in the QAH state was
studied by the magnetic circular dichroism (MCD) of the
attractive polaron feature in each layer. It was found that the
QAH ground state is consistent with a spin-polarized/valley-
coherent state across two layers, in which the spin polarization
is aligned [12].

(vi) The magnetic-field dependence of the out-of-plane
spin polarization was also studied by the MCD. The maxi-
mum MCD signals in both layers increase monotonically with
increasing magnetic fields until saturating, as the transverse
resistance is quantized near zero magnetic field and does not
depend on the magnetic field. It implies that full spin polariza-
tion is not necessary for quantized Hall transport, and a canted
spin texture could exist [12].

(vii) Evidence of quantum spin Hall (QSH) effect was
observed at ν = 2 hole filling. A band-to-QSH insulator
transition occurs at −130 meV energy shift (0.50 V/nm
electric-field strength), and charge gap closure and reopening
were found [11,13].

In addition to these experimental observations in AB-
stacked MoTe2/WSe2 heterobilayers, a continuous Mott
transition is observed in AA-stacked MoTe2/WSe2 heterobi-
layers at ν = 1 hole filling, but no QAH effect or QSH effect
is found [23]. Some theoretical works have explained some of
these properties, but a theory consistent with all experimental
observations is still elusive.

A critical issue of the QAH effect in the present sys-
tem is the mechanism of electric-field-induced topological
phase transition at ν = 1 filling. The topological phase tran-
sition bridges a topological trivial insulating state and the
QAH insulating state. Theoretical works to study the QAH
effect are supposed to propose a mechanism to explain
the transition. In Refs. [15,17–19], the topological phase
transition is explained by a band-inversion mechanism in-
volving Coulomb interaction and interlayer tunneling. Based
on this mechanism, a band inversion between the moiré
bands at the MoTe2 layer and the WSe2 layer occurs due
to electric-field-induced band-energy shift. A topological gap
is opened by interlayer tunneling. The TRS is broken by a
Coulomb-interaction-driven valley polarization of holes. A
hole-occupied and valley-polarized Chern band is formed, and
the topological phase transition occurs. In Refs. [20–22], the
band inversion between the moiré bands at different layers
is also induced by the electric field, but the gap opening
here is induced by Coulomb-interaction-driven topological
exciton condensation. The exciton condensate is a spin-
polarized/valley-coherent state, and it also contributes to the
TRS breaking. The topological gap is opened and a hole-
occupied Chern band is formed via an inter-band exchange
interaction induced by the exciton condensate. In Ref. [14],
the Chern band is generated by geometry-relaxation-induced
pseudo-magnetic field and intrinsic band inversion. The TRS
is broken and the topological phase transition occurs due to
the interaction-driven valley polarization. In Ref. [16], the
moiré band structure is studied by the model of a Dirac
hole quasiparticle in a moiré potential. The Chern band is
formed and the topological phase transition occurs due to an

electric-field-induced phase-angle tuning for the moiré poten-
tial. The TRS is also broken by the interaction-driven valley
polarization.

For mechanisms proposed by Refs. [15,17–22], the
electric-field-induced band inversion involves a charge gap
closure and reopening [4], yet it is not consistent with
the observation of the absence of charge gap closure.
For mechanisms proposed by Refs. [14,16], the electric-
field-induced band inversion is no longer required, but the
spin-polarized/valley-coherent state observed in the QAH
insulator is not explained. Besides, there is still no widely
accepted explanation for the insulator-to-metal transition or
the canted spin texture.

In this paper, a mechanism for explaining the QAH
state and the topological phase transition in AB-stacked
MoTe2/WSe2 heterobilayers is proposed. The Chern band is
generated from an intrinsic band inversion and a gap open-
ing. The intrinsic band inversion is composed of the highest
two moiré hole bands with opposite valley numbers. The
gap opening is induced by two Coulomb-interaction-driven
magnetic orders, an in-plane 120◦-Néel order and an in-plane
ferromagnetic order. The Néel order ensures the insulating
gap, the ferromagnetic order induces the nonzero Chern num-
ber, and both orders contribute to TRS breaking. The Néel
order is acquired from the Hartree-Fock exchange interaction
and the ferromagnetic order is attributed to interlayer-exciton
condensation. In low electric fields, the equilibrium state is
a Mott-insulator state. At a certain electric field, a corre-
lated insulating state composed of the hole-occupied band
and the exciton condensate becomes the thermodynamically
stable phase, and the topological phase transition occurs as
the ferromagnetic order emerges. Since the band inversion is
intrinsic and the gap is opened before the topological phase
transition, there is no charge gap closure. The QAH state being
spin-polarized/valley-coherent across two layers is consistent
with the interlayer exciton condensate. The insulator-to-metal
transition can be interpreted as an exciton Mott transition. The
canted spin texture is attributed to a coexistence of the Néel
order and field-induced valley polarization of holes. In Sec. II,
the continuum model for the moiré heterobilayers under mag-
netic and exchange fields is introduced and the symmetry
is discussed. In Sec. III, the origin of Chern bands in the
moiré heterobilayers is studied. Effects of in-plane Néel order,
in-plane ferromagnetic order, and field-induced valley polar-
ization on moiré bands are discussed. In Sec. IV, the concepts
of interlayer-exciton condensation, exciton ferromagnetism,
and exciton Mott transition are introduced. Finally, in Sec. V,
the consistency between the theory and experimental observa-
tions is discussed. Derivations and formulations for studying
moiré band structures and exciton condensation are given in
Appendixes A and B.

II. MOIRÉ SUPERLATTICE

In this section, the geometry, model, symmetry, and band
structure of AB-stacked MoTe2/WSe2 heterobilayers are in-
troduced. In Sec. II A, the moiré superlattice and the moiré
reciprocal lattice are introduced. In Sec. II B, the contin-
uum model of the moiré heterobilayer under an out-of-plane
magnetic field and in-plane exchange field is introduced. In
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FIG. 1. (a) Schematic plot (the ratio of lattice constants is not
accurate) of the moiré heterobilayers. (b) The high-symmetry sites in
the moiré superlattice. (c) Schematic plot of the Brillouin zone of a
MoTe2 monolayer (inside blue dash-dot hexagonal) and the Brillouin
zone of a WSe2 monolayer (inside orange dot hexagonal). The filled
zone is the MBZ of AB-stacked MoTe2/WSe2 heterobilayers. (d) A
closer look at the MBZ and high-symmetry points

Sec. II C, symmetry of the continuum model is discussed.
Finally, in Sec. II D, calculation of single-particle band struc-
ture by using plane-wave method is performed, and the moiré
band structures of AB-stacked MoTe2/WSe2 heterobilayers
are shown. The details of using the plane-wave method and
Hartree-Fock approximation to calculate moiré band struc-
tures are introduced in Appendix A.

A. Geometry

A moiré superlattice is formed due to the mismatch be-
tween the MoTe2 hexagonal lattice and the WSe2 hexagonal
lattice with different lattice constants. Schematic plots of
the moiré superlattice are illustrated in Figs. 1(a) and 1(b).
The lattice constant of the moiré superlattice aM as a func-
tion of the lattice mismatch δ = |a′

0 − a0|/a0 is given by
aM = (1 + δ)a0/δ, with a0, a′

0 the lattice constants for the
atomistic lattices. The moiré superlattice can be seen as a
triangular lattice with local geometry in the unit cell. The
periodicity of a triangular lattice can be studied by prim-
itive vectors, and the local geometry can be indicated by
basis vectors. The primitive vectors of the moiré superlat-
tice can be defined as a1 = aM[(

√
3/2)ex + (1/2)ey], a2 =

aM[(−√
3/2)ex + (1/2)ey]. The basis vectors of the moiré

superlattice are given by b1 = −(2a1 + a2)/3, b2 = (a1 +
2a2)/3, and b3 = (a1 − a2)/3. In Fig. 1(b), these primitive
and basis vectors are shown.

The moiré reciprocal lattice and moiré Brillouin zone
(MBZ) can also be utilized to demonstrate the geometry of
the moiré superlattice. The MBZ of the moiré superlattice is

illustrated in Figs. 1(c) and 1(d). As can be seen in Fig. 1(c),
the MBZ can be constructed by the geometry difference
between the Brillouin zone of a MoTe2 monolayer and the
Brillouin zone of a WSe2 monolayer. The moiré reciprocal
lattice is the periodic repeat of the Brillouin zone. For the
moiré reciprocal lattice, the reciprocal primitive vectors can be
defined by gi · a j = 2πδi j for i, j = 1, 2. We get g1 = √

3kM

[(1/2)ex + (
√

3/2)ey], g2 = √
3kM[(−1/2)ex + (

√
3/2)ey],

with kM = 4π/(3aM). A set of reciprocal primitive vectors
can be defined as

g j =
√

3kM[ex cos( jπ/3) + ey sin( jπ/3)], (1)

with j = 1, 2, · · · , 6. The high-symmetry points are indicated
in Fig. 1(d). The vector connects between κ and γ is given by
κ1 = (2g1 − g2)/3 and the vector connects between κ ′ and γ

is given by κ2 = (g1 − 2g2)/3. These two vectors κ1 and κ2

can be assigned as reciprocal basis vectors. A set of reciprocal
basis vectors is defined as

κ j = kM[ex cos(π/6 − jπ/3) + ey sin(π/6 − jπ/3)], (2)

with j = 1, 2, · · · , 6. Part of the reciprocal primitive and basis
vectors are shown in Fig. 1(d).

B. Continuum model

By knowing the geometry of the moiré superlattice and the
MBZ, we can write the continuum model with effective-mass
approximation. The continuum Hamiltonian for a hole in the
moiré heterobilayer is written as [10,24]

H (r) =
(

h+(r) γ (r)
γ †(r) h−(r)

)
, (3)

with

hτ (r) =
(

hτ1(r) tτ (r)
t∗
τ (r) hτ2(r)

)
, γ (r) =

(
γ1(r) 0

0 γ2(r)

)
, (4)

where hτ l (r) is the layer Hamiltonian with l = 1, 2 indicating
the top, bottom layers, tτ (r) is the interlayer tunneling, and
γl (r) is the in-plane exchange field. The interlayer tunneling
is given by

tτ (r) = w(1 + eiτg1·r + eiτg2·r ), (5)

where w is the interlayer-tunneling coupling. The layer
Hamiltonian is given by

hτ l (r) = ετ l + |p − τκl |2
2ml

− Vl (r), (6)

where ετ l is the band-edge energy and Vl (r) is the moiré
potential. The band-edge energy is given by

ετ l = [D + (−1)lD]/2 − (sgspin + τgvalley)μBBz, (7)

with D the valence-band energy offset, Bz the external out-
of-plane magnetic field, μB the Bohr magneton, s = +,− the
direction for ↑,↓ spin, gspin the spin g-factor and gvalley the
valley g-factor. Since gspin 	 gvalley, accordingly, gvalley 
 0
is assumed. Based on Fig. 1(c), the spin directions of Kl , K′

l
valleys at the lth layer are given by s = −(−1)lτ , with τ = +
for Kl valley and τ = − for K′

l valley. The band-edge energy
can be rewritten as

ετ1 = −τMz, ετ2 = D + τMz, (8)
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with Mz = gspinμBBz an out-of-plane field-induced magneti-
zation. The moiré potential is given by

Vl (r) = (−1)l2V
∑

j=1,3,5

sin(g j · r), (9)

where V is the potential depth. For the interlayer tunneling and
the moiré potential, note that tτ (b1) = tτ (b2) = tτ (b3) = 0,
tτ (0) = tτ (a1) = tτ (a2) = 3w, Vl (b1) = Vl (b2) = Vl (b3) =
−Vl (−b1) = −Vl (−b2) = −Vl (−b3) = (−1)l3

√
3V , and

Vl (0) = Vl (a1) = Vl (a2) = 0. These points can be assigned
at the high-symmetry sites in the moiré superlattice. If the
coordinate is transformed as r → r + b2, the moiré potential
and the interlayer tunneling become

Vl (r + b2) = (−1)l2V
∑

j=1,3,5

cos(g j · r + π/6), (10)

tτ (r + b2) = w[1 + eiτ (g1·r+2π/3) + eiτ (g2·r+4π/3)]. (11)

The llatter formulation of the moiré potential and interlayer
tunneling is more frequently seen in literature, but the two
formulations are equivalent.

The in-plane exchange field includes the contribu-
tions from a ferromagnetic exchange field and a 120◦-
antiferromagnetic exchange field, which are generated from
an in-plane ferromagnetic order and an in-plane 120◦-Néel
order, respectively. The origins of these two magnetic orders
will be discussed in Secs. III and IV. Note that the in-plane
exchange field is not uniformly effective, since the magnetic
order is originated from localized spins residing at each moiré
unit cell. The exchange field should show the same periodicity
as the moiré superlattice. The 120◦-Néel order is a three-
sublattice antiferromagnetic order with the directions of spins
at three sublattices being separated by 2π/3 angular differ-
ence [24–27]. A general form of the three-sublattice exchange
field is written as

γl (r) = ei2κl ·r[MA exp (iκ1 · (r − b1))

+ MB exp (iκ3 · (r − b2))

+ MC exp (iκ5 · (r − b3))], (12)

where MA, MB, MC are sublattice magnetizations. The phase
term ei2κl ·r is added to the exchange field to counter the phase
difference between single-particle states at two valleys. For
the in-plane ferromagnetic order, sublattice magnetizations
follow the relation MA = MB = MC . The in-plane ferromag-
netic exchange field is then given by

γl (r) = ei2κl ·rM⊥
∑

j=1,3,5

exp(iκ j · r), (13)

with M⊥ the in-plane ferromagnetic magnetization. On the
other hand, for the in-plane 120◦-Néel order, sublattice
magnetizations follow the relation MA = exp(i2π/3)MB =
exp(i4π/3)MC . The in-plane 120◦-antiferromagnetic ex-
change field is given by

γl (r) = ei2κl ·rM ′
⊥[exp (i(κ1 · r + 4π/3))

+ exp (i(κ3 · r + 2π/3)) + exp (iκ5 · r)], (14)

with M ′
⊥ the in-plane antiferromagnetic magnetization.

C. Symmetry

The TRS and threefold rotational (C3) symmetry of the
continuum model are discussed. The time-reversal operation
(	) is defined by 	 = exp(−iπσy/2)K = −iσyK, where K is
defined by

KiK−1 = −i, KpK−1 = −p. (15)

The −iσy operation gives −iσy|+〉 = |−〉 and −iσy|−〉 =
−|+〉, where |+〉 and |−〉 are the state kets with
valley numbers τ = +,−. It can be found that
	|τ 〉[hτ l (r) − ετ l ]〈τ |	−1 = | − τ 〉[h−τ l (r) − ε−τ l ]〈−τ |
and 	|τ 〉tτ (r)〈τ |	−1 = | − τ 〉t−τ (r)〈−τ |. For the out-
of-plane magnetic field, the time-reversal operation gives
	|τ 〉ετ l〈τ |	−1 = | − τ 〉ετ l〈−τ |. For the in-plane exchange
field, the time-reversal operation gives 	|+〉γl (r)〈−|	−1 =
−|−〉γ ∗

l (r)〈+| and 	|−〉γ ∗
l (r)〈+|	−1 = −|+〉γl (r)〈−|.

Therefore, the continuum Hamiltonian in the absence of
a magnetic field and exchange field is invariant under the
time-reversal operation and the directions of magnetizations
are reversed, (Mz, M⊥, M ′

⊥) → (−Mz,−M⊥,−M ′
⊥), in the

Hamiltonian with out-of-plane magnetic fields and in-plane
exchange fields. Therefore, the magnetizations Mz, M⊥, M ′

⊥
can be considered as TRS breaking terms.

To study the C3 symmetry of the continuum model, it is
convenient to apply a unitary transformation to the Hamilto-
nian H̄ (r) = U (r)H (r)U†(r), where the unitary transforma-
tion matrix is given by

U (r) =

⎛
⎜⎜⎝

e−iκ1·r 0 0 0
0 e−iκ2·r 0 0
0 0 eiκ1·r 0
0 0 0 eiκ2·r

⎞
⎟⎟⎠, (16)

with the basis (τ, l ) = (+, 1), (+, 2), (−, 1), (−, 2). The
layer Hamiltonian becomes

h̄τ l (r) = ετ l + |p|2
2ml

− Vl (r), (17)

and the interlayer tunneling becomes

t̄τ (r) = w
∑

j=1,3,5

exp(iτκ j · r). (18)

The in-plane exchange field including both ferromagnetic
magnetization and antiferromagnetic magnetization is given
by

γ̄l (r) = M⊥
∑

j=1,3,5

exp
(
iκ j · r

)

+ M ′
⊥

∑
j=1,3,5

[exp (i(κ1 · r + 4π/3))

+ exp (i(κ3 · r + 2π/3)) + exp (iκ5 · r)]. (19)

The C3 operation is defined by

C3H̄ (r)C−1
3 = H̄ (R[−2π/3]r), (20)

where the rotational matrix satisfies

R[θ]v =
(

cos θ sin θ

− sin θ cos θ

)(
vx

vy

)
(21)
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FIG. 2. Moiré band structures of holes contributed from (a) the
MoTe2 layer and (b) the WSe2 layer of a AB-stacked heterobilayer
simulated by the continuum model and the plane-wave method in the
absence of interlayer tunneling and magnetization. The blue solid
line indicates τ = + and the red dash line indicates τ = −. The high
symmetry points are tagged in the MBZ in Fig. 1(d).

for arbitrary vector v. The rotational matrix gives R[4π/3]g1 =
R[2π/3]g3 = g5 and R[4π/3]κ5 = R[2π/3]κ3 = κ1. It is found
that the C3 symmetry is conserved for the continuum model
with the ferromagnetic exchange field. On the other hand,
the in-plane antiferromagnetic exchange field breaks the C3

symmetry.

D. Moiré band structure

The effective hole mass of the MoTe2 is given by m1/m0 =
0.62 and the effective hole mass of the WSe2 is m2/m0 =
0.36 [28,29]. The parameters for the moiré heterobilayers
are assumed to be D = 280 meV, V = 10 meV, aM = 50 Å,
and w = 1.0 meV. The interlayer-tunneling coupling is small
because the interlayer tunneling is spin forbidden in the lead-
ing order approximation for the moiré heterobilayers [11,15].
The single-particle band structure of the moiré superlattice,
named the moiré band structure, can be calculated by using the
plane-wave basis function method (see Appendix A 1). While
the interlayer-tunneling coupling is small in comparing with
the valence-band offset, the moiré band structure is studied
in the absence of the interlayer tunneling, such that the moiré
bands can be assigned as contributions from different layers.
In Fig. 2, moiré band structures for holes contributed from
the MoTe2 layer and WSe2 layer of the moiré heterobilayers
in the absence of interlayer tunneling and magnetization are
shown. Note that an intrinsic band inversion locates across
γ − μ lines in the MBZ between the highest two moiré hole
bands with opposite valley numbers in the MoTe2 layer. In
Sec. III, we will study how Coulomb interaction opens a gap at
the intrinsically inverted moiré bands and how the topological
order emerges.

III. INTERACTION-DRIVEN CHERN BAND

In this section, the formation of the Chern band in the
QAH state is studied. The Chern band is generated by
opening a gap to break the intrinsic band inversion across
γ − μ lines. The gap is opened by in-plane exchange fields
contributed from corresponding Coulomb-interaction-driven

in-plane 120◦-Néel order and in-plane ferromagnetic order.
The Néel order ensures the insulating gap and the ferromag-
netic order generates the nonzero Chern number. In Sec. III A,
the many-particle Hamiltonian for Coulomb-interacting sys-
tems and Hartree-Fock approximation are introduced. The
method to calculate Chern numbers for single-particle band
structures in interacting systems is reviewed. In Sec. III B, the
120◦-Néel order is derived from the Hartree-Fock exchange
interaction. The competition between the 120◦-Néel order and
the valley polarization of holes driven by an external magnetic
field is studied. Effects of the Néel order and the ferromag-
netic order on the gap opening are discussed. In Sec. III C,
Chern numbers of moiré bands are assigned by studying the
winding numbers of Fock pseudospin textures.

A. Interacting systems

To include the Coulomb interaction in the band-structure
picture, we consider the many-particle Hamiltonian for multi-
component fermion fields

Ĥ =
∑

ab

∫
�̂†

a (r)Hab(r)�̂b(r)d2r

+ 1

2

∑
ab

∫
Wab(r12) : ρ̂a(r1)ρ̂b(r2) : d2r1d2r2, (22)

where a = {τ, l} is the component index. Hab(r) is the contin-
uum Hamiltonian given in Eq. (3), Wab(r12) is the Coulomb
potential, �̂†

a (r) and �̂a(r) are fermion creation and anni-
hilation operators for charges, and ρ̂a(r) = �̂†

a (r)�̂a(r) is
the density operator. The Chern number C of an insulator
can be related to the quantized Hall conductance by σH =
e2

2π
C. For interacting many-particle systems, the Chern number

contributed from the band structures can be calculated by
[3,30–33]

C = εμνρ

6

∫
Tr

[
G̃ ∂G̃−1

∂kμ

G̃ ∂G̃−1

∂kν

G̃ ∂G̃−1

∂kρ

]
d3k

(2π )2
, (23)

where G̃(k) = ∫
eik·rG(r)d3r is the Matsubara single-particle

Green’s function, with k = (iω, kx, ky), r = (−it̄, x, y), t̄ the
proper time variable, μ, ν, ρ ∈ {0, 1, 2} the coordinate in-
dices, and εμνρ being the Levi-Civita symbol. Note that
the Einstein summation convention has been applied. The
single-particle Green’s function is defined as Gab(r − r′) ≡
−〈T̂ [�̂a(r)�̂†

b (r′)]〉, with T̂ the time-ordering operator. The
Fourier transform of the Green’s function G̃(k) = G̃k(iω) can
be solved by G̃k(iω) = [iω − H̃k − �̃k(iω)]

−1
, where the self-

energy �̃k(iω) includes the effect of interactions.
The Hartree-Fock approximation can be used to find the

band structure and solve the single-particle Green’s function
of interacting systems. The field creation and annihilation
operators can be transformed as �̂a(r) = ∑

nk ψa,nk(r)d̂nk

and �̂†
a (r) = ∑

nk ψ∗
a,nk(r)d̂†

nk, where ψa,nk(r) is the hole

wave function and d̂†
nk/d̂nk is hole creation/annihilation

operator with band index n and momentum k. The Hartree-
Fock variational ground state for the hole-filled insulator is
assumed to be |HF〉 = ∏

nk d̂†
nk|0〉, with the vacuum state |0〉

being fully occupied valence bands (empty hole bands). A
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plane-wave basis function method ψa,nk(r) =∑
G u(a,G),nkφG,k(r) can be used to find the single-particle

wave function under Hartree-Fock approximation, where
the wave-function coefficient u(a,G),nk is solved from a
Hartree-Fock equation F̃kunk = εnkunk, with F̃k being the
Fock matrix (see Appendixes A 1 and A 2). To study the
effect of Coulomb interaction on band topology, the band
structure can be calculated by Hartree-Fock approximation
and the Chern number can be found by solving Eq. (23) with
the self-energy �̃k(iω) = F̃k − H̃k. Under this scheme, the
Fock matrix can be viewed as an effective single-particle
Hamiltonian.

B. Néel order and gap opening

Since the interlayer-tunneling coupling is much smaller
than the valence-band energy offset and the holes largely
reside at the MoTe2 layer, only the moiré band structure of
the MoTe2 layer is considered in this section. The band struc-
ture is obtained by solving the eigenvalue problem F̃kunk =
εnkunk. The Fock matrix is given by F̃k = H̃k + K̃k − J̃k,
where H̃k is the Bloch Hamiltonian, K̃k is the Coulomb-
integral matrix and J̃k is the exchange-integral matrix (see
Appendix A 2). The Bloch Hamiltonian in the plane-wave ba-
sis reads 〈τ1, G1|H̃k|τ2, G2〉 = ∫

φ∗
G1,k(r)Hτ1τ2 (r)φG2,k(r)d2r

with φG,k(r) = ei(k−G)·r/
√

S, where S = (
√

3/2)Na2
M is the

area of the moiré lattice with N the number of moiré unit cell.
Considering that the continuum model for the MoTe2 mono-
layer is expanded by six plane-wave basis functions, |τ, 0〉,
|τ,−τg1〉, |τ, τg3〉 with τ = ±, which can also be written as
|τ, τκJ − τκ1〉 with J = 1, 3, 5 and τ = ±, a six-band model
can be derived. The Hamiltonian matrix of the six-band model
is written as

H̃k =
(

h̃k − MzI γ̃k

γ̃ ∗
k h̃∗

−k + MzI

)
, (24)

where I is a three-by-three identity matrix, h̃k is the
valley-subspace Hamiltonian matrix, and γ̃k is the in-plane
exchange-field matrix. The valley-subspace Hamiltonian ma-
trix is given by

h̃k =

⎛
⎜⎜⎝

|k−κ1|2
2m1

−iV iV

iV |k−κ3|2
2m1

−iV

−iV iV |k−κ5|2
2m1

⎞
⎟⎟⎠. (25)

The in-plane exchange-field matrix is written as

γ̃k = M⊥

⎛
⎝0 1 1

1 0 1
1 1 0

⎞
⎠ + M ′

⊥

⎛
⎝ 0 1 ei2π/3

1 0 ei4π/3

ei2π/3 ei4π/3 0

⎞
⎠,

(26)

where M ′
⊥ = 0 is assigned since the antiferromagnetic

magnetization should be contributed from the Hartree-Fock
exchange interaction. The Coulomb potential in Eq. (22) is
approximated by a contact potential Wab(r) 
 (S/N )Uδ(r),
with U the contact-potential energy. The Coulomb-integral
matrix is given by 〈τ, τκI − τκ1|K̃k|τ, τκJ − τκ1〉 =
U

∑
τ ′ 〈κI |ρτ ′τ ′ |κJ〉 and the exchange-integral matrix is

given by 〈τ, τκI − τκ1|J̃k|τ ′, τ ′κJ − τ ′κ1〉 = U 〈κI |ρττ ′ |κJ〉,

FIG. 3. Color plots of (a) the 120◦-Néel order parameter η′ and
(b) the degree of valley polarization δ = |n+ − n−|/(n+ + n−) as
functions of in-plane ferromagnetic magnetization M⊥ and out-of-
plane field-induced magnetization Mz simulated by Hartree-Fock
approximation of the six-band model with contact potential.

where

〈κI |ρττ ′ |κJ〉 ≡ 1

N

∑
k,G,n

ñnku(τ,G+τκI −τκ1 ),nk

× u∗
(τ ′,G+τ ′κJ−τ ′κ1 ),nk (27)

is the single-particle density matrix. The Fock matrix can be
written as

F̃k =
(

h̃k + Uρ−− − MzI γ̃k − Uρ+−
γ̃ ∗

k − Uρ−+ h̃∗
−k + Uρ++ + MzI

)
, (28)

with

ρττ =
⎛
⎝nτ �τ �∗

τ

�∗
τ nτ �τ

�τ �∗
τ nτ

⎞
⎠, ρ+− =

⎛
⎝ξ1 η5 η3

η5 ξ3 η1

η3 η1 ξ5

⎞
⎠, (29)

and ρ−+ = ρ∗
+−. Matrix elements of the single-particle den-

sity matrix are given by nτ = 〈κI |ρττ |κI〉, ξI = 〈κI |ρ+−|κI〉
with I = 1, 3, 5, and �τ = 〈κ1|ρττ |κ3〉, η1 = 〈κ5|ρ+−|κ3〉,
η3 = 〈κ1|ρ+−|κ5〉, η5 = 〈κ3|ρ+−|κ1〉. If a 120◦-Néel order
emerges, the exchange interaction −Uρ−+ can be treated as
an antiferromagnetic exchange field, and the density matrix
should be described by the forms η1 = η + ei4π/3η′, η3 = η +
ei2π/3η′, η5 = η + η′, with η and η′ being order parameters to
quantify the ferromagnetic order and 120◦-Néel order, respec-
tively. The Hartree-Fock equation can be solved iteratively.
By using the form of the density matrix as the initial guess
for the iteration of the Hartree-Fock calculation, converged
solutions of the density matrix and band structure can be
obtained. A gap opening in the moiré band structure can be
found after the iteration. It implies that Coulomb interaction
induces a 120◦-Néel order by breaking the lattice translational
symmetry and contributes to an antiferromagnetic exchange
field.

A valley polarization of holes in the Hartree-Fock ground
state can be induced by applying an out-of-plane external
magnetic field to the system. A degree of valley polarization
for hole doping is defined as δ = |n+ − n−|/(n+ + n−). In
Fig. 3, color plots of the 120◦-Néel order parameter η′ and
the degree of valley polarization δ as the functions of in-plane
ferromagnetic magnetization M⊥ and out-of-plane magneti-
zation Mz are shown. It is found that the 120◦-Néel order
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FIG. 4. Moiré band structures contributed from the MoTe2 layer
simulated by Hartree-Fock approximation of the six-band model
with contact potential. The parameters by the unit of meV are (a)
M⊥ = 0, Mz = 0, U = 0; (b) M⊥ = 0, Mz = 5, U = 0; (c) M⊥ = 10,
Mz = 0, U = 0; (d) M⊥ = 10, Mz = 5, U = 0; (e) M⊥ = 10, Mz =
0, U = 70; (f) M⊥ = 10, Mz = 5, U = 70. The horizontal dashed
lines indicate the Fermi level at ν=1 filling.

and the field-induced valley polarization compete with each
other. For a wide range of magnetizations, the Néel order and
the valley polarization also coexist. The coexistence implies
that a canted spin texture could exist in the moiré superlattice.
Additionally, as can be seen in Fig. 3(a), the 120◦-Néel order
is suppressed by the ferromagnetic magnetization but is not
vanishing. It implies the coexistence of the in-plane 120◦-Néel
order and the in-plane ferromagnetic order. As will be shown
later in Sec. III C, the second coexistence is crucial to the
formation of the Chern band.

Moiré band structures simulated by the six-band model
in the absence of Coulomb interaction with and without
the in-plane ferromagnetic exchange field are shown in
Figs. 4(a)–4(d). It is found that, in the absence of the in-
plane ferromagnetic and antiferromagnetic exchange fields,
the highest two moiré bands with opposite valley numbers
intersect with each other. Additionally, as shown in Fig. 4(b),
the crossing over between two moiré bands, which can be
seen as a band inversion, survives with a small out-of-plane
magnetic field. The horizontal dashed line indicates the Fermi
level at ν=1 filling. Since the Fermi level crosses the moiré
bands, holes occupying these bands would form a Fermi sea

and show a metallic transport property. In Figs. 4(c) and 4(d),
it is found that the in-plane ferromagnetic exchange field
opens a gap at the band inversion along the line γ − μ in
the MBZ. However, the gap is not entirely opened at the
high symmetry point γ and the Fermi level is still crossing
the moiré bands. In Figs. 4(e) and 4(f), moiré band struc-
tures solved from Hartree-Fock approximation of the six-band
model with contact potential are shown. A gap is opened
along the crossing line between the two highest bands. The
gap is opened by the antiferromagnetic exchange field induced
by the 120◦-Néel order. The hole-occupied band, the highest
band in Fig. 4(f), has a valley-polarized population of holes
majorly with τ = +. Because of the gap, the 120◦-Néel order
and the field-induced valley polarization can coexist. Since
the Fermi level resides between the highest two moiré bands,
the holes only occupy the highest moiré band and show an
insulating transport property. It indicates that the 120◦-Néel
order ensures the insulating gap.

C. Chern number

In this section, the Chern numbers of moiré bands simu-
lated by Hartree-Fock approximation of the six-band model
with contact potential are studied. To demonstrate the emer-
gence of the topological order, the Fock matrix is reduced to
a two-by-two matrix by a projection transformation as

F̃k = P†
k F̃kPk =

(
ε+,k − Mz f+−,k

f−+,k ε−,k + Mz

)
, (30)

where Pk = (
P+,k 0

0 P−,k
) is the projection matrix with P±,k

following the unitary condition P†
±,kP±,k = 1, and ε±,k is

solved from the eigenvalue equation (h̃k + Uρ∓∓)P±,k =
ε±,kP±,k as the lowest eigenvalue. The off-diagonal ma-
trix elements are given by f−+,k = P†

−,k(γ̃ ∗
k − Uρ−+)P+,k,

f+−,k = P†
−,k(γ̃k − Uρ+−)P+,k. The reduced Fock matrix

can be reformulated by the parametrized Fock pseudospin
F̃k = F̃k,0I + F̃k,xσx + F̃k,yσy + F̃k,zσz. Based on Eq. (23)
and the argument in Sec. III A, the Chern number can be
calculated by [2]

C = 1

4π

∫
BZ

F̃k · ∂kxF̃k × ∂kyF̃k

|F̃k|3
d2k. (31)

Illustrations of Fock pseudospin textures are shown in
Fig. 5 with different sets of parameters. The blue dots in-
dicate the k points that F̃k,z < 0 and the red dots indicate
the points that F̃k,z > 0. The dot size indicates the rela-
tive value of |F̃k,z|, and the arrows point to the direction
of (F̃k,x/|F̃k|, F̃k,y/|F̃k|). As can be seen, the Fock pseu-
dospin in Figs. 5(c) and 5(d) show topological trivial textures,
and the Fock pseudospin in Figs. 5(a), 5(b) 5(e), and 5(f)
show topological nontrivial skyrmion textures. The textures in
Figs. 5(c) and 5(d) contribute no Chern number to the moiré
band structures. The textures in Figs. 5(a), 5(b) 5(e), and 5(f)
contribute a unit Chern number to each hole-occupied band
via the winding number of the skyrmion texture in the MBZ.
It is found that, as seen in Figs. 5(a) and 5(b), topological non-
trivial textures can be generated by the in-plane ferromagnetic
exchange field without the Hartree-Fock exchange interaction.
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FIG. 5. Fock pseudospin textures in the MBZ contributed from
the MoTe2 layer simulated by Hartree-Fock approximation of the
six-band model with contact potential. The parameters by the unit of
meV are (a) M⊥ = 5, Mz = 0, U = 0; (b) M⊥ = 5, Mz = 3, U = 0;
(c) M⊥ = 5, Mz = 0, U = 70; (d) M⊥ = 5, Mz = 3, U = 70; (e)
M⊥ = 10, Mz = 0, U = 70; (f) M⊥ = 5, Mz = 5, U = 70.

The inclusion of the exchange interaction actually could make
the Fock pseudospin textures trivial, as shown in Figs. 5(c)
and 5(d). With a higher in-plane ferromagnetic magnetiza-
tion or a higher out-of-plane field-induced magnetization, as
shown in Figs. 5(e) and 5(f), the Fock pseudospin textures
again become topological nontrivial. It implies that, first, the
topological order can be induced solely by the ferromagnetic
exchange field. Second, the 120◦-Néel order competes with
the topological order rather than assists it. Third, since the
field-induced valley polarization of holes competes with the
120◦-Néel order, the Néel order is reduced under an external
magnetic field and the reduction facilitates the formation of
topological nontrivial textures. However, it is needed to note
that, as discussed in Sec. III B, the 120◦-Néel order contributes
to the insulating gap between the two highest bands at zero
magnetic field such that the hole-occupied state can be an
insulator at ν = 1 hole filling. Therefore, the 120◦-Néel order
is indispensable for the generation of a QAH state, even if it
also competes with the formation of the Chern band.

In short summary, the in-plane ferromagnetic order gener-
ates the Chern band, and the in-plane 120◦-Néel order induces
the insulating gap in the moiré band structure. Since the topo-
logical order emerges as the ferromagnetic order is formed
and the insulating gap has been opened before and after the

formation of the ferromagnetic order, there is no charge gap
closure at the topological phase transition.

IV. EXCITON CONDENSATION AND FERROMAGNETISM

There are two unsolved problems in the current argument.
First, the in-plane ferromagnetic exchange field in the dis-
cussion is artificially introduced to the model. Second, the
bandwidth of the hole-occupied band in the first MBZ is about
EW = k2

M/(2m1) 
 43 meV, and the contact-potential energy
U = 70 meV can be seen as the on-site Coulomb repulsion
within a moiré unit cell. Since U > EW , the equilibrium state
should be a Mott-insulator state, and thus the band-structure
picture to describe the electronic structure is artificial. To
solve these problems, we suggest that an interlayer-exciton
condensate is formed at ν = 1 filling under the out-of-plane
electric field. An in-plane ferromagnetic order is generated by
the equilibrium exciton condensate via a mechanism called
exciton ferromagnetism. At a certain electric field, a corre-
lated insulating state composed of the exciton condensate
and the hole-occupied band becomes the thermodynamically
stable phase. Therefore, the band-structure picture can still
be available and a topological phase transition could occur as
the ferromagnetic order emerges. In this section, descriptions
of exciton condensation and ferromagnetism are provided. In
Sec. IV A, the Hamiltonian for studying the interlayer-exciton
condensate and the gap equation for the exciton order param-
eter are introduced. In Sec. IV B, the survival of the Chern
band in the presence of the exciton condensate is discussed. In
Sec. IV C, the theory of exciton ferromagnetism is introduced.
In Sec. IV D, we argue that the observed insulator-to-metal
transition at a higher electric field can be attributed to an exci-
ton Mott transition. Some derivations and formulations of the
gap equation, exciton binding energy, and exciton instability
for exciton condensation are given in Appendix B.

A. Interlayer-exciton condensate

Exciton condensation is Bose-Einstein condensation
(BEC) of excitons [34–42]. Interlayer-exciton condensates
have been observed in layered materials [43–48]. An
interlayer-exciton condensate (with the intralayer Coulomb
repulsion being omitted, which will be discussed later) can
be studied by the electron-hole-system (EHS) Hamiltonian

ĤEHS =
∑

k

εe
kĉ†

kĉk +
∑
τ,k

εh
τ,kd̂†

τ,kd̂τ,k

−
∑

τ,qkk′

W eh
q

S
ĉ†

k−qd̂†
τ,k′+qd̂τ,k′ ĉk, (32)

where ĉ†
k/ĉk is the electron creation/annihilation operator

on the unfilled valence (hole-occupied) band in the MoTe2

layer [the highest band of Fig. 4(e)] d̂†
τ,k/d̂τ,k is the hole

creation/annihilation operator on the two-component valence
band in the WSe2 layer with τ = ± [the two highest bands in
Fig. 2(b)], εe

k and εh
τ,k are electron and hole band energies, W eh

q
is the interlayer electron-hole interaction, and S is the area of
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the system. The band energies are given by

εe
k 
 0, εh

τ,k 
 D − ξzFz + k2

2m2
, (33)

where ξz = 2.6 e·Å is the interlayer dipole moment [23], Fz

is the out-of-plane electric field, and the hole-band dispersion
is subject to an upper limit cutoff momentum kcutoff = kM. The
electron band is assumed to be flattened as shown in Figs. 4(e)
and 4(f). The interlayer electron-hole interaction is given by
the modified Rytova-Keldysh potential W eh

q = 2π/[ε(q)q],
with [49–51]

ε(q) = [εr + (ρ1 + ρ2)q/2] cosh dq

+ [1 + (εr + ρ1q)(εr + ρ2q)/(4εr )] sinh dq, (34)

where εr = 4.0 is the dielectric constant for the surrounding
hexagonal boron nitride layers, ρl is the screening length on
the lth layer, with ρ1 = 73.61 Å for the MoTe2 layer and
ρ2 = 47.57 Å for the WSe2 layer [29], and d = 7.0 Å is the
interlayer distance. The exciton binding energy (EX) can be
obtained by solving(

k2

2m2
+ EX

)
�̃τ,k =

∑
k′

W eh
k−k′

S
�̃τ,k′ (35)

variationally [52] (also see Appendix B 2). It is found to be
EX = 129 meV and the projected in-plane exciton radius is
aX = 16 Å. An exciton condensate can be formed if the exci-
ton binding energy is larger than the band gap [34,37,38] (also
see Appendix B 3), indicating EX > D̃ with D̃ = D − ξzFz

the reorganized band gap. While Fz = 0.66 V/nm and D̃ =
108 meV at the topological phase transition [11], the condition
is satisfied.

The equilibrium exciton condensate can be described by
the Bardeen-Cooper-Schrieffer (BCS)-like wave function

|�BCS〉 =
∏
τ,k

(uτ,k + vτ,kd̂†
τ,kĉ†

−k )|�HF〉, (36)

where uτ,k and vτ,k are variational coefficients subject to the
normalization condition u2

τ,k + v2
τ,k = 1 [34,38]. The varia-

tional coefficients can be solved as u2
τ,k = (1 + �τ,k/Eτ,k )/2,

v2
τ,k = (1 − �τ,k/Eτ,k )/2, where Eτ,k = √|�τ,k|2 + |�τ,k|2

and �τ,k = (εe
−k + εh

τ,k )/2. The exciton density is given by
nX = ∑

τ,k v2
τ,k/N , and the exciton order parameter �τ,k can

be solved from the gap equation (also see Appendix B 1):

�τ,k = 1

2S

∑
k′

W eh
k−k′�τ,k′

Eτ,k′
. (37)

The results of the gap-equation calculation are shown in
Fig. 6. The exciton condensate is formed at the electric-field
strength of about 0.58 V/nm, which is lower than the ob-
served value 0.66 V/nm at the topological phase transition
[11]. The additional electric-field strength is required for the
equilibrium exciton condensate to become a new stable state
by replacing the Mott-insulator state.

B. Survival of the Chern band

Since the hole-occupied moiré band is the Chern band in
the MoTe2 layer, it is essential to be aware of the possibility

FIG. 6. Gap-equation calculation. (a) Exciton order parame-
ter �0 = �τ,k=0 and (b) exciton density nX versus electric-field
strength Fz

that the topology of the hole-occupied moiré band could be
altered in the presence of the exciton condensate. To clarify
that, we consider the quasiparticle Green’s function for the
exciton condensate [34,35,41]:

Gτ,k(t̄ ) ≡ −
(

〈T̂ ĉ−k(0)ĉ†
−k(t̄ )〉 〈T̂ ĉ†

−k(t̄ )d̂†
τ,k(0)〉

〈T̂ d̂τ,k(t̄ )ĉ−k(0)〉 〈T̂ d̂τ,k(t̄ )d̂†
τ,k(0)〉

)
.

(38)

By a Fourier transform Gτ,k(iων ) = 1
β

∫ β

0 eiων t̄Gτ,k(t̄ )dt̄ , with
β the inverse temperature and ων = (2ν + 1)π/β, the quasi-
particle Green’s function can be solved as

G̃−1
τ,k(iω) =

(
iω + εe

−k −�τ,k

−�τ,k iω − εh
τ,k

)
. (39)

The electron creation and annihilation operators can be re-
placed by the hole creation and annihilation operators by
ĉ†
−k = d̂k, ĉ−k = d̂†

k . With including the valence bands in
the MoTe2 layer, the quasiparticle Green’s function can be
generalized by the formulation Gnm,k(t̄ ) ≡ −〈T̂ d̂nk(t̄ )d̂†

mk(0)〉,
with n, m indexing different valence bands. This hole Green’s
function satisfies a Ward-Takahashi identity [41], and thus the
Chern number of the hole bands can also be calculated by
Eq. (23). Therefore, based on the Green’s function given in
Eq. (39), the effect of forming an exciton condensate on the
band structure can be realized as the hybridization between
the unfilled valence band (hole-occupied band) in the MoTe2

layer and the valence bands in the WSe2 layer. The topology
of the Chern band will be altered only if 2�τ,k � �τ,k, in
which a band inversion could occur. Since 2�τ,k > �τ,k can
be ensured by D̃ > �0 as shown in Fig. 6(a), the survival of
the Chern band with the exciton condensate is ensured.

C. Exciton ferromagnetism

In this section, we argue that an in-plane ferromagnetic
order can be induced by exciton condensation and exciton-
exciton interaction, and the in-plane ferromagnetic exchange
field in the continuum model is contributed from the ferro-
magnetic order. Note that the moiré periodicity and the intr-
alayer Coulomb repulsion have not been considered in the
EHS Hamiltonian in Eq. (32). The moiré periodicity and the
Coulomb repulsion can lead to the localization of an exciton
in each moiré unit cell. Such an effect on the exciton conden-
sate can be described by the excitonic Bose-Hubbard (EBH)
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Hamiltonian [53–55],

ĤEBH = −t
∑

τ,〈R,R′〉
x̂†
τ,Rx̂τ,R′ + U

∑
R

x̂†
+,R x̂†

−,R x̂−,R x̂+,R

+ U ′ ∑
τ,R

x̂†
τ,Rx̂τ,R(x̂†

τ,Rx̂τ,R − 1), (40)

where x̂†
τ,R = 1√

N

∑
K e−iK·RX̂ †

τ,K is the exciton creation op-

erator on the moiré unit cell at R site, with X̂ †
τ,K =∑

k �τ,k,Kd̂†
τ,k+Kĉ†

−k and �τ,k,K the wave function for the
interlayer exciton in the moiré potential, t is the nearest-
neighbor hopping coupling, U is the intervalley on-site
repulsion, and U ′ is the intravalley on-site repulsion. The
filling number of each moiré unit cell is given by the exci-
ton density nX. Since the exciton condensate is a BEC, the
condensate can be assumed to be fragmented and distributed
equally throughout the moiré superlattice [56,57]. The exciton
condensate can then be described by a rescaled EBH Hamilto-
nian with x̂τ,R → √

nX ˆ̃xτ,R, t → t̃ , U → Ũ/nX, U ′ → Ũ ′/nX,

ĤEBH → nX
ˆ̃HEBH, and the filling of the moiré superlattice

becomes one exciton per unit cell. If |t̃ | � Ũ , Ũ ′, the EBH
Hamiltonian with the filling number being one can be approx-
imated by the anisotropic Heisenberg (XXZ) Hamiltonian
[58–61]

ĤXXZ =
∑

〈R,R′〉

[
JzŜz

RŜz
R′ − J⊥

(
Ŝx

RŜx
R′ + Ŝy

RŜ
y
R′

)]
, (41)

with Jz = 4t̃2/Ũ − 4t̃2/Ũ ′, J⊥ = 4t̃2/Ũ and Ŝx,y,z
R being

pseudospin operators spanned by the basis |τ = ±〉. The
model exhibits a transverse ferromagnetic order if J⊥ >

Jz [61,62]. The ferromagnetic order induces TRS breaking
and the in-plane ferromagnetic exchange field in the con-
tinuum model. It is estimated that U 
 U ′ 
 e2/(εraM) 

70 meV, t 
 0.015U 
 1 meV [55], and nX 
 0.10 at the
QAH state. We get Ũ = UnX 
 7.0 meV, J⊥ 
 0.63 meV,
and Jz 
 0 meV. The Berezinskii-Kosterlitz-Thouless (BKT)
temperature [62] in a triangular lattice is estimated to be about
TBKT 
 (1/0.69)J⊥/(2kB) [63], which gives TBKT 
 5 K. This
scale is consistent with the observed Curie temperature for
the ferromagnetic transition [11]. The ferromagnetic exchange
field can be obtained from the mean-field approximation of the
XXZ model,

ĤXXZ 
 (J⊥/2)
∑

〈R,R′〉
(〈Ŝ+

R 〉〈Ŝ−
R′ 〉 + 〈Ŝ−

R 〉〈Ŝ+
R′ 〉)

− J⊥
∑

〈R,R′〉
(Ŝ+

R 〈Ŝ−
R′ 〉 + Ŝ−

R 〈Ŝ+
R′ 〉), (42)

with Ŝ±
R = Ŝx

R ± iŜy
R = x̂†

±,R x̂∓,R. The in-plane ferromag-
netic magnetization can be estimated by M⊥ 
 zJ⊥ with z
the coordination number and z = 6 for triangular lattices. The
value is estimated to be M⊥ 
 3.8 meV. This value of the
ferromagnetic magnetization is at the same scale as our as-
sumed values in the calculations in Sec. III C, but it is smaller
than the value required for the topological nontrivial texture in
Fig. 5(e) to show up without a valley polarization of holes. The
discrepancy might be caused by the roughness of the present
estimation or the lack of considering long-range interaction

for both the Hartree-Fock calculation and exciton ferromag-
netism. We will return to this topic in future studies to improve
the estimation.

D. Exciton Mott transition

With a denser population of excitons under a higher electric
field, the correlation-induced screening effect and Pauli-
blocking effect may cause the dissociation of excitons and the
formation of electron-hole plasma. The mechanism is known
as exciton Mott transition [64–69]. A Mott density ρMott is
defined as the critical exciton density in which the dissociation
of excitons occurs. Two different theoretical schemes have
been proposed to estimate the Mott density. One theoretical
scheme suggests that the Mott density is the exciton density
in which exciton wave functions begin to overlap mutually.
For two-dimensional systems, the Mott density is estimated to
be ρMotta2

X 
 0.3 ∼ 0.7. This scheme has been supported by
using quantum Monte Carlo calculations [70,71]. The other
theoretical scheme assumes that the Mott density is reached
as the electron-hole-excitation-induced band-gap renormal-
ization energy is larger than the exciton binding energy. The
Mott density estimated by this scheme [64,66,67,69] is about
ρMotta2

X 
 0.02 ∼ 0.08. While both theoretical schemes have
gathered supporters, recent experiments on exciton Mott tran-
sition in the moiré-bilayer system suggest ρMotta2

X 
 0.01 ∼
0.07 [72,73], which strongly supports the second scheme.

For MoTe2/WSe2 moiré heterobilayers, if ρMotta2
X 
 0.02

is assumed, the exciton density per moiré unit cell at the ex-
citon Mott transition is estimated to be nX = ρMottS̄ 
 0.02 ×
(
√

3/2) × a2
M/a2

X 
 0.17, which can be reached by the im-
posed electric-field strength 0.70 V/nm according to Fig. 6(b).
This estimation is consistent with the observed electric field
in which the metallic phases show up in both AA-stacked
and AB-stacked MoTe2/WSe2 heterobilayers [11,23]. At low
temperatures, the exciton Mott transition is a quantum phase
transition between BEC-like exciton-gas condensation and
BCS-like electron-hole-liquid condensation [74,75]. Since the
BEC-to-BCS transition is known as a continuous crossover
[74,75] and the electron-hole-liquid condensate can also be
seen as a two-component Fermi liquid [64], the observed
continuous insulator-to-metal transition in MoTe2/WSe2 het-
erobilayers at low temperatures [11,23] could be explained by
the exciton Mott transition.

V. DISCUSSIONS AND CONCLUSION

The consistency between the present theory and experi-
mental observations is discussed sequentially regarding the
enumerated list in the Introduction:

(i) The continuum model gives the bandwidth EW =
43 meV for the highest moiré band in the MoTe2 layer and
the contact-interaction energy U = 70 meV for the on-site
Coulomb repulsion. Since U > EW , the equilibrium state is
a Mott-insulator state in low electric fields. An interlayer-
exciton condensate is formed at ν = 1 hole filling and a
certain electric field. A correlated insulating state composed of
the hole-occupied band and the exciton condensate becomes
a new stable phase while competing with the Mott-insulator
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state, such that the band-structure picture can still be available
beyond the electric-field strength.

(ii) The valence-band energy offset is assumed to be
D = 280 meV, which is not far from the observed value of
300 meV. At the topological phase transition, the valence-
band energy offset is reduced to D̃ = 108 meV, which is still
much larger than the bandwidth EW = 43 meV for the highest
moiré band in the MoTe2 layer. Therefore, the band inversion
between the highest moiré band in the MoTe2 layer and the
highest moiré band in the WSe2 layer cannot be achieved with
the out-of-plane electric fields imposed in the experiment.
In our theory, the band inversion is intrinsic. The highest
two moiré hole bands with opposite valley numbers in the
MoTe2 layer cross with each other, and the gap opening is
attributed to the formation of an in-plane 120◦-Néel order
and an in-plane ferromagnetic order. The Néel order ensures
the insulating gap. The Chern band emerges along with the
formation of the ferromagnetic order. Since the gap is opened
before and after the topological phase transition, there is no
charge gap closure.

(iii) An in-plane ferromagnetic order emerges in the moiré
superlattice under sufficient out-of-plane electric fields due
to exciton condensation. The exciton ferromagnetism can
be demonstrated by an EBH model and BKT transition. The
ferromagnetic transition temperature is estimated to be 5 K,
which is coincident with the observation.

(iv) The exciton Mott transition, a phase transition from
exciton liquid to electron-hole plasma, could occur as the
electric-field strength reaches about 0.70 V/nm. At low
temperatures, the exciton liquid becomes a BEC and the
electron-hole plasma becomes a BCS-like state known as
an electron-hole condensate, which can be seen as a two-
component Fermi liquid. The continuous insulator-to-metal
transition and the Fermi liquid behavior at low temper-
atures could be explained by the excitonic BCS-BEC
crossover.

(v) The spin-polarized or valley-coherent QAH ground
state across two layers can be interpreted by interlayer-exciton
condensation. Based on band-edge energies in Eq. (8) and
Fig. 4(f), it is found that the hole-occupied Chern band in
the MoTe2 layer is mainly composed of the valley-polarized
hole band with τ = + as Mz > 0 or mainly composed of the
valley-polarized hole band with τ = − as Mz < 0. The exci-
ton is formed by the vertical hole transition from the MoTe2

layer to the WSe2 layer. By examining the band structures of
the moiré heterobilayers in Fig. 2, the vertical transition from
the valley-polarized hole band generates a valley-coherent
exciton, where the electron and the hole reside in different
valleys. Based on the spin-valley coupling shown in Fig. 1(c),
the valley-coherent exciton is spin polarized. Additionally, by
the layer-selected Zeeman shifts shown in Eqs. (7) and (8), the
spin-aligned MCD signal for exciton polarons in two layers
can be interpreted.

(vi) Full spin-valley polarization is not required for quan-
tized Hall transport since the QAH state is generated by the
in-plane ferromagnetic order, not field-induced valley polar-
ization of holes. The observed canted spin texture can be
explained by the coexistence of the in-plane 120◦-Néel order
and the field-induced valley polarization in the MoTe2 layer
as discussed in Sec. III B.

(vii) The QSH effect at ν = 2 hole filling and the band-to-
QSH transition are not studied in this paper. This effect and
this transition have been interpreted by Kane-Mele physics
[13]. Our theory does not exclude the interpretation. It is
worth noting that the valence-band energy offset (280 meV)
could be compensated by Coulomb-interaction-driven band-
energy renormalization, which contributes about −110 meV
energy shift. Since the bandwidth of the hole band in the
MoTe2 layer has contributed about −40 meV energy shift,
the topological phase transition could occur at −130 meV
electric-field-induced energy shift (0.50 V/nm electric-field
strength).

Through these discussions, the consistency between the
present theory and the experimental observations is argued.
Discussions about the Mott insulating state and exciton Mott
transition could also contribute to the study of the continuum
phase transition found in AA-stacked MoTe2/WSe2 heterobi-
layers.

An additional argument to support the present theory
is the sparseness of QAH states being found in transition
metal dichalcogenide (TMDC) moiré heterobilayers. In fact,
to the best of the authors’ knowledge, except AB-stacked
MoTe2/WSe2 heterobilayers, no QAH state has been found
in other TMDC moiré heterobilayers. Several theories that
explain the QAH effect in AB-stacked MoTe2/WSe2 heter-
obilayers could predict a wide distribution of QAH states in
TMDC moiré heterobilayers. Nevertheless, it seems not to
be the case. In our theory, the sparseness can be attributed
to the restricted parametrization for the present model to
meet the conditions that exciton ferromagnetism occurs and
the ferromagnetic phase transition precedes the exciton Mott
transition.

In conclusion, a theory to explain the QAH effect and the
topological phase transition in AB-stacked MoTe2/WSe2 het-
erobilayers is provided. The consistency between the theory
and experimental observations is argued. This paper may con-
tribute a unique viewpoint to search QAH insulators among
correlated materials and another route to study topological
orders in moiré materials.
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APPENDIX A: MOIRÉ BAND-STRUCTURE
CALCULATION

The method to calculate moiré band structures for the
continuum model of AB-stacked MoTe2/WSe2 heterobilayers
is given in this section. In Sec. A 1, the plane-wave method
to solve moiré band structures is introduced. In Sec. A 2, the
Hartree-Fock approximation for band structure calculation is
reviewed.
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1. Plane-wave method

The single-particle wave function of a carrier in the moiré
superlattice can be expanded in terms of plane-wave basis
functions as

ψnk(r) =
∑

α

unkφGα,k(r), (A1)

where φGα,k(r) denotes a plane-wave basis function and uα,nk
is the the expansion coefficient. The plane-wave basis function
is written as

φG,k(r) = ei(k−G)·r/
√

S, (A2)

with S = N (
√

3/2)a2
M the area of the moiré lattice. By using

the plane-wave expansion, the Hamiltonian matrix is given
by 〈a, G1|H̃k|b, G2〉 = ∫

φ∗
G1,k(r)Hab(r)φG2,k(r)d2r and the

diagonal part is given by

〈a, Gα|H̃k|a, Gβ〉 = δαβ

|k − Gα − τaκla |2
2mla

− 〈a, Gα|Ṽla,k|a, Gβ〉, (A3)

with 〈a, Gα|Ṽla,k|a, Gβ〉 = −iV
∑

j (−1)la+ jδ(Gα − Gβ −
g j ). The off-diagonal Hamiltonian matrix element is given by

〈a, Gα|H̃k|b, Gβ〉 = wδτa,τbδla,lb+1

[
δ(Gα − Gβ )

+
∑
j=1,2

δ(Gα − Gβ − τag j )

]

+ wδτa,τbδla+1,lb

[
δ(Gα − Gβ )

+
∑
j=1,2

δ(Gα − Gβ + τag j )

]
. (A4)

2. Hartree-Fock approximation

Given the many-particle Hamiltonian for the multicom-
ponent particle fields in Eq. (22), the quasiparticle creation
and annihilation operators can be transformed as �̂†

a (r) =∑
nk ψ∗

a,nk(r)d̂†
nk, �̂a(r) = ∑

nk ψa,nk(r)d̂nk, with ψa,nk(r) the
quasiparticle wave function. By using the variational method,
it is found that the quasiparticle wave function can be solved
by the Hartree-Fock equation∑

b

∫
Fab(r1, r2)ψb,nk(r2)d2r2 = εnkψa,nk(r1), (A5)

where n is the band index, εnk is the quasiparticle energy. The
Fock operator is defined by

Fab(r1, r2) = δ(r1 − r2)[Hab(r1) + δabKaa(r1)]

− Jab(r1, r2), (A6)

where Kaa(r1) ≡ ∑
c

∫
Wac(r13)ρcc(r3, r3)d2r3 is the

Coulomb operator, Jab(r1, r2) ≡ Wab(r12)ρba(r2, r1) is the
exchange operator, and

ρab(r1, r2) =
∑
nk

nnkψa,nk(r1)ψ∗
b,nk(r2) (A7)

is the density-matrix operator, where nnk = 〈d̂†
nkd̂nk〉 is the

occupation number of charges in the band n with the momen-
tum k.

By using the plane-wave method, the wave-function coef-
ficient can be obtained by solving the Hartree-Fock equation
F̃kunk = εnkunk. The Fock matrix is given by

〈a, Gα|F̃k|b, Gβ〉 = 〈a, Gα|H̃k|b, Gβ〉 − 〈a, Gα|J̃k|b, Gβ〉
+ δab〈a, Gα|K̃k|a, Gβ〉. (A8)

The Coulomb integral is given by

〈a, Gα|K̃k|a, Gβ〉 =
∑
q,G,c

〈c, G + Gα|P̃q|c, G + Gβ〉

× W̃ac(Gα − Gβ )/S, (A9)

and the exchange integral is given by

〈a, Gα|J̃k|b, Gβ〉 =
∑
q,G

〈a, G + Gα|P̃q|b, G + Gβ〉

× W̃ab(G + k − q)/S, (A10)

where

〈a, Gα|P̃k|b, Gβ〉 =
∑

n

nnku(a,Gα ),nku∗
(b,Gβ ),nk (A11)

is the single-particle projection matrix and W̃ab(k) =∫
exp(−ik · r)Wab(r)d2r is the screened Coulomb potential.

APPENDIX B: FORMULATIONS FOR EXCITON
CONDENSATION

In this Appendix, theory of exciton condensation is re-
visited based on Refs. [34–42]. In Appendix B 1, the gap
equation for exciton condensates is derived. In Appendix. B 2,
the variational method to solve the exciton binding energy
is introduced. In Appendix B 3, the conditions of excitonic
instability are discussed.

1. Gap equation

Exciton condensation can be described by the EHS
Hamiltonian in Eq. (32) with a more general form of the
combination of electron-band and hole-band dispersion

εe
−k + εh

τ,k = D̃ + k2

2μX
, (B1)

where μX = memh/(me + mh) is the reduced mass. The varia-
tional state for an exciton condensate is assumed to be the fol-
lowing BCS state: |�BCS〉 = ∏

τ,k(uτ,k + vτ,kd̂†
τ,kĉ†

−k )|�HF〉,
where uτ,k and vτ,k are variational coefficients subject to the
normalization condition u2

τ,k + v2
τ,k = 1. Note that

δuτ,k

δvτ ′,k′
= −δτ,τ ′δk,k′

vτ,k

uτ,k
. (B2)

The expectation of the Hamiltonian is given by

〈ĤEHS〉 =
∑
τ,k

(
εe
−k + εh

τ,k

)
v2

τ,k

−
∑

τ,k �=k′

W eh
k′−k

S
vτ,k′vτ,kuτ,kuτ,k′ . (B3)
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The variation of the energy expectation value is given by

δ〈ĤEHS〉
δvτ,k

= 2
(
εe
−k + εh

τ,k

)
vτ,k

− 2
∑

k′

W eh
k−k′

S
vτ,k′uτ,k′

(
uτ,k − v2

τ,k

uτ,k

)
. (B4)

By variation δ〈ĤEHS〉/δvτ,k = 0 and by assuming
�τ,k = (1/S)

∑
k′ W eh

k−k′vτ,k′uτ,k′ , �τ,k = (εe
−k + εh

τ,k )/2,
we get (2vτ,kuτ,k )�τ,k − (u2

τ,k − v2
τ,k )�τ,k = 0. By

replacing uτ,k = cos θτ,k and vτ,k = sin θτ,k, we find
sin(2θτ,k )�τ,k = cos(2θτ,k )�τ,k and cos(2θτ,k ) = �τ,k/Eτ,k,
with Eτ,k = √|�τ,k|2 + |�τ,k|2. Therefore, we get

u2
τ,k = 1

2

(
1 + �τ,k

Eτ,k

)
, v2

τ,k = 1

2

(
1 − �τ,k

Eτ,k

)
, (B5)

and 2vτ,kuτ,k = sin(2θτ,k ) = �τ,k/Eτ,k. The gap equation can
be found as Eq. (37). By replacing the variational parameters,
the exciton density is given by

nX = 1

N

∑
τ,k

v2
τ,k =

∑
τ,k

1

2N

(
1 − �τ,k

Eτ,k

)
. (B6)

2. Exciton binding energy

The variational method to solve the exciton banding energy
is introduced in this section. Two-dimensional Slater-type
orbitals (STOs) are used to expanded the variational exciton
wave function. A more detailed discussion of this method can
be found in Ref. [52]. As the combination of electron and
hole kinetic energies is assumed to be given by Eq. (B1), the
interlayer exciton wave function �I (r) can be solved by the
Schrödinger equation[

D̃ − ∇2

2μX
− W (r)

]
�I (r) = EI�I (r). (B7)

The Fourier transform of the exciton wave function can be
found by �̃I (k) = ∫

e−ik·r�I (r)d2r. The exciton wave func-
tion can be expanded as

�̃I (k) =
∑

α

Uα,I�̃α (k), (B8)

where Uα,I is the wave-function coefficient and �̃α (k) is the
basis function. The exciton wave-function coefficient can be
solved by the eigenvalue equation∑

β

(Tαβ − Wαβ )Uβ,I = EI

∑
β

OαβUβ,I , (B9)

where Tαβ ≡ −[1/(2μX)]
∫

�∗
α (r)∇2�β (r)d2r, Wαβ ≡∫

�∗
α (r)W (r)�β (r)d2r, Oαβ ≡ ∫

�∗
α (r)�β (r)d2r are the

kinetic integral, the potential integral, and the overlap
integral. By using an orthogonalization transformation
Ūα,I = ∑

β O1/2
αβ Uβ,I , the eigenvalue equation becomes∑

β

�αβ Ūβ,I = EI Ūβ,I , (B10)

with �αβ = ∑
α′β ′ O−1/2

αα′ (Tα′β ′ − Wα′β ′ )O−1/2
β ′β .

To solve the exciton eigenvalue equation in Eq. (B9), the
basis function can be given by a two-dimensional STO, which
is written as

�α (r) = eiLαϕ

√
2π

rNα−1e−Zαr, (B11)

where Nα , Lα are the principal quantum number and angular-
momentum quantum number of the orbital �α , Zα is the
shielding constant, and ϕ is the azimuth angle. Several dif-
ferent values of Zα can be used to find the optimum shape of
the radial part of the wave function. The Fourier transform of
the two-dimensional STO can be written as

�̃α (k) =
∫

�α (r)e−ik·rd2r = eiLαϕk

√
2π

R̃Nα,Lα
(Zα, k),

(B12)

where the radial function in momentum space can be obtained
by the generating formula

R̃N,L(Z, k) = 2π (−i)N

kN+1

dN

dzN

(
z − iη

√
1 − z2

)|L|
√

1 − z2

∣∣∣∣∣
z=iZ/k

,(B13)

with η = L/|L|. The kinetic integral is given by

Tαβ = −δLα,Lβ

2μX

(Nα + Nβ − 1)!

(Zα + Zβ )Nα+Nβ

{
(1 − δNβ ,1)

×
[
(Nβ − 1)2 − L2

β

]
(Zα + Zβ )2

(Nα + Nβ − 1)(Nα + Nβ − 2)

− [(2Nβ − 1)Zβ](Zα + Zβ )

(Nα + Nβ − 1)
+ Z2

β

}
. (B14)

The overlap integral is given by

Oαβ = δLα,Lβ

(Nα + Nβ − 1)!

(Zα + Zβ )Nα+Nβ
. (B15)

The potential integral is given by

Wαβ = δLα,Lβ

(2π )2

∫ ∞

0
R̃Nα+Nβ−1,0(Zα + Zβ, k)W̃ (k)kdk.

(B16)

The Coulomb potential can be given by W̃ (k) = W eh
k . An

exciton I = (N, L) can be indicated by a principal quantum
number N and an angular momentum L, with L being a
constant for every orbital in the exciton wave function. In the
present paper, only L = 0 is considered.

3. Conditions of excitonic instability

If the number of excitons is restricted to one, by a variation
of the ground-state expectation value of the EHS Hamiltonian

δ[〈�|ĤEHS|�〉 − λ(NnX − 1)]/δvτ,k = 0, (B17)

with λ the Lagrange multiplier, the BCS variational coefficient
vτ,k can be solved by

[k2/(2μX) + EX]vτ,k =
∑

k′ W
eh

k−k′vτ,k′/S, (B18)

where EX = D̃ − λ is the exciton binding energy. By com-
paring Eq. (B18) with the exciton equation in Eq. (B7), the
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coefficient is equivalent to the ground-state exciton wave
function (vτ,k = �I,k for I = 0) under the condition. We de-
fine the excitonic instability to form condensation by the
condition

�τ,k �= 0 (B19)

for at least one (τ , k) state. In this section, we want to show
that the necessary condition for the excitonic instability at zero
temperature is D̃ � EX and the sufficient condition is D̃ < EX,
with D̃ being the effective band gap.

To prove the necessary condition, we can rewrite the gap
equation by defining

γτ,k ≡ uτ,kvτ,k = �τ,k

2Eτ,k
. (B20)

The gap equation can be rewritten as γτ,k =
[1/(2Eτ,k )]

∑
k′ W eh

k−k′γτ,k′/S, and then it can become

2Eτ,kγτ,k −
∑

k′

W eh
k−k′

S
γτ,k′ = 0. (B21)

By using

Eτ,k =
√

|�τ,k|2 + |�τ,k|2 = |�τ,k|
√

1 + |�τ,k|2/|�τ,k|2
= |�τ,k| + gτ,k, (B22)

with gτ,k = |�τ,k|(
√

1 + |�τ,k|2/|�τ,k|2 − 1) � 0, and as-
suming �τ,k > 0, the gap equation becomes

2(�τ,k + gτ,k )γτ,k −
∑

k′

W eh
k−k′

S
γτ,k′ = 0. (B23)

By using Eq. (B1), the gap equation can be rewritten as∑
k′

(Ak,k′ + Bk,k′ )γτ,k′ = 0, (B24)

with Ak,k′ = δk,k′ [D̃ + k2/(2μX) − W eh
k−k′/S] and Bk,k′ =

δk,k′2gτ,k. Note that gτ,k and γτ,k become independent of τ

because Eq. (B1) is used. A trivial solution (γτ,k = 0) of
the equation leads to �τ,k = 0 for every (τ, k) state. The
equation has nontrivial solutions of γτ,k only if Det (Ak,k′ +
Bk,k′ ) = 0, which implies the existence of at least a zero
eigenvalue for matrix A + B. Since gτ,k � 0 for each τ and
k, matrix B is positive semidefinite. If matrix A is positive
definite, matrix A + B will be positive definite, which con-
tradicts that matrix A + B has at least a zero eigenvalue.
Therefore, matrix A is not positive definite. It indicates the
lowest eigenvalue of matrix A is not a positive number. By
using the exciton equation in Eq. (B18), the lowest eigenvalue
of matrix A is solved by∑

k′
Ak,k′�I,k′ = EI�I,k, (B25)

with EI the eigenvalue and �I,k the eigenfunction. The lowest
eigenvalue of the equation is given by EI=0 = D̃ − EX. There-
fore, the condition for matrix A being not positive is given
by E0 = D̃ − EX � 0, which gives the necessary condition
D̃ � EX for excitonic instability.

To prove the sufficient condition, we assume that the eigen-
values EI and eigenfunctions �I,k of matrix A are given by

Eq. (B25), and the parameter γτ,k can be expanded by the
eigenfunctions

γτ,k =
∑

I

CI�I,k, (B26)

with CI being variational coefficient. The gap equation can be
reformulated as

�τ,k =
∑

k′
W eh

k−k′γτ,k′/S

= −
∑

k′
(Ak,k′ − δk,k′2�τ,k )

∑
I

CI�I,k′

=
∑

I

CI (2�τ,k − EI )�I,k. (B27)

The gap equation becomes∑
I

CI�I,k =
∑

I CI (2�τ,k − EI )�I,k

2
√

�2
τ,k + [∑

I CI (2�τ,k − EI )�I,k
]2

.

(B28)

By assigning k = 0, the gap equation becomes∑
I

CI�I,0 =
∑

I CI (2�τ,0 − EI )�I,0

2
√

�2
τ,0 + [∑

I CI (2�τ,0 − EI )�I,0
]2

.

(B29)

A good approximation for the exciton wave functions
�I,k is to use the wave functions solved from the two-
dimensional hydrogen-atom problem. The wave functions of
two-dimensional hydrogen atoms have the properties �I,k =
0 for I > 0 and k = 0. By assuming �I,0 
 0 for I > 0, the
gap equation can be reduced to

1 
 2�τ,0 − E0

2
√

�2
τ,0 + [C0(2�τ,0 − E0)�0,0]2

, (B30)

which leads to (2C0�0,0)2 
 1 − 4�2
τ,0/(2�τ,0 − E0)2. If

E0 < 0, there is a nontrivial solution for |C0|, which is given
by

|C0| 
 1

2�0,0

√
1 −

(
2�τ,0

2�τ,0 − E0

)2

. (B31)

The gap order parameter can be given approximately by

�τ,k 
 C0(2�τ,k − E0)�0,k

= ±2�τ,k − E0

2

√
1 − (2�τ,0)2

(2�τ,0 − E0)2

�0,k

�0,0
. (B32)

By using 2�τ,k = D̃ + k2/(2μX) and E0 = D̃ − EX, and by
assuming the ground-state exciton wave function being given
by the ground-state wave function of two-dimensional hy-
drogen atoms, �0,k 
 2

√
2πZ2/(k2 + Z2)3/2, the gap-order

parameter can be given approximately by

�τ,k 
 ±θ (EX − D̃)
Z3[EX + k2/(2μX)]

2(k2 + Z2)3/2

√
1 − D̃2

E2
X

,

(B33)
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with θ (x) being a step function. The variational coefficient CI

for I > 0 and the higher-order corrections of the gap order
parameter can be calculated by using the Newton iterative
method, and it can be shown that the iteration is converged.
Since a nontrivial solution of the gap equation exists, the
sufficient condition of exciton instability D̃ < EX is shown.

The numerical solution of the gap equation can be ob-
tained by using these formulations and the Newton iterative
method. The exciton wave function �I,k is given by �̃I (k)
from Eq. (B7) in Appendix B 2. The initial condition of the
gap order parameter is given by Eq. (B33). The convergence
of the iteration can be reached efficiently.
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