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Quantum Hall–superconductor heterostructures provide possible platforms for intrinsically fault-tolerant
quantum computing. Motivated by several recent experiments that successfully integrated these phases, we
investigate transport through a proximitized integer quantum Hall edge—paying particular attention to the impact
of vortices in the superconductor. By examining the downstream conductance, we identify regimes in which
subgap vortex levels mediate Andreev processes that would otherwise be frozen out in a vortex-free setup.
Moreover, we show that at finite temperature, and in the limit of a large number of vortices, the downstream
conductance can average to zero, indicating that the superconductor effectively behaves like a normal contact.
Our results highlight the importance of considering vortices when using transport measurements to study
superconducting correlations in quantum Hall–superconductor hybrids.
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I. INTRODUCTION

Quantum Hall (QH)–superconductor hybrids provide fer-
tile ground for pursuing non-Abelian defects that can be
exploited for intrinsically fault-tolerant quantum computing
[1–9]. As a fascinating prerequisite, numerous experiments
have successfully demonstrated proximity-induced supercon-
ductivity in quantum Hall edge states—in both the integer
[10–25] and fractional [22] regimes. These experiments raise
fundamental questions concerning the interplay between chi-
ral electron transport and Cooper pairing that has been the
subject of several recent theoretical works [8,26–37].

In the absence of superconductivity, electrons injected into
a quantum Hall edge state propagate with negligible probabil-
ity of backscattering, thus underlying exquisite conductance
quantization. Proximity-induced Cooper pairing enriches the
story by enabling a new process: On traversing a super-
conducting region, edge electrons can in principle convert
into comoving holes via a chiral counterpart of Andreev
reflection [29]. When the probability for such an Andreev
process exceeds 1/2, the conductance quite strikingly be-
comes negative—a clear demonstration of superconducting
correlations induced in a quantum Hall edge. Interestingly,
negative conductance has been observed experimentally in
Refs. [15,16,21–23].

Chirality can nevertheless frustrate the effects of Cooper
pairing. For reference, in a clean, time-reversal-invariant sys-
tem, symmetry guarantees that an electron with momentum
k has a partner with momentum −k at the same energy with
which it can resonantly form a Cooper pair. For a quantum
Hall edge, by contrast, the energies for states with oppo-
site momenta differ except with fine-tuning. At least in the

clean limit, kinematic constraints therefore generically sup-
press Andreev processes [29,33]. This suppression prompted
the authors of Ref. [33] to invoke disorder as a means of
resurrecting Andreev processes observed in experiment.

Here we incorporate an alternative mechanism that can
revive Andreev processes even in an otherwise clean system:
hybridization between edge electrons and vortices in the prox-
imitizing superconductor. Vortices are generally expected to
appear in QH-superconductor hybrids given the strong mag-
netic fields required to reach the QH regime. Moreover, they
bind a series of subgap Caroli–de Gennes–Matricon states
with typical splittings that are small compared with accessible
temperatures and that thus play a role even at the lowest
energy scales probed in experiment. Previous experimental
[15,22,23] and theoretical [33,34,37] works have considered
vortices to reduce the visibility of superconducting correla-
tions in a QH edge, for instance, by allowing chiral electrons
to escape the edge by intervortex tunneling events.

We consider an alternative regime in which vortices are
sufficiently well separated that intervortex hopping is negli-
gible, focusing on a proximitized ν = 1 integer quantum Hall
edge for simplicity; see the circuit in Fig. 1. In this case an
edge electron that tunnels onto a nearby vortex must (even-
tually) return to the edge [38]—but crucially can undergo a
particle-hole rotation mediated by resonances with the sub-
gap vortex levels. We show that vortices can correspondingly
provide a mechanism to enhance Andreev processes. In fact,
hybridization with just a single vortex in principle allows
the thermally averaged conductance to become negative at
low bias voltages, even when Andreev processes are absent
entirely in the vortex-free limit. We further show that as the
number of vortices that couple to the quantum Hall edge
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FIG. 1. Setup: A ν = 1 integer quantum Hall (IQH) state borders
a grounded superconductor (SC). For edge coordinates xi < x < x f

the chiral edge mode (purple) inherits proximity-induced Cooper
pairing from the adjacent superconductor. We are interested in the
conductance describing current flow between the source (S) and
drain (D) as a function of bias voltage V in the presence of vortices
in the superconductor.

increases, the thermally averaged low-bias conductance ap-
proaches zero. That is, resonances from many vortices tend
to randomize the net particle-hole rotation experienced at the
edge, so that an incident edge electron exits the supercon-
ducting region as either an electron or a hole with equal
probability. In this case the superconductor effectively be-
haves like a normal contact.

The remainder of this paper is organized as follows. In
Sec. II, we review the vortex-free problem using a scattering
matrix approach that generalizes to the case with vortices. We
incorporate a single vortex in Sec. III, elucidating the role of
the vortex bound states in the conductance. After solving for
the single-vortex scattering matrix, we deduce the multivortex
solution in Sec. IV. In both Sec. III and Sec. IV, we first
present the general solution to the problem before examining
a simple limit to gain intuition for the physics and finite-
temperature effects. We conclude in Sec. V by discussing
the implications of our results. Details of the calculations are
relegated to Appendixes A–C.

II. REVIEW: VORTEX-FREE CONDUCTANCE

We review the transport properties of a proximitized ν = 1
IQH edge in the absence of vortices in the superconductor,
following the elegant treatment of Ref. [29]. The setup, il-
lustrated in Fig. 1, features a single ν = 1 edge mode with
induced Cooper pairing along the interface with the supercon-
ductor occurring between positions xi and x f . We model the
system with an effective Hamiltonian

H = H0 + H�, (1)

H0 =
∫

x
ψ̃†[−iv∂x − μ̃(x)]ψ̃, (2)

H� = 1

2

∫
x
�(x)[ieiφ(x)ψ̃∂xψ̃ + H.c.]. (3)

(Throughout this paper we set h̄ = e = kB = 1.) Here, ψ̃ (x)
is a fermion operator that removes an electron from position
x along the edge. The first term, H0, describes the kinetic
energy along the edge with associated velocity v and chemical
potential μ̃(x). Position dependence in μ̃(x) encodes possible
charge transfer from the superconductor to the edge mode
in the proximitized region. We fix μ̃(x) = 0 away from the
superconductor but, to account for such charge transfer, allow
for a nonzero μ̃(x) adjacent to the superconductor.

The second term, H�, encodes pairing processes generated
by the parent superconductor, with �(x) and φ(x) denoting
the (real) pairing amplitude and phase, respectively; note that
�(x) is nonzero only in the proximitized region. It is con-
venient to hereafter remove the superconducting phase from
Eq. (3) by defining ψ̃ (x) = ψ (x)e−iφ(x)/2. In these variables,
phase winding has been recast as a chemical potential renor-
malization such that the new effective chemical potential in
the proximitized region is μ(x) = μ̃(x) + v

2 ∂xφ(x). For sim-
plicity, we will always assume spatially independent �(x) ≡
�sc and μ(x) ≡ μsc adjacent to the superconductor.

Useful insight can be gleaned by examining the limits of
μsc. First, when μsc = 0, one can profitably view the IQH
edge state as two copropagating Majorana fermions γ1,2 by
writing ψ = γ1 + iγ2. In this representation, the full μsc = 0
Hamiltonian reads

H =
∫

x
{−iγ1[v − �(x)]∂xγ1 − iγ2[v + �(x)]∂xγ2}. (4)

Away from the superconductor, where again �(x) = 0, both
Majorana fermions propagate with the same velocity v as
required by local charge conservation. In the proximitized
region, the induced pairing instead yields unequal veloci-
ties v − �sc and v + �sc for γ1 and γ2, respectively. For an
incident electron with energy E , the Majorana fermion γ2

accordingly acquires a phase of

δφ(E ) = −2πE/Ṽ (5)

relative to γ1, where

Ṽ = π

x f − xi

(
v2 − �2

sc

�sc

)
(6)

is an important energy scale that sets the periodicity of δφ(E ).
An edge with v = 104 m/s, �sc = v/10, and x f − xi = 1 μm
is characterized by Ṽ ≈ 0.4 K. Acquisition of the relative
phase δφ(E ) morphs the incoming electron into an outgoing
superposition of electron and hole with amplitudes Aout

e =
(1 + eiδφ(E ) )/2 and Aout

h = (1 − eiδφ(E ) )/2, respectively. This
rotation in particle-hole space underlies Andreev conversion
processes for the proximitized QH edge. In particular, the
zero-temperature conductance at bias voltage V follows as

G(V ) = g0
(∣∣Aout

e

∣∣2 − ∣∣Aout
h

∣∣2) = g0 cos [δφ(V )], (7)

where g0 represents the conductance quantum e2/h that
becomes 1/2π in our units. The conductance accordingly
oscillates between +g0 (incident electrons transmit perfectly
as electrons) and −g0 (incident electrons transmit perfectly as
holes) as V varies.

With μsc nonzero, γ1 and γ2 couple and thus no longer
form the natural basis. In this regime, kinematic constraints
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tend to obstruct Andreev processes. The pairing term in
Eq. (3) favors Cooper pairing ψ (k) and ψ (−k) with amplitude
∝ �sck, where k is a momentum. Due to the edge state’s
chirality, however, μsc �= 0 pushes this pairing process off res-
onance, rendering Cooper pairing ineffective at energy scales
for which μsc � �sck. Incident electrons are then largely
unaffected by the superconductor and exit as electrons with
near-unity probability. The zero-temperature conductance at
μsc � (�sc/v)V is then simply G(V ) ≈ g0.

To address the crossover between these extremes, Ap-
pendix A diagonalizes the piecewise-constant Hamiltonian.
With the wave functions in hand, one can extract the con-
ductance using standard scattering matrix formalism. The
scattering matrix,

S =
(

See Seh

She Shh

)
, (8)

relates incoming and outgoing electron and hole amplitudes
according to (

Aout
e

Aout
h

)
= S

(
Ain

e
Ain

h

)
. (9)

In this framework, the zero-temperature conductance is

G(V ) = g0(|See|2 − |Seh|2), (10)

where on the right side the scattering matrix elements are
evaluated at energy E = V .

The bulk of the problem is then to derive the scattering ma-
trix S. Denoting the scattering matrix without vortices by S0

to distinguish it from the general scattering matrix considered
later, we find that

S0(x f − xi ) = eiωOT D(x f − xi )O, (11)

where O is an orthogonal matrix rotating into the energy basis
of the proximitized region and the diagonal matrix

D(x f − xi ) =
(

eik+(x f −xi ) 0
0 eik−(x f −xi )

)
(12)

describes the wave-function propagation within the supercon-
ducting region xi < x < x f . The overall phase factor eiω is
unimportant for the transport properties considered here and
will be dropped hereafter. Momenta k± appearing in Eq. (12)
are given by

k± = E [v ± �sc f (E )]

v2 − �2
sc

, (13)

where we have defined

f (E ) =
√

1 +
(V0

E

)2

, V0 =
√

v2 − �2
sc

�sc
μsc. (14)

In the limit μsc = 0, the orthogonal matrix reduces to

O = 1√
2

(
1 1

−1 1

)
(15)

indicating that the decoupled quasiparticles are Majorana
fermions in agreement with Eq. (4). The derivation of the
vortex-free scattering matrix and the explicit expression of O
at μsc �= 0 can be found in Appendix B.

FIG. 2. Vortex-free conductance vs V/Ṽ , with Ṽ given by Eq. (6)
and V0 = 2 Ṽ [Eq. (14)]. Oscillations are suppressed for small bias
voltages V/Ṽ � 1, as here the pairing amplitude cannot overcome
the energy difference between opposite-momentum states created by
the effective chemical potential μsc (which is nonzero due to V0 �=
0). In contrast, for V/Ṽ � 1, Cooper pairs form efficiently, and the
conductance oscillates approximately sinusoidally.

The vortex-free, zero-temperature conductance obtained
from the scattering matrix is

G(V ) = g0([1 − f (V )−2] + f (V )−2 cos[δφ(V ) f (V )]). (16)

Figure 2 plots G(V ) versus V/Ṽ assuming V0 = 2 Ṽ . Consis-
tent with the intuition laid out earlier, at V � V0 we obtain
G(V ) ≈ g0, while at larger V pronounced oscillations develop
that conform approximately to Eq. (7) at V � V0.

III. SINGLE-VORTEX PROBLEM

We are now prepared to discuss the case in which the QH
edge state hybridizes with a single vortex in the parent super-
conductor located near edge coordinate x1. For this setup, we
modify the Hamiltonian to

H = H0 + H� + Hv + Hψ−v. (17)

The first two terms are the same as in Eqs. (2) and (3) (but
recall that we traded in ψ̃ for ψ fermions). The third term,

Hv =
nmax∑
n=0

ε

(
n + 1

2

)
a†

nan, (18)

describes the Caroli–de Gennes–Matricon subgap states
bound to the vortex [39], where an is a fermion annihilation
operator associated with the nth subgap level. Equation (18)
assumes a nondegenerate, harmonic-oscillator-like spectrum
with energy spacing ε. Note the absence of a zero-energy
vortex level as appropriate for the case of a gapped, non-
topological parent superconductor considered here. The level
spacing scales as ε ∼ �2

parent/EF , with �parent and EF denot-
ing the parent superconductor’s pairing gap and Fermi energy,
respectively. For conventional systems with �parent/EF 	 1,
a very small spacing ε ∼ 1 mK is expected, in which case
the upper limit nmax on the sum in Eq. (18) can be in the
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thousands. The last term,

Hψ−v =
nmax∑
n=0

[tanψ (x1) + t ′a†
nψ (x1) + H.c.], (19)

describes tunneling between the edge and vortex states. We
assume that the edge couples to the vortex levels only at
position x1, with amplitudes t and t ′ that are taken to be n
independent for simplicity. Without loss of generality we fix
t ∈ R, though t ′ can then generally be complex. Our treatment
allows for hybridization with the vortex but once again does
not include dissipation.

Similar to the vortex-free case in Eq. (9), the outgoing wave
function is expressed in terms of the incoming wave function
using a scattering matrix. The single-vortex scattering matrix
can be expressed as

S = S0(x f − x1)MvS0(x1 − xi ). (20)

Here, S0 is the vortex-free scattering matrix from Eq. (11) and
Mv is a new unitary matrix that accounts for the effects from
the vortex levels. The derivation of this scattering matrix and
the full expression for Mv appear in Appendix C.

A. Toy limit

To gain physical insight, it is helpful to examine the special
case μsc = 0 and t = t ′ at zero temperature before present-
ing results for the general case. In this limit, the Majorana
fermions obtained by writing ψ = γ1 + iγ2 decouple, and the
vortex states only interact with γ2:

Hψ−v = 2it
∑

n

(an + a†
n)γ2(x1). (21)

For an incident electron with energy E , hybridization with the
vortex causes γ2 to pick up an additional relative phase of

eiθ (E ) =
v + �sc − it2 ∑nmax

n=0
2E

E2−ε2(n+ 1
2 )2

v + �sc + it2
∑nmax

n=0
2E

E2−ε2(n+ 1
2 )2

(22)

compared with γ1; see Appendix C. The single-vortex con-
ductance correspondingly becomes

G(V ) = g0 cos [δφ(V ) + θ (V )], (23)

with δφ(V ) defined in Eq. (5).
Whenever the incident energy is resonant with a vortex

level, i.e., at E = ε(n + 1/2), Eq. (22) yields θ (E ) = π—
producing a sign change in the conductance compared with
the vortex-free case. The width of these resonances is set by
the dimensionless ratio

α = t2

εv
(24)

in the �sc 	 v limit. Moreover, the spacing ε between reso-
nances will in practice be vastly smaller than the energy scale
Ṽ [Eq. (6)] that sets the period of conductance oscillations in
the absence of a vortex. Hybridization with the vortex levels
thus generates wild oscillations that can dramatically alter the
structure of the vortex-free conductance. These finely spaced
oscillations highlight the importance of finite-temperature ef-
fects, to which we now turn.

B. Finite temperature

Given the zero-temperature conductance G(E , T = 0)
considered so far, the finite-temperature conductance follows
as [40]

G(V, T ) =
∫

dE
d

dV
[ fS (E ,V ) − fD(E , 0)]G(E , T = 0).

(25)
Here,

fS (E ,V ) − fD(E , 0) = 1

1 + e
E−V

T

− 1

1 + e
E
T

(26)

is the difference in Fermi-Dirac distribution functions at the
source and drain. At zero temperature, the first derivative of
the Fermi-Dirac distribution gives a Dirac-delta function; the
peak widens as temperature increases, resulting in a smearing
out of the zero-temperature conductance. Throughout we are
interested in the experimentally relevant regime ε 	 T 	
Ṽ , where thermal effects efficiently average over many fine
vortex-induced oscillations but not the longer-period oscilla-
tions characteristic of the vortex-free limit.

For the toy limit of the vortex-hybridization problem
considered above, the structure of the thermally smeared con-
ductance depends on the resonance width α as illustrated
in Fig. 3. The panels correspond to α = 0.001 (top panel),
1 (middle panel), and 30 (bottom panel) with parameters
v/�sc = 10, ε = 0.002Ṽ , and nmax = 4000. (In the toy limit
considered here, the vortex position x1 drops out.) Red curves
show the vortex-free conductance versus V/Ṽ as a reference,
while the blue and green curves present the single-vortex con-
ductance at T = 0 and T = 0.02Ṽ , respectively (ε = 0.1T
at the latter temperature). The insets zoom in on the volt-
age window near zero. In the narrow-resonance limit α 	
1 (top panel), thermal smearing approximately reproduces
the vortex-free conductance since electrons “see” the vortex
levels only in tiny incident-energy windows. In the wide-
resonance limit α � 1 (bottom panel), the Majorana fermion
γ2 nearly always experiences a vortex-induced π phase shift
compared with γ1; accordingly, the finite-temperature conduc-
tance is approximately negated compared with the vortex-free
conductance. As the system crosses over from the narrow-
resonance regime to the wide-resonance regime, the thermally
averaged conductance exhibits oscillations that are initially
suppressed in amplitude but eventually revive and become out
of phase with the vortex-free conductance as illustrated in the
middle panel.

C. General case

Figure 4 plots the single-vortex conductance versus bias
voltage V/Ṽ for the more general case with scattering matrix
given by Eq. (20). Parameters are the same as for Fig. 3 except
that now μsc = 0.2Ṽ and t ′ = 0.95ei 2π

3 t , placing the system
away from the toy limit examined above. Additionally, we fix
the vortex position—which is no longer arbitrary—to x1 =
(x f − xi )/3. Just as for the toy limit, the finite-temperature
conductance for the narrow-resonance case closely tracks
the vortex-free conductance. The intermediate- and wide-
resonance cases behave more nontrivially compared with the
toy limit, though both display an important characteristic:
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FIG. 3. Single-vortex conductance vs bias voltage in the toy limit
(Sec. III A) for varying resonance widths. See text for parameters.
Insets: zoom-in of the conductance near zero bias.

The finite-temperature conductance becomes negative over
an extended voltage window near zero bias due to averaging
over vortex-induced resonances, even though the vortex-free
conductance is positive and nearly maximized because of
kinematic constraints produced by μsc �= 0.

FIG. 4. Same as Fig. 3, but with parameters μsc = 0.2Ṽ and t ′ =
0.95ei2π/3t that place the system away from the toy limit. The vortex
is located at x1 = (x f − xi )/3.

To illustrate the dependence on tunneling parameters,
Fig. 5 shows the finite-temperature zero-bias conductance ver-
sus the magnitude and phase of t ′. The top and bottom panels
correspond to the intermediate- and wide-resonance cases,
with all parameters aside from t ′ the same as for Fig. 4. (We
do not show results for the narrow-resonance case since there
the finite-temperature conductance is essentially insensitive to
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FIG. 5. Finite-temperature zero-bias conductance with a single
vortex vs the magnitude and phase (denoted θ ) of t ′. Upper and lower
panels correspond to the intermediate- and wide-resonance cases,
respectively.

t ′.) Evidently, the conductance depends much more sensitively
on the magnitude of t ′ compared with its phase. In particular,
negative zero-bias conductance sets in only for |t ′|/t suffi-
ciently close to 1, with a window that (at least for these generic
parameters) decreases in the wide-resonance regime.

IV. MULTIVORTEX PROBLEM

The single-vortex Hamiltonian studied in the previous
section straightforwardly generalizes to the case where chi-
ral edge electrons encounter Nv > 1 vortices at coordinates
x1, . . . , xNv

along the proximitized region. In particular, the
multivortex Hamiltonian takes the same form as in Eq. (17)
but now with

Hv =
nmax∑
n=0

Nv∑
j=1

ε

(
n + 1

2

)
a†

n, jan, j (27)

and

Hψ−v =
nmax∑
n=0

Nv∑
j=1

[t jan, jψ (x j ) + t ′
ja

†
n, jψ (x j ) + H.c.]. (28)

Here, an, j is a fermion annihilation operator associated with
the nth subgap level at vortex j; for simplicity we assumed
that each vortex has the same level spacing ε. Additionally,
t j, t ′

j describe the amplitudes for tunneling between the edge
and the vortex at position x j . To estimate Nv , we first note
that vortex-edge coupling is expected to decay exponentially
with the distance between a vortex and the edge, so that only
the line of vortices closest to the QH-superconductor interface
need to be considered. We thus have

Nv ∼
√

B

�0
�, (29)

with B being the average magnetic field penetrating the super-
conductor, �0 = h

2e being the superconductor flux quantum,
and � = x f − xi being the length of the superconducting re-
gion. For B ∼ 1 T and � ∼ 1 μm, Eq. (29) yields Nv ∼ 20.

Due to the edge state’s chirality, the corresponding mul-
tivortex scattering matrix may be decomposed in terms of a
product of scattering matrices associated with each of the Nv

vortices:

S =
Nv∏
j=1

S0(x j+1 − x j )Mv, jS0(x j − x j−1). (30)

Here, x0 = xi and xNv+1 = x f correspond to the left and right
endpoints of the proximitized region, and Mv, j is a unitary
matrix that incorporates effects of vortex j (which depend on
the parameters t j, t ′

j).

A. Toy limit

Consider the special case μsc = 0 and t j = t ′
j = t ∈ R

analogous to the toy limit explored for the single-vortex prob-
lem in Sec. III A. Upon writing ψ = γ1 + iγ2, we similarly
find that here only γ2 couples to the Nv vortices. Correspond-
ingly, each vortex generates an additional phase shift for γ2

given by Eq. (22) (which is independent of the vortex posi-
tion), yielding a zero-temperature conductance

G(V ) = g0 cos [δφ(V ) + Nvθ (V )] (31)

that straightforwardly extends Eq. (23). Figure 6 plots Eq. (31)
for the same parameters as Fig. 3 with 10 and 11 vortices.
Similar to the toy-limit conductance for a single vortex, the
structure of the thermally smeared conductance depends on
the resonance width α. The narrow-resonance limit α 	
1 (top panels) again approximately reproduces the vortex-
free conductance. The wide-resonance limit α � 1 (bottom
panels) either approximately reproduces the vortex-free con-
ductance in the case of ten vortices (left column) or picks
up a π phase shift compared with the vortex-free con-
ductance in the case of 11 vortices (right column). This
difference indicates an even-odd effect that naturally follows
from Eq. (31): Whenever the incident energy is resonant with
a vortex level, the argument of the cosine jumps by Nvπ ,
hence the dependence on the parity of Nv . In the middle
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FIG. 6. Same as Fig. 3, but with 10 (left column) and 11 (right column) identical vortices.

panels—corresponding to the crossover between the narrow-
and wide-resonance limits—the thermally smeared conduc-
tance is pinned near zero for all voltages, indicating that
the superconductor effectively behaves like a normal contact.
Note that thermal smearing is more efficient at suppressing the
conductance in all panels of Fig. 6 compared with Fig. 3.

For deeper insight into the interplay between the number of
vortices and resonance width α, we further examine the ther-
mally smeared conductance at zero bias. In the temperature

regime of interest, suppression of the zero-bias conductance
below g0 arises predominantly from averaging over vortex-
induced oscillations (as opposed to proximity-induced pairing
encoded through �sc). We therefore set �sc = 0 here; dimen-
sional analysis then indicates that the zero-bias conductance
takes the form

G(V = 0, T ) = g0G(T/ε, α, Nv ) (32)
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FIG. 7. Top: Finite-temperature zero-bias conductance vs α with
multiple vortices in the toy limit. Data were obtained with �sc = 0
and T/ε = 10; all other parameters are the same as used for Fig. 6.
Bottom: Finite-temperature zero-bias conductance plotted vs α/Nv ,
illustrating data collapse.

for some scaling function G that depends on the remaining di-
mensionless parameters specified in the arguments. Figure 7,
top panel, plots Eq. (32) versus α with T/ε = 10 and various
Nv . As Nv increases, three regimes become apparent. For α

near zero, we see G(0, T ) ≈ g0 as expected. As α increases
the conductance precipitously drops and forms a plateau near
zero whose width broadens as Nv increases (notice that the
middle panels of Fig. 6 sit within the plateau for Nv = 10, 11).
At still larger α the system enters the wide-resonance regime,
and the conductance tends toward G(0, T ) → (−1)Nv g0. The
bottom panel of Fig. 7 plots Eq. (32) versus α/Nv with Nv

ranging from 10 to 41. Excellent data collapse is observed
(except at the smallest α regime) for both the even-Nv and
odd-Nv branches. This collapse demonstrates that the plateau
region with G(0, T ) ≈ 0 populates a window of α that grows
linearly with the number of vortices. In other words, with
more vortices the superconductor more readily behaves like
a normal contact.

B. General case

Figure 8 plots the conductance for systems with 10 and
11 vortices using the same parameters as for Fig. 4, i.e.,
beyond the toy limit examined in Sec. IV A. [For all simula-
tions in the current section the vortices are evenly distributed
at positions xn = n

Nv+1 (x f − xi ).] At least for these param-
eters, the negative zero-bias finite-temperature conductance
regimes identified in the single-vortex case (Fig. 4, mid-
dle and bottom panels) are no longer present. Moreover, in
the intermediate-resonance case corresponding to the middle
panels, the conductance retains significantly more structure
compared with the toy limit (Fig. 6), but the structure is
clearly diminished compared with the single-vortex limit. This
structure points to a nontrivial interplay between the edge
chemical potential, proximity-induced pairing strength, reso-
nance width, and number of vortices.

We can, nevertheless, ascertain that the suppression of con-
ductance with the number of vortices holds more generally, at
least for intermediate-width resonances. Figure 9 shows the
evolution of the finite-temperature conductance as the vortex
number increases. (Note that for Nv = 1 the vortex position
is different compared with Fig. 4, explaining the difference
in finite-temperature conductance.) The central panels reveal
a clear tendency for the structure in the conductance to wash
out and approach zero as Nv increases. We expect a similar
trend also in the narrow- and wide-resonance regimes—but
setting in at much larger Nv than what we consider here.

V. DISCUSSION

We examined the effect of vortices on the transport prop-
erties of a proximitized ν = 1 QH edge in the setup of
Fig. 1. In the vortex-free limit, proximity-induced Cooper
pairing enables Andreev processes that can result in nega-
tive conductance, a striking demonstration of superconducting
correlations. Previous work [29] found that for a clean, vortex-
free system, such Andreev processes are, however, suppressed
by kinematic constraints near zero bias. In this paper, we
found that coupling to vortices resurrects these processes,
resulting in rapid zero-temperature conductance oscillations
even at low bias voltages. Finite temperature washes out these
rapid oscillations but can still result in negative low-bias con-
ductance in both the single-vortex and multivortex limits; see
Figs. 3, 4, and 6.

As more vortices couple to the edge, the finite-temperature
conductance tends to vanish, reproducing the expected be-
havior for a QH edge adjacent to a normal contact (instead
of a superconductor). We anticipate that randomness—
e.g., in the vortex positions, subgap spacing, and tunneling
amplitudes—will enhance this tendency towards normal-
contact behavior beyond the trends that we captured in
our simulations. Reference [15] measured a similar ef-
fect in which a decrease in the zero-bias conductance
with increasing magnetic field was attributed to vortex-
mediated dissipation. Similarly, Refs. [33,34] identify elec-
trons leaving the edge through vortices as a mechanism
for reducing superconducting correlations in the proximi-
tized edge. In contrast, our dissipation-free analysis uncov-
ers a mechanism through which vortex-enabled Andreev
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FIG. 8. Same as Fig. 4, but with 10 (left column) and 11 (right column) identical vortices.

processes can suppress the magnitude of the finite-
temperature conductance.

Natural extensions of this work include considering higher
integer, and eventually fractional, filling factors. It would
also be useful to obtain a more microscopic understanding
of the edge-vortex hybridization processes—treated here on
a phenomenological level. Finally, adapting the scattering-
matrix-based analysis to study crossed Andreev reflection in

the setup of Ref. [22] could provide further insight into the
role that vortices play in that system.
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FIG. 9. Finite-temperature conductance for systems with odd (left column) and even (right column) numbers of vortices. Parameters are
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APPENDIX A: SOLUTION OF THE
VORTEX-FREE HAMILTONIAN

Here we sketch the derivation of wave functions for
the vortex-free Hamiltonian that enable computation of the

conductance. After writing ψ̃ (x) = ψ (x)e−iφ(x)/2, Eqs. (2) and
(3) become

H0 =
∫

x
ψ†[−iv∂x − μ(x)]ψ, (A1)

H� = 1

2

∫
x
�(x)(iψ∂xψ + H.c.), (A2)
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with

μ(x) = μ̃(x) + v

2
∂xφ(x). (A3)

We assume piecewise-constant μ(x) and �(x) such that ad-
jacent to the superconductor (i.e., for xi < x < x f ) μ(x) =
μsc and �(x) = �sc while elsewhere both quantities vanish.
The Hamiltonian takes a conventional Bogoliubov–de Gennes
form when expressed using the two-component operator � =
[ψ,ψ†]T :

H = 1

2

∫
dx�†h�, (A4)

h =
(−iv∂x − μ(x) i

2 {�(x), ∂x}
i
2 {�(x), ∂x} −iv∂x + μ(x)

)
. (A5)

We seek energy eigenstates satisfying hχE (x) = EχE (x),
where χE (x) is a two-component wave function correspond-
ing to an incident electron impinging on the proximitized
region of the quantum Hall edge.

Care must be taken to ensure proper boundary conditions
due to the off-diagonal terms in h that contain derivatives
with discontinuous prefactors. It is useful to work in the basis
χ±,E (x) = χ1,E (x) ± χ2,E (x); defining v±(x) = v ± �(x), the
matrix equation then reads

− i

[
v−(x)∂x + (∂xv−(x))

2

]
χ+,E − μ(x)χ−,E = Eχ+,E ,

(A6)

− i

[
v+(x)∂x + (∂xv+(x))

2

]
χ−,E − μ(x)χ+,E = Eχ−,E .

(A7)

The pieces involving (∂xv±(x)), which produce delta func-
tions, can be canceled upon writing

χ±,E (x) =
[

v

v∓(x)

]1/2

χ̄±,E (x). (A8)

In terms of χ̄±,E we obtain

− iv∂xχ̄+,E − μ(x)
v√

v+(x)v−(x)
χ̄−,E = E

v

v−(x)
χ̄+,E ,

(A9)

− iv∂xχ̄−,E − μ(x)
v√

v+(x)v−(x)
χ̄+,E = E

v

v+(x)
χ̄−,E .

(A10)

The rescaled wave-function components χ̄±,E are continuous
at xi and x f , which can be verified by integrating the above
equations across an infinitesimal window around these points.
Correspondingly, the original χ±,E functions exhibit nontriv-
ial boundary conditions given by

χ+(x+
i ) =

√
v

v − �sc
χ+(x−

i ), (A11a)

χ−(x+
i ) =

√
v

v + �sc
χ−(x−

i ), (A11b)

χ+(x−
f ) =

√
v

v − �sc
χ+(x+

f ), (A11c)

χ−(x−
f ) =

√
v

v + �sc
χ−(x+

f ). (A11d)

Discontinuity of the wave functions at xi and x f reflects the
abrupt change in velocities of Majorana fermions, obtained
by writing ψ = γ1 + iγ2, within the superconducting region.

The incoming piece of the wave function takes a simple
plane-wave form,

χ1,E (x < xi ) = Ain
e eiEx/v, (A12a)

χ2,E (x < xi ) = Ain
h eiEx/v, (A12b)

with Ain
h = 0 as appropriate for an incident electron. The out-

going part of the wave function similarly reads

χ1,E (x > x f ) = Aout
e eiEx/v, (A13a)

χ2,E (x > x f ) = Aout
h eiEx/v. (A13b)

In the superconducting region, the wave function is a super-
position of plane waves carrying different momenta k±—see
Eq. (13)—due to the induced pairing:

χ1,E (xi < x < x f ) = c+eik+x + c−eik−x, (A14a)

χ2,E (xi < x < x f ) = a+c+eik+x + a−c−eik−x. (A14b)

The electron and hole parts are related by coefficients

a± =
vμsc

E�sc
∓ f (E )

μsc

E − 1
. (A15)

Finally, the coefficients Aout
e , Aout

h , and c± can be expressed
in terms of the incoming wave-function coefficients using the
boundary conditions in Eqs. (A11a)–(A11d).

APPENDIX B: VORTEX-FREE SCATTERING MATRIX

Using the results from Appendix A, we can determine the
scattering matrix for the vortex-free case as follows. The coef-
ficients c± for the proximitized region relate to the incoming
coefficients Ain

e and Ain
h as(

c+
c−

)
= eiExi/v

(
e−ik+xi 0

0 e−ik−xi

)
Mi

(
Ain

e
Ain

h

)
, (B1)

while the outgoing coefficients Aout
e and Aout

h relate to c± as(
Aout

e
Aout

h

)
= e−iEx f /vM f

(
eik+x f 0

0 eik−x f

)(
c+
c−

)
. (B2)

Here, Mi and M f are matrices that encode the boundary con-
ditions. Because the boundaries at xi and x f are identical, we
have Mi = M−1

f . The full expression for the (real) matrix M f

reads

M f = 1

2

(
1 −1
1 1

)⎛
⎝

√
v−�sc

v
0

0
√

v+�sc
v

⎞
⎠(

1 1
−1 1

)

×
(

1 1
a+ a−

)
, (B3)

where a± are given in Eq. (A15). In the first line of Eq. (B3)
for M f , the matrix on the left rotates to the basis of Majorana
fermions γ1,2, the middle matrix incorporates the velocity
factors in the boundary condition from Eqs. (A11a)–(A11d),
and the rightmost matrix rotates back to the original basis; the
matrix in the second line of Eq. (B3) encodes continuity of
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the resulting rescaled wave functions. The scattering matrix
can then be expressed in terms of the diagonal unitary matrix
D(x f − xi ) from Eq. (12) via

S0(x f − xi ) = eiE (xi−x f )/vM f D(x f − xi )Mi. (B4)

The expression for the scattering matrix in Eq. (B4) is not
unique. In particular, since D(x f − xi ) is diagonal, we can
write

D(x f − xi ) = PD(x f − xi )P
−1 (B5)

for

P =
(

β 0
0 β ′

)
(B6)

with arbitrary β, β ′. We can choose β and β ′ such that
P−1Mi = O is an orthogonal matrix, in which case M f P =
OT and the scattering matrix takes the form

S0(x f − xi ) = eiωOT D(x f − xi )O (B7)

quoted in Eq. (11). To see that such a choice is possible, we
first write M f more succinctly as

M f =
(

a11 a12

a21 a22

)
. (B8)

Our explicit solution from Eq. (B3) reveals that a11a12 +
a21a22 = 0 [which underlies the “hidden” unitarity of S0 as
expressed in Eq. (B4)]. The conditions det(M f P) = 1 and
(M f P)T = (M f P)−1 can then be satisfied by choosing

β = 1√
a2

11 + a2
12

, β ′ = −a21

a12
β. (B9)

The resulting expression for S0 in Eq. (B7) has the virtue of
being manifestly unitary. Additionally, its physical meaning
is more transparent: O rotates from the original electron-hole
basis to the basis of eigenstates in the proximitized region;
D(x f − xi ) adds the corresponding phase factors accumulated
by these eigenmodes on crossing the superconductor, after
which OT rotates back to the original basis.

APPENDIX C: SCATTERING MATRIX IN THE
SINGLE-VORTEX CASE

To model the coupling to a single vortex, we supple-
ment the vortex-free Hamiltonian conveniently expressed in
Eq. (A4) with the vortex terms in Eqs. (18) and (19), repeated
here for clarity:

Hv =
nmax∑
n=0

ε

(
n + 1

2

)
a†

nan, (C1)

Hint =
nmax∑
n=0

[tanψ (x1) + t ′a†
nψ (x1) + H.c.]. (C2)

(If desired, one can straightforwardly adapt the calculations
below to solve the problem with n-dependent t, t ′ couplings,
but we choose not to do so here for simplicity.) In the presence
of vortex hybridization terms, edge excitations with energy E

are created by operators of the form

�
†
E =

nmax∑
n=0

(η1,na†
n + η2,nan) +

∫
x
[χ1,E (x)ψ† + χ2,E (x)ψ].

(C3)

The new η1,n and η2,n components encode probability weight
on the nth vortex level; these pieces also depend on energy,
but we suppress that dependence for notational brevity.

We derive the wave functions from the full Hamiltonian
H by evaluating [H, �

†
E ] = E�

†
E and equating parts with the

same operators. This procedure yields the following equa-
tions:

[−iv∂x − μ(x)]χ1,E (x) + i

2
{�(x), ∂x}χ2,E (x)

+
nmax∑
n=0

[t ′∗η1,n + tη2,n]δ(x − x1) = Eχ1,E (x), (C4)

[−iv∂x + μ(x)]χ2,E (x) + i

2
{�(x), ∂x}χ1,E (x)

−
nmax∑
n=0

[tη1,n + t ′η2,n]δ(x − x1) = Eχ2,E (x), (C5)

with

η1,n = t ′χ1,E (x1) − tχ2,E (x1)

E − ε
(
n + 1

2

) , (C6a)

η2,n = tχ1,E (x1) − t ′∗χ2,E (x1)

E − ε
(
n + 1

2

) . (C6b)

Away from the vortex position x1, Eqs. (C4) and (C5) map
onto the vortex-free problem solved in Appendix A. We can
thus read off the form of the wave functions in those regions
from our previous solution, except that the amplitudes in the
proximitized region [Eqs. (A14a) and (A14b)] will differ on
the two sides of the vortex. More precisely, we now have

χ1,E (xi < x < x1) = c+eik+x + c−eik−x, (C7a)

χ2,E (xi < x < x1) = a+c+eik+x + a−c−eik−x (C7b)

for the paired region before the vortex and

χ1,E (x1 < x < x f ) = c′
+eik+x + c′

−eik−x, (C8a)

χ2,E (x1 < x < x f ) = a+c′
+eik+x + a−c′

−eik−x (C8b)

after the vortex. Our previous solution already relates c± to
the incoming amplitudes and c′

± to the outgoing amplitudes.
Here we simply need to relate c± and c′

±.
Integrating Eqs. (C4) and (C5) over an infinitesimal win-

dow around x1 yields

− iv[χ1,E (x+
1 ) − χ1,E (x−

1 )] + i�sc[χ2,E (x+
1 ) − χ2,E (x−

1 )]

+
nmax∑
n=0

[t ′∗η1,n + tη2,n]

= 0 (C9)
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and

− iv[χ2,E (x+
1 ) − χ2,E (x−

1 )] + i�sc[χ1,E (x+
1 ) − χ1,E (x−

1 )]

+
nmax∑
n=0

[tη1,n + t ′η2,n]

= 0. (C10)

By plugging in Eqs. (C6a) and (C6b) with

χ j,E (x1) = 1
2 [χ j,E (x+

1 ) + χ j,E (x−
1 )] (C11)

and inserting the wave functions from Eqs. (C7a) and (C7b)
and Eqs. (C8a) and (C8b), we obtain

ia(c′
+ − c+)eik+x1 + ib(c′

− − c−)eik−x1

+ f1(c′
+ + c+)eik+x1 + g1(c′

− + c−)eik−x1

= 0 (C12)

and

ic(c′
+ − c+)eik+x1 + id (c′

− − c−)eik−x1

− f2(c′
+ + c+)eik+x1 − g2(c′

− + c−)eik−x1

= 0. (C13)

Above we defined the shorthand notation

a = −v + �sca+, (C14a)

b = −v + �sca−, (C14b)

c = −va+ + �sc, (C14c)

d = −va− + �sc (C14d)

and

f1 = 1
2 [(|t ′|2 + t2 − 2a+tt ′∗)s(E ) + (|t ′|2 − t2)h(E )],

(C15a)

f2 = 1
2 [(2tt ′ − a+|t ′|2 − a+t2)s(E ) + a+(|t ′|2 − t2)h(E )],

(C15b)

g1 = 1
2 [(|t ′|2 + t2 − 2a−tt ′∗)s(E ) + (|t ′|2 − t2)h(E )],

(C15c)

g2 = 1
2 [(2tt ′ − a−|t ′|2 − a−t2)s(E ) + a−(|t ′|2 − t2)h(E )],

(C15d)

with

s(E ) =
nmax∑
n=0

E

E2 − ε2
(
n + 1

2

)2 (C16)

and

h(E ) =
nmax∑
n=0

ε
(
n + 1

2

)
E2 − ε2

(
n + 1

2

)2 . (C17)

Notice that the sum in s(E ) diverges logarithmically with nmax

whereas the sum in h(E ) is convergent. We nevertheless keep
both terms in our calculations.

Let us define a matrix

M̃v =
(

b11 b12

b21 b22

)
(C18)

that relates c′
± to c± via(

c′
+

c′
−

)
=

(
e−ik+x1 0

0 e−ik−x1

)
M̃v

(
eik+x1 0

0 eik−x1

)(
c+
c−

)
.

(C19)

With the insertion of the diagonal matrices above, M̃v is inde-
pendent of the vortex position x1.

Solving Eqs. (C12) and (C13) gives the matrix elements

b11 = (ic + f2)(ib + g1) − (ia − f1)(id − g2)

(ic − f2)(ib + g1) − (ia + f1)(id − g2)
,

(C20a)

b12 = 2i(dg1 + bg2)

(ic − f2)(ib + g1) − (ia + f1)(id − g2)
,

(C20b)

b21 = −2i(c f1 + a f2)

(ic − f2)(ib + g1) − (ia + f1)(id − g2)
,

(C20c)

b22 = (ic − f2)(ib − g1) − (ia + f1)(id + g2)

(ic − f2)(ib + g1) − (ia + f1)(id − g2)
.

(C20d)

Upon incorporating our results from the vortex-free analysis,
the single-vortex scattering matrix takes the form (up to an
unimportant overall phase factor)

S = M f D(x f − x1)M̃vD(x1 − xi )Mi. (C21)

Finally, we can trade in M f ,i for orthogonal matrices as
described in Appendix B to obtain the more illuminating
alternate form

S = [OT D(x f − x1)O]Mv[OT D(x1 − xi )O]

= S0(x f − x1)MvS0(x1 − xi ) (C22)

with

Mv = M f M̃vMi. (C23)

Note that both S0 and Mv are unitary (unitarity of the latter can
be explicitly verified from the solution above).

Dramatic simplification arises in the toy limit discussed
in Sec. III A where μsc = 0 and t = t ′. Here the terms in
Eqs. (C14a)–(C14d) and Eqs. (C15a)–(C15d) simplify to

a = c = −v + �sc, (C24a)

b = −d = −v − �sc, (C24b)

f1 = f2 = 0, (C24c)

g1 = g2 = t2
nmax∑
n=0

2E

E2 − ε2
(
n + 1

2

) . (C24d)

The vortex matrix M̃v accordingly becomes

M̃v =
(

1 0
0 eiθE

)
, (C25)

where

eiθE =
v + �sc − it2 ∑nmax

n=0
2E

E2−ε2(n+ 1
2 )2

v + �sc + it2
∑nmax

n=0
2E

E2−ε2(n+ 1
2 )2

(C26)

represents an additional phase acquired by the Majorana
fermion γ2 due to hybridization with the vortex.

245411-13



TANG, KNAPP, AND ALICEA PHYSICAL REVIEW B 106, 245411 (2022)

[1] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Chiral topological
superconductor from the quantum Hall state, Phys. Rev. B 82,
184516 (2010).

[2] N. H. Lindner, E. Berg, G. Refael, and A. Stern, Fractionaliz-
ing Majorana Fermions: Non-Abelian Statistics on the Edges
of Abelian Quantum Hall States, Phys. Rev. X 2, 041002
(2012).

[3] M. Cheng, Superconducting proximity effect on the edge of
fractional topological insulators, Phys. Rev. B 86, 195126
(2012).

[4] D. J. Clarke, J. Alicea, and K. Shtengel, Exotic non-Abelian
anyons from conventional fractional quantum Hall states, Nat.
Commun. 4, 1348 (2013).

[5] A. Vaezi, Fractional topological superconductor with frac-
tionalized Majorana fermions, Phys. Rev. B 87, 035132
(2013).

[6] A. Vaezi, Superconducting Analogue of the Parafermion
Fractional Quantum Hall States, Phys. Rev. X 4, 031009
(2014).

[7] R. S. K. Mong, D. J. Clarke, J. Alicea, N. H. Lindner, P.
Fendley, C. Nayak, Y. Oreg, A. Stern, E. Berg, K. Shtengel, and
M. P. A. Fisher, Universal Topological Quantum Computation
from a Superconductor-Abelian Quantum Hall Heterostructure,
Phys. Rev. X 4, 011036 (2014).

[8] D. J. Clarke, J. Alicea, and K. Shtengel, Exotic circuit elements
from zero-modes in hybrid superconductor–quantum-Hall sys-
tems, Nat. Phys. 10, 877 (2014).

[9] J. Alicea and P. Fendley, Topological phases with parafermions:
Theory and blueprints, Annu. Rev. Condens. Matter Phys. 7,
119 (2016).

[10] H. Takayanagi and T. Akazaki, Semiconductor-coupled super-
conducting junctions using NbN electrodes with high Hc2 and
Tc, Phys. B (Amsterdam) 249-251, 462 (1998).

[11] K. Komatsu, C. Li, S. Autier-Laurent, H. Bouchiat, and
S. Guéron, Superconducting proximity effect in long super-
conductor/graphene/superconductor junctions: From specular
Andreev reflection at zero field to the quantum Hall regime,
Phys. Rev. B 86, 115412 (2012).

[12] P. Rickhaus, M. Weiss, L. Marot, and C. Schönenberger, Quan-
tum Hall effect in graphene with superconducting electrodes,
Nano Lett. 12, 1942 (2012).

[13] Z. Wan, A. Kazakov, M. J. Manfra, L. N. Pfeiffer, K. W.
West, and L. P. Rokhinson, Induced superconductivity in high-
mobility two-dimensional electron gas in gallium arsenide
heterostructures, Nat. Commun. 6, 7426 (2015).

[14] F. Amet, C. T. Ke, I. V. Borzenets, J. Wang, K. Watanabe, T.
Taniguchi, R. S. Deacon, M. Yamamoto, Y. Bomze, S. Tarucha,
and G. Finkelstein, Supercurrent in the quantum Hall regime,
Science 352, 966 (2016).

[15] G.-H. Lee, K.-F. Huang, D. K. Efetov, D. S. Wei, S. Hart,
T. Taniguchi, K. Watanabe, A. Yacoby, and P. Kim, Inducing
superconducting correlation in quantum Hall edge states, Nat.
Phys. 13, 693 (2017).

[16] G.-H. Park, M. Kim, K. Watanabe, T. Taniguchi, and H.-J. Lee,
Propagation of superconducting coherence via chiral quantum-
Hall edge channels, Sci. Rep. 7, 10953 (2017).

[17] S. Guiducci, M. Carrega, G. Biasiol, L. Sorba, F.
Beltram, and S. Heun, Toward quantum Hall effect in a

Josephson junction, Phys. Status Solidi RRL 13, 1800222
(2019).

[18] A. W. Draelos, M. T. Wei, A. Seredinski, C. T. Ke, Y. Mehta,
R. Chamberlain, K. Watanabe, T. Taniguchi, M. Yamamoto,
S. Tarucha, I. V. Borzenets, F. Amet, and G. Finkelstein, In-
vestigation of supercurrent in the quantum Hall regime in
graphene Josephson junctions, J. Low Temp. Phys. 191, 288
(2018).

[19] A. Seredinski, A. Draelos, E. Arnault, M.-T. Wei, H. Li,
T. Fleming, K. Watanabe, T. Taniguchi, F. Amet, and G.
Finkelstein, Quantum Hall-based superconducting interference
device, Sci. Adv. 5, eaaw8693 (2019).

[20] J. Zhi, N. Kang, F. Su, D. Fan, S. Li, D. Pan, S. P. Zhao, J.
Zhao, and H. Q. Xu, Coexistence of induced superconductivity
and quantum Hall states in InSb nanosheets, Phys. Rev. B 99,
245302 (2019).

[21] L. Zhao, E. G. Arnault, A. Bondarev, A. Seredinski, T. F. Q.
Larson, A. W. Draelos, H. Li, K. Watanabe, T. Taniguchi, F.
Amet, H. U. Baranger, and G. Finkelstein, Interference of chiral
Andreev edge states, Nat. Phys. 16, 862 (2020).

[22] Ö. Gül, Y. Ronen, S. Y. Lee, H. Shapourian, J. Zauberman, Y. H.
Lee, K. Watanabe, T. Taniguchi, A. Vishwanath, A. Yacoby,
and P. Kim, Andreev Reflection in the Fractional Quantum Hall
State, Phys. Rev. X 12, 021057 (2022).

[23] M. Hatefipour, J. J. Cuozzo, J. Kanter, W. M. Strickland, C. R.
Allemang, T.-M. Lu, E. Rossi, and J. Shabani, Induced super-
conducting pairing in integer quantum Hall edge states, Nano
Lett. 22, 6173 (2022).

[24] P. Kumaravadivel, S. Mills, and X. Du, Magnetic field sup-
pression of Andreev conductance at superconductor–graphene
interface, 2D Materials 4, 045011 (2017).

[25] F. Rohlfing, G. Tkachov, F. Otto, K. Richter, D. Weiss, G.
Borghs, and C. Strunk, Doppler shift in Andreev reflection from
a moving superconducting condensate in Nb/InAs Josephson
junctions, Phys. Rev. B 80, 220507(R) (2009).

[26] J. A. M. van Ostaay, A. R. Akhmerov, and C. W. J. Beenakker,
Spin-triplet supercurrent carried by quantum Hall edge states
through a Josephson junction, Phys. Rev. B 83, 195441
(2011).

[27] B. Zocher and B. Rosenow, Topological superconductivity in
quantum Hall–superconductor hybrid systems, Phys. Rev. B 93,
214504 (2016).

[28] X.-L. Huang and Y. V. Nazarov, Supercurrents in Unidirectional
Channels Originate from Information Transfer in the Oppo-
site Direction: A Theoretical Prediction, Phys. Rev. Lett. 118,
177001 (2017).

[29] O. Gamayun, J. A. Hutasoit, and V. V. Cheianov, Two-terminal
transport along a proximity-induced superconducting quantum
Hall edge, Phys. Rev. B 96, 241104(R) (2017).

[30] G. Chaudhary and A. H. MacDonald, Vortex-lattice structure
and topological superconductivity in the quantum Hall regime,
Phys. Rev. B 101, 024516 (2020).

[31] A. L. R. Manesco, I. M. Flór, C.-X. Liu, and A. R. Akhmerov,
Mechanisms of Andreev reflection in quantum Hall graphene,
SciPost Phys. Core 5, 045 (2022).

[32] A. Nikolaenko and F. Pientka, Topological superconductivity in
proximity to type-II superconductors, Phys. Rev. B 103, 134503
(2021).

245411-14

https://doi.org/10.1103/PhysRevB.82.184516
https://doi.org/10.1103/PhysRevX.2.041002
https://doi.org/10.1103/PhysRevB.86.195126
https://doi.org/10.1038/ncomms2340
https://doi.org/10.1103/PhysRevB.87.035132
https://doi.org/10.1103/PhysRevX.4.031009
https://doi.org/10.1103/PhysRevX.4.011036
https://doi.org/10.1038/nphys3114
https://doi.org/10.1146/annurev-conmatphys-031115-011336
https://doi.org/10.1016/S0921-4526(98)00164-1
https://doi.org/10.1103/PhysRevB.86.115412
https://doi.org/10.1021/nl204415s
https://doi.org/10.1038/ncomms8426
https://doi.org/10.1126/science.aad6203
https://doi.org/10.1038/nphys4084
https://doi.org/10.1038/s41598-017-11209-w
https://doi.org/10.1002/pssr.201800222
https://doi.org/10.1007/s10909-018-1872-9
https://doi.org/10.1126/sciadv.aaw8693
https://doi.org/10.1103/PhysRevB.99.245302
https://doi.org/10.1038/s41567-020-0898-5
https://doi.org/10.1103/PhysRevX.12.021057
https://doi.org/10.1021/acs.nanolett.2c01413
https://doi.org/10.1088/2053-1583/aa8825
https://doi.org/10.1103/PhysRevB.80.220507
https://doi.org/10.1103/PhysRevB.83.195441
https://doi.org/10.1103/PhysRevB.93.214504
https://doi.org/10.1103/PhysRevLett.118.177001
https://doi.org/10.1103/PhysRevB.96.241104
https://doi.org/10.1103/PhysRevB.101.024516
https://doi.org/10.21468/SciPostPhysCore.5.3.045
https://doi.org/10.1103/PhysRevB.103.134503


VORTEX-ENABLED ANDREEV PROCESSES IN QUANTUM … PHYSICAL REVIEW B 106, 245411 (2022)

[33] V. D. Kurilovich, Z. M. Raines, and L. I. Glazman, Disorder in
Andreev reflection of a quantum Hall edge, arXiv:2201.00273
[cond-mat.mes-hall].

[34] N. Schiller, B. A. Katzir, A. Stern, E. Berg, N. H.
Lindner, and Y. Oreg, Interplay of superconductivity
and dissipation in quantum Hall edges, arXiv:2202.10475
[cond-mat.mes-hall].

[35] L. P. Gavensky, G. Usaj, and C. A. Balseiro, Majorana
fermions on the quantum Hall edge, Phys. Rev. Res. 2, 033218
(2020).

[36] L. P. Gavensky, G. Usaj, and C. A. Balseiro, Nonequilibrium
edge transport in quantum Hall based Josephson junctions,
Phys. Rev. B 103, 024527 (2021).

[37] V. D. Kurilovich and L. I. Glazman, Criticality in the crossed
Andreev reflection of a quantum Hall edge, arXiv:2209.12932.

[38] In principle, electrons might also be able to escape by propagat-
ing along a given vortex line into some low-lying states, e.g., in
the substrate; we assume that such paths are unavailable.

[39] C. Caroli, P. G. De Gennes, and J. Matricon, Bound fermion
states on a vortex line in a type II superconductor, Phys. Lett. 9,
307 (1964).

[40] F. Dolcini, Introduction to the scattering matrix
formalism, Lecture Notes for XXIII Physics GradDays,
Heidelberg, 5–9 October 2009, 2009, https://gsfp.physi.uni-
heidelberg.de/graddays_oktober_2009/content/en/zubehoer/
anhaenge/dolcini/Supercond-Meso-Lecture-2b.pdf.

245411-15

http://arxiv.org/abs/arXiv:2201.00273
http://arxiv.org/abs/arXiv:2202.10475
https://doi.org/10.1103/PhysRevResearch.2.033218
https://doi.org/10.1103/PhysRevB.103.024527
http://arxiv.org/abs/arXiv:2209.12932
https://doi.org/10.1016/0031-9163(64)90375-0
https://gsfp.physi.uni-heidelberg.de/graddays_oktober_2009/content/en/zubehoer/anhaenge/dolcini/Supercond-Meso-Lecture-2b.pdf

