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Breakdown of topological protection due to nonmagnetic edge disorder in two-dimensional
materials in the quantum spin Hall phase
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We study the suppression of the conductance quantization in quantum spin Hall systems by a combined
effect of electronic interactions and edge disorder, that is ubiquitous in exfoliated and chemical vapor deposition
grown two-dimensional (2D) materials. We show that the interplay between the electronic localized states due
to edge defects and electron-electron interactions gives rise to local magnetic moments, that break time-reversal
symmetry and the topological protection of the edge states in 2D topological systems. Our results suggest that
edge disorder leads to small deviations of a perfect quantized conductance in short samples and to a strong
conductance suppression in long ones. Our analysis is based on the Kane-Mele model, an unrestricted Hubbard
mean-field Hamiltonian, and on a self-consistent recursive Green’s function technique to calculate the transport
quantities.
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I. INTRODUCTION

The study of topological phenomena has grown enor-
mously over the last years in condensed matter and material
sciences, with significant impact in both fundamental and
applied research [1–4]. Of particular interest are two-
dimensional (2D) topological insulators (TIs) characterized
by robust edge states with a helical spin texture. These sys-
tems, also called quantum spin Hall (QSH) systems [1,2],
are promising platforms for transistor and spintronic applica-
tions [4]. Theory predicts that QSH phases require, among
other properties, a strong spin-orbit (SO) interaction. The
latter can be intrinsic, such as in inverted band semiconductor
heterostructures [2] and in a variety of 2D materials [5], or
extrinsic, generated by adatom doping [6] or proximity effects
[7]. Accordingly, experiments reported QSH realizations in
semiconductor quantum wells [8–12], 2D crystals [13–16],
and graphene with adsorbed clusters [17].

Time-reversal symmetry and momentum-spin locking
make the edge states robust against disorder, preventing
backscattering and causing conductance quantization, G0 =
2e2/h. There are successful observations of localized edge
states [9,18,19] and spin polarization [20] in 2D TIs. How-
ever, the unexpected general experimentally determined finite
deviations from G0 in small systems and the conductance
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suppression in larger samples remain as a long-standing and
important puzzle [16,21,22].

The proposed backscattering mechanisms in 2D TIs can be
divided into two main categories: interedge hybridization and
intraedge spin-flip scattering processes. Since the edge states
typically have a penetration depth ξ that is much smaller than
the experimental sample widths W , interedge hybridization
is usually discarded. However, recent studies speculate that
interface roughness in semiconductor heterostructures leads
to chiral disorder that can create percolating paths enabling in-
teredge scattering [21]. In turn, since the magnetic impurities
are rare in molecular beam epitaxy grown semiconductors as
well as in exfoliated 2D materials, the simplest mechanism for
spin-flip scattering to explain the lack of topological protec-
tion is also ruled out. This motivated several studies to explore
a variety of ingenious mechanisms that effectively break time-
reversal symmetry, namely, noise [23], edge reconstruction
[24], Rashba SO interactions [25,26], phonons [27], nuclear
spins [28,29], charge puddles [30], and scattering processes
due to adatoms [31], to name a few. Some of those give a
temperature dependence at odds with the experimental find-
ings [11,16] and, more importantly, most are only suited for
semiconductor heterostructures [8–11]. This study proposes a
breakdown of topological protection specific to 2D crystals.

The combination of localization and electron-electron (e-e)
interactions can also give rise to local magnetic moments.
This feature is quite general and has been extensively studied
in 2D materials, in particular the properties of vacancy-
induced localized states [32–34] and of systems with zigzag
terminated edges [35,36]. Recently, Novelli and co-workers
[34] have shown that vacancy-induced magnetic moments
destroy the topological protection. However, this effect oc-
curs only within narrow energy resonances. Hence, despite
being very insightful, this mechanism fails to explain the weak
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dependence of the conductance on the gate potential observed
in 2D TIs experiments [8–12,16].

In this paper we put forward a nonmagnetic disorder mech-
anism to explain the breakdown of the topological protection
in exfoliated and chemical vapor deposition (CVD) grown 2D
materials. We show that edge disorder [37], which is ubiq-
uitous in exfoliated and CVD grown 2D materials, can lead
to localization. We find that short sequences of zigzag edge
terminations combined with e-e interactions drive the forma-
tion of local magnetic moments that cause backscattering and
destroy the conductance quantization in 2D TIs. We argue that
the conductance suppression is small in short samples and can
be large in longer ones, in line with experiments.

II. MODEL

We describe the system electronic properties within the
topological gap using the Kane-Mele model Hamiltonian with
a Hubbard term [34,38]

H = H0 + HSO + HU . (1)

Here, H0 is the tight-binding Hamiltonian

H0 = −t
∑

〈i, j〉,α
(c†

iαc jα + H.c.), (2)

where c†
iα (ciα) creates (annihilates) an electron of spin α at the

honeycomb lattice site i and 〈i, j〉 limits the hopping integrals
to nearest-neighbor sites.

The second term describes the spin-orbit interaction due to
adsorbed adatoms [6]

HSO = +iλ
∑

〈〈i, j〉〉,αβ

ν
p
i jc

†
iασ z

αβciβ, (3)

where σ = (σ x, σ y, σ z ) stand for 2 × 2 Pauli matrices in the
spin space, 〈〈i, j〉〉 restricts the sum to second neighbor sites,
and λ is the hopping integral energy. We assume that the
adatoms are adsorbed at the so-called hollow positions (cen-
ters of the hexagons) of the honeycomb lattice [6], that we
denote by p. Accordingly, ν

p
i j = ±1 distinguishes clockwise

(ν p
i j = 1) and counterclockwise (ν p

i j = −1) hopping directions
with respect to p if the latter corresponds to an adsorbed
adatom position, otherwise ν

p
i j = 0. The topological gap �T

is proportional to the adatom concentration, namely, �T =
6
√

3λnad [39]. In the limit of nad = 1 all p’s are filled and
one recovers the original Kane-Mele model [38].

Finally, we account for the e-e interaction using an un-
restricted Hartree-Fock approximation [40] to the Hubbard
Hamiltonian HU , namely,

HHF
U = U

2

∑
i,αβ

c†
iα (ni1αβ − mi · σαβ )ciβ

− U

4

∑
i

(
n2

i − |mi|2
)
, (4)

where U represents the on-site (local) e-e repulsive interac-
tion, 1 is the 2 × 2 identity matrix, while

ni =
∑

α

〈c†
iαciα〉 (5)

is the mean electron occupation of the ith site and

mi =
∑
αβ

〈c†
iασαβciβ〉 (6)

is related to the local electronic mean spin polarization, so
accordingly we refer to mi as local magnetic moments.

We consider a system of width W and length L with
armchair edges along the transport direction [see Fig. 1(a)].
Left (L) and right (R) contacts connect the system with source
and drain reservoirs. For simplicity, we model the contacts by
semi-infinite ribbons, with the same width as the central re-
gion and doped at EF ≈ t to maximize the number of available
propagating modes, mimicking metallic contacts.

III. METHODS

We study the electronic transport using the nonequi-
librium Green’s function formalism (NEGF) [41–43].
We use the spin-resolved linear conductance Gαβ as
Gαβ (μ) = (e2/h)

∫ ∞
−∞(−∂ f0/∂E )Tαβ (E ), where f0(E ) =

[1 + e(E−μ)/kBT ]−1 is the Fermi-Dirac distribution, μ is the
equilibrium chemical potential, and Tαβ is the transmission
coefficient given by [41]

Tαβ (E ) = Tr[�R(E )Gr
αβ (E )�L(E )Ga

βα (E )]. (7)

Here, Gr (E ) = [E − H − �r
R(E ) − �r

L(E )]−1 and Ga(E ) =
[Gr (E )]† are, respectively, the retarded and advanced Green’s
functions in the site representation and �r

R(L) is the embed-
ding self-energy that depends on the retarded contact Green’s
functions and the coupling between the contacts R(L) and the
central region [42,43]. The R- and L-terminal linewidths are
given by �R(L)(E ) = i[�r

R(L) − (�r
R(L) )

†]. Since in our model
T↓↑ = T↑↓ = 0, the total transmission is T = T↑↑ + T↓↓.

We also analyze the nonequilibrium local spin-resolved
conductance injected by the R(L) terminal G̃R(L)

iα, jβ , that is given

by G̃R(L)
iα, jβ (μ) = (e2/h)

∫ ∞
−∞(−∂ f0/∂E )T̃ R(L)

iα, jβ (E ), where [44]

T̃ R(L)
iα, jβ (E ) = 2 Im[(Gr�R(L)Ga) jβ,iαHiα, jβ ] (8)

is the local transmission of electrons flowing from site j with
spin β to the site i with spin α. The spin-resolved local current
is obtained using the local version of the Landauer-Büttiker
equation G̃R

iα, jβVR + G̃L
iα, jβVL, where VR and VL are the termi-

nal voltages [44].
We calculate Gr using the recursive Green’s function

(RGF) technique [45–47], and �R,L(E ) by decimation [46,48].
The system Green’s function depends self-consistently on ni

and mi that we obtain using optimized methods (see Supple-
mental Material [49] and Refs. [50–58] therein for details).
For technical reasons [49,59] we perform our calculations at
finite temperature keeping kBT 	 �T , in line with all situa-
tions of interest. Hence, in what follows we neglect thermal
smearing effects and take μ = EF .

IV. VACANCY-INDUCED MAGNETIC MOMENTS

The occurrence of vacancies in honeycomb lattices gives
rise to quasilocalized states [60–62], For a sufficiently strong
e-e interaction, due to the Stoner instability, these local-
ized states lead to the formation of local magnetic moments
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FIG. 1. (a) Total transmission T as a function of EF /t . Inset: Sketch of the system geometry with a vacancy close to the bottom edge.
Hexagons with lines connecting second neighbor bonds indicate the positions of the adatoms, here nad = 1. Local transmissions injected
by the left lead T L

i↑, j↑ (blue) and T L
i↓, j↓ (red) for (b) EF = 0.030t , (c) EF = 0.014t , and (d) EF = 0.015t . The color intensity stands for the

magnitude of T L
iα, jα and the arrows indicate the electron flow direction.

[63–65]. For the Hubbard mean-field approximation, it has
been shown that any finite U causes magnetization [66].
Vacancy-induced magnetism has been recently proposed as
a mechanism to explain the breakdown of the conductance
quantization in TIs [34]. Here, we briefly review this setting
and argue that this is hardly a suitable mechanism to explain
the lack of conductance quantization observed in experiments.

We consider a system with a vacancy near the bottom
edge [see Fig. 1(a)]. We take W = 27 Å, that is sufficiently
wide to show no numerical evidence of backscattering due to
interedge hybridization. We set nad = 1 and λ = 0.1t , which
leads to �T = 1.04t , and analyze the electronic transport in a
chemical potential window within the QSH phase. For these
parameters we find enhanced backscattering for U � U ∗ ≈
0.34t [49]. Without loss of generality, we consider U = 0.4t .
Other values of U � U ∗ do not change qualitatively our find-
ings [49].

Figure 1(a) shows the computed total transmission T (EF )
within the QSH regime. The T (EF ) is perfectly quantized
outside the energy window comprising two narrow antires-
onances centered at ±Er . At the antiresonance there is
total backscattering, whereas for EF between antiresonances
T (EF ) is slightly suppressed with respect to T = 2.

The involved scattering processes can be qualitatively
understood by analyzing the local transmissions shown in
Figs. 1(b)–1(d). For EF = 0.030t the total transmission is
quantized, and the electrons injected by the L terminal are
transmitted by the helical edge states without backscattering
[see Fig. 1(b)]. For EF = 0.014t the transmission is no longer
perfect. The local magnetic moment at the sites around the va-
cancy cause a spin-flip process enabling partial backscattering
that reduces the L → R transmission of spin-down electrons
[see Fig. 1(c)]. This situation becomes more dramatic at the
antiresonance peak EF = Er = 0.015t , for which the L → R
transmission of spin-down electrons is fully blocked [see
Fig. 1(d)].

The magnetization around the vacancy decays as a power
law [62,67], that explains the relatively large regions over
which the edge currents invert their direction of propaga-
tion [see Figs. 1(c) and 1(d)]. Note that the edge states
decay exponentially towards the bulk with a penetration depth

ξ = h̄vF /�T , suppressing the spin-flip coupling as the va-
cancy is moved away from the edge.

The observed features can be quantitatively described by
an effective single-edge low-energy model with a Hilbert
space that consists of the vacancy-induced quasilocalized
state |0〉 at E = 0 [61] and helical edge modes (|k,↑〉 and
| − k,↓〉). This simplification allows one to map the micro-
scopic problem into the model of an edge state scattered by
a short-range magnetic impurity proposed in Ref. [32]. The
analytical solution [32,33] of the corresponding Lippmann-
Schwinger equation gives a single-edge transmission that is
very similar to that of Fig. 1(a). A detailed comparison be-
tween the microscopic and the effective model shows that a
strong conductance suppression is always associated with res-
onance processes with narrow energy decay widths 
, namely,

/�T 	 1 [49].

We conclude that vacancies are unlikely to explain the
breakdown of conductance quantization observed in experi-
ments, since (i) vacancies have low concentrations in good
quality samples, (ii) the model requires that the vacancies
occur very close to the system edges (within the edge state
penetration depth), and (iii) the conductance suppression
occurs only over a very narrow chemical potential doping
window, a feature that has not been observed in experiments.
Diluted distributed vacancies are hardly expected to modify
this scenario.

V. WEDGE DEFECT

Local magnetic moments can also be originated by e-e
interactions in localized states due to the system edge ter-
minations. This subject has been extensively investigated in
graphene zigzag [63,68] and chiral [69] nanoribbons. Inter-
estingly, it has been theoretically shown that a small sequence
of zigzag links is sufficient to spin polarize the system for any
finite U [35,70]. Let us study the simplest lattice edge geom-
etry that leads to the formation of a local magnetic moment
for our model Hamiltonian, Eq. (1): a wedge or V-shaped
defect. We note that a similar kind of edge defect has been
recently observed experimentally in high-precision bottom-up
nanoribbon graphene synthesis [36].

245408-3



LEANDRO R. F. LIMA AND CAIO LEWENKOPF PHYSICAL REVIEW B 106, 245408 (2022)

FIG. 2. Total transmission T (EF ) for wedge-shaped edge defects
of different lengths. The insets show wedge defects with � = 3, 5, 6,
and 7 zigzag links. The darker sites correspond to the hexagons with
adsorbed adatoms, in all cases nad = 0.5.

Now we take nad = 0.5, λ = 0.1t , and keep W = 27 Å,
that is sufficiently wide to prevent interedge scattering and
exhibits perfect conductance quantization for U = 0. Figure 2
shows the total transmission T as a function of EF /t for U =
t . For small zigzag wedges, � = 3 and � = 5 links long, the
transmission is already no longer quantized and the deviation
from perfect transmission shows a tendency to increase with
EF . Remarkably, there is a sharp transition for zigzag wedges
with � = 6 links and longer: The transmission along the edge
with the V-shape defect becomes zero over a large fraction of
the topological gap energy window.

Here, the localized edge states are very different from
the vacancy-induced ones and so is the local magnetization.
We find that the in-plane magnetic moments are strongly
peaked and almost constant along the � zigzag chain at the
system edge and show a fast decay for sites with increasing
distance to the edge [49]. The local transmissions show that
the spin-flip processes occur in the vicinity of the wedge
defect, suggesting that δw/ξ � 1, where δw is the depth of the
wedge, is required to maximize the effect. For the parameters
we consider, the latter inequality implies � � 5, consistent
with Fig. 2.

VI. ROUGH EDGE DISORDER

Let us now study a more realistic edge disorder model.
Both for lithographic and CVD synthesized samples, the
system edges can be assumed as rough, with no clear crystal-
lographic orientation. Nonetheless, experiments show [71,72]
that experimental samples do display sequences of zigzag
and armchair links. Below, we investigate the impact of edge
roughness on the wedge-defect-induced magnetic moments.

The inset at the bottom of Fig. 3(a) shows a realization
of rough edge disorder. We consider a system with a single
wedge defect and generate the edge disorder by randomly
removing atoms from the two hexagonal rows at the system
top edge. Next, we remove any atom forming dangling bonds.
We find that the edge roughness increases the edge states’
penetration depth ξ . We increase the system width to W ≈ 57

FIG. 3. (a) Total transmission T (EF ) for the disorder realization
and local moment shown in the lower and upper insets. Local trans-
mission T̃ L

iα, jα (EF = 0) in arbitrary units for (b) for spin-up (α =↑)
and (c) spin-down (α =↓) electrons.

Å to prevent interedge scattering. The inset at the top of
Fig. 3(a) shows the corresponding mix at EF = 0 and indicates
that the presence of edge roughness does not break the wedge-
defect-induced magnetization. As expected, we find that the
magnetization of longer zigzag chains � is stronger than that
of sequences with a smaller �.

Figure 3(a) shows T (EF ) for the disorder realization pre-
sented in the inset. Due to edge roughness, backscattering
is slightly suppressed as compared to Fig. 2, but the quali-
tative behavior is similar: The transmission through the top
edge goes to zero over a wide Fermi energy window inside
the topological gap, remaining finite for other values of EF .
Figure 3(b) shows T̃ L

iα, jα (EF = 0). Spin-up electrons flowing
from L to R are scattered by the local magnetic moment [see
the upper inset of Fig. 3(a)] that flips their spins and forces
them to propagate back to the L terminal, as displayed by
Figs. 3(b) and 3(c) at EF = 0. The propagation from L to R
at the bottom edge has perfect transmission.

Clearly, the probability for the occurrence of long zigzag
chains is smaller than that of short ones. The picture that
emerges is as follows: Systems with small L are dominated by
short � wedge defects that lead to small deviations from con-
ductance quantization, 2 − T 	 1. With increasing L, wedge
defects with � > 5 are more likely to occur, resulting in a
strong suppression of T .

VII. SUMMARY

We have studied the suppression of the conductance quan-
tization in exfoliated and CVD grown 2D materials in the
QSH regime due to local magnetic moments caused by edge
disorder, that is ubiquitous in such systems. We find that the
interplay between a single wedge defect and e-e interactions
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can destroy topological protection over a large extension of
the topological gap, either causing a small modification in the
conductance quantization or strongly suppressing the conduc-
tance. We conjecture that the latter is more likely to occur in
large samples. We believe that this mechanism is quite general
and applicable to a large variety of intrinsic 2D topological
insulators as well as for extrinsic adatom doped and proximity
2D TIs.
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