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Independent control method for plasmonic skin depth based on transformation
from spoof surface plasmon polaritons to bound states in the continuum
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A metal plate array (MPA) is the complementary structure of a metal hole array and forms spoof surface
plasmon polaritons (SSPPs) supported by parallel plate modes in a unit cell. A ring dipole array, which is a
periodic structure designed by providing an aperture in the conductive part of the unit cell of an MPA, has
the potential to produce bound states in the continuum (BICs). In this paper, the transformation from SSPPs
to BICs is confirmed using these two structures by broadening the aperture in the unit cell. Making use of this
phenomenon, control of the skin depth of surface modes is numerically demonstrated while retaining the resonant
frequency, and the fitting values of the plasmonic skin depth are in good agreement with theoretical values.
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I. INTRODUCTION

Periodic structure has been studied as one of the most
effective methods for controlling electromagnetic (EM) waves
such as light and radio waves. In general, the propagation
conditions of EM waves can be described with the use of
Maxwell equations, and they are clarified by considering
the specific physical conditions and relevant parameters such
as frequency, wave number, polarization, medium constants
of permittivity and permeability, and so on. Therefore, the
behavior of the waves can be controlled by using periodic
structures based on the Bloch/Floquet theorem; for example,
the dispersion relation can be varied since periodic boundary
conditions restrict the wave numbers [1]. On the other hand,
modulation of features of the unit cell such as the size and
shape of conductive nanoparticles causes a change of resonant
modes on the structure. Thus, designing a model brings
with it the possibility of EM phenomena. Namely, research
into periodic structure has the potential of producing a lot of
applications across several relevant fields such as optics [2]
and antenna engineering [3].

Bound states in the continuum (BICs) are a kind of special
physical phenomenon of spatially localized states with a cor-
responding eigenfrequency within the band of a continuous
spectrum [4–15]. BICs were proposed in the field of quantum
mechanics [4], and their mechanism has been studied through
several approaches, such as by the detection of perfect reflec-
tivity of Bloch modes [10], by the examination of polarization
of radiation [5], and by the disappearance of the resonance
mode in the reflectance characteristics [11]. Since BICs can
be specified by the characteristic divergence of their quality
factor (Q-factor), this phenomenon has the potential for appli-
cation to numerous systems in different fields, such as optical
lasers [12], sensing devices [13], and antennas [14]. In recent
work, it has been revealed that a toroidal dipole supported in
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plasmonic chains can excite BICs; the resonant mode can be
described by using a torus model of current distributions, and
the applications of the model to metasurfaces have also been
reported [8,9,15].

Metamaterial is also included in periodic structure and has
variable potential of breaking through the physical limita-
tions of natural materials [16–30]. For example, their typical
features include a negative refractive index [16–18], a near-
zero index [19], cloaking, and so on. The structures for the
formation of the specific phenomena can be designed from
two points of view such that resonator design is consid-
ered in the microscopic perspective and dispersion relation
is mainly determined in the macroscopic perspective. Spoof
surface plasmon polaritons (SSPPs) are metamaterial config-
urations covered by a broader definition [20–30]. SSPPs are
like surface plasmon polaritons (SPPs) in that the behavior
of the periodic EM modes that occur on its structure can be
described in the same way as that of free electrons on the
conductive surface of SPPs [31]. Since the modes in SSPPs
are determined by structural parameters, the behavior of wave
propagations can be controlled by using SSPP structures.
The typical structure for generating SSPPs is a metal hole
array (MHA), which is a two-dimensional conductive struc-
ture with periodic perforations [20,21,24–28,30]. The MHA is
well-known as a structure for producing extraordinary trans-
missions proposed by Ebbesen et al. [27]. In general, just
like MHAs, SSPP structures have been designed using an ap-
proach whereby a unit cell is made and arranged periodically
in a conductive plate by cutting or making holes. However, in
recent work, SSPP modes have also been confirmed in metal
plate arrays (MPAs), which are a complimentary structure of
MHAs, during the process of examining the breakdown of
Babinet’s principle [28]. Furthermore, since MPAs can also be
regarded as plasmonic periodic structures, they are considered
to be deeply related to BICs.

One of the applications of periodic structure is skin depth
engineering which has been mainly studied recently in optical
bands [32–34]. Skin depth engineering is expected to be used
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for the suppression of crosstalk and the reduction of energy
loss in photonic devices. The proposed methods in these stud-
ies are varied, involving the use of dielectric metamaterials,
composite metamaterials of dielectric and conductive struc-
tures, and others. In plasmonic bands, the skin depth control
of SSPPs is also important, and some work has been done on
this [21,29,30]. Firstly, the skin depth is numerically estimated
by EM analyses [21,29], and the theoretical values are vali-
dated experimentally [30]. However, since the skin depth of
SSPPs directly depends on dispersion relations and resonant
modes, its control independent from other parameters such as
resonant frequency is difficult in principle. Even if introduced
as challenging technologies, independent control is expected
to solve several problems in different fields, such as medical
imaging and high-frequency circuits [35,36], and has potential
for improving sensing technologies in terms of spatial resolu-
tion and multidimensionalization.

In this paper, an independent control method for plasmonic
skin depth based on transformation from SSPPs to BICs is
proposed. A ring dipole array (RDA), which is a perforated
structure of an MPA, is used, and transformation of the sur-
face modes from SSPPs to BICs by broadening the holes is
confirmed with a resulting dramatic rise in the Q-factor. Since
current distributions in a unit cell of an RDA can be modeled
the same way as those in a toroidal dipole, an RDA is also
considered to be able to form BICs [9]. In the corresponding
BIC model, since the mode formation is independent of aper-
tures in the unit cell, a drastic improvement in the Q-factor
must be confirmed under the conditions of a fixed resonant
frequency. On the other hand, from the viewpoint of SSPP
formation, only the cutoff frequency is varied while retaining
the resonant frequency because the mode is determined by the
entire size of the conductive part in the unit cell. According
to the theoretical definition of plasmonic skin depth, the value
is determined only by the two frequencies, and the variance
of the skin depth independent of the resonant frequency is
demonstrated based on the above hypotheses.

In the following section, the wave propagation models in
an RDA are described based on the mode formation of SSPPs
and BICs. Next, the variance of the Q-factor of the RDA in the
process of the transformation is discussed. Finally, a demon-
stration of a plasmonic skin depth independent of resonant
frequency is reported in the case of the RDA.

II. WAVE PROPAGATION THEOREM ON AN RDA

In this paper, the SSPP-to-BIC transformation phe-
nomenon is discussed, and its application to a control method
for plasmonic skin depth is demonstrated. This discussion of
the phenomenon is started by providing an MPA for SSPP
formation [28], as shown in Fig. 1(a). The size of the con-
ductive part of the unit cell is a × a × w, and the period of
the arrangements is d. An RDA, which is a perforated MPA,
shown in Fig. 1(b), is also provided for BIC excitation. The
size of the holes in the RDA is p × p × w. As Fig. 1(c) shows,
SSPPs are excited on the MPA by incident waves at an optimal
frequency, and the modes are considered to be transformed to
BICs if the holes are made in the unit cell and p in the RDA

is increased, as shown in Fig. 1(d). The RDA is considered
to form current distributions like those of a toroidal dipole
which has been shown to excite BICs [8,9]. On the other hand,
the RDA is also a perforated structure of an MPA, which is
a complementary structure to an MHA, which is known to
excite SSPPs. SSPP formation has already been confirmed in
the case of MPAs as well as MHAs [28]. Making holes on
each unit cell of an MPA gives different boundary conditions
from that of SSPPs since the RDA structure can also be treated
as a toroidal dipole with a BIC structure. First, a theoretical
discussion of BIC formation on an RDA is presented based
on toroidal dipole resonance in plasmonic nanoparticle chains.
Next, SSPP formation on an MPA is described based on the
wave propagation theorem in periodic structures, and finally,
the connection between the transformation from SSPPs to
BICs and skin depth control of surface modes on the structures
is revealed.

BIC formation in the RDA can be described based on a
similar model to the symmetric mode of a plasmonic nanopar-
ticles chain with dominant toroidal dipole resonance [8,9,15].
The RDA is also considered to form electric (blue lines)
and magnetic (red lines) circular currents between adjacent
rings and around each ring in the unit cell, as shown in
Fig. 1(d). These mode generations are obvious when electric
and magnetic distributions are considered in the RDA. Since
the fundamental mode of electric fields is formed in the gap
between the adjacent rings, magnetic fields perpendicular to
the electric fields are consequently formed. Namely, the two
current distributions should be created due to the absence of
energy leakage in the system. The top view of the mode in
Fig. 1(d) is shown in Fig. 1(e). Since the mode in Fig. 1(e) has
the complementary mode in Fig. 1(f), the observed mode is
estimated as the synthesized mode shown in Fig. 1(g). In the
synthesized mode, although the electric modes are canceled
out, the modes should again form such that the magnetic
mode responds. Only one of the modes in Fig. 1(e) is con-
sidered in the following discussion for easy understanding
of the mechanism. As well as the symmetric mode of a
plasmonic nanoparticles chain with dominant toroidal dipole
resonance [9], the multiple-scattering theory is also consid-
ered based on the coupled dipole equation. Note that, since
the formation of the plasmonic modes is the same as in the
original model, a discussion of the mode formation is omitted.
When a dynamic polarizability is α(ω) = (3i/2k0

3)a1 and the
relative permittivity of the metal is expressed as ε(ω) = 1 −
ωp

2/ω(ω + iγ ), the coupled dipole equation can be expressed
as follows. Here, a1 is the electric dipole term of the Mie
coefficients [37,38], ωp is the plasma frequency, and γ is the
collision frequency. However, no loss by collision is assumed
in this model:

Pm = α(ω)

[
Eext +

∑
n �=m

g(rm − rn)Pn

]
. (1)

Note that P is the dipole moment of the nanoparticle, and
g(r) is the dyadic Green function. And the electric fields are
assumed to form transverse-electric (TE) modes. Considering
the similarity of the 3 × 3 particles (A, B, C, D, E, F, G, H, and
I) shown in Fig. 1(e) to the original model, the equation can
be replaced as
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FIG. 1. Physical concept of converting propagation models on (a) a metal plate array and (b) a ring dipole array in accordance with the
boundary shift from (c) a spoof surface plasmon polariton (SSPP) boundary to (d) a bound state in the continuum (BIC) boundary. The top
views of (e) the mode of (d), (f) its complementary mode, and (g) the synthesized mode of (e) and (f). The blue and gray lines in (c) indicate
electric modes and directions of SSPP oscillations. The blue and orange lines in (d)–(g) show directions of electric and magnetic modes. The
red dashed lines in (e)–(g) express the unit cell of the BIC modes.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F (A) −SAB −SAC −SAD −SAE −SAF −SAG −SAH −SAI

−SBA F (B) −SBC −SBD −SBE −SBF −SBG −SBH −SBI

−SCA −SCB F (C) −SCD −SCE −SCF −SCG −SCH −SCI

−SDA −SDB −SDC F (D) −SDE −SDF −SDG −SDH −SDI

−SEA −SEB −SEC −SED F (E) −SEF −SEG −SEH −SEI

−SFA −SFB −SFC −SFD −SFE F (F) −SFG −SFH −SFI

−SGA −SGB −SGC −SGD −SGE −SGF F (G) −SGH −SGI

−SHA −SHB −SHC −SHD −SHE −SHF −SHG F (H) −SHI

−SIA −SIB −SIC −SID −SIE −SIF −SIG −SIH F (I)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

PA

PB

PC

PD

PE

PF

PG

PH

PI

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eext,A

Eext,B

Eext,C

Eext,D

Eext,E

Eext,F

Eext,G

Eext,H

Eext,I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

F (X ) = αX
−1 − SX X, X = A, B, . . . , I. (3)

SAA = SBB = · · · = SII =
∑
n �=0

g(na) exp(iqna), (4)

SAB = SBC = · · · = SHI =
∑

n

g(na + d ) exp(iqna), (5)

SAC = SBD = · · · = SGI =
∑

n

g(na + 2d ) exp(iqna), (6)

SAD = SBE = · · · = SFI =
∑

n

g(na + 3d ) exp(iqna), (7)

SAE = SBF = · · · = SEI =
∑

n

g(na + 4d ) exp(iqna), (8)

SAF = SBG = · · · = SDI =
∑

n

g(na + 5d ) exp(iqna), (9)

SAG = SBH = SCI =
∑

n

g(na + 6d ) exp(iqna), (10)

SAH = SBI =
∑

n

g(na + 7d ) exp(iqna), (11)

SAI =
∑

n

g(na + 8d ) exp(iqna), (12)

SBA = SCB = · · · = SIH =
∑

n

g(na − d ) exp(iqna), (13)

SCA = SDB = · · · = SIG =
∑

n

g(na − 2d ) exp(iqna), (14)

SDA = SEB = · · · = SIF =
∑

n

g(na − 3d ) exp(iqna), (15)

SEA = SFB = · · · = SIE =
∑

n

g(na − 4d ) exp(iqna), (16)

SFA = SGB = · · · = SID =
∑

n

g(na − 5d ) exp(iqna), (17)

SGA = SHB = SIC =
∑

n

g(na − 6d ) exp(iqna), (18)

SHA = SIB =
∑

n

g(na − 7d ) exp(iqna), (19)

SIA =
∑

n

g(na − 8d ) exp(iqna). (20)

Since all the particles in the RDA are the same size, the case of
r0 = r1 in Ref. [9] is assumed, and αA = αB = αC. To discuss
BIC formation, the eigenequation of MP = λP is provided.
Here, the inverse of the eigenvalue of 1/λq(ω) corresponds
to the qth mode polarizability αq(ω) of the plasmonic mode.

The dispersion relation of the plasmonic modes can be drawn
by tracing the peak of Im[αq(ω)], and Re[αq(ω)] takes zero
when Im[αq(ω)] is the peak in the Lorentzian-shape spectrum.
Due to the equation of Re[λq(ω)] = Re[αq(ω)]/|αq(ω)|2,
the dispersion relation can be obtained by solving the
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FIG. 2. (a) Real and (b) imaginary parts of eigenvalues of the plasmonic particle system for the ring dipole array (RDA), where gray dotted
lines and two closed stars indicate boundary regions to zero and excited points of the bound state in the continuum (BIC) modes, respectively,
and (c) the Q-factor characteristics of the RDA which is numerically analyzed using an electromagnetic simulator HFSS in the case of (a, d , p,
w) = (2, 3, 1.6, 3 mm).

equation of Re[λq(ω)] = 0. In other words, the state corre-
sponds to MP = 0, and αq(ω) is diverged, and therefore, P
represents a bound state. The eigenvalues of the plasmonic
particle system and the characteristics of the Q-factor when
d = 3 mm and a = 2 mm are shown in Fig. 2. Note that,
as shown in Ref. [9], when considering the BICs at the �

point, the zero-order factor in the subwavelength of u0 =
PAexp(iqd ) + PB + PCexp(−iqd ) is related to the leak chan-
nel, if a one-dimensional model is assumed for the sake of
simplicity. In Fig. 2, the results of (a) and (b) in a simplified
three-body chain model show that there are two points of BIC
formation. Since the plasmonic particles are the same size in
this case (r0 = 1.0r1), the results are in accordance with those
of Ref. [9]. Furthermore, the result shown in Fig. 2(c) confirms
that the characteristics of the Q-factor are consistent with the
BIC formations derived by the values of Re[λ] and Im[λ].
Note that the characteristics are obtained by using an EM
simulator HFSS (2021 R1, Ansys). The weak divergence of the
Q-factor originates from the fact that the structural parameters
are not optimized for only the BIC formations, whereas in
this paper, we focus on the transformation from SSPPs to
BICs. However, the result is reasonable because conventional
studies for similar conductive and dielectric structures of at-�
and off-� BICs also show the Q-factors ∼200 or <200 in
simulated and experimental results [39,40]. Here, one of the
similar points is that unit cells with finite size in the direction

perpendicular to the array direction are used. In the toroidal
dipole model, since the size of an aperture in the conductive
part of the unit cell is not directly influenced by the dispersion
relation if the current distributions are conserved, the value
of p is set to 1.6 mm for the optimization of the Q-factor.
SSPPs were proposed by Pendry et al. [20] as plasmonic
surface waves, and the dispersion relation of SSPPs is derived
theoretically by using an MHA, which is a two-dimensional
periodic structure of waveguides made of a conductive mate-
rial. In the derivation, first, the TE incident waves are defined
on the assumption of the existence of surface waves, and
then the macroscopic relative permittivity and permeability
are obtained by using the concept of average electric fields
and the equation of energy flows in the boundary. Finally, the
generation condition of SPPs and the values of macroscopic
media are introduced into the wave equation at the bound-
ary, and the dispersion relation is obtained. The formula is
expressed as below:√

k||2 − k0
2

k0
= S2k0√

(ωp/c)2 − k0
2
, (21)

S2 = μx = μy = μm, (22)

where k0 and k|| are wave numbers in free space and of surface
modes, respectively, c is the velocity of light, S is the overlap
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FIG. 3. Dispersion relation of (a) ideal and (b) real spoof surface
plasmon polariton (SSPP) mode and (c) a light line in vacuum.

integral of the incident wave and the fundamental mode inside
an SSPP resonator in the unit cell, ωp is a cutoff frequency,
and μm is the effective relative permeability in an SSPP struc-
ture [26].

Inversely, it can be said that any structure which satis-
fies the above EM conditions can also form SSPP modes
even though the structure is different from an MHA. In fact,
for example, SSPP formation has already been confirmed
experimentally in the case of an MPA [28], which is a com-
plementary structure of an MHA. In the case of the MPA,
waves form parallel plate modes instead of waveguide modes
in MHAs, and by considering the energy flow of the interval
between the conductive parts at the boundary, the dispersion
relation of the MPA can also be derived. Since the derivation
process is like the original one, the basic configuration of the
formula is not changed, but the parameters in regard to the
effective media are replaced. Therefore,

S2 = 8a(d − a)

π2d2
, ωp = πc

a
. (23)

Here, as well as SPPs, these curves do not directly intersect
with a light line because of the differences of the phase veloc-
ities. However, in the case of SSPPs, lattice scattering effects
within them have to be considered, and the effects enable the
SSPP dispersion relations to couple with the light line. The
effects are shown as follows:

k′
|| = k|| ± n|Gx| ± m|Gy|,

|Gx| = |Gy| = 2π

d
. (24)

Note that k′
|| is the wave number of an SSPP with lattice scat-

tering effects, |Gx| and |Gy| are the reciprocal lattice vectors in
x and y directions, respectively. In fact, the effects are applied
to the dispersion relations, and consequently, the curves show
multiple higher modes in their characteristics. The curves are
shown in Fig. 3, which confirms that the ideal curve of (a) does
not intersect with the light line of (b); on the other hand, the
real curve including the lattice scattering effects of (c) inter-
sects the line. Based on the above SSPP theory, the plasmonic
skin depth can be obtained with the following formula in the
process of deriving the SSPP dispersion relation:

L = c√
ωp

2 − ωSSPP
2
, (25)

FIG. 4. Angular characteristics of the reflectance in the ring
dipole array when (a) p = 0.2 mm, (b) p = 1.0 mm, and (c) p =
1.6 mm.

where ωSSPP is the resonant frequency of the SSPP. From this
equation, the plasmonic skin depth is determined only by the
resonant frequency and the cutoff frequency [29,30]. In other
words, the skin depth can be controlled while retaining the
resonant frequency by just independently varying the cutoff
frequency. If we use only SSPP modes, it is difficult to control
the cutoff frequency or the resonant frequency independently
by modifying the structure design because the surface modes
are influenced simultaneously by both wave propagation ef-
fects, such as boundary conditions, and circuit effects, such as
inductances and capacitances. However, if an aperture is set
in the unit cell of an MPA, the cutoff frequency can be varied
independently since the resonant mode is fixed by utilizing the
process of transformation to BICs. Therefore, the plasmonic
skin depth is considered to be controlled while retaining the
resonant frequency.

III. RESULTS AND DISCUSSIONS OF PLASMONIC SKIN
DEPTH CONTROL USING A RDA

In this section, the various propagation characteristics on
the RDA are discussed, and the control method for plasmonic
skin depth is demonstrated numerically. In the analyses, an
EM simulator HFSS is used for the examinations. First, the
standard size of the RDA is defined as (a, d , p, w) = (2, 3, 1,
3 mm) throughout the examinations. The value of w is fixed at
3 mm throughout the evaluations to keep the same conditions
for surface mode formations. In the formations of both modes
of SSPPs and BICs, the transverse-magnetic (TM) incidence
is assumed as well as SPPs although microscopic electric dis-
tributions on the boundary in the unit cell represent TE modes,
as discussed in the previous section [26,28]. Also, an infinite
periodic boundary condition is applied to the RDA in the anal-
yses. Figure 4 shows the dependencies of the incident angle
of the reflective characteristics with the variance of p. As the
entire tendency of all the results, the position of each inter-
section point changes continuously as the angle of incidence
changes, which is consistent with the behavior of the theoret-
ical curve since multiple discrete intersections with the light
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FIG. 5. The structural parameter dependencies of the transparent characteristics of the ring dipole array for different values of (a) a, (b) d ,
(c) p, and (d) the comparison results of the cutoff frequency when p = 0.2 and 1.6 mm in (c).

line are generated if the incident angle is changed, as shown
in Fig. 3. The sharpness of the peaks of each reflective mode
is reduced as the value of p is increased. This is considered to
be caused by being outside of SSPP modes. Furthermore, this
confirms the decrease in the number of reflective modes with
an increase in the value of p. This is because the reflective
spectra are dulled in this situation. Also, viewing the overall
tendency, the regions which show higher reflective intensity
become larger as the value of p is increased. This change
shows that the electric distribution on the structure approaches
the BIC mode. The direction of the aftermath seeping out from
each reflective mode changes between the cases of p = 0.2
and 1.6 mm. This clearly indicates a qualitative change in the
mode being formed. It is a conversion process from SSPPs to
BICs and can be viewed as an unstable propagation state in
terms of SSPP mode formation. As described in Ref. [28], the
mode formation principle is strictly different between the pure
SSPP case and the present case. In fact, the number of modes
increases discontinuously from the case p = 0 (Ref. [28]) to
p = 0.2 mm. This also supports the proposal of the mode
generation based on the transformation from SSPPs to BICs.

Figure 5 shows the variations of the transmission charac-
teristics on the RDA depending on the parameters of a, d ,
and p. Here, the band pass frequency is the frequency which
takes the first local maximum, and band stop frequency is
defined as the points that take local minimum values. The
cutoff frequency shows the point which takes the second
local maximum of ∼0 dB as well as band pass frequency.
In Fig. 5(a), as the value of a is increased, a band stop ef-
fect dominates below a = 2.2 mm, while the band pass effect
dominates above a = 2.2 mm. This indicates the switch of the
pattern of resonance modes formation. When a is relatively

small, the ring resonator acts mainly as a ring resonator, and
when a is relatively large, the capacitance effect generated
inside the ring becomes nonnegligible relative to the induc-
tance, forming a resonance loop and generating a band pass
effect. When a becomes even larger than that, it is clear that
the SSPP mode is formed since the function as the boundary of
the parallel plate mode becomes dominant rather than the in-
ductance effect. Note that these processes do not eliminate the
effect as a ring resonator. In Fig. 5(b), it is shown that the
resonant frequency becomes lower as d is increased. In the
case that SSPP modes are formed, the resonant frequency is
dominated by the variation with d . This is evident from the
fact that the SSPP dispersion relation in Fig. 3(b) is greatly
affected by lattice scattering effects, and the lattice constant
is a function of d . As d increases, the wave number at the X
point decreases and the intersection with the light line (the
resonance point) decreases. In Fig. 5(c), when p is large,
the band stop resonance frequency becomes lower, while the
band pass resonance frequency remains almost unchanged.
The band stop resonant frequency is considered to decrease
due to the improved inductance of the ring resonator. As
discussed theoretically above, this consistency in the band
pass resonance frequency is considered to occur in the process
of the mode transformation from SSPPs to BICs. When p
is sufficiently small, assuming the SSPP mode is like the
MPA, it can be considered that the vertically incident radio
wave and the SSPP dispersion relation are coupled, and the
corresponding resonance frequency can be estimated to be
∼0.8ωp, as shown in a previous study [28]. On the other hand,
since the zero point for q = 0 in BIC is also 0.8ωp, as shown in
Fig. 2(a), this is consistent with the view that SSPP formation
in that frequency change does not occur during the conversion
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FIG. 6. (a) The p dependency of the Q-factor of the ring dipole
array (RDA) and (b) the parameter dependencies of the resonant
frequency of the RDA in the cases of a, d , and p.

process to BIC since the frequencies of the two are identical.
Figure 5(d) shows the comparison of the cutoff frequencies for
the two values of p = 0.2 and 1.6 mm. The cutoff frequency
is higher for p = 1.6 mm than for p = 0.2 mm. The size of
the outside of the ring is considered to determine the cutoff
frequency: for small values of p, the ring conductor acts
sufficiently as a ground, but for larger values of p, the induc-
tance component becomes nonnegligible, resulting in a higher
cutoff frequency. Therefore, band pass frequency does not de-
pend on the EM circuit theory, while band stop frequency and
cutoff frequency are based on the theory. To discuss the mode
conversion from SSPPs to BICs, the Q-factor of the band pass
frequency of RDA is considered in the following. Figure 6(a)
shows a dramatic increase in the Q-factor when p is increased,
as does Fig. 5(c). This increase is likely to coincide with
the results of the off-� mode in similar studies [39,40]. As
discussed above, this is considered to be a characteristic of
the conversion from SSPP mode to BIC mode when p is
increased. Figure 6(b) shows the change in resonance fre-
quency when each parameter is changed. Here, p shows only
1.9% change, which is quantitatively confirmed to be almost
unchanged. Similarly, for a and d , the rates of change are 7.7
and 18.8%, respectively, and this also quantitatively confirms
that the resonance frequency changes significantly, as in the
SSPP structure. From the above discussion, by changing p
in the RDA, the cutoff frequency can be varied while the
resonance frequency is almost fixed. In other words, this

means that the plasmonic skin depth determined from these
two frequencies can be changed while retaining the resonance
frequency.

Next, the examination of the method for controlling plas-
monic skin depth is discussed, based on the numerical
demonstration results. First, the changes of the electric dis-
tributions around the RDA are confirmed by changing p from
0.4 to 1.4 mm. The results are shown in Figs. 7(a)–7(c). Note
that the incident direction is from the bottom to the top side,
and the waves are entered at the resonant frequency of 0.8ωp.
The overall tendency is for the electric distribution above the
unit cell to become intensified as p is increased. The results
also confirm that the electric fields are concentrated on the
intervals of the adjacent unit cells, and the fields are not
formed effectively inside the ring regardless of the value of
p. These phenomena are consistent with the fact that the
fundamental modes which the propagating waves form are
located in the intervals of the adjacent unit cells, and the other
higher modes are not produced [28]. In all the cases in Fig. 7,
the concentrated electric fields are formed in such a way that
they diffuse around the ring edge. In the cases of (a) and (b),
as they differ from that of (c), the fields are considered to be
different from simple near fields phenomenologically since
there is almost no electric field concentration at the inner ring
edges. In other words, it is just the result of the formation
of surface modes on a macroscopic medium supported by
periodic structures. Figures 7(d) and 7(e) show the electric
and magnetic field distributions at the resonant frequency.
Note that the incident directions of the electric and magnetic
fields are horizontal and vertical directions, respectively. As
discussed regarding the BIC mode generation using Fig. 1,
the magnetic fields in (e)–(g) show the rotation around the
ring, and the electric fields in (d) are canceled out inside the
ring, and they oscillate along the horizontal direction between
the adjacent rings. Next, the plasmonic skin depth control of
surface modes generated near the RDA is described. In the
propagation space shown in Fig. 7, the spatial distribution
of the average electric field intensity on the opposite side
of the incident plane was obtained. Figure 8 compares the
results of the spatial distribution when p is varied as in the
case shown in Fig. 7. The spatial distribution is calculated

FIG. 7. The electric distributions around the ring dipole array when (a) p = 0.4 mm, (b) p = 1.0 mm, and (c) p = 1.4 mm when viewed
from the side. The top view of the (d) electric and (e) magnetic field distributions when p = 1.4 mm. (f) and (g) are the distributions when the
phase is advanced by 60◦ and 120◦ from the case of (e), respectively. All distributions are formed at the resonant frequency.

245406-8



INDEPENDENT CONTROL METHOD FOR PLASMONIC SKIN … PHYSICAL REVIEW B 106, 245406 (2022)

FIG. 8. The comparison results of (a) the spatial distributions of the electric field intensities when p = 0.4, 1.0, and 1.4 mm and between
the distributions of (b) p = 0.4 mm, (c) p = 1.0 mm, and (d) p = 1.4 mm and their fitting curves.

as a one-dimensional distribution in the z direction averaged
from the electric field intensity in the x-y plane. As shown
in Fig. 8(a), all the spatial distributions exhibit exponential
attenuation characteristics, with the maximum value of the
field intensity increasing as the value of p increases. At the
same time, the attenuation in the z direction also shows steeper
characteristics. In other words, the plasmonic skin depth is
indeed changing as the value of p is varied. The graphs of
(b)–(d) in Fig. 8 show the results of exponential fitting of the
spatial distribution of electric field intensity for each value of
p. The fitting curve function is as follows: f (z) = Aexp[−(z −
z0)/(Lfit/2)] + B, and the values of each parameter are shown
in Table I. Note that the spatial distributions have the square
order of the electric fields. The spatial distribution of field in-
tensity in (b)–(d) is in good agreement with the corresponding
fitting curves. From Table I, as p increases, the skin depth

TABLE I. The fitting parameters when p = 0.4, 1.0, and 1.4 mm
and the theoretical estimated values of the plasmonic skin depth in
these cases.

p (mm) A (V/m)2 Lfit (mm) z0 (mm) B (V/m)2 Lth (mm)

0.4 3.9 × 109 0.78 1.5 6.3 × 108 0.69
1.0 5.8 × 109 0.72 1.5 6.5 × 108 0.68
1.4 1.3 × 1010 0.64 1.5 6.5 × 108 0.54

Lfit decreases. On the other hand, as discussed in the previous
section, Fig. 5(d) shows that the cutoff frequency ωp increases
as p increases. From this fact and the theoretical equation (the
formula of L), the skin depth L decreases as p increases if
the resonant frequency is fixed. Therefore, the results shown
in Fig. 8 and Table I are indeed consistent with the theorem.
Furthermore, using the propagation characteristics of the RDA
and the theoretical equation for L, the estimated values of the
plasmonic skin depth are obtained theoretically. As shown in
Table I, the theoretically estimated values of the skin depth
Lth at p = 0.4, 1.0, and 1.4 mm are 0.69, 0.68, and 0.54 mm,
respectively. The estimated values are in good agreement with
the corresponding fitting values Lfit with errors of 13, 6, and
19%, respectively.

IV. CONCLUSIONS

Focusing on the SSPP mode formation in the MPA, which
is a complementary structure of MHA, a control method for
plasmonic skin depth is proposed, with the use of RDAs that
have the perforated structures of MPAs, and its feasibility
verified. The method is based on the transformation process
from SSPP to BIC mode in RDAs, and its dispersion relation
is derived using a toroidal dipole model, which is consistent
with the numerical results of Q-factors in RDAs.

The propagation characteristics in the RDA confirmed
the qualitative change of the mode associated with the
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transformation from SSPP to BIC mode. The behavior of the
resonance point in the parameter variation characteristics is
consistent with the propagation theorem.

The numerical demonstration confirmed that the one-
dimensional spatial distribution of surface modes at the
resonant frequency of the RDA can be controlled by the
length p of a side of the aperture while keeping the resonant
frequency fixed. The behavior of the skin depth during control
was consistent with the propagation theory, and the order of

the theoretical values is in good agreement with the demon-
strated results, with an average error of 13%.
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