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Determination of the phonon sidebands in the photoluminescence spectrum of semiconductor
nanoclusters from ab initio calculations
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We propose a theoretical approach based on (constrained) density functional theory and the Franck-Condon
approximation for the calculation of the temperature dependent photoluminescence of nanostructures. The
method is computationally advantageous and only slightly more demanding than a standard density functional
theory calculation and includes transitions into multiphonon final states (higher class transitions). We use
the approach for Si and CdSe colloidal nanoclusters with up to 693 atoms and obtain very good agreement
with experiment which allows us to identify specific peaks and explain their origin. Generally, breathing type
modes are shown to dominate the phonon replicas, while optical modes have significant contributions for CdSe
nanoclusters (NCs) and play a lesser role in Si NCs. We obtain significant anti-Stokes peak starting at 140 K
for Si NC explaining the broadening observed in the corresponding experiment. We also apply the method
to small molecular-like carbon structures (diamondoids), where electron-phonon coupling is typically large,
and find that multiphonon processes (up to class 4) are very relevant and necessary to compare favorably with
experiment. While it is crucial to include these multiphonon states in the small diamondoids with few tens of
atoms, neglecting them in only marginally larger Si87H76 and Cd43Se44H∗

76 (and larger) quantum dots represents
a good approximation.

DOI: 10.1103/PhysRevB.106.245404

I. INTRODUCTION

The main application fields of colloidal nanoclusters
(NCs), such as optoelectronics, quantum information pro-
cessing, photovoltaics, light-emitting devices, or biolabel-
ing [1–8], rely on the quantum confined optical properties.
In contrast to bulk materials, the quantum confinement ef-
fect encountered in NCs results in the emergence of discrete
electronic as well as vibrational states. The confined nature of
both the electronic and the vibrational states often results in a
strong coupling referred to as vibronic coupling. Photolumi-
nescence spectroscopy (PLS) can be a powerful experimental
tool to investigate this vibronic coupling [9–13]. Indeed, in
contrast to the sharp and singular peaks observed in atomic
PLS, the strong coupling between electrons and the lattice
vibration in NCs leads to the appearance of a multitude of
phonon sidebands (satellites) leading to a rich and complex
spectrum [14] that requires a solid theoretical interpretation.
The vast knowledge available for bulk systems [14] or spe-
cific molecules is only marginally applicable to NCs, which
represent a significantly different class of materials. Earlier
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investigations on vibronic coupling in NCs have shown the
importance of phonon sidebands originating from longitudinal
optical (LO) modes and surface optical (SO) modes as well as
torsional and spheroidal acoustic modes [11,15–19].

The common procedure to understand phonon satellites
in the PLS of NCs is based on the Franck-Condon picture
as schematically illustrated in Fig. 1. This approximation
makes statements about the probabilities of the individual
vibronic transitions, i.e., the transition between the dressed
electron-vibron (vibronic) coupled state [20]. Within the
Franck-Condon framework, the optical excitation is instan-
taneous (vertical transitions), so that the excited state has
no time to relax into a more favorable configuration, which
leaves the system in an excited vibronic state where not
only the electronic part is excited (the state occupies the
upper potential energy surface), but also in an excited state
of vibration. The probability of the vibronic transition is
thereby proportional to the overlap of the two nuclear wave
functions. Using the Franck-Condon principle, phonon side-
bands in the PLS of semiconductor NCs have been calculated
by using both continuum models [16,21–23] and ab ini-
tio approaches [24]. Although the exciton-phonon coupling
strengths of NCs can be calculated using continuum models in
the case of self-assembled quantum dots (QDs) with up to one
hundred thousand atoms [25], the validity of such treatment
for colloidal QDs with only hundreds to thousands of atoms
is questionable. Moreover, in most of the empirical model
calculations, only contributions from bulk-like LO phonon
modes are considered. In contrast to empirical methods, ab
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FIG. 1. Schematic illustration of the configuration coordinate di-
agram describing the optical absorption and emission processes. The
minima of the ground- and excited-state potential energy surfaces
are displaced by �Q. The relaxation, or reorganization, energies are
shown as �E{g,e} for the ground and excited state, respectively; EZPL

indicates the zero-phonon line. Transitions from the lowest vibra-
tional level of the excited electronic state with number of phonons
ne = 0 to the ground electronic state with excited vibrational states,
where the number of phonons ng = 1, 2, and 3, are labeled with red
arrows.

initio based studies on PLS have focused on small molecules,
due to the present computational limitations of state-of-the-art
first-principles approaches. Ab initio studies of NCs, with the
aspiration of a deeper understanding on vibronic coupling in
quantum confined systems, are still needed.

In this work, we present a theoretical ab initio approach
suitable to study the exciton-phonon interaction and their ef-
fects on phonon satellites in the PLS of colloidal Si and CdSe
NCs with radii ranging from 7.8 to 14.9 Å and five different
small carbon clusters called diamondoids. Using density func-
tional theory (DFT) and constrained density functional theory
(CDFT) approaches, we calculate the nuclear coordinates of
colloidal nanostructures with and without photoexcitation and
the vibrational modes of the ground state. The Huang-Rhys
(HR) factors of each vibrational mode are further calculated
using the procedure given in Refs. [26] and [27]. Within the
Franck-Condon principle and using the harmonic oscillator
approximation for the nuclear wave functions [28] we are able
to calculate the line shapes of PLS at both zero and finite
temperatures. We extend the approach to calculate the effects
of multiphonon processes where different types of vibrons
participate simultaneously. These processes are classified into
classes. We find that for our larger CdSe and Si NCs a
treatment including only class 1 transitions represents a good
approximation, while for our smallest diamondoid structure
calculations must encompass class 4 processes to accurately
reproduce experiment.

II. THEORETICAL APPROACH

In the first step, we optimize the geometry of the differ-
ent structures. The equilibrium positions of the nuclei at the
ground and the excited states of spherical quantum dots are
optimized under constrained symmetry, while the geometry
structures of the excited diamondoids are optimized with-
out symmetry constraint until the forces are reduced to less
than 3 × 10−6 Hartree/Bohr by using DFT and CDFT imple-
mented in the CPMD code [29], respectively. In order to avoid
interactions with periodic images of the structure, the NCs are
located in the center of a simple cubic supercell with more
than 5 Å separation between the outermost atoms and the
closest boundary. In CDFT, electronic states and interatomic
forces of excited NCs are calculated by constraining one
electron to occupy the lowest unoccupied molecular orbital
(LUMO) leaving one hole at the highest occupied molecular
orbital (HOMO) via the restricted open shell Kohn-Sham
algorithm [30–32]. The local density approximation (LDA)
and Trouiller-Martin norm-conserving pseudopotentials are
used in both DFT and CDFT calculations with energy cutoff
of 60, 40, and 50 Ry for diamondoids, Si, and CdSe NCs,
respectively.

Once the geometry has been optimized, we calculate
the dynamical matrix elements via finite difference with
the self-consistently calculated electronic states [14,33]. The
vibrational eigenmodes along with the corresponding eigen-
vectors are then obtained by solving the dynamical matrix
equation,

∑

J

1√
MI MJ

∂2V (R)

∂RI∂RJ X J = ω2X I , (1)

where I and J label the atoms, M denotes the atomic masses,
V (R) is the potential energy, R represents the atomic position,
and X is the vibrational eigenvector with the vibrational fre-
quency ω.

Using the ground {RI
g} and the excited state {RI

e} atom
positions we calculated the structural rearrangement in the
configuration coordinates as [26,34]

�Qi =
∑

I

√
MI

(
RI

e − RI
g

) · X I
i , (2)

where X I
i is the unit vector of atom I in the direction of the

normal vibrational mode i in the ground state and RI
e − RI

g
denotes the lattice distortion between the excited and the
ground states. The HR factor of vibrational mode i is there-
after calculated as [35,36]

Si = 1

2h̄
ωi(�Qi )

2. (3)

The PLS intensity of a photoexcited NC can be calculated
via Fermi’s golden rule [28] as

Iem(E ) = 2π

h̄

∑

n

|〈ψeφm|μ|ψgφn〉|2δ(Eem − Egn − E ), (4)

where |ψg〉 and |ψe〉 are the ground and the excited state
electronic wave functions, |φm〉 and |φn〉 denote the nuclear
(also called ionic) wave functions, μ is the dipole operator for
electronic transitions, E is the energy of the emitted photon,
Eem are the energies of the excited electronic system with
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nuclear wave function φm, and Egn are the energies of the
ground electronic system with nuclear wave function φn.

The Frank-Condon approximation significantly simplifies
the problem by assuming a separation of electronic and vibra-
tional wave functions:

Iem(E ) = 2π

h̄
|〈ψe|μ|ψg〉|2

∑

n

|〈φm|φn〉|2δ(Eem − Egn − E ).

(5)
In this approach the electronic transition dipole moment
is assumed to be independent of the nuclear coordinates.
An improved description is given by the Herzberg-Teller
approach [37], where the electronic transition integrals are ex-
panded in powers of the nuclear displacement. This approach,
which is not followed in this work, leads to improved results
especially for optical transitions that are spin or orbitally for-
bidden and consequently dark according to the Frank-Condon
formulation.

The nuclear wave function in the ground and
excited electronic states can be generally writ-
ten as |φn〉 = |n1

g, n2
g, n3

g, . . . ni
g, . . . n3N

g 〉 and |φm〉 =
|n1

e, n2
e, n3

e, . . . ni
e, . . . n3N

e 〉, with ni
g(ni

e) the vibron occupation
number of the vibrational mode i in the ground (excited)
electronic state. The superscript i on ni

g defines the vibrational
mode and runs from 1 to 3N . The ground state vibration in
this notation is given as φ0 = |0, 0, 0, . . . , 0〉.

In Fig. 2, we schematically illustrate a vibronic transi-
tion in a toy model system with three vibrational modes
with frequencies ω1,2,3. As shown in the top of Fig. 2, the
initial vibronic state |ψeφm〉 is composed of the excited elec-
tronic state | ψe 〉 and the ground vibrational state | φm 〉 =
| n1

e, n2
e, n3

e 〉 = | 0, 0, 0 〉 (this corresponds to zero vibrational
temperature), while the final state | ψgφn 〉 is composed of the
ground electronic state |ψg〉 and the vibrational state | φn 〉 =
| n1

g, n2
g, n3

g 〉. By assuming a reorganization energy of �E =
6h̄ω1 = 3h̄ω2 = 2h̄ω1, we have six different configurations of
the final vibrational state |φn〉. In Fig. 2 we show only five
of them for space reasons, the missing one being the nuclear
wave function | 4, 1, 0 〉. These vibrational state configura-
tions can be divided into class 1, class 2, and class 3 according
to the number of vibrational modes simultaneously excited
in the vibronic transition. In the case of class 1, the config-
urations |φn〉 = |6, 0, 0〉, |φn〉 = |0, 3, 0〉, and |φn〉 = |0, 0, 2〉
correspond to the excitation of six vibrons with ω1 frequency
or three vibrons with ω2 frequency or two vibrons with ω3

frequency. In class two and class three, different vibrational
modes can be excited simultaneously.

Direct calculation of the overlap of nuclear wave functions
〈φm|φn〉 requires highly multidimensional integrals with the
normal modes of the excited and ground electronic states Qg

and Qe via the Duschinsky transformation [38–42]. This al-
gorithm is challenging to nanostructures with a large number
of atoms due to its very large computational requirements.
In order to circumvent this difficulty, a simplified approach
based on the so-called linear-mode approximation or parallel-
mode approximation is used to calculate the overlap of the
nuclear part of the wave functions in nanostructures or de-
fect structures in solid [26,43,44]. Within this approximation,
the overlap between the nuclear (or ionic) wave functions is
analytically calculated from the overlap between displaced

FIG. 2. Schematic illustration of vibronic transitions and their
classification into classes. The different nuclear wave functions de-
picted all correspond to an energy of 6h̄ω1. One class 2 transition
with the same energy has been left out ( | 4, 1, 0 〉) for space reasons.

harmonic oscillator wave functions as [24,28,44]

|〈φm|φn〉|2 =
3N∑

i=1

∣∣〈ni
e|ni

g

〉∣∣2
, (6)

with

∣∣〈ni
e|ni

g

〉∣∣2 = exp(−Si )
ni

e!

ni
g!

S
ni

g−ni
e

i

∣∣Lni
g−ni

e

ni
e

(Si )
∣∣2

, (7)

where L
(ni

g−ni
e )

ni
e

(Si ) denotes the generalized Laguerre polyno-

mials with ni
g and ni

e the number of vibrons of mode i in the
ground and excited electronic states, respectively. The super-
script on the HR factor signifies the power of the difference
between ni

g and ni
e. Combining Eq. (4) with Eqs. (6) and (7),
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the intensity of the PLS is given as

Iem(E ) = 2π

h̄
|μeg|2

3N∑

i=1

∞∑

ni
g=0

exp(−Si )
ni

e!

ni
g!

S
ni

g−ni
e

i

∣∣L(ni
g−ni

e )

ni
e

(Si )
∣∣2

× δ
[
E0 − E − (

ni
g − ni

e

)
h̄ωi

]
, (8)

with the dipole matrix elements μeg = 〈ψe|μ|ψg〉. The fre-
quency mismatch between ground and excited electronic
states is ignored in our approach and we use vibrational fre-
quencies of only the ground state. We will show differences
between vibrational frequencies in the ground and excited
states in Sec. VI.

The values of ni
e are determined from the initial state and

will depend on temperature. At zero temperature, for instance,
ni

e is zero for all vibrational modes (as we used for the initial
state in Fig. 2). We therefore assume a perfect exciton thermal-
ization. This can be justified by the different timescales: the
exciton radiative lifetime is around hundreds of nanoseconds
for CdSe QDs [45] to a few microseconds for Si QDs [46];
the thermalization process via phonon emission is typically
in the picosecond range [47]. With increasing temperature
the vibron states are becoming populated and ni

e may be
larger than zero (we will later use a Bose-Einstein distribution
to take this into account). The energy conservation is given
by the delta function where we used E0 = Ee0 − Eg0 defining
the energy difference between the excited and the ground
electronic states in the absence of vibrons.

Since μeg is independent on lattice vibrations, we will
focus on the remaining contributions originating from the
nuclear part of the vibronic wave function. We will consider
Aem(E ), where we have used a Lorentz broadening for each
phonon sideband peak:

Iem(E ) ∝ Aem(E )

=
3N∑

i=1

∑

ni
g

exp(−Si )
ni

e!

ni
g!

S
ni

g−ni
e

i

∣∣L(ni
g−ni

e )

ni
e

(Si )
∣∣2

× γ 2

[
E0 − E − (

ni
g − ni

e

)
h̄ωi

]2 + γ 2
, (9)

where the broadening of the Lorentz function γ is taken as the
inverse of the phonon lifetime (which is not calculated in this
paper but estimated from experiment).

III. LOW TEMPERATURE PHONON SIDEBANDS FOR Si
AND CdSe NCS

The Si and CdSe NCs are constructed by cutting a sphere
out of bulk diamond (Si) or zinc-blende (CdSe) centering
the structure on a silicon (cadmium) atom. Surface atoms
with only one nearest-neighbor bond are subsequently re-
moved. This procedure leads to a Td point group symmetry
in both cases. To avoid defect states the surface atoms
are passivated by hydrogen atoms (for Si NCs) or pseudo-
hydrogen atoms (for CdSe NCs) with a fractional charge
of 1/2 and 3/2 for the passivation of Se and Cd atoms,
respectively.

In Fig. 3 and Fig. 4, we plot the calculated PLS of different
Si and CdSe NCs as a function of the relative energy to the
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FIG. 3. Calculated zero-temperature PLS intensity (black line) of
Si NCs from Eq. (9) with contributions of the phonon number ng = 1
(red), ng = 2 (green) and the sum 0 to 10 (black), for (a) Si87H76,
(b) Si147H100, (c) Si281H172, and (d) Si465H228 NCs. The intensity
of the strongest phonon satellite peak is set to 1.0 and the intensity
of the ZPL peak is given as “x =.” EZPL is set to zero. “CA” indicates
the coherent acoustic mode. “O” and the gray bar indicates modes
with optical character; the black bar within the gray area shows the
energy of the LO bulk mode. “B” indicates a breathing type mode
described in the text.

ZPL. The PLS are calculated at zero temperature, i.e., the
vibron occupation number in the excited state is zero (ni

e = 0).
The results are broadened with a Lorentz function with a
width of 1 meV, which corresponds to the phonon lifetime of
the bulk material. The sum over vibron occupation numbers
ni

g is taken from 0 to 10 (black lines) for ni
g = 1 (red lines) and

ni
g = 2 (green lines).

To compare the intensity of the different phonon satellites,
we set in Figs. 3 and 4 the intensity of the strongest satellite
peak to 1.0 and give the intensity of the ZPL peak in the
figure as numerical value (“x =”). We see from Fig. 3 and
Fig. 4 that the amplitude of the ZPL peak (transitions from
ni

e = 0 to ni
g = 0, black line) is much stronger than those of

the phonon satellites and most of the phonon satellites are
dominated by vibronic transitions with ni

e = 0 → ni
g = 1 (red

lines much larger than green lines).
To rationalize these results, we rewrite Eqs. (6) and (7) at

zero temperature with ni
e = 0 for all vibrations i. The square

of the overlap of nuclear wave functions can be simplified in
this case as

|〈φ0|φn〉|2 =
3N∑

i=1

S
ni

g

i

ni
g!

exp(−Si ), (10)
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FIG. 4. Idem to Fig. 3 but for (a) Cd43Se44H∗
76, (b) Cd79Se68H∗

100,
and (c) Cd135Se140H∗

172 NCs. “S” indicates surface type modes.

where S
ni

g

i means Si to the power of ni
g and the index n is de-

fined from |φn〉 = |n1
g, n2

g, n3
g, . . . ni

g, . . . n3N
g 〉. From Eq. (10),

we obtain |〈φ0|φ0〉|2 = ∑
exp(−Si ), which is much larger

than |〈φ0|φn〉|2 = ∑
S

ni
g

i exp(−Si )/ni
g! for the case where the

HR factors are smaller than one. This is in agreement with
our general understanding that weak vibronic coupling (small
Si) leads to a small displacement of the electronic charge
densities going from the ground to the electronically excited
state, and therefore involves nuclear motion to a lesser extent.
Moreover, as indicated in Eq. (10), the value of |〈φ0|φn〉|2
decreases rapidly with an increasing number of vibrons n for
small HR factor (Si < 1). This results in the prevalence of
phonon sidebands with phonon number ni

g = 1 in the PLS (red
lines in Fig. 3).

From Figs. 3 and 4 it is surprisingly difficult to identify
a clear size dependence in the intensity of the phonon side
bands. Generally, the spectra show a very large size/structure
dependence, but extracting trends is difficult. For Si NC
(Fig. 3), comparing our two largest structures (where the
structures become more bulk-like and less molecular) we
could conclude that the strongest peak at 15 meV (that we
will later identify as coherent acoustic mode) seems to remain
strong and size independent, while the other phonon satellites
become much weaker. Also for CdSe NCs (Fig. 4), if we
discard the very small Cd43Se44H∗

76 we can conclude that
the intensity of the phonon replicas decreases with increasing
cluster size. This latter observation is in agreement with the
idea that exciton-induced lattice distortions become smaller
with increasing NC size leading to a decreasing HR factor.

Next, we focus on the Si NCs (Fig. 3), where we see the
strongest phonon satellite at around 15 meV [indicated with

CA in Fig. 3(d)] and the corresponding two-phonon replicas
(in green) at around 30 meV from the ZPL. This dominant
satellite exhibits a redshift with increasing cluster size. By
looking at their eigenmodes we identify them as coherent
acoustic phonon modes [33] (or “breathing modes” with an in
phase atomic vibration). As a vibrational mode with 
1 point
group symmetry, the coherent acoustic phonon mode strongly
couples with the lattice distortion induced by photon excita-
tion and results in a strong phonon replica in PLS. Moreover,
the confinement effect leads to the redshift of the coherent
acoustic phonon with increasing cluster size from 19.2 meV
in Si87H76 NC (a) to 15.0 meV in Si147H100 NC (b), 14.6 meV
in Si281H172 NC (c), and 14.0 meV in Si465H228 NC (d), which
have been accurately described by using the classical Lamb
model [33,48].

In addition to the coherent acoustic phonon modes, another
interesting phonon can be seen at around 60 meV [indicated
with O in Fig. 3(d)]. This mode is an optical-like phonon
mode, close in frequency to the LO mode in bulk silicon at
63 meV, and the frequency of such mode is nearly constant
over the entire cluster size range studied.

The dominant peak at 43 meV in Si87H76 [indicated with a
B in Fig. 3(a)] is induced by another type of coherent acoustic
phonon mode, where the vibration can be separated into a
breathing core part and a breathing shell part with opposite
phases.

The results for CdSe NCs (Fig. 4) show a phonon satel-
lite peak at 18.7 meV in Cd43Se44H∗

76 NC (a), 12.9 meV in
Cd79Se68H∗

100 (b), and 9.2 meV in Cd135Se140H∗
172 NC (c) that

we can identify as a coherent acoustic mode (breathing mode,
indicated as CA in Fig. 4). The strongest peaks at 7.6 meV
of Cd43Se44H∗

76 NC (a), 7.5 meV in Cd79Se68H∗
100 (b), and

4.5 meV in Cd135Se140H∗
172 NC (c) (indicated as B in Fig. 4)

originate from a type of breathing mode where the structure
oscillates between oblate and prolate shapes. As a confined
mode, we see a redshift of these peaks with increasing cluster
size.

The bulk CdSe LO phonon is at 26.4 meV and we can
identify the optical character of the NC phonon modes at
this energy in all three structures. The contribution from op-
tical modes seems to become larger for larger structures. In
the case of Cd135Se140H∗

172 the optical modes is as strong as
the acoustic modes. In comparison to the silicon NC case, the
phonon replica originating from the LO phonon of bulk CdSe
plays a more important role in the calculated PL spectrum of
large CdSe NC as a result of the stronger LO phonon coupling
in ionic materials.

IV. TEMPERATURE DEPENDENCE OF
PHONON SIDEBANDS

At elevated temperatures, the thermally excited vibronic
states of the initial state must be included in the calculation,
which means that we need to calculate the nuclear wave
function | φm 〉, i.e., the occupation number of the vibron state
ni

e. For this purpose we use the Bose-Einstein distribution
function

f
(
ni

eh̄ωi, T
) = 1

exp
(
ni

eh̄ωi/kBT
) − 1

, (11)
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where ni
eh̄ωi is the energy of the vibration with occupation

number ni
e. The temperature-dependent PLS is therefore cal-

culated as

Iem(E , T ) ∝ Aem(E , T )

=
3N∑

i=1

∑

ni
g

∑

ni
e

f
(
ni

eh̄ωi, T
)

× exp(−Si )
ni

e!

ni
g!

S
ni

g−ni
e

i

∣∣L(ni
g−ni

e )

ni
e

(Si )
∣∣2

× γ 2

[
E0 − E − (

ni
g − ni

e

)
h̄ωi

]2 + γ 2
. (12)

To avoid the divergence we define the occupation of the
vibron ground state ni

e = 0 as

f (ni
e = 0) = 1 −

∞∑

ni
e=1

f
(
ni

eh̄ωi
)
. (13)

As expected, at T = 0, f (ni
eh̄ωi ) is only nonzero for ni

e = 0
and this represents the case we have treated in the previous
section. By increasing temperature, the occupation number
of the excited vibron states becomes nonzero leading to the
vibronic transitions between ni

e > 0 and ni
g = 0 states. These

transitions result in anti-Stokes shift in the PLS and the pos-
sibility of such transitions increases rapidly with increasing
temperature.

In Fig. 5(a), we plot the calculated PLS of a Si465H228

NC at temperatures of T = 0, 50, 100, 150, 200, 250, and
300 K with a Lorentz broadening of 2 meV. We notice that the
intensity of the ZPL decreases and that of the anti-Stokes peak
increases with increasing temperature, especially at T higher
than 150 K. This is the result of the increased occupation of
the excited vibronic states of the excited state (ni

e = 1). We
also notice that the intensity of the Stokes peak increases with
temperature and attribute it to the appearance of vibronic tran-
sition between ni

e = 1 and ni
g = 2 (in addition to the ni

e = 0 to
ni

g = 1 low temperature transition).
To compare with experiment, we replot our results in

Fig. 5(b) using the experimentally reported temperatures of
2 K (solid blue lines), 40 K (solid green lines), 70 K (solid
orange lines), 140 K (solid red lines), and 300 K (solid black
lines). We use a Lorentz broadening of 5 meV. The exper-
imental results of Pevere et al. [19] are shown as an inset.
Due to the thermal expansion of the lattice and mainly due to
the electron-vibron zero point motion effect, the ZPL exhibits
a redshift with increasing temperature [49,50]. These effects
are not calculated in this work but, in order to compare with
experiments, the ZPL is shifted using the temperature shift
taken from experiment [19]. We see the two strong phonon
replicas in Fig. 5(b) with energies around 15 meV and 60 meV
we already described in Fig. 3 as coherent acoustic phonon
mode and optical-like phonon mode. As illustrated in the inset
of Fig. 5(b), these two characteristic phonon replicas are also
revealed in the measured PLS of oxide-passivated Si QDs.
By comparing the calculated PLS at various temperatures, we
see anti-Stokes peaks appearing at temperatures higher than
70 K. Due to the increasing occupation of the excited vibronic
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FIG. 5. (a) Calculated PLS of Si465H228 NC at different temper-
atures focusing on the energy region of the coherent acoustic mode.
(b) Calculated PLS of Si465H228 NC at different temperatures corre-
sponding to experiment [19] using a Lorentz broadening of 5 meV
(solid lines) and using a broadening of 12 meV, 15 meV, 20 meV,
and 25 meV (dashed lines). The results are shifted energetically
according to the experiment (see text). Inset: measured normalized
PLS of oxide-passivated Si-QD at different temperatures taken from
Ref. [19].

states ne > 0 with increasing temperature, the intensity of
both Stokes peaks (vibronic transitions between ne = 0 and
ng = 1 and between ne = 1 and ng = 2) and anti-Stokes peaks
(vibronic transition between ne = 1 and ng = 0) increase. At
room temperature, the intensity of the anti-Stokes and Stokes
peaks are comparable. This leads to a different line shape of
the PLS at high temperature with a broad shoulder at higher
energy. To facilitate the comparison with experiment [19] (in-
set), we further broaden our theoretical results with a Lorentz
broadening of 12, 15, 20, and 25 meV for the case of T = 40,
70, 140, and 300 K, respectively, and show the results as
dashed lines. The applied broadening is accounting for pure
dephasing [51]. The underlying process is thereby exciton-
phonon scattering and depends on the phonon lifetime, which
is decreasing with increasing temperature. The shorter phonon
lifetime leads to a larger applied broadening. However,
these lifetimes are not calculated in this work so that the
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FIG. 6. (a) Calculated PLS of CdSe NC with R = 11.6 Å ra-
dius. The EZPL has been set to zero and the temperature to 30 K.
Distinct phonon satellite peaks are marked by arrows and labeled
A–F. (b) Measured photoluminescence spectrum of CdSe-CdS-ZnS
core-shell-shell NC with core radius of 18 Å and overall radius of
about 23.5 Å. The experimental data is taken from Ref. [11].

broadening are simply applied according to the experimental
results. Using this broadening we obtain a very good agree-
ment to the measured PLS.

V. COMPARISON WITH LOW-TEMPERATURE
EXPERIMENT

In Fig. 6 we compare our calculated PLS of
Cd135Se140H∗

172 cluster with 11.6 Å radius to the measured
PLS of CdSe-CdS-ZnS core-shell-shell NC with 18 Å radius
core and 23.5 Å overall radius, taken from Ref. [11]. To
avoid thermal broadening of the PLS, the measurements
in Ref. [11] were performed at 8 K. The calculated PLS
shown here corresponds to the structure already discussed in
Fig. 4(c) but has been calculated at a temperature of 30 K
using Eq. (12). Both the calculated and measured spectra are
energetically shifted by setting the energy of the ZPL to zero.
In Ref. [11], the distinct peaks measured in the PL spectrum
were marked as A–I and we have followed this description
for the theoretical results. Comparing Figs. 6(a) and 6(b), we
see that we obtain a general good agreement and are able
to find a correspondence between the peaks identified in the
experiment and the theory.

Among the phonon sidebands, peak A is an anti-Stokes
peak induced by the vibronic transition between ne = 1 in

the excited state and ng = 0 in the electronic ground state.
Due to the weak phonon occupation of the excited electronic
state at low temperature, we see the intensity of peak A is
lower than that of the Stokes peaks. We obtain a good fit
to the experiment for this peak using a temperature of 20 to
30 K, which is higher than the 8 K reported in the experiment.
At a temperature of 8 K the vibronic state ne = 1 is almost
unoccupied and peak A nearly absent. We can think about
two different origins for this discrepancy. First, our simple as-
sumption of a thermalized system (Bose-Einstein occupation
of the excitonic states) may not correspond to the experimen-
tal situation and a more complete theoretical model involving
excited state carrier dynamics may be required. In view of the
dense manifold of vibrational states and the small separation
of excitonic levels we, however, do not expect a particularly
slow thermalization process [52]. Second, the experimental
conditions of the probed sample may not correspond to 8 K
but to a higher temperature. Note that the remaining peaks
fit well to the experiment already at 8 K and change only
marginally increasing the temperature to 30 K.

By analyzing the vibrational eigenvectors we can see that
the modes B and C correspond to a radial atomic motion,
where the atoms are out of phase, while peak D corresponds
to the coherent acoustic mode (or breathing mode) where the
atoms are in phase. The fact that we obtain a good agreement
between the energetic position of peak D, despite the differ-
ences in radii (experimental QD with 18 Å radius and our
QD with 11.6 Å radius) suggests a weak confinement effect
on the vibrational frequency at these radii. Our calculations
show that peak E corresponds to acoustic-like vibrations with
radial character, much like the peaks B and C. In contrast,
peak F originates from the LO phonon mode of the CdSe bulk
counterpart. We obtain a slightly blueshifted position of this
peak, compared to experiment that can be explained by the
bond length reduction we obtain at the surface of our CdSe
NCs, which does not represent the experimental core/shell
situation. The peaks identified as I,H,G in the experiment are
related to vibrations of the CdS and ZnS shell. These cannot
be present in our calculations since we do not use any shell
material. The peaks we obtain at around 40 meV are the result
of blueshifted CdSe vibrations induced by the light masses of
our surface passivants.

VI. HIGH CLASS TRANSITION IN DIAMONDOIDS

Until now, we have discussed NCs that exhibit a moder-
ate electron-vibron coupling (S < 1) and hence the PLS was
strongly dominated by class 1 transitions with a low number of
vibrons (mainly n1

g = 1). In this section, we focus on diamon-
doids, which are hydrogen-terminated diamond nanoparticles
composed of an sp3 hybridized carbon framework [53–55]
and have strong electron-vibron coupling (large HR factors).
In these structures higher class transitions are expected to
become relevant as well as transitions involving n1

g > 1. The
size and symmetry of diamondoids are determined by the
number and the geometry of the sp3 hybridized diamond
cages. Due to their unique physical properties with simple
and well-defined atomic structures, a lot of attention has been
paid to these structures from both experimental and theoretical
sides [53–59]. Recently, laser-excited fluorescence spectra of
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FIG. 7. Calculated PLS of (a) C10H16 (Td ), (b) C14H20 (D3d ), (c) C18H24 (C2v), (d) C22H28 (C3v), and (e) C26H32 (Td ) diamonoids decomposed
into contributions from different classes of transitions (see Fig. 2 for an explanation of the classes). Class 0 represents the ZPL with the
transition from ne = 0 to ng = 0. The PLS of C10H16 is calculated until class 4, while (b)–(e) are calculated until class 3. Experimental data
taken from Ref. [60] are given as red lines in the top panels of (a) and (b).

free diamondoid molecules were reported by Richter et al.
with ab initio DFT and time-dependent density functional
theory (TDDFT) calculations [60]. In their work, high class
vibronic transitions, which correspond to the excitation of
vibrons of different modes simultaneously, were considered
to explain the measured emission spectra.

To calculate the overlap of nuclear wave functions 〈φm|φn〉
for high class transitions, Richter et al. [60] performed a
Duschinsky transformation between the vibrational modes of
the ground and excited electronic states and used ab initio
DFT and TDDFT [40,41,60]. To avoid the large required
computational time and memory usage associated with the
Duschinsky transformation approach, we have used a sim-
plified approach introduced in the methods section. For zero
temperature, when the nuclear wave function associated with
the excited electronic state is in the ground state, | φm 〉 =
| φ0 〉 ≡ | 0, 0, . . . , 0 〉, the overlap 〈φ0|φn〉 was already given
as Eq. (10). This result corresponds to class 1 transitions (see
Fig. 2). For class 2 transitions we propose a straightforward
extension of Eq. (10):

|〈φ0|φn〉|2 =
i 
= j∑

i, j

S
ni

g

i S
n j

g

j(
ni

g + n j
g
)
!

exp(−Si, j ), (14)

and accordingly for class 3

|〈φ0|φn〉|2 =
i 
= j 
=k∑

i, j,k

S
ni

g

i S
n j

g

j S
nk

g

k(
ni

g + n j
g + nk

g

)
!

exp(−Si, j,k ), (15)

with | φn 〉 composed of vibrations involving two and three
different phonon modes, respectively. Si( j,k) and ni( j,k)

g denote
the HR factors and the excited phonon number of vibrational
mode i( j, k), respectively. In Eqs. (14) and (15), weighted
average HR factors Si, j and Si, j,k are approximately used in
the high class transitions as

Si, j = ni
gS

ni
g

i + n j
gS

n j
g

j

ni
g + n j

g

, Si, j,k = ni
gS

ni
g

i + n j
gS

n j
g

j + nk
gS

nk
g

k

ni
g + n j

g + nk
g

.

Equations for higher class transitions can be easily derived
accordingly.

In Fig. 7(a), we present the PLS of C10H16 with Td sym-
metry (adamantane) resolved by classes and compare the
results to experiment [60] (red line). The vibrational modes
with dominant PL intensity for class 1 transitions are breath-
ing type modes in agreement with our earlier work [27]
where we showed that modes with 
1 point group symmetry
have nonvanishing HR factors. Here we want to highlight
the importance of the symmetry of the excited states. In-
deed, while the point group symmetry of the ground state
is Td , the electronically excited state has a reduced symme-
try, as described earlier [42,61], and we perform our CDFT
calculation without imposing any symmetry constraints. In
Figs. 7(b)–7(e), we show the experimental (from Ref. [60])
and theoretical results for (a) C14H20 with D3d symmetry
(diamantane), (b) C18H24 with C2v symmetry (triaman-
tane), (c) C22H28 with C3v symmetry ([1(2)3]tetramantane),
and (d) C26H32 with Td symmetry ([1(2,3)4]pentamantane)
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FIG. 8. Calculated vibrational frequencies in the electronic
ground and excited states for C10H16 and C22H28.

diamondoids. The comparison with experiment shows a very
good agreement for the diamondoids we studied except for
C14H20. Note that the band gaps of C10H16 and C14H20 are
beyond the photon energy range of the optical parametric
oscillator laser used in the experiment. Instead, synchrotron
radiation was used as the pump source. In contrast to C10H16,
the excitation energy of the synchrotron radiation significantly
exceeds the band gap of C14H20. This results in additional
intramolecular vibrational redistribution and causes the exper-
imental spectrum to be considerably congested. In addition,
a lower signal-to-noise ratio in synchrotron measurement
leads to the relatively strong background in the measured
PLS of the C14H20 cluster. See Ref. [62] for a detailed
discussion. In Fig. 7 we also generally notice that the spec-
trum intensity has relatively strong contributions from class
2 and even class 3 transitions [class 4 transitions are only
relevant in C10H16; see Fig. 7(a)]. A further benchmark of
the quality of our high class model is given by the direct
comparison to the more expensive Duschinsky rotation ap-
proach [60,62]. We obtain a very good agreement between
the line shapes and peak positions for all structures, including
the C14H20.

As mentioned in Sec. II we do not take into account the
change in frequency going from the ground to the excited
state. While this approach is well justified for larger structures
it represents an approximation for smaller structures such as
small diamondoids. In Fig. 8 we show the vibrational frequen-
cies obtained for the ground electronic state and for the singlet
excited electronic state for C10H16 and C22H28. We can see for
C10H16 a small redshift of the C-vibrational modes (indicated
by an asterisk *) and a large redshift for the H vibrations,
which can be explained by the fact that upon excitation an
electron is promoted from a bonding to an antibonding orbital
causing a weakening of the bonds. We can also observe at
low frequencies and for the H vibrations that degenerate vi-
brational modes split (indicated by small arrows), due to the
reduced symmetry of the excited state. Already for the slightly
larger C22H28 structure, the vibrational frequency change is
less severe.

VII. SUMMARY

In summary, we present a theoretical approach which al-
lows us to include vibronic coupling effects in the treatment
of the optical properties of NCs. While the method relies on
a few approximations and is computationally very advanta-
geous, it is demonstrated to agree well with experiment and
with high-level ab initio approaches (for very small structure,
where these approaches are feasible).

With this approach we study vibronic coupling effects and
the emergence of phonon satellites in Si and CdSe colloidal
NCs with radii ranging from 7.8 to 14.9 Å at both zero and
finite temperatures. We further study multiphonon processes
(high class vibronic transitions) using five different small
carbon structures called diamondoids. We find the follow-
ing. (i) The phonon satellites in the PLS of colloidal CdSe
and Si semiconductor NCs are dominated by vibrations with
breathing character: the coherent acoustic mode (all atoms
in phase) and breathing modes where core and shell atoms
have opposite phases. Contributions from optical-like phonon
modes are strong in CdSe, especially in larger structures,
while it is much weaker, but still observable, in Si NCs.
(ii) Phonon satellites at zero temperature are mainly induced
by vibronic transitions between the excited electronic state
with phonon number ne = 0 to the ground electronic state
with phonon number ng = 1, as illustrated in Fig. 1. This
observation is in line with the small HR factors of our NCs.
Higher order transition between ne = 0 and ng = 2 or 3 can
only be seen in NCs with stronger exciton-phonon coupling.
(iii) For PL at finite temperatures, the excited electronic state
shows as thermal vibron occupation (ne > 0 occupied) and
the transition to the vibronic ground state (ground electronic
state with ng = 0) leads to significant anti-Stokes PL peaks
starting at around 140 K. These thermally excited vibronic
states along with the reduction of phonon lifetime (not calcu-
lated in this work) deeply alters the line shape of PLS at high
temperatures. (iv) We obtain significant contributions from
high class transitions for our small diamondoid structures.
In these structures, the effect is very strong, up to class 4
for our smallest adamantane structure, and neglecting them
would lead to significant deviations from experiment. For
the larger Si and CdSe NC these effects are small. Since
high class transitions are stronger in structures with large
HR factors, we expect them to become relevant for some
defects.

Our general good agreement with experiment allows us to
interpret experimental data in a peak-by-peak fashion. We ex-
pect that this ability to accurately simulate the PLS, including
vibronic coupling, will be beneficial to the interpretation of
low temperature PL measurements in the future.
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