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We develop a quantum mechanical theory to describe the optical response of semiconductor nanostructures
with a particular emphasis on higher-order harmonic generation. Based on a tight-binding approach we take all
two-particle correlations into account thus describing the creation, evolution, and annihilation of electrons and
holes. In the limiting case of bulk materials, we obtain the same precision as that achieved by solving the well-
established semiconductor Bloch equations. For semiconducting structures of finite extent, we also incorporate
the surrounding space thus enabling a description of electron emission. In addition, we incorporate different
relaxation mechanisms such as dephasing and damping of intraband currents. Starting from precise material
data as, e.g., from tight-binding parameters obtained from density-functional-theory calculations, we obtain a
numerical description being by far less computationally challenging and resource-demanding as comparable ab
initio approaches, e.g., those based on time-dependent density functional theory.

DOI: 10.1103/PhysRevB.106.245307

I. INTRODUCTION

Since the first observation of high-harmonic generation
(HHG) in solids [1] it has become clear that its underlying
physics is heavily determined by the band structure of the
crystal lattice [2,3] resulting in interesting phenomena such
as dynamical Bloch oscillations [4,5]. This complex electron-
hole dynamics in dielectrics leaves its traces in the generated
spectra [6,7]. Several theoretical approaches have been ap-
plied to describe this phenomenon, such as those based on
the time-dependent Schrödinger equation (TDSE) [8] or time-
dependent density-functional theory (TDDFT) [9]. In contrast
to these computationally extremely challenging approaches,
the semiconductor Bloch equations (SBEs) consider the full
electron-hole evolution on the level of two-particle correla-
tions [10,11] and have proven to be extremely successful with
respect to the modeling of the bulk response. However, as
SBEs are based on a Bloch-wave representation in reciprocal
space, on first sight they appear to be unsuitable for a descrip-
tion of quantum systems with finite spatial extent.

Several attempts have been made to efficiently simulate
HHG in nonperiodic semiconductor structures. Localized im-
purities have been studied based on a single-particle picture
[12]. Explicit spatial dependencies have also to be considered
to describe the effect of random lattice distortions [13,14].
The authors of those works utilized a Wannier-function based
tight-binding description, which not only included single-
particle transport, but also interband transitions. They could
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demonstrate that the presence of random lattice distortions
leads to HHG spectra with clean harmonic peaks, which other-
wise can only be obtained for extremely short dephasing times
in calculations based on SBEs. McDonald et al. have modeled
HHG in semiconducting nanowires using a single-particle
approach based on a frozen valence-band approximation [15].
They claimed that confinement may result in an effective
enhancement mainly due to a change of the density of states.
Very recently, CdSe semiconductor quantum dots have been
experimentally examined in the context of HHG [16]. Sur-
prisingly, HHG was found to be suppressed for smaller dots
compared with the bulk material.

As of now, there is no theoretical method available which
allows simulation and investigation of the nonlinear optical
response of these quantum dots. Some insight can be obtained
by solving a one-dimensional time-dependent Schrödinger
equation (TDSE) for a single active electron (see Fig. 1 and
the Appendix for details). It shows strong dynamical features
induced by the optical pulse including partial electron emis-
sion, induced chaotic motion, and the generation of excited
states by an optical pulse. For the smallest dots investigated
here, the spectrum looks very noisy and featureless. The
driven wave packet bounces off the potential wall, leading
to a long living irregular motion. In real systems, damping
removes such chaotic features, thus, helping to recover a clear
spectrum. In the TDSE-based simulations, such damping can
only be later artificially introduced by adding a time window
to the signal prior to Fourier transformation (not done here).
But regardless of the quality of generated spectra, TDSE-
based simulations seem not to reproduce the experimental
trend that HHG spectra decay faster for smaller than for larger
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FIG. 1. Overview of the results obtained by solving the 1D time-dependent Schrödinger equation (TDSE) with a single active electron in
a potential well. (a) Model potential with binding energy mimicking the work function of CdSe and ground state wave function for a small
dot with a size of 2.2 nm. (b) Time-dependent electron density of the system driven by a laser field with a peak field strength of 2.5 V/nm.
The electronic wave packet, which is initially in the ground state, remains excited, after the pulse has left. Small parts of the electronic wave
function leave the dot and are partially driven back. (c) High-order harmonic spectrum from the TDSE model for dots of various sizes (graphs
of the 10- and 50-nm dots are shifted downwards by 30 and 60 dB).

structures [16]. Hence, important features such as carrier
generation and joint electron and hole dynamics, which are
missing in a TDSE based simulation, seem to be essential to
model HHG spectra of semiconductor nanostructures.

All those effects are in principle included in full real-time
time-dependent density functional theory (rtTDDFT) simu-
lations. We performed such calculations for nanostructures
composed of 4, 16, and 64 atoms or 1, 4, and 16 unit cells
of the underlying lattice, respectively, being exposed to a
50-fs pulse. We employed the package OCTOPUS ([17], see
the Appendix for details) and it required more than 175 000
CPU hours of calculation for the 64-atom dot (see Fig. 2). To
see significant HHG we had to increase the field strength to an
unrealistically high value (10 V/nm instead of 2.5 V/nm). Still
the resulting HHG spectra did not show the experimentally
observed trend of a reduced efficiency for smaller structures,
most likely because the simulated structures were much too
small. Note that the smallest CdSe dots, for which HHG was
observed in [16], consisted of about 170 unit cells correspond-
ing to 680 atoms. For even smaller dots no significant HHG
could be observed experimentally in certain agreement with
our simulations. Hence, full ab initio approaches to HHG in
dots are computationally prohibitive and other approaches are
required.

In this work, we develop a quantum mechanical time-
dependent tight-binding model for electrons and holes en-
abling us to describe of the optical response of semiconductor
nanostructures such as, e.g., quantum dots or wires. To this
end we transfer the SBEs from reciprocal to real space while
keeping the same precision, at least for infinite structures.
Such a perturbative approach results in two-particle wave
functions describing the space-resolved generation and prop-

agation of electrons and holes. It also allows us to incorporate
arbitrary semiconductor band structures that are obtained
via density-functional theory (DFT) calculations. This tight-
binding approach allows us to model interfaces as well as
electron emission to the surrounding space. The derived equa-
tions lead to computationally efficient codes, allowing us to
simulate the nonlinear optical response of semiconducting
nanostructures on a conventional laptop computer.

Here, we illustrate the basic features of the general
theory for the simplest case. We restrict ourselves to a one-
dimensional two-band description, considering only a single
valence and a single conduction band. Although the actual 3D
structure of, e.g., a real semiconductor wire or even a dot is not
adequately reflected by this treatment, it is straightforward to
extend our approach to three dimensions and any semiconduc-
tor having (usually) more relevant valence bands.

The paper is structured as follows: We first define the
basis of our tight-binding approach by discussing the single-
particle system in the bulk. Then, we perform a second
quantization towards a many-particle description. Starting
from electron and hole creation and annihilation operators
in reciprocal space, we derive the tight-binding Hamiltonian
of the semiconductor in second quantization including light-
matter interaction. As electrons may leave the nanostructure,
we also include the space surrounding the dot into our ap-
proach. With the complete Hamiltonian in our hands, we then
proceed to define the optical polarization and formulate a set
of coupled differential equations for its evolution. Finally, we
apply the scheme to our model system that resembles a CdSe
quantum nanostructure. A summary concludes the paper, and
a collection of material properties and numerical parameters
can be found in the Appendix.
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FIG. 2. HHG spectra of CdSe clusters calculated with rtTDDFT using an excitation pulse with peak field strength of 9.95 V/nm and 50 fs
duration to reduce computation time. Clusters were optimized for minimum equilibrium energy. For the largest possible structure (Cd32Se32),
the spherical simulation box including the absorber is shown.

II. SINGLE-PARTICLE SYSTEM IN THE BULK

A. Eigenfunctions and eigenenergies

All formulas are expressed in atomic units, i.e., we set
e = 1, h̄ = 1, me = 1, ε0 = 1, and we restrict ourselves to a
one-dimensional representation (for a straightforward gener-
alization towards three dimensions see, e.g., Ref. [18] and
references therein).

We start from the single particle eigenfunctions of the
unperturbed bulk crystal. In the real-space representation, the
corresponding Bloch waves |ψη

k 〉 of a certain band η and
Bloch vector k −π

a � k � π
a read as〈

x
∣∣ψη

k

〉 = ψ
η

k (x) = uη

k (x) exp (ikx), (1)

where uη

k (x) is the lattice periodic part uη

k (x + a) = uη

k (x) and
a denotes the size of the elementary cell. These Bloch waves
|ψη

k 〉 fulfill the orthogonality relation

〈
ψ

η′
k′

∣∣ψη

k

〉 =
∫ ∞

−∞
dx ψ

η′
k′ (�r)∗ψη

k (�r) = δηη′δ(k − k′), (2)

where δηη′ is the Kronecker symbol and δ(k−k′) is the delta
distribution.

Their phase can be chosen such that the symmetry relation
uη

−k (x) = uη

k (x)∗ is fulfilled. The energies εη(k) are eigenval-

ues of the single-particle Hamiltonian Ĥ0, i.e.,

Ĥ0

∣∣ψη

k

〉 = εη(k)
∣∣ψη

k

〉
, (3)

and have the Fourier expansion

εη(k) =
∞∑

m=−∞
εη

m exp (ima k). (4)

As the band structure is symmetric and real, εη
m = εη

m
∗ =

ε
η
−m holds. For the considered case of a dielectric with direct

transition at k = 0, there is a gap in the energy spectrum
defined as εgap = ∑∞

m=−∞ (εc
m−εv

m). In what follows, we con-
sider a two-band model and define the energy zero in the
middle of the gap between the valence and the conduction
band.

The Fourier coefficients of the bands are related to the ex-
perimentally well-accessible effective masses given by 1

mη
=

∂2

∂k2 εη(k)|k=0 = −2
∑∞

m=1 (ma)2εη
m. Restricting ourselves to

the zeroth and the first Fourier component, we obtain within
the two-band model a cosine-shaped band structure as εη(k) ≈
εgap

2 − 1
mηa2 cos(a k), which will allow us later to restrict to

nearest neighbor interactions.

B. Transition dipole elements between conduction
and valence band

The transition dipole matrix elements between the conduc-
tion and valence band are

D(k) =
∫ a/2

−a/2
dx uc

k
∗(x)x uν

k (x), (5)

with the Fourier expansion

D(k) =
∞∑

m=−∞
Dm exp (imak), (6)

and D−m = D∗
m caused by time-inversion symmetry of the

Bloch waves [see the phase choice with respect of an inversion
of k discussed below Eq. (2)].
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Note that the above definition (5) is rarely used because
of the ambiguity of the definition of the elementary cell in a
periodic lattice. In DFT calculations one usually determines
respective momentum elements first which are later used to
derive the required dipole elements (for a detailed discussion
see [19,20]). But this has no effect on the Fourier expansion
(6) and the resulting symmetries.

We again restrict to the simplest case m = 0, i.e., a
completely local optical transition without any immediate
transverse transport.

C. Tight-binding approach

A maximally localized or Wannier state |ϕη
n 〉 of band η on

site n is constructed by a superposition of Bloch waves and
reads in spatial representation as

〈x∣∣ϕη
n

〉 = ϕη
n (x) =

√
a

2π

∫ π/a

−π/a
dk ψ

η

k (x + na)

=
√

a

2π

∫ π/a

−π/a
dk uη

k (x) exp [ik(x + na)], (7)

where the phase of the Bloch waves is chosen such that maxi-
mum localization of the tight-binding states ϕη

n (x) is obtained.
As Bloch waves and Wannier states are connected by a unitary
transformation, the Wannier functions obey the orthogonality
relation ∫ ∞

−∞
dx ϕ

η′
n′ (x)∗ϕη

n (x) = δη′ηδnn′ . (8)

Different tight-binding states are solely shifted with respect
to each other by multiples of the lattice period according to

ϕ
η
n+m(x) =

∫ π/a

−π/a
dk uη

k (x) exp [ik(x + na + ma)]

= ϕη
n (x + ma). (9)

III. MANY-PARTICLE APPROACH

A. Electron creation and annihilation operators of Bloch states

In the equilibrium state |0〉 of the system, thermal excita-
tions of conduction-band electrons can be neglected. Hence,
initially all single-particle states of the valence band are oc-
cupied by electrons and all conduction-band states are empty.
The creation of an electron with a certain quasimomentum k in
state |ψc

k 〉 of the conduction band is described by the creation
operator 
̂c

k
+. It is accompanied by the removal of an electron

from the valence band, a process which is described by the
application of a fermionic annihilation operator 
̂v

k . Here,
we have already assumed that momentum conservation holds
which is typical for optical excitations. The resulting creation
of an excited state |∗〉k is thus expressed as |∗〉k = 
̂c

k
+
̂v

k |0〉.
Those creation and annihilation operators are adjoint

to each other 
̂
η

k
+ = (
̂η

k )
+

and obey the anticom-

mutator [Â, B̂]+ = ÂB̂ + B̂Â relations [
̂η

k , 
̂
η′
k′ ]+ =

[
̂η

k
+
, 
̂

η′
k′

+
]+ = 0 and [
̂η

k , 
̂
η′
k′

+
]+ = 
̂

η

k 
̂
η′
k′

+ +

̂

η′
k′

+

̂

η

k = δηη′δ(k−k′), where the number operator 
̂
η

k
+

̂

η

k
appears.

B. Introduction of holes

It is convenient to rather count holes instead of electrons in
the valence band. Hence, new electron and hole creation and
annihilation operators are introduced as 
̂v

k = ĥ+
−k and 
̂c

k
+ =

ê+
k and the momentum conserving creation of an electron-hole

pair now reads as |∗〉k = ê+
k ĥ+

−k|0〉.
While anticommutator relations and conduction band en-

ergies remain unchanged, hole energies feature a sign change
as compared with valence band energies, i.e., while εe(k) =
εc(k) it is εh(k) = −εv (k).

C. Many-particle Hamiltonian of the bulk solid
in the Bloch basis

The simplest form of the bulk many-particle Hamiltonian
in the Bloch-wave basis within our approximations (two band
model, one-dimensional description, no Coulomb interaction)
reads as

ĤB=ĤB
0 + ĤB

inter + ĤB
intra. (10)

Ĥb
0 accounts for the energies of the bulk semiconductor

as defined in (3) and, in terms of creation and annihilation
operators, read as

ĤB
0 =

∫ π/a

−π/a
dk[εe(k)ê+

k êk + εh(k)ĥ+
k ĥk]. (11)

Ĥb
inter describes the optical transitions between bands under

the action of a time-dependent electrical field E (t ) as

ĤB
inter = E (t )

∫ π/a

−π/a
dk[D(k)ê+

k ĥ+
−k + D(k)∗ĥ−k êk]. (12)

The optical field also accelerates charge carriers within
their respective bands, an effect which is represented by

ĤB
intra = iE (t )

∫ π/a

−π/a
dk

(
ê+

k

∂

∂k
êk − ĥ+

k

∂

∂k
ĥk

)
. (13)

The Hamiltonian introduced in (10) leads to the well-
known SBEs [10,11]. In what follows, we will refrain from
using this Hamiltonian directly, but rather will apply a tight-
binding approach which will lead to evolution equations that
are as accurate as the SBEs when it comes to the description
of the bulk.

D. Tight-binding approach

Tight-binding creation and annihilation operators of elec-
trons and holes are derived from respective operators in the
Bloch basis using the unitary transformation (7), similar to
what has been done for the single-particle wave functions:

ên =
√

a

2π

∫ π/a

−π/a
dk êk exp (ikna)

and ĥn =
√

a

2π

∫ π/a

−π/a
dk ĥk exp (ikna). (14)
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The associated inverse transformation

êk =
√

a

2π

∑
n

ên exp [−ikna]

and ĥk =
√

a

2π

∑
n

ĥn exp [−ikna], (15)

is based on the relation
∑

n exp(inka) = 2π
a δ(k) for −π

a <

k � π
a . Again, creation and annihilation operators are adjoint

counterparts, i.e., ê+
n = (ên)+ and ĥ+

n = (ĥn)
+

. Hence, an ex-
cited state |∗〉n consisting of, e.g., an electron and a hole at
site n is created from the equilibrium state by applying the
corresponding creation operators |∗〉n = ê+

n ĥ+
n |0〉.

As the above transformation is unitary, respective anticom-
mutator and orthogonality relations result in

[ên, ên′ ]+ = [ĥn, ĥn′ ]+ = [ên, ĥn′ ]+ = [ên, ĥ+
n′ ]+ = 0

and [ên, ê+
n′ ]+ = δnn′ , [ĥn, ĥ+

n′ ]+ = δnn′ , (16)

ensuring fermionic properties. The operators N̂e
n = ê+

n ên and
N̂h

n = ĥ+
n ĥn now count electrons and holes on site n, respec-

tively. Their expectation values evaluate to 0 and 1 if applied
to the ground |0〉 and the set of excited states |∗〉n, respectively.

IV. MANY-PARTICLE HAMILTONIAN OF THE BULK
SOLID IN THE TIGHT-BINDING BASIS

Inserting the inverse unitary transformation (15) into ĤB
0

defined in Eq. (11) and using the Fourier expansion of the
single particle energies (4) results in

Ĥtb
0 =

∞∑
n=−∞

∞∑
m=−∞

(
εe

mê+
n ên−m + εh

mĥ+
n ĥn−m

)
. (17)

Note that all higher Fourier terms |m| � 1 account for
particle hopping between the sides.

In what follows we restrict to nearest neighbor interaction
and use the tight-binding Hamiltonian

Ĥtb
0 =

∞∑
n=−∞

[
εgap

2
(ê+

n ên + ĥ+
n ĥn)

− 1

2mea2
(ê+

n+1ên + ê+
n ên+1 − ê+

n ên − ê+
n+1ên+1)

× − 1

2mha2
(ĥ+

n+1ĥn + ĥ+
n ĥn+1 − ĥ+

n ĥn − ĥ+
n+1ĥn+1)

]

(18)

with εgap = εe
0 + εe

1 + εh
0 + εh

1.
We now apply the same procedure to the interband transi-

tions, Eq. (12), and employ the Fourier decomposition of the
dipole matrix elements, Eq. (6), resulting in

Ĥtb
inter = E (t )

∞∑
n=−∞

{
D0ê+

n ĥ+
n +

∞∑
m=1

[Re(Dm)ê+
n (ĥ+

n+m+ĥ+
n−m)

− iIm(Dm)ê+
n (ĥ+

n+m − ĥ+
n−m)]

}
+ H.c.,

(19)

where H.c. denotes the Hermitian conjugate. Hence, upon an
optical excitation, a k-dependent dipole matrix element causes
transverse transport. Such transport can be symmetric in the
case of a real dipole element or may have an antisymmetric
component for a nonvanishing imaginary part.

As a further assumption, we restrict ourselves to spatially
local transitions using an interband Hamiltonian as

Ĥtb
inter = E (t )D0

∞∑
n=−∞

(ê+
n ĥ+

n + ĥnên). (20)

Applying the inverse unitary transformation to Ĥtb
intra yields

within the dipole approximation

Ĥtb
intra = −E (t )

∞∑
n=−∞

a n(ĥ+
n ĥn − ê+

n ên). (21)

V. MANY-PARTICLE HAMILTONIAN FOR A
SEMICONDUCTOR NANOSTRUCTURE

Now, we discuss the interaction of a strong optical field
with a confined system, a quantum wire or dot centered at po-
sition x0. It is assumed to consist of semiconducting material
in a range |x − x0| � L/2, which is embedded in free space,
either vacuum or a material without any crystalline structure,
e.g., a liquid.

A. Tight-binding description of electron motion

As electrons might be able to leave the nanostructure due
to the acceleration by the optical field, we have to describe
the surrounding space in a manner consistent with the tight-
binding description of the semiconductor. Although the free
space outside is continuous, any numerical procedure requires
its discretization to successfully describe the motion of a
quantum particle within it. Hence, a tight-binding description
is justified also for free space as long as spatial phase vari-
ations are described correctly, at least for relevant values of
momenta.

We again start with the single-particle Hamiltonian of the
electron in free space. To account for the ionization energy
each electron emitted into free space is labeled with a rest
energy εfree space as measured from the middle of the gap of
the semiconductor. Within a numerical description, free space
will be discretized in a regular lattice with a spacing of dx as

Ĥ f
0 =

∫
free space

dx

[
εfree spaceψ (x)∗ψ (x)

+ ψ (x)∗
(

−1

2

∂2

∂x2

)
ψ (x)

]

≈
free space∑

n

[
εfree space

√
dxψ (n dx)∗

√
dxψ (n dx)

−
√

dxψ (n dx)∗
1

2 dx2
{
√

dxψ[(n + 1) dx]

+
√

dxψ[(n − 1) dx] − 2
√

dxψ (n dx)}
]
.

Accordingly, in the above Hamiltonian we have re-
placed the continuous single-particle wave function ψ (x)
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by a discrete set of complex amplitudes
√

dx ψ (n dx) and√
dx ψ (n dx)∗. Following the scheme of second quantization

these amplitudes are replaced by electron annihilation ên and
creation operators ê+

n where the normalization is chosen such
that ê+

n ên counts the number of electrons in the space inter-
val (n − 1

2 ) dx < x � (n + 1
2 ) dx. This results in a free-space

tight-binding Hamiltonian with discretized spatial derivative
as

Ĥ f
0 =

free space∑
n

[
εfree spaceê+

n ên

− 1

2 dx2
(ê+

n ên+1 + ê+
n+1ên − ê+

n ên − ê+
n+1ên+1)

]
.

(22)

Hence, within a tight-binding approximation, electrons in
free space and in the conduction band of a semiconductor are
described in a very similar fashion [compare Eqs. (18) and
(22)].

As for every numerical description, accumulated phase dif-
ferences between neighboring sites must remain much smaller
than π . Hence, the higher the momenta acquired by electrons
outside the nanostructure, the finer the discretization (here dx)
must be.

In what follows we will combine bulk (18) and free space
(22) versions into a global Hamiltonian

Ĥ0 =
∞∑

n=−∞

[
εe

nê+
n ên + εh

n ĥ+
n ĥn

− ce
n(ê+

n+1ên + ê+
n ên+1 − ê+

n ên − ê+
n+1ên+1)

− ch
n(ĥ+

n+1ĥn + ĥ+
n ĥn+1 − ĥ+

n ĥn + ĥ+
n+1ĥn+1)

]
(23)

with a space dependent electron energy

εe
n =

{ εg

2 inside the nanostructure for |n a − x0| � L/2
ε free spacein free space

.

The coupling constants of electrons ce
n between sites n and

n + 1 are also spatially dependent, according to

ce
n =

{ 1
2a2me

inside the nanostructure for |n a − x0| � L/2
1

2 dx2 in free space
.

In contrast, holes cannot enter free space, resulting in a
vanishing coupling outside the nanostructure, thus

ch
n =

{ 1
2a2mh

inside the nanostructure for |n a − x0| � L/2
0 in free space

.

Although such treatment allows for a consistent description
of semiconductor nanostructures in their respective environ-
ment, surface states might not be reproduced correctly and,
therefore, for realistic applications of our framework, further
modification of tight-binding parameters close to the interface
might be required.

B. Optical field action in the nanostructure and free space

Optical transitions can only happen inside the semicon-
ductor. Therefore, Ĥtb

inter in Eq. (20) does not need any

modification except for setting the transition dipole matrix
element to zero outside, resulting in

Ĥinter = E (t )
∞∑

n=−∞
dn(ê+

n ĥ+
n + ĥnên) (24)

with

dn =
{

D0 inside the nanostructure for |n a − x0| � L/2
0 in free space

Electrons in free space are accelerated by the optical field.
Hence, Ĥtb

intra of Eq. (21) needs to be modified in order to
include near-field effects as

Ĥintra = E (t )
∞∑

n=−∞
Vn(ĥ+

n ĥn − ê+
n ên). (25)

This incorporates a spatially inhomogeneous and time-
dependent effective potential E (t )Vn. In a quasistatic approx-
imation, the time-dependent electric field E (t ) is combined
with a spatially varying factor Vn that accounts for local field
enhancements. We assume that the overall nonlinear response
is weak and that the spatial shape of the optical driving field is
still determined by the linear optical response of the structure.

To demonstrate the effects of spatial dependence of the
incidence field, we approximate the optical field around the
ends of the nanostructure by that occurring around a dielectric
sphere centered at x0, for which analytical expressions are
known for the static case [21],

Vn = −
(

3 εR
free space

εR
bulk + 2 εR

free space

)

× (n a − x0) inside the nanostructure,

Vn = −(n a − x0) +
(

εR
bulk − εR

free space

εR
bulk + 2 εR

free space

)

× (L/2)3

|n a − x0|3
(n a − x0) in free space. (26)

In the above expressions, we denote with εR
bulk and

εR
free space, respectively, the relative dielectric constants of the

semiconductor material and of the surrounding space at the
frequency of the incident light field.

C. Condensed notation of the Hamiltonian

Taken together, the Hamiltonian Ĥ=Ĥ0 + Ĥinter + Ĥintra
can be summarized as

Ĥ =
∞∑

n=−∞

[
ε̃e

nê+
n ên + ε̃h

n ĥ+
n ĥn + dnE (t )(ê+

n ĥ+
n + ĥnên)

− ce
n(ê+

n+1ên + ê+
n ên+1) − ch

n(ĥ+
n+1ĥn + ĥ+

n ĥn+1)
]
,

(27)

where we have introduced time- and space-dependent electron
ε̃e

n(t ) = εe
n + ce

n−1 + ce
n−E (t )Vn and hole energies ε̃h

n (t ) =
εh

n + ch
n−1 + ch

n + E (t )Vn to simplify the notation for the
subsequent derivation of the evolution equation of the polar-
ization.
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VI. EVOLUTION OF POLARIZATION AND CURRENT
WITHIN THE TIGHT-BINDING APPROXIMATION

A. Definition of the polarization and currents interacting
with the optical field

In a classical Hamiltonian description, light-matter interac-
tion is represented by the term ∼ �P �E formed by a product of
the field and polarization. Hence, we can immediately identify
the operator of the optical polarization by collecting all the
terms that contain the electric field. It follows from (24) and
(25) that the total polarization is

P̂ =
∞∑

n=−∞
[dn(ê+

n ĥ+
n + ĥnên) + Vn(ĥ+

n ĥn − ê+
n ên)]. (28)

It contains the non-Hermitian interband polarizations
dnĥnên on a site n and the polarization due to charge im-
balances Vn(ĥ+

n ĥn − ê+
n ên) induced by macroscopic currents.

The latter term is particularly relevant in nanostructures when
charge imbalances accumulate close to the interface.

Also, intraband currents drive the optical field. In a one-
dimensional k-space representation they are represented by
[10,11]

Ĵ(t ) =
∫ π/a

−π/a
dk[vh(k)ĥ+

k ĥk − ve(k)ê+
k êk] (29)

with ve/h(k) being the group velocities of electrons and holes,
which are defined by derivatives of the dispersion relation. For
cosine shaped bands they are denoted by

ve/h(k) = ∂

∂k
εe/h(k) = 1

me/ha
sin (ak). (30)

We now insert this expression into Eq. (29), apply transfor-
mation (15), and come to a space resolved expression for the
operator of the current density as

Ĵ(t ) = 1

2ia

∑
n

[
1

mh
(ĥ+

n ĥn+1 − ĥ+
n ĥn−1)

− 1

me
(ê+

n ên+1 − ê+
n ên−1)

]
. (31)

B. Evolution equations of operators

In order to determine the optical polarization within the Heisenberg picture, we first use the Schrödinger equation to derive
evolution equations for creation and annihilation operators based on the Hamiltonian Ĥ displayed in Eq. (27) as

i
d

dt
ên = [ên, Ĥ] = ênĤ − Ĥ ên = ε̃e

nên − ce
n−1ên−1 − ce

nên+1 + E (t )dnĥ+
n ,

i
d

dt
ĥn = [ĥn, Ĥ] = ĥnĤ − Ĥ ĥn = ε̃h

n ĥn − ch
n−1ĥn−1 − ch

nĥn+1 − E (t )dnê+
n . (32)

All operators on site n are coupled to those from neighboring sites. Therefore, all two-particle operators n̂e
nm = ê+

n êm, n̂h
nm =

ĥ+
n ĥm and p̂nm = ĥnêm are mutually coupled as

i
d

dt
n̂e

nm = (
ε̃e

m − ε̃e
n

)
n̂e

nm − ce
m−1n̂e

nm−1 − ce
mn̂e

nm+1 + ce
n−1n̂e

n−1m + ce
nn̂e

n+1m + E (t )(dmp̂+
mn − dnp̂nm),

i
d

dt
n̂h

nm = (
ε̃h

m − ε̃h
n

)
n̂h

nm − ch
m−1n̂h

nm−1 − ch
mn̂h

nm+1 + ch
n−1n̂h

n−1m + ch
nn̂h

n+1m + E (t )(dmp̂+
nm − dnp̂mn),

i
d

dt
p̂nm = (

ε̃e
m + ε̃h

n

)
p̂nm − ce

m−1p̂nm−1 − ce
mp̂nm+1 − ch

n−1p̂n−1m − ch
np̂n+1m + E (t )

(
dmδnm − dnn̂e

nm − dmn̂h
mn

)
C. Expectation values

In the Heisenberg picture time dependence is solely contained in the operators and the system remains in the initial or
equilibrium state |0〉. Time-dependent expectation values of the polarization (28) and the intraband current (31) are, therefore,
given inside the nanostructure by

P(t ) = 〈0|P̂(t )|0〉 =
∞∑

n=−∞

[
dn(〈0|p̂nn|0〉∗ + 〈0|p̂nn|0〉) + Vn

(〈0|n̂h
nn|0〉 − 〈0|n̂e

nn|0〉)],
J (t ) = 〈0|Ĵ(t )|0〉 = a

i

∞∑
n=−∞

[
ch

n

(〈0|n̂h
nn+1|0〉 − 〈0|n̂h

nn−1|0〉) − ce
n

(〈0|n̂e
nn+1|0〉 − 〈0|n̂e

nn−1|0〉)], (33)

where we have expressed effective masses by respective coupling constants. Note that in free space only free electrons can
contribute to the current. Here the unit cell size a in Eq. (33) has to be replaced by dx corresponding to our free space
discretization.

Radiation is generated by accelerated carriers and is proportional to the squared Fourier transform (FT) of the second
derivative of the polarization and of the first derivative of the current as

S(ω) ∼ |ω2FT[P(t )](ω) + iωFT[J (t )](ω)|2. (34)
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To determine P and J we must follow the evolution of expectation values of two-particle correlations, i.e.,

ne
nm(t ) = 〈0|n̂e

nm|0〉, (35)

nh
nm(t ) = 〈0|n̂h

nm|0〉, and (36)

pnm(t ) = 〈0|p̂nm|0〉. (37)

Finally, the complete set of evolution equations required to determine the HHG spectrum (34) reads as

i
d

dt
ne

nm = (
ε̃e

m − ε̃e
n

)
ne

nm − ce
m−1ne

nm−1 − ce
mne

nm+1 + ce
n−1ne

n−1m + ce
nne

n+1m + E (t )(dm p∗
mn − dn pnm), (38)

i
d

dt
nh

nm = (
ε̃h

m − ε̃h
n

)
nh

nm − ch
m−1nh

nm−1 − ch
mnh

nm+1 + ch
n−1nh

n−1m + ch
nnh

n+1m + E (t )(dm p∗
nm − dn pmn), (39)

i
d

dt
pnm = (

ε̃e
m + ε̃h

n

)
pnm − ce

m−1 pnm−1 − ce
m pnm+1 − ch

n−1 pn−1m − ch
n pn+1m + E (t )

(
dmδnm − dnne

nm − dmnh
mn

)
. (40)

VII. DAMPING

The properties of real systems are critically determined
by fast damping processes which go far beyond a two-
particle description. In SBEs a phase relaxation time T2 is
introduced and ensures optical spectra with well-separated
harmonic peaks with Lorentzian line shape [10,11]. In order
to introduce those relaxation times, we modify the on-site
energies within the nanostructure according to ε̃e

n(t ) = εe
n −

i
2T2

+ ce
n−1 + ce

n−E (t )Vn and ε̃h
n (t ) = εh

n − i
2T2

+ ch
n−1 + ch

n +
E (t )Vn. Note that such a change influences the evolution
Eq. (40) of the polarization only, but not those of the carrier
concentrations.

Also, intraband or Ohmic currents are damped with a
characteristic time Tj. In momentum space such dissipative
processes are described by a forced relaxation of carriers
towards the bottom of respective bands.

According to Eq. (33) imaginary parts of off-diagonal
elements ne/h

nn−1 and ne/h
nn+1 represent Ohmic currents in a

space-resolved representation. If those shall decay, a damp-
ing of these components via additional terms of the form
− 1

Tj
(ne/h

nm − ne/h
mn ) in Eqs. (38) and (39) must be added to the

evolution equations inside the semiconductor. These damping
terms become active only for pronounced asymmetries of
respective two-particle correlation functions.

We assume damping to happen inside the nanostructure
only, resulting in space dependent relaxation times as

T p/j
n =

{
T2/j inside the nanostructure for |n a − x0| � L/2
∞in free space .

Although such a description of relaxation phenomena is
the simplest possible approach, respective relaxation times are
not well known and vary considerably from system to system.
Hence, a more involved treatment would also require a deeper
investigation of relaxation of its own.

VIII. FINAL SET OF EVOLUTION EQUATIONS

The final set of evolution equations, which must be solved numerically, reads as

i
d

dt
ne

nm = [
εe

m − εe
n + ce

m−1 + ce
m − ce

n−1 − ce
n − E (t )(Vm − Vn)

]
ne

nm − i

2

(
1

T j
n

+ 1

T j
m

)(
ne

nm − ne
mn

)
− ce

m−1ne
nm−1 − ce

mne
nm+1 + ce

n−1ne
n−1m + ce

nne
n+1m + E (t )(dm p∗

mn − dn pnm), (41)

i
d

dt
nh

nm = [
εh

m − εh
n + ch

m−1 + ch
m − ch

n−1 − ch
n + E (t )(Vm − Vn)

]
nh

nm − i

2

(
1

T j
n

+ 1

T j
m

)(
nh

nm − nh
mn

)
− ch

m−1nh
nm−1 − ch

mnh
nm+1 + ch

n−1nh
n−1m + ch

nnh
n+1m + E (t )(dm p∗

nm − dn pmn), (42)

i
d

dt
pnm =

[
εe

m + εh
n − i

2

(
1

T p
n

+ 1

T p
m

)
+ E (t )(Vn − Vm) + ce

m−1 + ce
m + ch

n−1 + ch
n

]
pnm

− ce
m−1 pnm−1 − ce

m pnm+1 − ch
n−1 pn−1m − ch

n pn+1m + E (t )
(
dmδnm − dnne

nm − dmnh
mn

)
. (43)

Here, all computed quantities, namely ne
nm, nh

nm, and pnm, vanish before the arrival of the pulse.
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FIG. 3. Linear optical properties of nanostructures under investi-
gation. Imaginary parts of polarizability per site are displayed for a
large bulklike nanowire and a small one, for which quantum confine-
ment plays an essential role (for parameters see Appendix).

IX. NUMERICAL RESULTS: HHG IN A CdSe
NANOSTRUCTURE

Here, we study HHG in nanostructures made from CdSe,
one of the standard systems to produce semiconductor quan-
tum dots with tunable size by chemical synthesis (see [22]
and references therein). Its bulk material parameters are well
known (see the Appendix) and very recently, CdSe quantum
dots have been experimentally examined in the context of
HHG [16]. Surprisingly, HHG was found to be suppressed for
smaller dots compared with the bulk material.

As already pointed out in the Introduction, full ab initio ap-
proaches to model this system are computationally prohibitive
and the here developed theoretical approach is required to
make a reliable modeling.

The above-derived set of Eqs. (41)–(43) is capable of
describing the optical response of a semiconductor nanostruc-
ture within the limits set by the underlying approximations.
We numerically solve these equations using a home-made
code in C++, in which numerical integration of the differen-
tial Eqs. (41)–(43) is performed based on a standard adaptive
Runge-Kutta scheme [23] (for a public available version of
our code, see [24]).

We investigate different quantum wires, between 2.2 and
50 nm in length containing between 5 and 104 unit cells,
respectively. Modeling of a nanostructure of 2.2 nm length
embedded in 15 nm of surrounding space and excited by a
100-fs pulse as in typical experiments reported in [16] re-
quired less than 10 s on a workstation (Intel Xenon, 8 GB
RAM). Although respective calculations are orders of magni-
tude faster, both quantum confinement and the linear optical
response of semiconducting nanostructures are reproduced.

To probe the linear spectral response, we excite the system
with a weak deltalike pulse (nonoscillating Gaussian shape,
centered at t = 0, WFWHM = 0.1 fs, peak amplitude 0.001
V/nm) and follow the evolution of the microscopic expecta-
tion values (41)–(43). As soon as the current J is negligible,
the resulting polarization, Eq. (33), is Fourier-transformed to
obtain the complex linear polarizability p. The imaginary part
of this polarizability, as displayed in Fig. 3 per site, is linked
to linear absorption. Not surprisingly, the 50-nm wire (blue
line) behaves like a one-dimensional bulk solid, featuring a

FIG. 4. Evolution of carrier numbers and occupation of individ-
ual sites in an optically excited nanowire of 2.2 nm length (five
sites). Electrons are emitted to free space resulting in an overall loss
of carriers. Additionally, the optical field of the exciting pulse is
displayed for comparison. Pulse duration: 100 fs; carrier wavelength:
5 µm; field strength: 2.5 V/nm in free space; polarization: linear
along the wire.

broad quasistructureless absorption band (blue line), which
is spectrally limited to the spectral range of the interband
transition between the two cosine-shaped bands. We also see
the typical enhancement at the band edge as expected for a
one-dimensional structure. Due to the absence of Coulomb
interaction in our model, the otherwise well-pronounced exci-
ton peak is missing. In contrast, the linear optical response of
the 2.2 nm structure (red line) is determined by quantum con-
finement causing the spectrum to be structured with localized
absorption features corresponding to the number of real-space
sites involved.

After having validated the linear optical properties, we next
investigate the systems’ nonlinear optical response. Interac-
tion with intense optical pulses (carrier wavelength 4000 nm,
WFWHM = 100 fs, peak amplitude in free space 2.5 V/nm)
results in complex carrier dynamics including the excitation
of electrons and holes as displayed for the tiny wire (2.2 nm
length or five sites) in Fig. 4. The evolution is dominated
by Rabi oscillations, but due to the finite relaxation times
(T2 = Tj = 10 fs), a net generation of carriers occurs so that
electrons and holes remain after the pulse has passed. As
already predicted on the basis of a solution of the TDSE
(see Fig. 1) excited electrons are further accelerated by the
optical field causing even a weak emission to free space and
consequently a loss of electrons. In what follows, we will
investigate how these complex joint dynamics of electrons and
holes affects HHG.

We first model HHG for the large (50 nm) and the tiny
(2.2 nm) wire, where we expect bulk behavior for the first
and confinement effects for the second system (see Fig. 5).
Indeed, the spectra of the large wire (blue line) are like those
obtained on the basis of SBEs for bulk semiconductors [7,10].
We identify the characteristic plateau region, which stretches
from the band gap (1.75 eV) up to the maximum possible
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FIG. 5. Influence of confinement on HHG spectra. The spectra
are generated by an intense pulse in a large bulklike nanowire (blue
line) and a small one (red line), for which quantum confinement plays
an essential role. Parameters as in Fig. 4. The spectra are scaled by
the squared number of sites. The blue line is shifted by +75 dB for
better visibility.

energy of an interband transition (within our model roughly
8 eV). In contrast, the HHG spectrum of the tiny structure
is obviously strongly affected by confinement. It is orders of
magnitude weaker and noticeably distorted compared with the
bulk spectrum. Even if divided by the squared number of sites
to compensate for the coherent enhancement, the power in
almost all harmonic orders of the large structure (104 sites)
is considerably higher than that emitted by the tiny (five sites)
wire. Moreover, the harmonic orders of the tiny structure also
drop off much quicker such that already the seventh order is
more than 300 times weaker than the first one. In the case of
the large structure, only the harmonics starting from the 17th
order (above 4 eV) are comparably reduced.

Taken together, two reasons for this modification of HHG
in nanostructures can be identified: On the one hand, there is a
considerable change of the energetic structure, which not only
affects the linear optical properties (see Fig. 3). On the other
hand, in tiny nanostructures, electrons, and holes constantly
interact with the interface, an effect which is also missing
in the bulk. Our model allows us to disentangle these two
contributions.

First, we mimic complete confinement by increasing the
free space energy εfree space in Eq. (22) to a quasi-infinite value
(increase by a factor of 6). This immediately causes a further
dropoff of HHG spectra as demonstrated in Fig. 6 (lower
black line). Hence, much higher energetic walls impede HHG
considerably. Thus, we can assign this to be the predominant
reason for the lower yield of the tiny wire. The overall re-
duction of HHG is even stronger than in a nanostructure with
realistic walls (cf. black and red lines in Fig. 6). Consequently,
the properties of the boundaries, which are constantly probed
by accelerated carriers have a strong impact on HHG in nanos-
tructures.

For a finite binding potential, the spatial shape of the
wave function is not considerably changed compared with
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FIG. 6. Influence of the embedding environment on the HHG
spectrum of a tiny nanostructures (five sites or 2.2 nm). Spectra of
nanostructures with different confinement potentials and surrounding
field structure are displayed (parameters as in Fig. 4), The green and
the black line are shifted by −50 and −100 dB, respectively.

the eigenstates of a box potential. But electrons may exit
into free space when driven by the electric field (cf. Fig. 4).
Emitted electrons experience the optical near field which can
be considerably stronger than the electrical field inside the
semiconductor [for a sphere, see Eq. (26)]. To quantify this
effect, we assume that the dielectric constant of the space
surrounding the nanostructure coincides with that of the semi-
conductor. This keeps the optical field in the surrounding
space constant at its bulk value within the entire simula-
tion domain. Such homogenization of the electrical field has
again a pronounced negative effect on HHG as demonstrated
in Fig. 6 (green line). We do not only observe a strong
reduction of yield, but also a considerably reduced cutoff
of the spectrum. Consequently, we conclude that the near-
field enhancement amplifies HHG. Thus, optically accelerated
electrons can be used to probe electrical near fields thereby
connecting the wire’s quantum dynamics with electrodynam-
ics.

Periodically driven particles that interact with boundaries
tend to move chaotically, as is well known from classical
mechanics. In our nanostructure, this behavior is partially
suppressed by damping, a feature which we have included
into our simulations via the finite phase relaxation time T2 and
the finite intraband current damping time Tj [see Eqs. (41)–
(43)]. Still, traces of the irregular motion are seen, e.g., in the
evolution of the center of gravity of our carrier distribution.
They become more apparent if we completely switch off the
damping of the interband currents (compare the upper left and
right parts of Fig. 7).

The interplay of such quasichaotic behavior and damping
has a profound impact on HHG (see the lower plot of Fig. 7).
If all relaxation times are set to infinity, Rabi oscillations pre-
vail, and all carriers are periodically generated and completely
reabsorbed. A few discrete higher harmonics can still be found
(see blue curve in the lower plot of Fig. 7), but carrier motion
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FIG. 7. Influence of damping on the carrier evolution (upper row)
and HHG (lower graph) in a nanostructure (five sites or 2.2 nm). The
black and the red line in the lower graph are shifted by −50 and
−100 dB, respectively.

and all frequency components generated by it are missing.
This changes if dephasing is added so that electrons and holes
are continuously generated. Due to the ongoing field-induced
acceleration and the interaction with the interfaces, these car-
riers undergo a quasichaotic motion and, in consequence, a
large plateau of newly generated frequencies emerges (see
black curve in lower plot of Fig. 7). Damping of interband
currents again quenches this quasichaotic motion (compare
the two upper plots of Fig. 7), but now regular spectral peaks
evolve (see red line in the lower plot of Fig. 7).

Our tight-binding approach also enables us to study the
influence of structural defects and lattice distortions on HHG
in more detail. Here we investigate effects of surface relax-
ation of a 5-nm structure (11 sites) and assume that the outer
and second most outer unit cells are displaced by 20% and
10% of the unit cell length inwards, resulting in an overall
diameter reduction of 1.4 Å. These are typical values obtained
from stationary solutions of the eigenvalue equation of such
structures within DFT or XTB approaches; see Fig. 2. Conse-
quently, the coupling strength is increased by 44% and 21%
according to the Harrison scaling [25]. The imaginary part of
the linear polarizability is calculated similarly as it was done
for the spectra displayed in Fig. 3. A clearly visible surface
state appears at the upper edge of the absorption spectrum (see
Fig. 8). Again, HHG was calculated for a 50 fs Gaussian pulse
with a wavelength of 5000 nm and maximum field strength of
1.5 V/nm. In contrast to the linear response, HHG seems not
to be significantly affected by the newly emerged localized
surface states.

X. SUMMARY AND CONCLUSIONS

In conclusion, we have transferred the successful approach
of SBEs to describe HHG in bulk matter from reciprocal
to real space using a tight-binding approach. We describe

FIG. 8. Influence of surface adaption on linear absorption (upper
graph) and HHG (lower graph) in a nanostructure (11 sites or 5 nm).
In case of surface adaption (orange line) the outer and second most
outer unit cells are displaced by 20% and 10% of the unit cell length
inwards, respectively.

intense-field-driven semiconductor nanostructures with the
same precision as the bulk material and based on the knowl-
edge of bulk properties as gap energies, effective masses,
and dipole elements. Thus, we gain detailed insight into the
field-driven electron-hole dynamics and the evolution of two-
particle correlations of finite systems, in particular, in the
vicinity of interfaces. In our approach, the electrons may even
leave the nanostructure leading to ionization, can possibly
return, may be affected by an inhomogeneous nearfield in the
vicinity of the dot, and may interact with holes remaining
inside the dot. The impact of these effects on the nonlinear
dynamics and the corresponding nonlinear response can be
analyzed separately.

Here, we have applied our approach to selected science
cases—a one-dimensional two-band nanoscale semiconduc-
tor embedded in free space that interacts with a strong
light field and generates higher-order harmonic radiation. We
have shown that quantum confinement reduces the HHG ef-
ficiency in accordance with newly published experimental
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results [16]. But, the interaction between the excited carri-
ers and the boundaries also leaves significant traces in the
higher-harmonic spectra. Accelerated and partially transmit-
ted electrons constantly probe the optical near field around
the nanostructure leading to emitted spectra, which depend on
the strength of the field enhancement around the nanoparticle.
Moreover, we also have incorporated different possible relax-
ation phenomena, specifically phase relaxation and damping
of intraband currents. The shape and extent of the generated
spectra depend sensitively on the choice of respective relax-
ation times.

Although we have demonstrated our scheme for a simple
one-dimensional case only, it is straightforward to extend it
into various directions. Three-dimensional objects consisting
of semiconductors with many, and potentially anisotropic,
bands can be incorporated using tight-binding parameters de-
rived from state-of-the-art DFT codes. As the carrier evolution
in each unit cell of the semiconductor crystal is represented
by a few complex numbers only, the resulting growth of
numerical complexity can still be handled. Even for three-
dimensional structures it will be considerably lower than that
required for standard time dependent DFT calculations. It
must be emphasized that our approach can incorporate quasi-
particles consisting of pairs of particles such as excitons. In
the present work, we have not included these excitonic effects
yet as the applied optical fields have been much stronger
than the expected internal forces that would form the exci-
tons. Nonetheless, an inclusion of Coulomb interaction into
our framework is straightforward and would not increase the
complexity of our code considerably.

In general, our code is well suited for the space and time
resolved description of electron and hole dynamics in nanos-
tructured crystallin solids, particularly if bulk properties are
well known and respective nanostructures are too big to be
treated with ab initio methods. Beyond the above mentioned
HHG in quantum dots [16], typical examples are the modeling
of electron hole dynamics in finite flakes of two-dimensional
materials [26], the simulation of hot carrier dynamics at plas-
monic interfaces [27], and the interaction between light driven
electrons and attached molecules in tip enhanced Raman spec-
troscopy [28].
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APPENDIX

1. Parameters of a CdSe quantum dot used in simulations

Unless otherwise stated material parameters are taken from
[29].

(i) Size of the unit cell of CdSe (wurtzite):

ã = 4.3A, c̃ = 7A ⇒ ā = 3
√

ã2c̃

= 4.8A normalized a = 9.057.

(ii) Coupling:
electrons inside the dot me = 0.13 ⇒ ce

n = 1
2a2me

=
0.046 89,

electrons in free space: ce
n = 1

2 dx2 with dx: space dis-
cretization in normalized units,

holes inside the dot: mh ≈ 0.8 ⇒ ch
n = 1

2a2mb
= 0.007 62.

(iii) Energies:
gap: Egap = 1.75 eV ⇒ εgap = 0.063,
free space: Evalence band = −6.69 eV ⇒ εfree space =

−Egap/2−Evalenceband

EHartree
= 0.214.

(iv) Dipole matrix elements:
momentum matrix element:〈pk〉 =∫ a/2

−a/2 dx uc
k
∗(x) 1

i
∂
∂x uν

k (x),
2

m0
〈pk〉2 = 20 eV (according to [30]),

d̃ ≈ h̄

m0Egap
〈 p̃〉 = 5 A ⇒ D0 ≈ 9.4.

(v) Relative dielectric constant:
inside the dot, εR

CdSe ≈ 6,
outside, εR

free space = 1.

2. Calculation of HHG spectra

Polarizations and currents are determined according to
Eq. (33) during each time step. Computations are continued
until all interband polarizations and interband currents have
decayed [usually three times the pulse width, full width at half
maximum (FWHM)]. The final time dependent data files were
artificially extended to 20 times their original length by zero-
padding in order to increase the frequency resolution. Then,
the spectral intensity was determined according to Eq. (34).
Finally, fast oscillations of this power spectrum were filtered
out by making a convolution with a Gaussian filter function
with a width of a fifth of the fundamental frequency, thus
simulating a spectrometer with a limited spectral resolution.

3. Time-dependent Schrödinger equation

We numerically solve the time-dependent Schrödinger
equation (TDSE) for a single-active electron on a one-
dimensional grid using the split-operator [31]. The grid
ranged, for the smallest here investigated system, [−20 nm:
20 nm], employing 4096 grid points. The model potential is
given by

V (x) =
{−V0, |x| � d/2

q√
(x−d/2)2+ q2

V 2
0

, |x| > d/2, with V0 = 6.7 eV, q = 1,

and d = 2.2 nm.

Eigenstates are obtained by the imaginary time propaga-
tion. The time steps are �t = 0.01 fs. Interaction is given
in length gauge employing a laser field as defined above,
employing the following pulse parameters: max field strength:
2.5 V/nm; wavelength: 5000 nm; pulse shape: Gaussian with
FWHM 100 fs. The HHG spectra are obtained from the
Fourier transform of the dipole acceleration. Results are given
in Fig. 1. The total computational time is roughly 10 s.

4. Real-time time-dependent density functional theory

We have performed full real-time time-dependent density
functional theory (rtTDDFT) simulation of such a nanos-
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tructure composed of 4, 16, and 64 atoms, respectively,
employing the package OCTOPUS [17]. The only feasi-
ble exchange-correlation functional is the LDA functional
[32,33]. For the calculations two electrons per atom were
included explicitly. The effect of the other electrons was
incorporated for by pseudopotentials [34]. The spherical
simulation box had a radius of 18 Å with an imaginary
absorber of 2.7 A. The pulse was defined to be a sin2 en-
velope with a full width at half maximum (FWHM) of 50
fs, a peak intensity of 1.2×1011 W/cm2 (corresponding to

a field strength of 9.95 V/nm), and a wavelength of 3800
nm. Time steps are defined to be 0.25 atomic units. The
harmonic spectra were obtained from the total charge current
J(r ,t) as

S(ω) ∼ ω2

∣∣∣∣
∫

J(r, t )e−iωt

∣∣∣∣
2

.

The calculations required more than 175 000 CPU hours
for the 64-atom dot (1.6 nm size). The corresponding results
are shown in Fig. 2.
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