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Theory of resonant Raman scattering due to spin flips of resident charge carriers
and excitons in perovskite semiconductors
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We have developed a theory of Raman scattering with single and double spin flips of localized resident
electrons and holes as well as nonequilibrium localized excitons in semiconductor perovskite crystals under
optical excitation in the resonant exciton region. Scattering mechanisms involving localized excitons, biexcitons,
and exciton polaritons as intermediate states have been examined, including the spin-flip Raman scattering by
polaritons. The derived equations are presented in the invariant form allowing for the analysis of the dependence
of scattering efficiency on the polarization of the initial and scattered light and on the orientation of the external
magnetic field.
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I. INTRODUCTION

The spin-flip Raman scattering (SFRS) is a powerful
method for studying spin interactions in bulk and nanosized
semiconductors. The energy shift of the SFRS line in a mag-
netic field is directly determined by the g factor of the charge
carrier or exciton performing the spin flip, and also, in the gen-
eral case, by the exchange energy of its interaction with other
magnetic ions or localized charge carriers. In semiconductors,
the SFRS phenomenon was predicted by Yafet in 1961 [1],
which was followed by observations of single spin flips of
free or localized electrons or holes in semiconductor crystals,
and later in semiconductor nanostructures (e.g., Refs. [2–6],
for more detail see Refs. [7,8]). However, the observation of
double or multiple flips of charge-carrier spins in the SFRS
spectrum is rare; there are few publications on double flips of
donor-bound electron spins in bulk CdS [3,4,9] and CdTe [10]
semiconductors as well as double and triple SFRS in ZnTe
[11]. The theoretical work on SFRS with multiple spin flips
of electrons localized on donors was proposed in Ref. [12]
and published in the same issue as the first experimental
observation [9].

In nanostructures, scattering with spin flips of one and two
resident localized electrons has been first observed in colloidal
CdSe nanoplatelets (NPLs) [7]. A detailed theory of these
processes is presented in Ref. [8]; the scattering mechanisms
with different types of intermediate states formed by pho-
toexcitons and resident localized electrons are considered, and
expressions for compound matrix elements describing the spin
reversal of one or two electrons localized in the same NPL are
derived. It is shown that the dependence of SFRS polarization
properties on the orientation of the applied magnetic field (in
the Voigt or Faraday geometries) allows one to access infor-
mation about the electron g-factor value and its anisotropy in
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an individual NPL as well as about the orientation of NPLs in
the ensemble.

Recently, the SFRS with simultaneous spin reversal of
localized electron and hole has been observed in semiconduc-
tor perovskites, both in bulk [13,14] and nanocrystals [15].
Note that the first perovskite, CaTiO3, was named in the 19th
century by mineralogist Gustav Rose after the Russian count
Lev Perovski. Nowadays semiconducting perovskites ABX3

containing organic cations A = MA (methylammonium), FA
(formamidinium), or completely inorganic perovskites (e.g.,
A = Cs; B = Pb, Sn; X = Cl, Br, I), as well as nanocrystals
based on them, are actively studied. The interest is due to their
unique electronic and optical properties, opening up prospects
for their use in numerous applications [16]. To describe the
optical properties of perovskites it is important to understand
the fine energy structure of excitons caused by crystal sym-
metry, exchange and spin-orbit interactions of charge carriers
[17–19], and to study the coupling of exciton states with
light.

In semiconductor lead halide perovskites APbX3, the
longitudinal-transverse splitting of exciton states due to the
long-range electron-hole exchange interaction can reach sev-
eral meV. In the reflection spectrum of a bulk sample, such
as the CsPbBr3 crystal [20], a resonance contour typical for
exciton-polaritons [21] is observed. Brillouin scattering of
exciton-polaritons has also been detected in bulk CsPbBr3

[14]. Therefore, in these compounds there are two possible
mechanisms for the Raman scattering with spin flips of lo-
calized electrons and holes: (1) resonant optical excitation
of a localized exciton followed by its exchange interaction
with localized electrons and holes, and (2) direct excitation
of propagating exciton-polaritons, their scattering on local-
ized carriers, and conversion of polaritons into secondary
photons at the sample boundary. In this paper we consider
both mechanisms of SFRS in perovskite crystals. The first
one resembles the scattering mechanism in CdSe NPLs [7,8]
but is characterized by different polarization properties due to
the differing symmetry of the objects. It should be noted that
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in perovskites the simultaneous presence of nonequilibrium,
localized, and weakly interacting electrons and holes is ex-
perimentally confirmed [13,20,22]. We also use for them the
term "resident” carriers. In general, in the scattering process
the initial state can include not only the noninteracting local-
ized electrons and holes but also localized excitons. We will
consider both possibilities. The mechanism of SFRS involving
the exciton localized as a whole is relevant for the situation
in perovskite-based nanocrystals where the weak quantum
confinement of the exciton is realized [19]. Here we lay the
foundation for the theory of SFRS of exciton-polaritons and
show how the theory of exciton-polariton transfer [28] is
generalized with allowance for the exchange interaction of the
electron-hole component of a polariton with localized charge
carriers.

The rest of the paper is organized as follows. In Sec. II
we describe the symmetry of the electron, hole, and exciton
states in perovskites both at zero magnetic field (Sec. II A)
and in the presence of an external magnetic field (Sec. II B)
as well as the exchange interaction between resident carriers
and an exciton (Sec. II C). In Sec. III we derive compound
matrix elements for the single SFRS with photoexcitation of
the localized excitons while Sec. IV treats the double SFRS
processes. To this end, we consider the simultaneous spin flip
of noninteracting resident electron and hole (Sec. IV A) and
the resonance excitation of a biexciton as the intermediate
state in the case of the initial state with a photoexcited exciton
(Sec. IV B). Section V presents a mechanism of the SFRS
related to the direct excitation of the exciton-polaritons. The
polarization selection rules for the considered SFRS processes
are analyzed in Sec. VI, and in Sec. VII we make a summary
and outline the future work.

II. EXCITONS AND LOCALIZED CHARGE CARRIER
STATES IN AN EXTERNAL MAGNETIC FIELD

A. Symmetry of band-structure states and wave functions
of free and localized excitons

Perovskite APbX3 crystals are direct-gap semiconductors.
Their band structure is inverted in comparison with the
III-V and II-VI semiconductors: the top of the valence band
is formed predominantly by s orbitals of Pb (with slight
hybridization of p orbitals of X halogens) and is twice de-
generate by the spin projection sh,z = ±1/2, while the lowest
conduction band is formed predominantly by p orbitals of Pb
(with slight hybridization of s orbitals of X halogens). As a re-
sult of the strong spin-orbit interaction, the sixfold-degenerate
state in the conduction band is split, with the lowest energy
state also twice degenerate by the projection of the total angu-
lar momentum of the electron, je,z = ±1/2 [13,17]. At room
temperature, the Bravais lattice is simple cubic (crystal class
Oh), with band extrema located at the top of the first Brillouin
zone, which has a cube shape (R point, isomorphic to � point)
[23]. As the temperature decreases, the symmetry decreases to
tetragonal (crystal class D4h) and then to orthorhombic [24].
We will limit ourselves to a detailed consideration of the cubic
phase.

Let us introduce the basis functions of the electron at the
bottom of the conduction band and the hole at the top of the

valence band of the R point:

ue, 1
2
(r) ≡ ↑e = − 1√

3
[αZ + β(X + iY )],

ue,− 1
2
(r) ≡ ↓e = 1√

3
[βZ − α(X − iY )],

uh, 1
2
(r) ≡ ↑h = αS, ue,− 1

2
(r) ≡ ↓h = βS, (1)

where S is an invariant orbital Bloch function, and X,Y, Z are
Bloch functions transformed as coordinates x, y, z by opera-
tions of the point group Oh; α and β are two-component spin
columns for spin states with 1/2 and −1/2 projection on the
z axis.

In the cubic perovskite phase, the model of the electronic
band structure including only the lowest conduction band and
the upper valence band is isotropic and the choice of coordi-
nate frame axes is arbitrary. To describe the spin states of the
resident carriers and excitons, it is convenient to choose the
axes x, y, z with z oriented along the external magnetic field
B. In addition, in order to consider the spin-flip Raman scat-
tering processes with the arbitrary orientation of the magnetic
field and light propagation direction, we introduce a second,
laboratory, coordinate frame xl , yl , zl , in which the axis zl is
directed along the normal to the sample surface. The orienta-
tion of the axis z ‖ B in the laboratory frame is determined by
the polar angles θ and ϕ as shown in Fig. 1(a). For simplicity,
we will assume that the incident light propagates along the
normal to the surface of the substrate in the positive direction
of the zl axis of the laboratory frame, and the scattered light is
collected along or backward along this axis. Figures 1(b) and
1(c) show the cases of Faraday (θ = 0) and Voigt (θ = π/2)
geometry, respectively.

The fourfold degeneracy of the band-edge exciton level is
partially removed due to the exchange interaction between
the electron and hole bound in the exciton, which can be
represented as

He-h = Jehσe · σh. (2)

Here Jeh is the energy constant of the exchange interaction,
and σh are three-component pseudovectors whose projections
are the Pauli matrices acting on the spin states ↑h and ↓h. As
for the operators σe,l (l = x, y, z), for convenience they are
defined so that the eigenfunctions of the operator σe,z are the
basis functions ↑e,↓e in Eqs. (1), not the spin columns α and
β. With this choice the hole spin and total angular momentum
operators of the electron can be represented as sh = σh/2 and
je = σe/2, respectively.

The constant Jeh includes the contributions of the short-
and long-range exchange interaction. For the first mechanism,
the scalar product of the vector matrices σe and σh in the
right-hand side of Eq. (2) follows from the symmetry of the
short-range contact potential. For the second mechanism, this
type of interaction is applicable for isotropic localization of
the exciton when the two-part envelope 	exc(re, rh) (re and
rh are coordinates of the electron and hole in the exciton)
is invariant with respect to the coordinate frame rotations.
For an anisotropic localization of the exciton, the exchange-
interaction operator has a more complex form [25]. We will
assume that the additional anisotropy-induced splittings of the
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FIG. 1. (a) The schematic representation of the light scattering
geometry. The balls illustrate two resident localized charged carriers
with their spins ↑1 and ↓2 oriented along and counter to the magnetic
field B. The axes xl , yl , zl and x, y, z represent the laboratory and
field-related coordinate systems. (b) The Faraday geometry. (c) The
Voigt geometry.

exciton level are small compared to the damping of the exciton
h̄� and the formula (2) is applicable.

The exchange interaction (2) leads to the formation of
triplet and singlet exciton states. The wave function of a
singlet exciton with zero total momentum J = 0 has the form


0,0(re, rh) = 1√
2

(↑e↓h − ↓e↑h)	exc(re, rh) . (3)

We choose the basis wave functions of a triplet exciton with
total momentum J = 1 as


1, j (re, rh) = 	exc(re, rh) v j . (4)

Here v j ( j = x, y, z) are the two-particle Bloch functions,

vx = 1√
2

(− ↑e↑h + ↓e↓h), vy = i√
2

(↑e↑h + ↓e↓h),

vz = 1√
2

(↑e↓h + ↓e↑h) (5)

transformed as coordinates x, y, z. The two-particle enve-
lope wave function 	exc(re, rh) describes the state of a free
exciton as well as an exciton localized as a whole on fluctu-
ations of potential or at a defect in a bulk crystal. It can be
represented as

	exc(re, rh) = f (re − rh)F (R), (6)

where the function f (r) describes the relative motion of the
electron and hole, while the motion of the exciton center
of mass, R = (mere + mhrh)/M (where M = me + mh is the
translational mass of the exciton), is described by the function
F (R). In the case of a free mobile exciton, the motion of the
center of mass and thus the quantum excitation is character-
ized by the wave vector k, so that

F (R) ≡ Fk(R) = eikR

√
V

, (7)

where V is the normalization volume. For localized states of
excitons, the envelope function F (R) can generally be written
in the form of a Fourier function integral expansion (7).

In the dipole approximation, the singlet exciton 
0,0 does
not interact with light; it is the so-called dark exciton. The ma-
trix elements of optical excitation of triplet (“bright”) excitons

1, j have the form

M (abs)
j (e0)E0 =

√
2

3
dcvI	E0e0

j . (8)

Here E0 and e0 are the amplitude and unit polarization vector
of incident light,

I	 =
∫

	exc(r, r)dr , (9)

and dcv is the interband matrix element of the dipole mo-
mentum operator e〈X |x|S〉 = e〈Y |y|S〉 = e〈Z|z|S〉 calculated
between the Bloch functions at the R point of the Brillouin
zone. In the general case, light excites an exciton:


 = e0
x
1,x + e0

y
1,y + e0
z 
1,z . (10)

For simplicity, we will assume that the incident light propa-
gates along the normal to the surface of the substrate in the
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positive direction of the zl axis of the laboratory frame, and
the scattered light is collected along or backward along this
axis.

For the emission matrix element, to within a multiplier,
we have

M (em)
j (e) = M (abs)∗

j (e) =
√

2

3
dcvI	e∗

j . (11)

The factor I	 is an enhancement factor of the exciton oscil-
lator strength due to localization and, for a localized exciton
with the localization length Lexc, is proportional to L3/2

exc in a
bulk semiconductor and Lexc in two dimensions. The giant
oscillator strength of a localized exciton proportional to L3

exc
was predicted by Rashba and Gurgenishvili 60 years ago [26].

B. Localized charge carriers in a magnetic field

The spin splittings of the resident electron and hole in
the magnetic field B are controlled by the effective g factors
(Landé factors), ge and gh, and are described by Hamiltonians

He = 1

2
geμBσr

e · B , Hh = 1

2
ghμBσr

h · B . (12)

Here μB is the Bohr magneton, and the operators σr
e, σr

h act on
the basis functions (1) entering the wave functions of resident
electrons and holes:

ψe,1/2 = φe(r − r0
e ) ↑e, ψe,−1/2 = φe(r − r0

e ) ↓e ,

ψh,1/2 = φh(r − r0
h) ↑h, ψh,−1/2 = φh(r − r0

h) ↓h , (13)

where φe, φh are the envelopes of localized states, and r0
e, r0

h
are the spatial positions of the defects at which the charge
carriers are localized. In the coordinate frame x, y, z the scalar
products in Eq. (12) can be replaced by σ r

e,zB and σ r
h,zB and

the eigenstates of the Zeeman Hamiltonians (12) are functions
(13). In the following we make no difference between g-factor
values of localized and exciton-bound particles.

The recently published paper [13] presents experimental
data and results of theoretical calculations (in the density
functional method and in the second-order k · p perturbation
theory) of the electron and hole g factors in bulk lead halide
perovskites as functions of the band gap width Eg. It is shown
that the ge values turn out to be positive in all the studied
materials, whereas the gh values can be either negative (at
Eg < 1.8 eV) or positive (at Eg > 1.8 eV). For definiteness,
we will further set ge > |gh|. Moreover, in what follows we
will consider only magnetic fields B fulfilling the inequalities

geμBB, |gh|μBB 
 h̄�, (14)

where the exciton damping rate is related with the exciton
lifetime τexc by � = (2τexc)−1. The condition in Eq. (14)
allows us to neglect the exciton state splitting and mixing
induced by the magnetic field as well as any effects related
to the Larmor precession of the photoexcited carriers during
the exciton lifetime.

C. Exchange interaction between exciton
and localized charge carriers

We assume here that the resident carriers with envelope
wave functions φe(r) and φh(r) are localized far enough apart

to neglect the exchange interaction between them in com-
parison with the Zeeman energies. The exchange interaction
between the localized electron or hole with the exciton is
realized through the exchange interaction with the electron or
hole bound in the exciton, respectively, which has the form

Hexch = J̃ee�0σeσ
r
eδ

(
R − r0

e

) + J̃hh�0σhσ
r
hδ

(
R − r0

h

)
. (15)

Here the volume of the unit cell �0 is introduced in order
to have for the coefficients J̃ee, J̃hh the energy dimension.
We neglect the exchange interaction between the dissimilar
localized and bound-to-exciton particles as compared with the
interactions (2) and (15). The energy parameters J̃ee and J̃hh

depend on the exciton Bohr radius and the localization radius
of the localized electron or hole and can be found according to
the procedure described for the exciton and localized electrons
in Ref. [8].

For a localized exciton with the center-of-mass envelope
F (R), the operator (15) is transformed to the sum of spin
operators

He-e = Jeeσe · σr
e, Hh-h = Jhhσh · σr

h, (16)

where

Jee = J̃ee�0F 2
(
r0

e

)
, Jhh = J̃hh�0F 2

(
r0

h

)
.

In the following for the calculation of the matrix elements
of the exchange interaction we will need the matrix elements
of the Pauli operators 〈
J ′, j |σe,k|
J,l〉, 〈
J ′, j |σh,k|
J,l〉 be-
tween the singlet and triplet exciton states, J, J ′ = 0, 1. One
can show that the latter have the form

〈
1, j |σe,k|
1,l〉 = 〈
1, j |σh,k|
1,l〉 = ie jkl ,

〈
0,0|σe,k|
1,l〉 = −〈
0,0|σh,k|
1,l〉 = δkl , (17)

with j, k, l = x, y, z, and e jkl being the unit antisymmetric
pseudotensor of the third rank and δkl being the unit symmet-
ric tensor of the second rank.

III. LIGHT SCATTERING WITH A SINGLE SPIN FLIP:
LOCALIZED EXCITONS

A. Intensity and compound matrix element
of the scattering process

Here we consider inelastic light scattering with a single
spin flip of the resident carrier under photoexcitation of a
localized exciton. For definiteness, we assume the electron
and hole g factors to be positive and focus on scattering in the
Stokes region of the spectrum, ω < ω0, where ω0 and ω are
the frequencies of incident and scattered light, respectively.
Then the intensity of light undergoing the single spin-flip
scattering has the form

I (1e)
+ ∝ ∣∣V (1e)

f ,i

∣∣2
δ(h̄ω0 − h̄ω − geμBB) f↓e ,

I (1h)
+ ∝ ∣∣V (1h)

f ,i

∣∣2
δ(h̄ω0 − h̄ω − ghμBB) f↓h , (18)

where V (1e)
f ,i and V (1h)

f ,i are the compound matrix elements of
the scattering from the initial state of a resident electron with
spin i = ↓e or resident hole with spin i = ↓h to the final state
f = ↑e or f = ↑h. Such processes can occur in crystals con-
taining any number of resident carriers, taking into account
that the photoexcited exciton interacts with only one of them.
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Expressions (18) include the occupation of the initial electron
(hole) state, which at a fixed temperature T are defined by
Fermi functions

f↓e(h) = [1 + exp(−ge(h)μBB/kBT )]−1, (19)

where kB is the Boltzmann constant. For the scattering inten-
sities I (1e)

− and I (1h)
− into the anti-Stokes region, the minus sign

in front of the g factors in the δ functions in Eqs. (18) should
be changed to plus signs, and the occupation f↓e(h) replaced by
the occupation f↑e(h) = 1 − f↓e(h) for the initial spin-up state
of the resident electron (hole). Definitely, the initial and final
states i, f also include the incident and scattered photons with
the energies h̄ω0, h̄ω and the unit polarization vectors e0, e,
respectively.

B. Three-particle intermediate state “exciton plus localized
electron or hole”

The spin structure of the intermediate state formed by a
photoexcited exciton and a resident carrier depends on the
ratio between the energy Jee or Jhh of their interaction and the
electron-hole exchange energy Jeh.

In general, the intermediate spin states are characterized by
the projections ±1/2 and ±3/2 of total spin on the magnetic
field. In the limiting case of a strong exchange interaction
between a resident carrier and a similar carrier in an exciton,
e.g., |Jee| 
 |Jeh| for the resident electron, the two electrons
after photoexcitation form a singlet and a triplet state with
total spin zero and 1, respectively. In the opposite case of a
strong exchange interaction between the electron and hole in
the exciton, |Jeh| 
 |Jee|, |Jhh|, Eqs. (3) and (5) play the role of
the intermediate states. In this case, similarly to the situation
studied in Ref. [8], there exist direct and indirect channels for
excitation and recombination of excitons weakly interacting
with localized resident charge carriers. We remind that, e.g.,
in the indirect recombination channel, the electron (or hole)
in the exciton recombines with the resident hole (or electron)
and the remaining photoexcited charge carrier takes the place
of the latter. The probabilities of such processes contain indi-
rect overlap integrals Ir = ∫∫

φe(h)(r)φe(h)(r′)	exc(r, r′)drdr′
which are usually significantly smaller than I	 controlling the
direct exciton excitation and recombination.

To further simplify the consideration, we limit ourselves
here to weak overlap and weak exchange interaction of ex-
citons with resident carriers and take into account only the
direct excitation and recombination channels of excitons. In
this case, the matrix element of the single spin-flip process
reads

V (1e(1h))
f ,i =

∑
n′n

M (em)
f ,n′ (e)�e(h)

n′,n M (abs)
n,i (e0)

(E1 − h̄ω0 − ih̄�1)2
. (20)

Here, the three-particle intermediate states n and n′ include
photoexcited bright excitons 
1, j, 
1, j′ ( j, j′ = x, y, z), differ
in the spin direction of the resident carrier, and, for the Stokes
process, can be written as

n = 
1, j,↓e(h) and n′ = 
1, j′ ,↑e(h) . (21)

Other notations in Eq. (20) are E1 for the excitation energy
of the bright exciton, the decay parameter �1 for the radiative

and nonradiative recombination of the exciton, and the finite
lifetime of the resident carrier in the localized state. The
matrix elements of light absorption and emission, M (abs)

n,i (e0)

and M (em)
f ,n (e), are defined according to Eqs. (8) and (11).

The matrix element of the exchange interaction between the
resident electron and the exciton-bound electron describes the
spin flip of the resident carrier as follows:

�e
n′,n = Jee

2
〈
1, j′ |σe,−|
1, j〉〈↑e |σ r

e,+| ↓e〉
= Jee〈
1, j′ |σe,−|
1, j〉, (22)

where σ± = σx ± iσy. For the interaction between the resident
and exciton-bound holes, the index e should be changed to h.

Using the first equation (17) and Eqs. (8) and (11) we find
the matrix element of the single SFRS:

V (1e(1h))
f ,i = −2i

3

Jee(hh)d2
cvI2

	E0

(E1 − h̄ω0 − ih̄�1)2
(e∗ × e0) · (ox − ioy).

(23)

Here ox, ox are the unit vectors (orts) along the axes x, y, per-
pendicular to the magnetic field direction B (Fig. 1). For the
anti-Stokes process ↑ → ↓, the vector o− = ox − ioy should
be replaced by o+ = ox + ioy.

The polarization dependence of the intensity I (1e(1h)) ∝
|V (1e(1h))

f ,i |2 is analyzed in Sec. VI. Here we just explain the
symmetry aspect of the scalar product in Eq. (23). Let us
consider an auxiliary problem of the spin reversal ↓ → ↑
caused by a perturbation σ · h, where h is the amplitude of
the effective pseudovector force. The matrix element of such
a transition is equal to

↑†

[
hz hx − ihy

hx + ihy −hz

]
↓ = h · (ox − ioy) . (24)

In the spin-flip light scattering, the role of the pseudovector h
is played by the vector product e∗ × e0 in Eq. (23). Note that
b · (ox ± ioy) = 0, where b = B/B is a unit vector along the
magnetic field direction.

IV. DOUBLE SPIN-FLIP RAMAN SCATTERING:
LOCALIZED EXCITONS

In this section we will consider two mechanisms of dou-
ble light scattering processes with simultaneous reversals of
electron and hole spins. In the first mechanism, in Sec. IV A,
the spin flips are experienced by a resident electron and hole
localized in a perovskite crystal; in the intermediate resonant
state an exciton localized in the crystal on the structure defect
is added to the electron and hole. In the second mechanism,
in Sec. IV B, there is a nonequilibrium localized exciton in
the sample in the initial and final states, and the role of the
intermediate state is played by a biexciton.

A. Localized electron, hole, and exciton

Let the sample simultaneously contain a localized resident
electron and hole. Four possible initial states of localized
electrons and holes determine four double spin reversal pro-
cesses: “++” and “+−” from the initial state ↓e↓h to the
final state ↑e↑h and from the initial state ↓e↑h to the final
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state ↑e↓h (Stokes shift for ge > gh > 0) and anti-Stokes
transitions ↑e↑h → ↓e↓h, ↑e↓h → ↓e↑h, denoted by “−−”
and “−+”, respectively.

For the ++, +− processes, the cross sections of the double
scattering are proportional to

I (1e,1h)
++ ∝ |V ++

f ,i |2δ[h̄ω0 − h̄ω − (ge + gh)μBB] f↓e
f↓h

,

I (1e,1h)
+− ∝ |V +−

f ,i |2δ[h̄ω0 − h̄ω − (ge − gh)μBB] f↓e
f↑h

, (25)

where V ++
f ,i , V +−

f ,i are the compound matrix elements cal-
culated in the fourth order of perturbation theory. Each
comprises two terms

V ++
f ,i = Vf ,i(h+e+) + Vf ,i(e+h+),

V +−
f ,i = Vf ,i(h−e+) + Vf ,i(e+h−), (26)

where the symbols h±e+ (e+h±) denote the process in which
first the electron (hole) experiences a spin flip and then the
hole (electron) does.

The matrix elements entering Eqs. (26) are found to be

Vf ,i(h±e+)

= E0
∑
n′′n′n

M (em)
f ,n′′ (e)�h

n′′,n′�
e
n′,nM (abs)

n,i (e0)

(EJ ′ − h̄ω0 − ih̄�J ′ )(E1 − h̄ω0 − ih̄�1)2
,

Vf ,i(e+h±)

= E0
∑
n′′n′n

M (em)
f ,n′′ (e)�e

n′′,n′�
h
n′,nM (abs)

n,i (e0)

(EJ ′ − h̄ω0 − ih̄�J ′ )(E1 − h̄ω0 − ih̄�1)2
, (27)

where J ′ is the angular momentum of the exciton in the inter-
mediate state n′. Compared to the single spin-flip process, the
matrix elements (27) involve three intermediate states n, n′, n′′
of the complex “localized photoexciton plus localized resident
electron and hole.”

The states n and n′′ include the bright excitons 
 j, 
 j′′

( j, j′′ = x, y, z) and can be written as

n = 
1, j,↓e↓h and n′′ = 
1, j′′ ,↑e↑h . (28)

As for the n′ states, there are eight of them. In particular, for
the scattering processes h+e+ and e+h+ these states are

n′ = 
J ′, j′ ,↑e↓h and n′ = 
J ′, j′ ,↓e↑h, (29)

including the dark exciton state 
0,0.

1. The h+e+ and e+h+ processes

The calculation shows that the processes h+e+ and e+h+
make identical contributions, so that it suffices to calculate the
contribution of the first four intermediate states to Eq. (29),
and allowance for the second four by doubling Vf ,i(h+e+).

In addition to the matrix elements of the exchange interac-
tion (22), it is necessary to calculate similar matrix elements
between the bright states 
1, j ( j = x, y, z) and the dark ex-
citon state, 
0,0, using the second line of Eq. (17). Omitting
intermediate transformations, we present the result

V ++
f ,i = 4

3

d2
cvJeeJhhI2

φE0

(E1 − h̄ω − ih̄�1)2

×
(

R1(h+e+)

E1 − h̄ω − ih̄�1
+ R0(h+e+)

E0 − h̄ω − ih̄�0

)
, (30)

R1(h+e+) = R0(h+e+)

= −[e∗ · (ox − ioy)][e0 · (ox − ioy)]. (31)

For the anti-Stokes process, the matrix element V −−
f ,i contains

the invariant

R1(h−e−) = R0(h−e−) = [e∗ · (ox + ioy)][e0 · (ox + ioy)].

It is interesting to compare this result with the matrix ele-
ment of the double-spin-flip process involving two electrons
(or two holes) localized in the sample. The matrix element
Vf ,i(e+e+) can also be represented in the form (30) where
JeeJhh is replaced by the product Jee,1Jee,2 (of the exchange
energies of the exciton with the first and second resident
electrons) and the sign in the brackets is reversed, so that

R1(e+e+) = −R0(e+e+) = R1(h+e+) . (32)

Therefore, the energy denominators EJ − h̄ω − ih̄�J (J =
0, 1) enter Eq. (30) with the same sign for h+e+ scattering,
and with opposite signs for e+e+ or h+h+ scattering. Thus, in
the case of the small exchange splitting of the exciton level,
�exc = |E1 − E0| 
 h̄�1 and comparable exciton broadening
h̄�0 and h̄�1, the h+e+ process goes much more efficiently
compared to the e+e+ or h+h+ process.

2. The h−e+ and e+h− processes

The contributions to the compound matrix element V +−
f ,i

from the processes h−e+ and e+h− do not coincide. Their sum
can be represented by Eq. (30), where RJ (h+e+) is replaced by
R(+−)

J = [RJ (h−e+) + RJ (e+h−)]/2(J = 0, 1), where

R(+−)
1 = [(e∗ · e0) + (e∗ · b)(e0 · b)] , (33)

R(+−)
0 = −[(e∗ · e0) − (e∗ · b)(e0 · b)]. (34)

It should be noted that the ++ and −− processes change
the value of the total projection of the resident carrier spin
m = sh,z + je,z on the magnetic field direction by �m =
2 and −2, respectively, while for the +− and −+ pro-
cesses �m = 0. In an isotropic medium, the value |�m| = 2
is a maximum possible for the SFRS. Therefore, for processes
involving three or larger number of resident carriers, processes
+ + + or − − −, etc., are forbidden but the processes of the
kind + − + and − + −, etc., are still allowed.

The relative efficiency of double to single spin-flip scatter-
ing is governed by the squared ratio (�e,h/h̄�)2 between the
exchange matrix elements and the exciton damping rates. In
this paper we assumed this ratio to be small which means that
the second-order scattering is less efficient as compared to that
of the first order, unless the former is allowed and the latter
is forbidden by symmetry arguments for a chosen scattering
geometry. However, if �e,h is comparable or exceeds h̄�,
double and triple spin-flip processes should be remarkable and
well observable.

B. Biexciton as an intermediate state

In this section we ignore resident electrons and holes sep-
arately located and consider a Stokes scattering process in
which the initial state i involves an incident photon of the
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energy h̄ω0 and the unit polarization vector e0 and a nonequi-
librium localized exciton 	exc(re, rh) ↓e↓h in the spin state
with the spin z component m = se,z + jh,z = −1; the final
state f comprises a scattered photon of the energy h̄ω and
the polarization e and a localized exciton ↑e↑h 	exc(re, rh)
with the spin component m = +1. The intermediate states n
are the states of the biexciton XX formed by the initially and
secondary photoexcited excitons. The energy conservation
law h̄(ω0 − ω) = (ge + gh)μBB in such a process is described
by the first δ function in Eqs. (25). However, its intensity
I++(XX ) is proportional to the exciton state occupancy f↓e↓h

instead of the product f↓e f↓h . The compound matrix element
of the process can be found in the second order of perturbation
theory as

V ++
f ,i (XX ) = E0

∑
n

M (em)
f ,n (e)M (abs)

n,i (e0)

En,bi − h̄ω0 − ih̄�n,bi
. (35)

We restrict ourselves to only one biexciton state n where
the spins of two electrons and the spins of two holes
form singlets and the envelope function of the biexciton,
	biexc(re1, re2, rh1, rh2), is symmetric with respect to the co-
ordinate exchanges re1 ↔ re2 and rh1 ↔ rh2. Triplet biexciton
states in bulk crystals are less stable; they are characterized by
a large damping and, as a consequence, give a small contribu-
tion to the light scattering. The matrix elements of excitation
and recombination of the singlet biexciton from and into the
exciton states 
1, j ( j = x, y, z) have the form of Eqs. (8) and
(11), where the enhancement factor I	 must be replaced by

IXX =
∫∫∫

	biexc(r, re, r, rh)	exc(re, rh)drdredrh.

Similarly to Eq. (31), the selection rule for the exciton spin
flip m = −1 → m = 1 by �m = 2 reads

V ++
f ,i (XX ) ∝ [e∗ · (ox − ioy)][e0 · (ox − ioy)] . (36)

A direct evidence of participation of the resident exciton
in the light scattering with the intermediate biexciton state
can be an observation of a process in which the final state
of the resident exciton has the angular momentum projec-
tion m = 0. The selection rules for a change of the exciton
spin component m by 1 are similar to those for the single
SFRS, Eq. (23). However, in this case the energy conservation
law contains only half of the exciton Zeeman splitting, i.e.,
μBB(ge + gh)/2, and it is determined by the half sum of the
electron and hole g factors. Apparently, such processes have
been observed in CsPbBr3 perovskite crystals [14], along with
single and double spin flips of resident carriers.

We have considered Raman scattering involving simulta-
neous spin flips of localized electron and hole or exciton
localized as a whole. It is possible that an exciton excited
by light emits or absorbs an acoustic phonon and changes
the projection of its angular momentum by �m = ±2. Such
processes require separate consideration.

V. SPIN-FLIP RAMAN SCATTERING: EXCITON
POLARITONS

A. Scattering of a free mechanical exciton by localized carriers

Before considering the scattering of exciton polaritons by
defects with localized electrons or holes, in the following the
paramagnetic centers, we will first solve an auxiliary problem
of the scattering of a free mechanical exciton, without taking
into account the longitudinal-transverse splitting of exciton
states and the interaction with a transverse electromagnetic
wave. The polarization of a triplet exciton with the wave
vector k is described by the unit vector ck with the compo-
nents ck,x, ck,y, ck,z which defines the exciton wave function
similarly to Eq. (10).

As in the previous sections, the z axis is chosen to be
oriented along the external magnetic field B. For definiteness,
we assume the Landé factor ge of localized resident electrons
to be positive. We consider the scattering of an exciton by a
paramagnetic center from the initial state |k, ck; ↓e〉 (exciton
with the wave vector k and spin state ck plus localized electron
with spin ↓e) to the final state |k′, ck′ ; ↑e〉. For the contact
interaction (15), the scattering matrix element has the form

M (exc)
k′ck′ ,kck

≡ 〈k′, ck′ ; ↑e |Hexch|k, ck; ↓e〉

= J̃ee�0

V
ei(k−k′ )r0

e �(ck′ , ck) , (37)

�(ck′ , ck) = −i(c∗
k′ × ck) · (ox − ioy) . (38)

In the derivation, the products kaB, k′aB (aB being the exciton
Bohr radius) were assumed small compared to unity.

Using the golden rule of quantum mechanics, we can find
the scattering probability per unit time,

wk′,k(ck′ , ck) = 2π

h̄

Np,e

V
(J̃ee�0)2�(ck′ , ck)|2

× δ(Ek′ − Ek + �Z,e) . (39)

Here Np,e is the concentration of paramagnetic centers with
localized electrons, Ek = h̄2k2/2M is the kinetic energy of the
exciton, M is its translational mass, and �Z,e is the Zeeman
splitting of a localized electron geμBB. Integrating over all
directions of k′ and summing over the exciton polarization
states, we find the inverse lifetime of the exciton k with respect
to spin-flip scattering by paramagnetic centers,

1

Ts f
= Np,eM(J̃ee�0)2k′

e

π h̄3 , (40)

where

k′
e =

(
k2 − 2M

h̄2 �Z,e

)1/2

. (41)

Expression (40) must be supplemented with the contribution
from scattering by localized holes. As a result, the total spin
relaxation time is given by

1

Ts f
= M

(
Np,eJ̃2

eek′
e + Np,hJ̃2

hhk′
h

)
�2

0

π h̄3 , (42)
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where Np,h is the concentration of paramagnetic centers with
localized holes,

k′
h =

(
k2 − 2M

h̄2 �Z,h

)1/2

,

and �Z,h = ghμBB. For brevity, in what follows we will take
into account only the spin-flip scattering of localized elec-
trons. The generalization is performed in the same way as it is
done in formula (42).

B. Scattering of an exciton polariton by paramagnetic centers

For simplicity, we neglect here the spatial dispersion and
describe the medium by the permittivity

ε(ω) = εb

(
1 + ωLT

ωT − ω

)
, (43)

where ωT is the resonant frequency of the mechanical exciton,
ωLT is the longitudinal-transverse splitting, εb is the back-
ground permittivity, and the resonant region of the spectrum
|ωT − ω| 
 ωT is considered. To further simplify the prob-
lem, we restrict ourselves to excitations in the frequency range
below ωT . The light-exciton mixing, controlled by ωLT , leads
to the transformation of the “bare” photon dispersion ck/

√
εb

into the polariton dispersion

ωk = ck√
ε(ωk )

, (44)

where k = |k|, and k is the polariton wave vector. As a rule,
in the following we omit the index k in the notation ωk .

In an isotropic medium, polaritons are transverse waves.
We choose the unit polarization vectors of two degen-
erate polariton states with the wave vector k in the
form

ck1 = 1

k⊥k
(kzkx, kzky,−k2

⊥), ck2 =
(

− ky

k⊥
,

kx

k⊥
, 0

)
,

where k2
⊥ = k2

x + k2
y .

The polariton annihilation operator αk j is related to the
creation and annihilation operators a†

k j, ak j of “bare” photons

and similar operators b†
k j, bk j for excitons by [27]

αk j = wkak j + xkbk j + yka†
−k j + zkb†

−k j . (45)

In the resonant frequency region, ωT − ω 
 ωT , the square
modulus of the coefficient xk, also called the strength function,
is equal to

|xk|2 ≡ s(ω) = ωLT ωT

ωLT ωT + 2(ωT − ω)2
.

When interacting with a paramagnetic center, the polariton
scattering ω, k, ck j → ω′, k′, ck′ j′ occurs due to the exciton
component, and the squares of the modulus of the polariton
and exciton scattering matrix elements are related by the rela-
tion (see, e.g., Ref. [28])

∣∣M (pol)
k′ j′,k j

∣∣2 = s(ωk′ )s(ωk )
∣∣M (exc)

k′ck′ j′ ,kck j

∣∣2
. (46)

Furthermore, for the scattering probability we get instead of
Eq. (39)

wk′,k(ck′ j′ , ck j ) = 2π

h̄

Np,e

V
J2s(ωk′ )s(ωk )

× |�(ck′ j′ , ck j )|2δ(h̄ωk′ − h̄ωk + �Z,e). (47)

The lifetime T (pol)
s f for exciton-polariton scattering with spin

flips of localized electrons is found by summing over all
directions of k′ and two states of transverse polarization ck′ j′

to result in

1

T (pol)
s f

= Np,e(J̃ee�0)2k′2

π h̄2v(ω′)
�2, (48)

�2 =
∑

j′=1,2

|�(ck′ j′ , ck j )|2 = 2

3

(
1 + c2

k j;z

)
. (49)

Here the wave number k′ is defined as

k′ = ω′

c

√
ε(ω′) , h̄ω′ = h̄ω − �Z,e , (50)

the group velocity is introduced by

v(ω) = dωk

dk
= c

n(ω)

[
1 + ωT ωLT

2(ωT − ω)(ωL − ω)

]−1

, (51)

n(ω) = √
ε(ω) is the refraction index, and ωL = ωT + ωLT is

the frequency of the longitudinal exciton.
Further in this section, we use the notation ω (instead of

ω0 introduced in Sec. III A for the incident light) for the fre-
quency of the polariton that did not undergo inelastic spin-flip
scattering, and ω′ and ω′′ for the frequencies of the polariton
after one and two inelastic scattering events, respectively.

C. Polariton scattering efficiency for a short lifetime τ0

Let us find the efficiency of spin-flip scattering under nor-
mal incidence of light and normal emission along the zl axis in
the Voigt geometry (B ‖ z ‖ xl ) so that the polarization vectors
of the secondary and primary light lie in the (xl , yl ) plane: the
polarizer transmits light with a unit polarization vector e0, and
the analyzer detects secondary radiation with a polarization e.

The spatial distribution of electromagnetic field inside the
crystal is determined by the ratio between the time of elastic
(isotropic) scattering of an exciton polariton (τp), the po-
lariton nonradiative lifetime (τ0), and the spin-flip scattering
time T (pol)

s f , the last defined by Eq. (48). To find the elas-
tic scattering time τp, we model the nonmagnetic scattering
potential by

Hint =
∑

n

V0 δ(R − rn) , (52)

where V0 is a constant coefficient, rn is the position of the nth
point defect, and R is the coordinate of the exciton center of
mass. In this model we have, according to Ref. [28],

1

τp
= 2

3π

V2
0 Nd k2

h̄2v(ω)
, (53)

where Nd is the concentration of scattering defects. Note that
the scattering by paramagnetic centers without spin flip of
localized electrons or holes also contributes to τ−1

p . In order to
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simplify the description, we assume that the Zeeman splitting
of an exciton polariton is small compared to the damping h̄�,
where 2� is the sum of the inverse times τ−1

0 , τ−1
p , T (pol)−1

s f .
This makes it possible to neglect the birefringence induced by
the magnetic field B.

In this section, we will analyze the case of a short lifetime,
or case 1,

τ0 
 τp, T (pol)
s f . (54)

The limiting case of multiple elastic scattering, τp 
 τ0, T (pol)
s f

(case 2), is considered in Sec. V D.
Provided condition (54) is satisfied, it suffices to calculate

scattering with a single spin flip, i.e., a first-order process
whose probability per unit time is described by formula (47).
The intensity of radiation singly scattered and emerging into
vacuum in a solid angle d� is determined by

dI (ω′, e) = 2π

h̄

h̄ω′d�

n2(ω′)
T (ω′)s(ω′)s(ω)

(
J̃2

ee�0
)2

Np|�(e, e0)|2

×
∫ ∞

0

k′2dk′

(2π )3
δ(h̄ωk′ − h̄ωk + �Z,e)

×
∫ ∞

0
e−α(ω′ )zlNk(zl )dzl , (55)

where

Nk(zl ) = T (ω)

h̄ωv(ω)
F (ω, e0)e−α(ω)zl , (56)

F (ω, e0) is the energy flux of electromagnetic radiation (per
unit area) incident on the sample from vacuum, α(ω) is the
absorption coefficient equal to 2�s(ω)/v(ω), T (ω) is the light
transmittance through the sample boundary, and Nk(zl ) is the
density of polaritons with the wave vector k and polarization
e0 at the point zl . At normal incidence and normal lumines-
cence, we have

|�(e, e0)|2 = |e∗ × e0|2 , T (ω) =
∣∣∣∣n(ω) − 1

n(ω) + 1

∣∣∣∣
2

,

T (ω′) =
∣∣∣∣n(ω′) − 1

n(ω′) + 1

∣∣∣∣
2

. (57)

In the frequency range (ωT − ω)2 
 ωT ωLT of interest to us,
the strength functions can be set equal to unity.

Substituting Eq. (56) into Eq. (55) and integrating over zl

and k′, we come to

dI (ω′, e)

d�

= T (ω′)T (ω)

4π2h̄2n2(ω′)

(
J̃2

ee�0
)2

Np,ek′2

v(ω′)v(ω)

F (ω, e0)

α(ω′) + α(ω)
|�(e, e0)|2

= T (ω′)T (ω)

4π2 h̄2

(ω

c

)2 τ0
(
J̃2

ee�0
)2

Np,eF (ω, e0)

v(ω′) + v(ω)
|e∗ × e0|2.

(58)

When deriving, we took into account that the ratio ω′/ω can
be replaced by 1.

If the Zeeman splitting of polariton states is comparable
or exceeds h̄� one has to take into account magnetic-field-

induced birefringence leading to the difference of v(ω) and
T (ω) for polaritons polarized parallel and perpendicular to the
transverse magnetic field B ⊥ zl in the Voigt geometry. Then
Eq. (58) is valid for the linear polarizations e0, e ‖ or ⊥ B but
overestimates the sensitivity of dI (ω′, e)/d� to the circular
polarization.

D. The case of frequent elastic collisions, τp � τ0, T (pol)
s f

Exciton polaritons excited by the light of frequency ω and
not undergoing inelastic scattering have energy h̄ω. We denote
their distribution function at the point zl as m(ω,�, j; zl ),
where � is the unit vector k/k and j is the polarization
index. The distribution function and intensity of polaritons are
related as

I (ω,�, j; zl ) = h̄ωv(ω)m(ω,�, j; zl ) .

Taking into account the double degeneracy of transverse po-
laritons, their concentration is equal to

N (ω, zl ) =
∑
j=1,2

∫
4π

d� m(ω,�, j; zl ) .

Strictly speaking, in the general case, instead of the func-
tion m(ω,�, j), one should introduce the density matrix
mj′ j (ω,�). However, in case 2 this matrix is diagonal in
indices j′, j, the distribution of polaritons over directions
� is uniform, and they are not polarized: mj′ j (ω,�; zl ) =
m(ω,�, j; zl )δ j′ j ≡ m(ω; zl )δ j′ j and N (ω, zl ) = 8πm(ω; zl ).

The concentration N (ω, zl ) ≡ N (zl ) satisfies the diffusion
equation

−D
∂2N (zl )

∂z2
l

+ N (zl )

τ
= 0 , (59)

where D is the diffusion coefficient v2(ω)τp/3, and the time
τ is determined according to

1

τ
= 1

τ0
+ 1

τs f
, (60)

where τs f is the spin-flip scattering time; it is found from
expression (48) for the inverse time T (pol)

s f by averaging over
the directions of k and polarizations ck j :

1

τs f
= 8

9

(
J̃2

ee�0
)2

Np,ek′2

π h̄2v(ω′)
. (61)

The solution of Eq. (59) is standard:

N (zl ) = N0e−zl /l ,

where l = √
Dτ is the diffusion length. The concentration N0

at the point zl = 0 is found from the boundary condition
[

l

τ
+ v(ω)Teff��

]
N0 = T (ω)F (ω, e0)

h̄ω
,

where �� is the solid angle limited by the angle of total
internal reflection ϑcr, and Teff is the effective transmittance
averaged over the angle of incidence 0 � ϑ � ϑcr of a polari-
ton to the inner boundary of the sample.
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FIG. 2. SFRS by exciton polaritons in the regime of frequent
elastic collisions, τp 
 τ0. Schematic illustration of the multiple
elastic scattering of the exciton polariton including two spin flips of
the resident charge carriers.

Let us introduce the effective time for the escape of polari-
tons into vacuum,

τvac = l

v(ω)Teff��
.

For simplicity, we further assume the condition

τ0 
 τvac . (62)

1. The first-order spin-flip scattering

After polaritons with energy h̄ω experience spin-flip scat-
tering by localized carriers, they continue elastic scattering
from defects before leaving the resonant region within the
time τ0 or being scattered by another paramagnetic center
(Fig. 2). We denote by a prime the parameters of polaritons
with the energy h̄ω′ = h̄ω − �Z,e. The diffusion equation for
the concentration of such polaritons N (ω′, zl ) ≡ N ′(zl ) con-
tains an inhomogeneous term in the right-hand side:

−D′ ∂
2N ′(x)

∂z2
l

+ N ′(zl )

τ ′ = N (zl )

τs f
. (63)

The general solution of this equation has the form

N ′(zl ) = N ′
0e−zl /l ′ + N ′

1e−zl /l , (64)

where l ′ = √
D′τ ′,

N ′
1 = N0

1 − (l ′/l )2

τ ′

τs f
,

and the density N ′
0 is found from the boundary condition at

zl = 0. Under condition (62) for polaritons with energy h̄ω′,
solution (64) takes the form

N ′(zl ) = N0
τ ′

τs f

l (le−zl /l − l ′e−zl /l ′ )

l2 − l ′2 . (65)

The density at the sample inner surface is equal to

N (ω′, 0) = τ ′

τs f

lN0

l + l ′ , (66)

and, for the intensity of light outgoing along the normal,
we have

dI (ω′)
d�

= h̄ω′v(ω′)N (ω′, 0)
T (ω′)
n2(ω′)

. (67)

2. The second-order spin-flip scattering

We denote by N (ω′′, zl ) ≡ N ′′(zl ) the concentration of po-
laritons which participated in the double spin-flip scattering
by localized electrons (h̄ω′′ = h̄ω − 2�Z,e). The diffusion
equation for them is similar to Eq. (63):

−D′′ ∂
2N ′′(x)

∂z2
l

+ N ′′(zl )

τ ′′ = N ′(zl )

τ ′
s f

. (68)

The general solution and the boundary condition it satisfies
have the form

N ′′(zl ) = N ′′
0 e−zl /l ′′ + N ′′

1 e−zl /l + N ′′
2 e−zl /l ′ , (69)

1

τ ′′ (l ′′N ′′
0 + lN ′′

1 + l ′N ′′
2 ) = l

τ ′
s f

τ ′

τs f
N0, (70)

where l ′′ = √
D′′τ ′′. The coefficients N ′′

1 and N ′′
2 are defined

according to

N ′′
1 = τ ′′

τ ′
s f

l2

l2 − l ′′2 N ′
1, N ′′

2 = τ ′′

τ ′
s f

l ′2

l ′2 − l ′′2 N ′
0. (71)

Omitting the intermediate calculations we present the final
expression for the concentration N ′′ at the boundary,

N ′′(0) = hl

l ′′ ξN0, (72)

where

h = 1 + 1

l2 − l ′2

(
l ′3

l ′ + l ′′ − l3

l + l ′′

)
, ξ = τ ′′τ ′

τ ′
s f τs f

.

According to Eqs. (66), (67), and (72), the ratio of the second-
and first-order intensities is

dI (ω′′)/d�

dI (ω′)/d�
= h

τ ′′

τ ′
s f

T (ω′′)n2(ω′)
T (ω′)n2(ω′′)

l + l ′

l ′′ . (73)

Thus, in the regime of frequent collisions with the compara-
ble lifetimes τ0 and τ ′

s f , the intensities of single and double
scattering are comparable as well.

It should be mentioned that in the case where the Zeeman
splitting of polariton states is large, the diffusion equations re-
main also valid; however, they comprise renormalized times
τ0, τs f , τ ′, τ ′

s f , and τ ′′ and the diffusion coefficients.

VI. DISCUSSION: ANALYSIS OF THE POLARIZATION
DEPENDENCE OF THE SFRS

We start the analysis from a single spin flip of a localized
electron or hole due to the interaction with a photoexcited
localized exciton.

At normal light incidence in the positive direction of the
zl axis of the laboratory frame (see Fig. 1) and a backward
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TABLE I. Polarization dependence of the intensity I++ for double SFRS in the Faraday (θ = 0, π ) and Voigt geometry (θ = π/2). The
double symbols in the row labeled “Configuration” denote the polarizations of incident and scattered light, respectively; in the Voigt geometry
‖ and ⊥ are linear polarizations along and perpendicular to the external magnetic field, and in the Faraday geometry the symbol pairs (‖, ‖),
(‖, ⊥), etc., mean parallel and crossed linear polarizations of arbitrary azimuthal orientation. The numbers given in the table are the values of
the right-hand-side expressions in Eq. (78).

Configuration ‖, ‖ ⊥, ⊥ ⊥, ‖ or ‖, ⊥ σ+, σ+ or σ−, σ− σ−, σ+ σ+, σ−

θ = 0 1 1 1 0 0 4
θ = π 1 1 1 0 4 0
θ = π/2 0 1 0 1/4 1/4 1/4

registration of scattered light, z̄l , the polarization of light has
components only along the axes xl , yl . In this case, the vector
product in Eq. (23) has a single nonzero projection onto the
zl axis. The projections ox ± ioy on the axis zl coincide; the
square of their moduli can be found from Fig. 1(a) as the
square of the projection of the unit vector b on the plane
(xl , yl ), equal to |(ox ± ioy)zl |2 = 1 − b2

zl
= 1 − cos2 θ . Thus,

we obtain from Eq. (23) that the scattering intensity depends
on the light polarization and the direction of the magnetic field
as from Eq. (23) we obtain that the intensity of the process
depends on the polarization of the light and the direction of
the magnetic field as

I (1e)
+(−), I (1h)

+(−) ∝ |e∗ × e0|2 sin2 θ. (74)

Hence, the single scattering process is forbidden in the
Faraday geometry [θ = 0, π , Fig. 1(b)] and characterized by
strict selection rules in the general geometry of Fig. 1(a): Scat-
tering in the crossed linear (e ⊥ e0) and cocircular (σ+, σ+
or σ−, σ−) configurations is allowed and occurs with the
equal probability proportional to sin2 θ , while in collinear
(e ‖ e0) and crossed circular (σ−, σ+ or σ−, σ+) configurations
the scattering is prohibited. Note that at normal incidence,
the σ± circular polarization orts are defined according to
(oxl ± ioyl )/

√
2, where oxl , oyl are unit vectors along the lab-

oratory axes xl and yl . Therefore, the scattered light of the
σ+ polarization e = (oxl + ioyl )/

√
2 is right handed if it is

scattered forward and left handed if it is scattered backwards.
An important property of the single SFRS is its independence
of the magnitude of the exchange splitting between the bright
and dark excitons.

The same selection rules (74) characterize the exciton-
polariton scattering with a single spin flip of the resident
carrier in the case of short lifetime τ0. In contrast, in the
case of frequent elastic collisions (Fig. 2), information about
the initial polarization of the exciton polariton is lost, and the
SFRS is not polarized. Thus, a measurement of the polariza-
tion of secondary light in the polariton region allows one to
estimate the ratio between the times τ0 and τp.

Note that the (σ+, σ+) or (σ−, σ−) single scattering be-
comes possible if one takes account of the Larmor precession
of the unpaired particle in the three-particle complex 2e + h
or e + 2h. The effect is governed by the ratio |ge,h|μBB/h̄�

which is here assumed to be small [Eq. (14)].
Let us proceed to the double scattering. It follows from the

selection rules (31) and (36) that the light scattering intensity
because of simultaneous spin flips of the resident electron and

hole or the resident exciton depends on the light polarization
and the magnetic-field direction as follows:

I (1e,1h)
++ , I++(XX ) ∝ |V ++

f ,i |2

∝ (1 − |eb|2 − κb)(1 − |e0b|2 + κ0b),

(75)

I (1e,1h)
−− , I−−(XX ) ∝ |V −−

f ,i |2

∝ (1 − |eb|2 + κb)(1 − |e0b|2 − κ0b),

(76)

where

κ = i(e × e∗) = Pcirc
k
k

, (77)

Pcirc and k are degree of circular polarization and the wave
vector of scattered light; κ0 is defined in the same way but for
incident light.

The same selection rules hold for the processes I (2e(2h))
++

and I (2e(2h))
−− which allows us, for the sake of brevity, to use

the notation I++ and I−− for the scattering processes with the
total-spin changes �m = +2 or �m = −2, respectively.

One can see from Eqs. (75) and (76) that in whatever ge-
ometry the scattering signal is forbidden if either the incident
or scattered light is linearly polarized along the magnetic field
and otherwise allowed. In the Faraday geometry (θ = 0, π )
and the Voigt geometry (θ = π/2), the polarization dependen-
cies are represented by

I++(θ = 0), I−−(θ = π ) ∝ (1 − κzl )
(
1 + κ0

zl

)
,

I++(θ = π ), I−−(θ = 0) ∝ (1 + κzl )
(
1 − κ0

zl

)
,

I++(θ = π/2), I−−(θ = π/2) ∝ |e⊥|2|e0
⊥|2, (78)

where e⊥ is the polarization vector component transverse to
the magnetic field. In the Voigt geometry for circular polariza-
tion of any handedness, |e⊥|2 = |ez|2 = 1/2. The polarization
dependence (78) for specific configurations at normal inci-
dence is presented in Table I. The sums of numbers over the
four linear and four circular configurations coincide and are
four times larger in the Faraday geometry than in the Voigt
geometry. Now we turn to the polarization dependence of
the +− scattering where the total spin of the carriers does
not change, �m = 0. According to Eqs. (33) and (34), the
matrix elements of such processes contain combinations of the
invariants (e∗ · e0) and (e∗ · b)(e0 · b). The first invariant is in-
dependent of the magnetic field direction and has a maximum
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TABLE II. Polarization dependence of the +− double scattering intensity for the particular cases (i), (ii), (iii), and (iv) in the Faraday
(θ = 0, π ) and Voigt (θ = π/2) geometries. The double symbols denote the polarization configurations of incident and scattered light, the
same as in Table I.

Configuration ‖, ‖ ⊥, ⊥ ⊥, ‖ or ‖, ⊥ σ+, σ+ or σ−, σ− σ−, σ+ or σ+, σ−

I (i)
+−; θ = 0 or π 0 0 0 0 0

I (i)
+−; θ = π/2 1 0 0 1/4 1/4

I (ii)
+−; θ = 0 or π 1 1 0 0 1

I (ii)
+−; θ = π/2 0 1 0 1/4 1/4

I (iii)
+− ; θ = 0 or π 2 2 0 0 2

I (iii)
+− ; θ = π/2 4 2 0 1/2 5/2

I (iv)
+− ; θ = 0 or π 1 1 0 0 1

I (iv)
+− ; θ = π/2 4 1 0 1/4 9/4

for collinear and crossed circular configurations, whereas the
second invariant vanishes in the Faraday geometry and, more-
over, in the Voigt geometry if at least one of the vectors e, e0 is
perpendicular to the magnetic field. The partial contribution of
the two invariants to the scattering intensity depends on the ra-
tio between the bright-dark splitting �exc = |E1 − E0| and the
broadening of the intermediate states “exciton plus resident
carriers,” h̄�0, h̄�1. Four special cases can be distinguished as
follows:

(i) �exc 
 h̄�0 ≈ h̄�1 ⇒ I (i)
+− ∝ |R(+−)

1 + R(+−)
0 |2 =

|e · b|2|e0 · b|2.
(ii) �exc ≈ h̄�0 
 h̄�1 ⇒ I (ii)

+− ∝ |R(+−)
0 |2.

(iii) h̄�0 
 �exc ≈ h̄�1 ⇒ I (iii)
+− ∝ |R(+−)

1 |2 + |R(+−)
0 |2.

(iv) �exc 
 h̄�1, h̄�0 ⇒ I (iv)
+− ∝ |R(+−)

1 |2.
Table II presents the relative intensities I (α)

+− (α =
i, ii, iii, iv) for the +− type of scattering in four limiting cases
in the Faraday and Voigt geometries at normal incidence. Note
that I (iii)

+− = I (ii)
+− + I (iv)

+− . As seen from the table, the strongest
signal is achieved in the Voigt geometry in the collinear po-
larizations parallel to the magnetic field in the case of a large
exchange splitting in the exciton.

As for the double spin-flip scattering of resident carriers
involving exciton polaritons, such scattering is unlikely in the
case of small exciton polariton lifetime (case 1). In the regime
of frequent collisions (case 2, Fig. 2), the secondary emission,
both in single and double spin-flip scattering, is not polarized
or weakly polarized.

The spherical invariant (23) is applicable to an isotropic
medium where the bright-exciton level is threefold degener-
ate. This model is valid for the cubic phase of a perovskite
crystal. When the symmetry is lowered to tetragonal, the
triplet exciton degeneracy is partially removed and the scat-
tering selection rules may be modified. In the case of a large
energy splitting between exciton sublevels with the angular-
momentum projection ±1 and 0 on the tetragonal axis c,
only the exciton states ±1 are important in the scattering
process. Then the scattering intensities are proportional to
|(e∗ × e0) · c|2 sin2 θbc, where c is the ort along the c axis
and θbc is the angle between c and the magnetic field B. In
addition, the tetragonal phase allows for anisotropy of electron
and hole g factors [13,14], and the description of SFRS gets
closer to that for the spin reversal of resident electrons in
CdSe nanoplatelets [7,8]. The anisotropy also changes a value

of the Stokes shift for the scattering involving the transition
of the resident exciton from the state m = −1 to m = 0. In
Ref. [14], a splitting between exciton sublevels ±1 and 0
at zero magnetic field has recently been demonstrated on a
strained perovskite crystal.

VII. CONCLUSION

Motivated by recent studies of semiconductor perovskites,
we have developed a detailed theory of single and double spin-
flip Raman scattering (SFRS) in bulk perovskite crystals. To
gain an insight into the problem, we have examined possible
mechanisms of the scattering phenomenon, namely, (i) spin
reversals of resident localized electrons and holes separated
from each other in space and (ii) spin flips of nonequilibrium
excitons localized as a whole. We have considered different
types of resonant intermediate states involved in the scatter-
ing process: the complexes “localized exciton plus localized
resident electron and hole” and biexciton as well as free
exciton polariton. To our knowledge, the participation of ex-
citon polaritons is a new mechanism of SFRS, and this paper
generalizes the theory of exciton polariton transport to take
into account the exchange interaction of the electron-hole
component of a polariton with localized charge carriers during
the scattering. The results are presented in a form allowing
for the symmetry analysis, and the scattering intensities are
expressed in terms of the symmetry invariants applicable for
the cubic phase of perovskites.

Possibilities of future work can be divided into three di-
rections. First, the developed theory of SFRS by exciton
polaritons can be extended from the frequency range ω < ωT

to the whole resonance region with allowance for the spatial
dispersion and additional light waves. Second, the theory may
be modified to account for the effects of anisotropy in tetrag-
onal and orthorhombic perovskites. Third, the theory allows
for an extension to third- and higher-order spin-flip scattering
processes.
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