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Parameter-free analytic continuation for quantum many-body calculations
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We develop a reliable parameter-free analytic continuation method for quantum many-body calculations. Our
method is based on a kernel grid, a causal spline, a regularization using the second-derivative roughness penalty,
and the L-curve criterion. We also develop the L-curve averaged deviation to estimate the precision of our
analytic continuation. To deal with statistically obtained data more efficiently, we further develop a bootstrap-
averaged analytic continuation method. In the test using the exact imaginary-frequency Green’s function with
added statistical error, our method produces the spectral function that converges systematically to the exact one as
the statistical error decreases. As an application, we simulate the two-orbital Hubbard model for various electron
numbers with the dynamical-mean field theory in the imaginary time and obtain the real-frequency self-energy
with our analytic continuation method, clearly identifying a non-Fermi-liquid behavior as the electron number
approaches the half filling from the quarter filling. Our analytic continuation can be used widely, and it will
facilitate drawing clear conclusions from imaginary-time quantum many-body calculations.
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I. INTRODUCTION

Numerical simulations of quantum many-body systems in
real time often suffer from the instability caused by oscillatory
real-time evolution of exp(−iHt ). The severe dynamical sign
problem in the real-time quantum Monte Carlo simulation
is an example of such instability [1–3]. This instability can
be reduced by exploiting the imaginary time by changing
exp(−iHt ) to exp(−Hτ ) [4]. However, it is not straightfor-
ward to compare the imaginary-time Green’s function with
experimental results, so the real-frequency Green’s function
needs to be obtained from the imaginary-frequency one. The
relation between the imaginary-frequency Green’s function
G(iωn) and the real-frequency spectral function A(x) is

G(iωn) =
∫

A(x)

iωn − x
dx, A(x) � 0. (1)

Using Eq. (1), one needs to find A(x) from numerically calcu-
lated G(iωn). This procedure is called the numerical analytic
continuation, and it is severely ill-posed [5].

Strong demands for the numerical analytic continuation led
to the development of many methods despite the ill-posed na-
ture. Among the various methods, two categories are popular.
One category is estimates of a function G(z) of a complex
variable z which interpolates G(iωn). This category contains
the Padé approximant [6–8] and the Nevanlinna analytic con-
tinuation [9]. The interpolation approach is independent of
the real-frequency grid and can produce the entire spectral
function [8,9], but it is very sensitive to numerical precision
and the accuracy of input data [8].

The other category is estimates of the spectral function
A(x) using χ2 = ∑

iωn
|G(iωn) − ∫ A(x)

iωn−x dx|2. One way to use

*einnew90@gmail.com
†h.j.choi@yonsei.ac.kr

χ2 is to obtain A(x) by averaging various spectral functions
with the weight of exp(−χ2) [10–13]. Another way to use
χ2 is to regularize it by adding a regularization parameter λ

times a functional R[A] so that A(x) is obtained by minimizing
χ2 + λR[A]. A representative example of the regularization
approach is the maximum entropy method [5,14–18], where
R[A] is the entropy of the spectral function with respect to the
default model D(x).

The regularization approach is stable, but its implementa-
tions so far require many control parameters. The maximum
entropy method requires the real-frequency grid {xi}, D(x),
and λ. These parameters can affect the resulting A(x) substan-
tially [15,18,19]. To find optimal parameters, one needs to test
several values of {xi}, D(x), and λ. While the optimal λ can be
found with some criteria [15,18,20], methods to determine {xi}
and D(x) are not established yet. In addition, when applied
to a metallic system, the maximum entropy method requires
the preblur [5,17,20,21], which makes it not straightforward
to obtain A(x) for metallic and insulating phases on equal
footing.

Quantum many-body calculations are often conducted with
the imaginary-time quantum Monte Carlo method [22–26],
which yields imaginary-frequency data with statistical errors.
To consider statistical errors, it is typical to scale χ2 with
the standard deviation or the covariance matrix [5,14,15,18],
which can be estimated with resampling methods such as the
jackknife approach [27] or the bootstrap approach [28,29].
Because statistical errors can induce artifacts in the analyt-
ically continued spectral function, the analytic continuation
requires careful consideration of statistical errors.

In this work, we develop a reliable parameter-free
analytic continuation method. Our method is based on
the regularization approach, where we remove any ar-
bitrary selection of control parameters as follows. First,
we develop a real-frequency kernel grid which can be
used generally and can support the precise description of
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corresponding imaginary-frequency data. Second, we use the
second-derivative roughness penalty [30], which ensures our
method does not need the default model D(x). Then, the
proper regularization parameter λ is found by the L-curve
criterion [31,32]. We also develop the L-curve averaged de-
viation to estimate the precision of our analytic continuation.
In addition, to deal with statistical errors more carefully, we
develop a bootstrap-averaged analytic continuation method.

II. PARAMETER-FREE ANALYTIC CONTINUATION

A. Kernel grid

The analytic continuation finds a spectral function A(x)
which satisfies Eq. (1) for given G(iωn). Numerical imple-
mentation of this procedure requires a continuous description
of A(x) using a finite number of values. For this, we used
the natural cubic spline [33,34] interpolation, where A(x)
is represented as A(x) = Ci,0 + Ci,1(x − xi ) + Ci,2(x − xi )2 +
Ci,3(x − xi )3 in the ith interval of xi � x � xi+1 for i =
1, 2, . . . , nx − 1, with A′′(x1) = A′′(xnx ) = 0. Here nx is the
number of grid points, and A′′(x) is the second derivative of
A. For appropriate grid points, we develop a kernel grid which
depends only on the temperature kBT , the real-frequency
cutoff xmax, and the number of grid points nx. The accurate
analytic continuation requires the real-frequency grid which
describes G(iωn) of Eq. (1) accurately, so the grid should
be dense near x where A(x) contributes greatly to G(iωn).
Thus, for a single iωn, the appropriate grid density should
be proportional to |δG(iωn)/δA(x)|2 = 1/(ω2

n + x2). Hence,
to describe G(iωn) for all iωn, we use the grid density ρ(x)
such that

ρ(x) ∝
∞∑

n=0

∣∣∣∣δG(iωn)

δA(x)

∣∣∣∣
2

= 1

4kBT x
tanh

(
x

2kBT

)
, (2)

where ωn = (2n + 1)πkBT for the fermionic Green’s func-
tion. Then, grid points are determined by the equidistribution
principle [34],

∫ xi+1

xi
ρ(x)dx = C/(nx − 1), with x1 = −xmax,

xnx = xmax, and C = ∫ xmax

−xmax
ρ(x)dx. Here xmax and nx are de-

termined to be large enough to make the obtained spectral
function converge.

We compare the performance of our kernel grid with that
of a uniform grid in Fig. 1. Figures 1(a) and 1(c) show two
different spectral functions A(x). The spectral function A(x)
shown in Fig. 1(a) has a sharp peak at the Fermi level (x = 0),
while that shown in Fig. 1(c) has no peak at the Fermi level.
Figures 1(b) and 1(d) show G(iωn) corresponding to A(x)
shown in Figs. 1(a) and 1(c), respectively. In the case that A(x)
has a sharp peak at the Fermi level (x = 0), our kernel grid
describes A(x) accurately enough to produce G(iωn) correctly,
while the uniform grid does not [Fig. 1(b)]. In the case that
A(x) does not have a sharp peak, both our kernel grid and
the uniform grid describe A(x) accurately enough to produce
G(iωn) correctly [Fig. 1(d)].

B. Causal cubic spline

Finding the spectral function A(x) from G(iωn) by min-
imizing χ2[A] = ∑

iωn
|G(iωn) − ∫ A(x)

iωn−x dx|2 is extremely
ill-posed [5]. This ill-posedness can be significantly weak-

FIG. 1. Comparison of our kernel grid and a uniform grid in
describing the real-frequency spectral function A(x). (a) and (c) A(x)
versus the real frequency x. (b) and (d) The imaginary part of Green’s
function G(iωn) versus the Matsubara frequency ωn corresponding
to A(x) shown in (a) and (c), respectively. Our kernel grid and the
uniform grid are generated with nx = 51 and xmax = 5. Temperature
is 0.01. In (a) and (c), values of A(x) at our kernel grid (at the uniform
grid) are shown by red (green) dots. In (b) and (d), values of the
imaginary part of G(iωn) calculated from values of A(x) at our kernel
grid (at the uniform grid) are shown by red (green) dots. In (a)–(d),
exact values are shown by black lines.

ened by imposing the causality condition A(x) � 0 [35]. Since
A(xi ) � 0, i = 1, . . . , nx, satisfies the causality only at the grid
points xi, we develop conditions that impose the causality for
all x as follows. The cubic spline can be expressed as a linear
combination of cubic B-splines which are non-negative func-
tions [36]. Thus, A(x) � 0 for all x if expansion coefficients
are non-negative [36]:

A(x1) � 0, A(xnx ) � 0,

A(xi ) + 1
3 (xi±1 − xi )A

′(xi ) � 0. (3)

Here A′(x) is the derivative of A. The cubic spline con-
strained by Eq. (3) satisfies A(x) � 0 not only at grid points
but also throughout intervals between grid points. This cubic
spline, which we call the causal cubic spline, weakens the ill-
posedness of the analytic continuation significantly, but it does
not resolve the ill-posedness completely, so minimization of
χ2[A] with the constraint Eq. (3) produces A(x) still having
spiky behavior due to overfitting to numerical errors [35]. To
obtain smooth and physically meaningful A(x), we employ an
appropriate roughness penalty and the L-curve criterion.

C. The roughness penalty and the L-curve criterion

To avoid the spiky behavior in A(x) caused by overfitting
to numerical errors, we use the second-derivative roughness
penalty [30]. The roughness penalty R[A] is defined as

R[A] =
∫ xmax

−xmax

|A′′(x)|2dx. (4)
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FIG. 2. The L-curve criterion to find the optimal regularization
parameter λ. (a) The L-curve. Spectral functions A(x) versus the real
frequency x, shown by green lines, computed by minimizing Eq. (5),
with (b) λ = 10−16, (c) λ = λopt = 6.21 × 10−11, and (d) λ = 1. In
(b)–(d), black lines show the exact spectral function for comparison.
The imaginary-frequency Green’s function G(iωn) is generated by
adding Gaussian errors with a standard deviation of 10−6 to the
exact one. Temperature is 0.01. We used the first 100 Matsubara
frequencies and the kernel grid with xmax = 10 and nx = 101, which
are large enough for converged results.

Then, we obtain A(x) by minimizing a regularized functional

Qλ[A] = χ2[A] + λR[A], (5)

with a regularization parameter λ. We use the interior-point
method [37,38] to implement this minimization. Then, the op-
timal λ that balances χ2[A] and R[A] is found by the L-curve
criterion [31,32], which is a popular approach to determine
the regularization parameter in various cases as follows. For
each λ, one finds Aλ that minimizes Qλ[A] in Eq. (5). Then, let
χ2(λ) = χ2[Aλ] and R(λ) = R[Aλ]. The L-curve is the plot
of log10[R(λ)] versus log10[χ2(λ)]. The L-curve criterion is
to choose λ that corresponds to the corner of the L-curve
as the optimal value, λopt as illustrated in Fig. 2(a). This
procedure can be performed stably and efficiently by using
a recently developed algorithm [39] which typically requires
minimizations of Qλ[A] at about 20 different values of λ. For
a very small λ, χ2[A] dominates Qλ[A] in Eq. (5), resulting
in unphysical peaks in Aλ(x), as shown in Fig. 2(b). For a
very large λ, R[A] dominates Qλ[A] in Eq. (5), resulting in
too much broadening in Aλ(x), as shown in Fig. 2(d). On the
other hand, the spectral function computed with λopt matches
excellently the exact one, as shown in Fig. 2(c). With this
criterion for λ and with large enough values of nx and xmax

(see Appendix A for the convergence test with respect to
nx and xmax), our analytic continuation does not have any
arbitrarily chosen parameter that can affect the real-frequency
result significantly, so we call our method a parameter-free
method. Our analytic continuation method can be applied to
the self-energy or other Matsubara frequency quantities which
can be represented in a way similar to Eq. (1).

FIG. 3. Comparison of the spectral functions A(x) from our an-
alytic continuation method without and with the bootstrap average.
(a) A(x) obtained without the bootstrap average. (b) A(x) obtained
with the bootstrap average. See the text for detailed procedures of
our analytic continuation without and with the bootstrap average. In
(a) and (b), green lines are A(x) obtained by our analytic continua-
tion, and black lines are the exact spectral function Aexact(x).

We can use the L-curve to estimate the precision of the
analytic continuation as well. In the L-curve, λ < λopt pro-
duces Aλ(x) which is more fitted to G(iωn), so the precision
of Aλopt (x) can be estimated by comparing it with Aλ(x). In this
regard, we define the L-curve averaged deviation (LAD),

LAD(x) =
∫

C[Aλ(x) − Aλopt (x)]ds∫
C ds

, (6)

where C is the L-curve from λ = 0 to λ = λopt, and we use it
as an error estimator.

D. Bootstrap-averaged analytic continuation

The Monte Carlo approach [22–26] is often used to cal-
culate the imaginary-frequency Green’s function G(iωn). As
a result, the calculated G(iωn) has statistical errors. The
spectral function calculated by the analytic continuation of
such data can exhibit artifacts from statistical errors in
G(iωn) [see Fig. 3(a) for an example]. Here we devise a
bootstrap-averaged analytic continuation method. The boot-
strap approach [28,29] is a widely used resampling method
in statistics. Suppose we have N independent data G(iωn) j ,
where j = 1, . . . , N , and we repeat the bootstrap sampling NB

times. For the kth bootstrap sampling, we randomly sample
N data from G(iωn) j with replacement and calculate their
average gB

k (iωn) = 1
N

∑N
j=1 nk jG(iωn) j , where nk j is the num-

ber of repetitions of G(iωn) j in the kth bootstrap sampling.
Then, we obtain the analytically continued spectral function
A[gB

k ] for gB
k . Finally, the spectral function A(x) is calcu-

lated by A(x) = 1
NB

∑NB
k=1 A[gB

k ](x), which converges as NB

increases. In our present work, we used NB = 256, which is
large enough to obtain converged results. Similarly, we can
also obtain bootstrap-averaged LAD(x) for the error estima-
tion of bootstrap-averaged A(x).

Figure 3 compares the results of our analytic continuation
without and with the bootstrap average. We consider an ex-
act spectral function Aexact(x) which has a narrow peak at
x = 0 and a broad peak at x = −4 and another broad peak
at x = 5, as shown by the black line in Fig. 3. We obtain the
exact Green’s function Gexact(iωn) from Aexact(x). We used a
temperature of 0.01 and the first 100 Matsubara frequencies.
The kernel grid is generated with xmax = 10 and nx = 101. To
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FIG. 4. The statistical-error dependence of the spectral function
A(x), shown by green lines, obtained with our bootstrap-averaged an-
alytic continuation method. The standard deviation δ of the statistical
error in imaginary-frequency data is (a) 10−2, (b) 10−3, (c) 10−4, and
(d) 10−5. Black lines show the exact spectral function, and gray lines
show the deviation of A(x) by LAD(x). In (a) and (b), Gaussian fits
for A(x) are shown in dotted lines. Temperature is 0.01. We used the
first 100 Matsubara frequencies and a kernel grid with xmax = 10 and
nx = 101, which are large enough for converged results.

perform our analytic continuation without bootstrap average,
we obtain the Green’s function G(iωn) by adding a Gaussian
error of the standard deviation of 10−6 to Gexact(iωn). Then,
we obtain the spectral function A(x) by applying our ana-
lytic continuation method to G(iωn). Figure 3(a) shows the
obtained A(x), which deviates slightly from Aexact(x) at around
x = 5. Next, to perform our bootstrap-averaged analytic con-
tinuation, we obtain N = 100 independent values of G(iωn)
by adding a Gaussian error of the standard deviation of 10−5

to Gexact(iωn). Then, we obtain the spectral function A(x) by
applying our bootstrap-averaged analytic continuation method
with NB = 256. Figure 3(b) shows the obtained A(x), which
agrees excellently with Aexact(x). The deviation of A(x) from
Aexact(x) at around x = 5 in Fig. 3(a) is due to overfitting of
A(x) to G(iωn) with statistical errors, and it is avoided by the
bootstrap average, as shown in Fig. 3(b). So the bootstrap
average is useful for avoiding the overfitting to data with
statistical errors. This bootstrap average can be used with any
analytic continuation method.

III. BENCHMARKS AND APPLICATIONS

A. Tests with exact results

Figure 4 demonstrates the statistical-error dependence of
the spectral function A(x) and LAD(x) obtained with our
method. We consider an exact A(x) consisting of three peaks,
from which we obtain the exact G(iωn). Then, we add sta-
tistical errors to the exact G(iωn) and apply our method to
obtain A(x) and LAD(x). Here the standard deviation δ of the
statistical errors is independent of ωn. (See Appendix B for δ

varying with ωn.) As shown in Fig. 4(a), when statistical errors
in G(iωn) are large, the obtained A(x) is broader than the exact

TABLE I. Analysis of peak centers and peak widths in the spec-
tral functions shown by green lines in Fig. 4.

A(x)
Left peak

Center Width
Middle peak
Center Width

Right peak
Center Width

Fig. 4(a) −3.24 1.28 1.34 0.670 2.67 1.04
Fig. 4(b) −3.01 0.981 1.30 0.657 2.88 1.18
Fig. 4(c) −3.01 0.813 1.02 0.466 3.05 0.687
Fig. 4(d) −3.01 0.813 1.00 0.414 3.02 0.609
Exact −3.00 0.800 1.00 0.400 3.00 0.600

one, and LAD(x) is large. As the statistical errors are reduced,
A(x) converges to the exact one, and LAD(x) diminishes
[Figs. 4(b)–4(d)]. These results show that our method behaves
well with respect to the statistical errors, reproducing the exact
spectral function if the statistical errors are small enough.

For a more detailed analysis, we fit the obtained A(x)
in Fig. 4 with three Gaussian functions. Table I shows the
obtained peak centers and peak widths. These results show
explicitly that peak centers and peak widths converge to the
corresponding exact values as statistical errors in G(iωn) de-
crease and show that peak centers converge faster than peak
widths.

In addition, we tested our analytic continuation method
with various spectral functions (Fig. 5). Here we performed
the bootstrap average with NB = 256, using N = 100 inde-
pendent values of G(iωn). Each independent value of G(iωn)
was obtained by adding a Gaussian error of the standard
deviation of 10−5 to the exact Green’s function Gexact(iωn)
obtained from the exact spectral function Aexact(x). Figure 5

FIG. 5. Tests of our bootstrap-averaged analytic continuation
method for various spectral functions A(x) consisting of (a) a broad
peak at x < 0, (b) two broad peaks at x < 0 and x = 0, (c) a narrow
peak at x = 0 and a broad peak at x > 0, and (d) a narrow peak at
x = 0 and two broad peaks at x < 0 and x > 0. In (a)–(d), green
lines show A(x) obtained with our bootstrap-averaged analytic con-
tinuation, while black lines show exact spectral functions Aexact(x).
We used a temperature of 0.01, the first 100 Matsubara frequencies,
and a kernel grid with xmax = 10 and nx = 101.
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confirms analytically continued spectral functions A(x) agree
excellently with corresponding Aexact(x). We also compared
our method with the maximum entropy method (Appendix C).

B. Dynamical mean-field theory simulation of the two-orbital
Hubbard model

As an application of our method, we consider the two-
orbital Hubbard model [40] described by the Hamiltonian

H = −
∑

〈i j〉,abσ

t ab
i j d†

iaσ d jbσ −
∑

iσ

μniσ +
∑

ia

Unia↑nia↓

+
∑

i,a<b,σ

{(U − 2J )niaσ nibσ̄ + (U − 3J )niaσ nibσ }

−
∑
i,a 	=b

J (d†
ia↓d†

ib↑dib↓dia↑ + d†
ib↑d†

ib↓dia↑dia↓) (7)

in the infinite-dimensional Bethe lattice with a semicircular
noninteracting density of states. Here diaσ (d†

iaσ ) is the an-
nihilation (creation) operator of an electron of spin σ in the
ath (a = 1, 2) orbital at the ith site, niaσ = d†

iaσ diaσ , t ab
i j is the

nearest-neighbor hopping energy, μ is the chemical potential,
U is the local Coulomb interaction, and J is the Hund’s cou-
pling. With the Padé approximant, the imaginary part of the
self-energy in this model shows a peak at around the Fermi
level in the non-Fermi-liquid phase [41]. Our analytic contin-
uation method makes it possible to analyze the existence and
evolution of peaks in detail, as shown below.

We simulate the two-orbital Hubbard model of Eq. (7)
with the dynamical mean-field theory (DMFT) [42–46]. We
implemented the hybridization-expansion continuous-time
quantum Monte Carlo method [25] and used it as an impurity
solver. Both orbitals have the same bandwidth of 4 in our
energy units. We simulated the case with U = 8, J = U/6,

and temperature T = 0.02 and considered the paramagnetic
phase. We applied our analytic continuation method to ob-
tain the real-frequency self-energy 
R(x) from the first 100
imaginary-frequency self-energies 
(iωn). We used nx = 101
and xmax = 30 to form the kernel grid, which are large enough
for converged results. For the bootstrap average, we used
1.28 × 104 independent sets of 
(iωn) obtained with 2 × 106

Monte Carlo steps. After obtaining 
R(x), we computed the
spectral function A(x) = − 1

π
Im[G(x + iη)] by using G(x +

iη) = ∫ ∞
−∞ D(ε)/[x + iη + μ − ε − 
R(x)]dε. Here D(ε) =√

4 − x2/(2π ).
Figure 6 shows the spectral function as a function of

the electron number n per site A(x, n). The spectral func-
tion varies continuously except for the half filling (n = 2),
where the insulating phase appears. The particle-hole sym-
metry, A(x, n) = A(−x, 4 − n), is clearly observed in Fig. 6,
although it is not enforced. At n � 1 or n � 3, the spectral
function shows a quasiparticle peak at the Fermi level and two
Hubbard bands. As n is increased from 1.2 or decreased from
2.8, a shoulder appears in the Fermi-level quasiparticle peak.

To investigate the origin of this shoulder, we plot
Im[
R(x, n)] in Fig. 7. At n � 1 or n � 3, Im[
R(x)] shows
two peaks corresponding to the lower and upper Hubbard
bands, which we call the lower and upper Hubbard peaks. As
n is increased from 1.2 (decreased from 2.8), the lower (upper)

FIG. 6. The spectral function of the two-orbital Hubbard model
as a function of the electron number n per site, obtained by applying
our analytic continuation method to imaginary-frequency DMFT re-
sults. The spectral function is plotted (a) for 0 � n � 4 continuously
with an intensity map and (b) for several selected n. In (b), spectral
functions are offset with a step of 0.4 for clarity. The shoulder of the
quasiparticle peak appears at about n = 1.2 and n = 2.8, which are
marked with dotted lines in (a).

Hubbard peak splits into two peaks, resulting in the shoulder
of the quasiparticle peak in A(x). These Hubbard-peak split-
tings induce non-Fermi-liquid behavior, as discussed below.

FIG. 7. The imaginary part of the self-energy of the two-orbital
Hubbard model as a function of the electron number n per site,
obtained by applying our analytic continuation method to imaginary-
frequency DMFT results. The imaginary part of the self-energy is
plotted (a) for 0 � n � 4 continuously with an intensity map and
(b) for several selected n. In (b), self-energies are offset with a step
of −7 for clarity. The self-energy diverges at the Fermi level (x = 0)
in the case of n = 2, which is marked with a black dot in (a). The
lower (upper) Hubbard peak splits into two peaks at about n = 1.2
(n = 2.8), which is marked with a dotted line in (a).
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FIG. 8. Imaginary part of 
(iωn), shown by red dots, and 
R(x),
shown by blue lines, of the two-orbital Hubbard model for (a) and
(b) n = 0.85 and (c) and (d) n = 1.55. In (a) and (c), solid lines are
fitted to the lowest three points of Im[
(iωn)]. In (b) and (d), dotted
lines are fitted to low-frequency part of Im[
R(x)]. Gray lines show
the deviation of Im[
R(x)] by LAD(x) applied to the self-energy.

In Fig. 8, we compare the self-energies for n = 0.85 and
n = 1.55. For n = 0.85, Im[
(iωn)] is proportional to ωn at
small ωn, which indicates a Fermi-liquid behavior [47]. In the
real frequency, the Fermi-liquid behavior, Im[
R(x)] = C +
αx2 for small x [48], is obtained from our analytic continua-
tion [Fig. 8(b)]. On the other hand, for n = 1.55, Im[
(iωn)]
is almost proportional to

√
ωn, indicating a non-Fermi-liquid

behavior [47]. This non-Fermi-liquid behavior appears in the
real frequency x as linear dependance of Im[
R(x)] on x near
the Fermi level (x = 0) [Fig. 8(d)]. This linear dependence
comes from splitting of Hubbard peaks in Im[
R(x)]. Non-
Fermi-liquid behavior in Im[
(iωn)] is known to appear at the
spin-freezing crossover [41,47,49,50]. Our results show that
the spin-freezing crossover (or, equivalently, the spin-orbital
separation [51]) occurs with the Hubbard-peak splitting in
Im[
R(x)].

To show the spin-freezing crossover, we obtain the lo-
cal magnetic susceptibility χloc and the dynamic contribution
�χloc to the local magnetic susceptibility. With the operator
Sz = (1/2)

∑2
a=1(na↑ − na↓), we define the local magnetic

susceptibility as

χloc =
∫ β

0
〈Sz(τ )Sz(0)〉dτ (8)

and the dynamic contribution as

�χloc =
∫ β

0
[〈Sz(τ )Sz(0)〉 − 〈Sz(β/2)Sz(0)〉]dτ. (9)

Here β = 1/kBT . Figure 9 shows χloc and �χloc as functions
of the electron number n per site. As the electron number ap-
proaches the half filling (n = 2), χloc increases monotonically.
On the other hand, �χloc, which represents the fluctuation of
the local spin moment, is maximal near n = 1.6 and 2.4. This
indicates the spin-freezing crossover [47,50].

FIG. 9. Spin-freezing crossover of the two-orbital Hubbard
model. (a) Local magnetic susceptibility χloc and (b) dynamic con-
tribution �χloc to the local magnetic susceptibility as a function of
electron number n per site. See the text for computational details.

IV. SUMMARY

In summary, we developed a reliable parameter-free an-
alytic continuation method, tested it with exact cases, and
studied the two-orbital Hubbard model as an application. We
developed a kernel grid which is suitable for the numerical
analytic continuation and employed the causal cubic spline,
the second-derivative roughness penalty, and the L-curve cri-
terion. With these, we developed a reliable parameter-free
analytic continuation method and an error estimator. We
also developed a bootstrap-averaged analytic continuation.
We demonstrated that our method reproduces the exact spec-
tral function as statistical errors in imaginary-frequency data
decrease. As an application, we computed real-frequency
quantities from imaginary-frequency DMFT results of the
two-orbital Hubbard model, where we found that peaks in
Im[
R(x)] split as the electron number approaches the half
filling from the quarter filling. We verified that this peak
splitting corresponds to non-Fermi-liquid behavior considered
to be the signature of the spin-freezing crossover in previ-
ous works [41,47,49,50]. Our analytic continuation method
does not depend on any specific detail of the system under
consideration, so it can be used widely to carry out a clear
real-frequency analysis from various imaginary-time quantum
many-body calculations.
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APPENDIX A: CONVERGENCE TEST
OF OUR KERNEL GRID

Our analytic continuation uses the kernel grid, which is a
set of nonuniform nx points in the range of −xmax � x � xmax,
as described in the main text. We test the convergence of the
spectral function Aλopt (x) calculated from our analytic contin-
uation method with respect to nx and xmax by using the data
and the spectral function considered in Fig. 2. To quantify the
difference between Aλopt (x) and Aexact(x), we define a norm
||dA|| = {∫ ∞

−∞[Aλopt (x) − Aexact(x)]2dx}1/2. Figure 10 shows
||dA|| versus nx and xmax, confirming that Aλopt (x) converges
to Aexact(x) as nx and xmax increase. At large enough nx and
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FIG. 10. Convergence test of the spectral function with respect
to nx and xmax for the case considered in Fig. 2. (a) ||dA|| versus nx .
(b) ||dA|| versus xmax. See the text for the definition of ||dA||. In (a),
xmax = 10. In (b), nx = 101.

xmax, ||dA|| may have small nonzero values, as shown in
Fig. 10, which are due to (i) statistical errors in the imaginary-
frequency data used for the analytic continuation and (ii) the
presence of the roughness penalty R[A] in Eq. (4) in the
regularized functional Qλ[A] of Eq. (5).

If the Green’s function G(iωn) is well represented with a
spectral function so that Qλ=0[A] is minimized to a tiny value
comparable to the computer precision (as in the case of an
exact Green’s function without any statistical errors), it is
difficult to find λopt by using the L-curve. In that case, it is
suitable to find and use λ at which Qλ[Aλ] = 2Qλ=0[Aλ=0].

APPENDIX B: TEST WITH STATISTICAL ERRORS
PROPORTIONAL TO ωn

The standard deviation of the statistical error in the
imaginary-frequency data G(iωn), or 
(iωn), may vary with
the Matsubara frequency ωn in general. For instance, in the
two-orbital Hubbard model considered in Sec. III B, we used
a quantum Monte Carlo method to calculate the self-energy

(iωn), and the obtained 
(iωn) has larger statistical errors at
larger ωn.

As an explicit test of the case where the statistical error
varies with ωn, we consider again the exact spectral function
in Fig. 4 and add Gaussian errors to the exact G(iωn) whose
standard deviation is proportional to ωn. This mimics the
self-energy calculated by using the Dyson equation. Let δn

be the standard deviation of the statistical error in G(iωn)
and δ̄ be the averaged value δ̄ = 1

Nωn

∑
ωn

δn. Figure 11 shows
the results of our analytic continuation with different values
of δ̄, confirming that our method works well even when the
statistical error is proportional to ωn. We also note δ̄ plays the
role of δ in Fig. 4.

APPENDIX C: COMPARISON WITH THE MAXIMUM
ENTROPY METHOD

We compare the results of our analytic continuation
method with those of the maximum entropy method. For
this comparison, we implemented the maximum entropy
method [5,14,15], which obtains the spectral function A(x)
by minimizing χ2/2 − αS[A]. Here χ2 = ∑

iωn
|G(iωn) −

FIG. 11. The statistical-error dependence of the spectral function
A(x), shown by green lines, obtained with our analytic continuation
method. Here G(iωn) have statistical errors whose standard deviation
is proportional to ωn. The averaged value δ̄ of the standard deviation
is (a) 10−2, (b) 10−3, (c) 10−4, and (d) 10−5. Black lines show the
exact spectral function, and gray lines show the deviation of A(x)
by LAD(x). In (a) and (b), Gaussian fits for A(x) are shown by
dotted lines. Temperature is 0.01. We used the first 100 Matsubara
frequencies and a kernel grid with xmax = 10 and nx = 101, which
are large enough for converged results.

∫ A(x)
iωn−x dx|2, and the relative entropy S[A] is

S[A] = −
∫

A(x) ln

(
A(x)

D(x)

)
dx, (C1)

FIG. 12. Comparison of our method with the maximum entropy
method. Green lines are spectral functions from our analytic con-
tinuation method, and red lines are those from the maximum entropy
method. The standard deviation δ of the statistical error in imaginary-
frequency data is (a) 10−2, (b) 10−3, (c) 10−4, and (d) 10−5. Black
lines are exact spectral functions. Temperature is 0.01, and we used
the first 100 Matsubara frequencies.
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where D(x) is the default model. The optimal value for α

is obtained by finding the value of α that maximizes the
curvature in the plot of log10 χ2 versus 0.2 log10 α [18]. As
a test example, we considered an exact spectral function
Aexact(x) which consists of two Gaussian peaks: one at x =
−1 with a standard deviation of 0.6 and the other at x = 1
with a standard deviation of 0.5. In both our method and
the maximum entropy method, we used the kernel grid with
xmax = 10 and nx = 101. We generated 256 bootstrap samples
with constant Gaussian error with a standard deviation of δ

which varied from 10−2 to 10−5, and we averaged analyt-
ically continued spectral functions over bootstrap samples.
For the maximum entropy method, we used the Gaussian

default model that consists of a single broad Gaussian peak
at x = 0 with a standard deviation of 3, and we did not apply
any preblur process [17,20,21]. As shown in Fig. 12, spectral
functions calculated with our method and the maximum en-
tropy method converge to the exact one if statistical errors are
small enough [Fig. 12(d)]. If statistical errors are not small
enough, the maximum entropy method produces some cusps
near the Fermi level [Figs. 12(a)-12(c)], as reported in the
literature [5,17,20,21]. While these cusps from the maximum
entropy method become more pronounced with larger statisti-
cal errors in the imaginary-frequency data, our method does
not produce such behaviors even for large statistical-error
cases.
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