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Density-matrix functional theory of the attractive Hubbard model:
Statistical analogy of pairing correlations
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The ground-state properties of the Hubbard model with attractive local pairing interactions are investigated in
the framework of lattice density-functional theory. A remarkable correlation is revealed between the interaction-
energy functional W [η] corresponding to the Bloch-state occupation-number distribution ηκσ and the entropy
S[η] of a system of noninteracting fermions having the same ηkσ . The relation between W [η] and S[η] is shown
to be approximately linear for a wide range of ground-state representable occupation-number distributions ηkσ .
Taking advantage of this statistical analogy, a simple explicit ansatz for W [η] of the attractive Hubbard model is
proposed, which can be applied to arbitrary periodic systems. The accuracy of this approximation is demonstrated
by calculating the main ground-state properties of the model on several 1D and 2D bipartite and nonbipartite
lattices and by comparing the results with exact diagonalizations.
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I. INTRODUCTION

The study of strongly correlated phenomena in quan-
tum many-body systems is one of the central challenges in
condensed-matter physics. Over the past decades, the field has
experienced a remarkable expansion which has been fueled
by the discovery of new materials, as well as by the progress
in experimental characterization tools and theoretical method-
ologies. One of the most significant developments in this field
has been the discovery of high-temperature superconductors
and the electronic pairing mechanism associated with them
[1,2]. Indeed, in these materials the origin of superconductiv-
ity is profoundly different from the phonon-mediated coupling
at the center of the Bardeen, Cooper, and Schrieffer (BCS)
theory of conventional superconductors [3]. As a result, the
study of alternative descriptions of pairing interactions in
solids have gained increasing attention [1,4–10].

The attractive single-band Hubbard model [11–13] with
on-site interactions U < 0 provides a simple, albeit over-
simplified way of introducing a pairing mechanism among
fermions and of exploring its consequences on the many-
body properties [14–18]. Originally proposed for describing
local repulsive Coulomb interactions in the context of itiner-
ant narrow-band magnetism [11–13], this model has played,
together with other lattice models [19–21], a most signifi-
cant role in shaping our understanding of strongly correlated
phenomena. Therefore, it is most interesting to explore its
physical properties when pairing is favored. From this per-
spective, it is important to recall that the physics described by
the attractive Hubbard model is intrinsically different from the
pairing mechanism of the BCS theory. The effective interac-
tions in the BCS theory have an off-diagonal character since
they are mediated by electron-phonon scattering. Moreover,
the narrow energy and momentum dispersion caused by the
interaction with phonons results in a large spatial extension

of the Cooper pairs. In contrast, the pairing interactions are
strictly local in the Hubbard model, since they only affect
fermions occupying the same lattice site. Rather than a lim-
itation, this strong complementarity is one of the reasons
why the model is particularly appealing from a theoretical
perspective [22].

Local attractive interactions have been the subject of mul-
tiple theoretical studies by using a variety of methodologies
[14–18,22–31]. In early works, the formation and stability
of charge-density waves and superconducting states has been
quantified [14,15]. In addition, the phase diagram of the
two-dimensional (2D) negative-U Hubbard model has been
determined [16,17]. Other investigations have addressed the
accuracy of the mean-field BCS approximation by comparing
it with the exact Bethe-ansatz solution of the one dimen-
sional (1D) Hubbard model as well as with accurate numerical
calculations in two dimensions [23–26]. More recently, the
model has been studied in the framework of lattice density-
functional theory (LDFT) [18] by applying the concepts of
first-principles density-functional theory (DFT) [32,33] to
many-body lattice Hamiltonians. An explicit semilocal ap-
proximation to the interaction energy W has been proposed
as a functional of the single-particle density matrix (SPDM)
γ . In this way, the ground-state kinetic, Coulomb, and total
energies, the charge distribution, and nearest-neighbor (NN)
bond order as well as the pairing energy have been determined
for various 1D, 2D, and 3D lattices [18]. Moreover, even-odd
and supereven oscillations of the pairing energy have been
observed as a function of the band filling in agreement with
previous studies [24].

The purpose of this paper is to investigate the properties
of the attractive Hubbard model in the framework of LDFT.
As a complement to previous studies [18], which are based
on the exact solution of the two-site problem and the scal-
ing properties of W [γ], we adopt here a delocalized k-space
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perspective. Thus, the translational symmetry of the lattice
allows us to regard the interaction energy W as a functional
of the occupation-number distribution ηkσ of the Bloch states
having wave vector k. As in any density-functional approach,
the accuracy of the outcome relies on the quality of the consid-
ered approximation to the functional W [η], where η denotes
the vector with components ηkσ . Therefore, our first goal is
to propose an appropriate explicit ansatz for W [η], which
in our case is based on a statistical interpretation of pairing
correlation effects. An analogous approach has been recently
proven to be quite successful for repulsive interactions [34].
Once the functional is introduced and its capacity to correctly
describe attractive interactions is examined, we proceed to a
number of applications of LDFT to 1D and 2D negative-U
Hubbard models to assess the quantitative accuracy of the
method and to discuss its goals and limitations.

The remainder of the paper is organized as follows. In
Sec. II, the main concepts of LDFT are recalled. This in-
cludes discussing the central role played by the SPDM γ

and the Bloch-state occupation-number distribution ηkσ , as
well as introducing the variational principle from which the
ground-state properties are derived. In Sec. III, a remarkable
correlation is revealed between the interaction energy W of
the attractive Hubbard model and the entropy S of a system
of noninteracting fermions, both regarded as functionals of
ηkσ . Based on this statistical analogy, we formulate the so-
called independent-fermion entropy (IFE) approximation to
the interaction-energy functional W [η]. Applications of this
ansatz to the attractive Hubbard model on 1D and 2D lattices
are presented and discussed in Sec. IV. Comparison with
exact numerical calculations underscores the accuracy and
predictive power of the method. Finally, the paper is closed
in Sec. V with a summary of our conclusions.

II. THEORETICAL BACKGROUND

Consider a many-body lattice Hamiltonian consisting of a
single-particle kinetic energy operator T̂ and a two-particle
interaction operator Ŵ ,

Ĥ = T̂ + Ŵ =
∑
i jσ

ti jσ ĉ†
iσ ĉ jσ + 1

2

∑
i jkl
σσ ′

W σσ ′
i jkl ĉ†

iσ ĉ†
jσ ′ ĉlσ ′ ĉkσ ,

(1)

where ĉ†
iσ (ĉiσ ) creates (annihilates) an electron with spin σ

in the orbital φi(r). In the case of single-band models as the
Hubbard model, the index i corresponds simply to the lattice
site, while in multiband models (e.g., d-band models) it also
labels the different local orbitals which are taken into account.
The parameters in Ĥ are the single-particle energy levels tiiσ
and hopping integrals ti jσ with i �= j, which define T̂ , and the
interaction integrals W σσ ′

i jkl , which define Ŵ . Once the orbitals

and basic characteristics of the model interactions W σσ ′
i jkl are

adopted, the problem is entirely set by the the single-particle
matrix elements ti jσ . In particular they define the dimensional-
ity and topology of the lattice, the range of the single-particle
hybridizations, and the relative importance between kinetic
and interaction energies which conditions the nature of the
correlations.

Since the hoppings ti jσ enter the Hamiltonian in a bilinear
form together with the operators ĉ†

iσ ĉ jσ , it is possible to re-
place the wave function |�〉 or the mixed-state density-matrix
ρ̂ by the SPDM γ , whose elements are γi jσ = 〈ĉ†

iσ ĉ jσ 〉, as
the central unknown of the many-body problem [35,36]. The
situation is analogous to the one found in the first-principles
theory of the inhomogeneous electron gas, where the external
potential v(r) defines the problem and therefore the electronic
density ρ(r) becomes the central variable of DFT [32]. A
proof of the Hohenberg-Kohn theorem for lattice models may
be found in Ref. [37].

Starting from the ground-state variational principle and
following Levy and Lieb’s two-step minimization [38,39], it
is easy to show that the ground-state energy of the many-body
Hamiltonian Ĥ is given by

E0 = min
γ∈�N

{ ∑
i jσ

ti jσ γi jσ + W [γ]

}
, (2)

where the minimization runs over the set �N of all physical
single-particle density matrices, i.e., over all γ which can be
obtained from an N-particle wave function |�〉 or a mixed
state ρ̂. The interaction energy W [γ] is a universal functional
of γ , i.e., a functional which is independent of the hopping
integrals defining the specific problem under consideration.
Of course, W [γ] depends on the form and nature of the inter-
actions W σσ ′

i jkl and on the number of particles N which is given
by γ itself (N = ∑

iσ γiiσ ). Physically, W [γ] represents the
minimum value that the interaction energy of the many-body
system can take when the SPDM is equal to γ . This can be
clearly seen from its formal expression [35,37,40,41]

W [γ] = min
ρ̂→γ

Tr{ρ̂ Ŵ }, (3)

where the minimization runs over all N-particle mixed states
ρ̂ yielding 〈ĉ†

iσ ĉ jσ 〉 = γi jσ for all i jσ . While the physical
interpretation of W [γ] is transparent and sound, particularly in
combination with Eq. (2), finding its exact functional depen-
dence is far from simple, since W [γ] conceals, among other
information, the interaction energy in the ground state of Ĥ for
all possible band fillings and hopping integrals ti jσ [42]. As in
the theory of the inhomogeneous electron gas, the challenge
in LDFT is to find accurate explicit approximations to W [γ].
Once such an approximation is available, Eq. (2) implies that
the ground-state energy and density matrix can be obtained by
minimizing the energy functional

E [γ] = T [γ] + W [γ] =
∑
i jσ

ti jσ γi jσ + W [γ] (4)

with respect to γ , which can thus be regarded as the central
variable of the many-body problem [35,36].

In periodic solids, it is meaningful to take advantage of
translational symmetry and restrict the domain of minimiza-
tion to translational invariant density matrices. In this case

γi jσ =
∑

k

uikσ ηkσ u∗
jkσ , (5)

where the eigenvectors ukσ of γ are Bloch states and the
eigenvalues ηkσ represent the corresponding occupation num-
bers. Note that in single-band models k stands simply for
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the Bloch wave-vector in the first Brillouin zone, whereas in
multiband models it also implicitly includes the band index.
In the former case (one orbital per unit cell), the eigenvectors
are entirely defined by translational symmetry and can thus
be classified by the Bloch wave-vector k. This represents a
significant simplification which applies, in particular, to the
Hubbard model. It means that the kinetic and interaction
energy can be regarded as functionals T [η] and W [η] of
the occupation number distribution ηkσ alone. Only in the
single-band case the shape of the ground-state density-matrix
eigenvectors can be assumed to be independent of the parame-
ters defining the physical model (e.g., band filling, interaction
strength, etc.).

III. STATISTICAL ANALOGY

To develop an explicit practical approximation to the
interaction-energy functional W [η], we focus on the attractive
single-band Hubbard model

Ĥ = T̂ + Ŵ =
∑
i jσ

ti j ĉ†
iσ ĉ jσ + U

∑
i

n̂i↑n̂i↓, (6)

where ti j stands for the hopping integral between sites i and
j, U � 0 is the local interaction strength, and n̂iσ = ĉ†

iσ ĉiσ is
the number operator for spin σ at site i. Consequently, the
interaction-energy functional according to Eq. (3) is given by

W [γ] = min
ρ̂→γ

{
U

∑
i

〈n̂i↑n̂i↓〉
}

= U max
ρ̂→γ

{ ∑
i

〈n̂i↑n̂i↓〉
}
,

(7)

where we have used that U � 0. Two important limiting cases,
for which Levy’s constrained minimization in Eq. (7) can be
exactly solved, are worth considering from the start. The first
one is the scalar spin-density matrix γi jσ = δi jnσ , where the
density nσ = Nσ /Na and total number Nσ of spin-σ fermions
are the same for both spins and Na denotes the number
of atoms. The corresponding occupation numbers ηkσ = nσ

are then independent of k and σ . In this case, the interac-
tion energy W [η] assumes its minimal value W∞ = UD∞ by
adopting a fully localized state with the maximum number
of pairs or double occupations D∞ = N↑ = N↓. The second
important limit is defined by the idempotent density matrices
γ = γ2, which have ηkσ = 0 or 1 for all kσ (

∑
kσ ηkσ = Nσ ).

The many-particle states by which idempotent SPDMs can
be represented are the Slater determinants made of the Bloch
states having ηkσ = 1. The corresponding interaction-energy
W is then given by the Hartree-Fock (HF) energy

WHF = U
∑

i

γii↑γii↓ = UNa n↑n↓, (8)

where we have used that γiiσ = nσ for all i. In this context,
it is useful to draw the following statistical analogy by re-
garding ηkσ as the average occupation numbers of N↑ and N↓
fermions which are statistically distributed over all the Slater
determinants that can be constructed with the single-particle
Bloch states [34,43]. In the fully localized state, where pairing
is maximal, ηkσ = nσ is uniform and therefore all Bloch states
are equally probable. The occupation-number distribution ηkσ

conceals no a priori information on which Bloch states are

occupied and which are empty. The information content of
this distribution is zero and the entropy is maximal. On the
other extreme, for an idempotent γ , ηkσ is equal to 0 or 1,
which means that only one Slater determinant is possible. Our
knowledge on the distribution of the system across its Slater
determinants is complete and the entropy vanishes [34,43].
This suggests that the entropy

S[η] = −
∑
kσ

[ηkσ ln(ηkσ ) + (1 − ηkσ ) ln(1 − ηkσ )] (9)

of a system of independent fermions having the occupation-
number distribution ηkσ can be regarded as a measure of the
ability of the system to minimize the interaction energy under
the constraint of the given ηkσ [see Eq. (7)]. Notice that the
IFE assumes its extremes for the same ηkσ as the interaction
energy W : If the fermions are uncorrelated (ηkσ = 0 or 1),
W = WHF is maximal and S = 0 is minimal. On the other
hand, if the fermions are fully paired and localized (ηkσ = nσ

for all k), W = W∞ = UN↑ = UN↓ is minimal and

S = S∞ = −Na

∑
σ

[nσ ln(nσ ) + (1 − nσ ) ln(1 − nσ )] (10)

is maximal. These correlations suggest that S[η], which is
itself a functional of the occupation-number distribution η,
can be used for deriving an effective approximation of W [η]
[34,43,44].

To quantify the actual correlation between S[η] and W [η],
we have performed exact numerical Lanczos diagonalizations
of the ground state of the attractive Hubbard model for a
number of different lattice structures and band fillings. A
wide variety of occupation-number distributions η has been
explored by varying the hopping integrals from ti j = 0 to
|ti j | � |U | so as to scan S[η] in its complete range (0 �
S � S∞) and by considering different ratios and relative signs
between first- and second-NN hoppings. The results shown in
Fig. 1 reveal a remarkable nearly one-to-one correspondence
between W [η] and S[η] in all considered situations includ-
ing bipartite and nonbipartite 1D and 2D lattices, as well
as systems having competing first- and second-NN hoppings
with unusual single-particle dispersion relations. Moreover,
once properly scaled (W∞ � W � WHF and 0 � S � S∞), the
relation becomes approximately independent of the size and
dimension of the system under consideration. This pseudouni-
versal relation between W and S provides an ideal ground for
broadly applicable approximations to the interaction-energy
functional W [η]. On the basis of the numerical results shown
in Fig. 1, we propose the linear ansatz

W [η] = WHF + (W∞ − WHF)
S[η]

S∞
(11)

for the interaction-energy functional of the attractive Hubbard
model with N↑ = N↓ fermions. An analogous approximation
has already been proposed for the repulsive Hubbard model
at half-band filling (N↑ + N↓ = Na) [34]. A different pro-
portionality relation between the correlation energy and the
information entropy of the distribution of occupation numbers
ηk has been previously proposed by Collins [43] and more
recently applied by other authors [45,46] in atomic and molec-
ular calculations [44].
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FIG. 1. Correlation between the interaction energy W [Eq. (7)]
and the independent-fermion entropy S [Eq. (9)] in the ground state
of the attractive Hubbard model for different structures, sizes, and
band fillings of vanishing spin polarization (N↑ = N↓). In (a), only
first-NN hoppings ti j = −t < 0 are taken into account: 1D rings
having a number of sites Na = 6 (circles), 10 (upright triangles),
and 14 (squares), as well as 2D square lattices having Na = 2 × 4
(downright triangles) and Na = 3 × 4 (diamonds). The considered
numbers of spin-σ fermions are Nσ = 3 (red), 4 (yellow), 5 (green),
6 (blue), and 7 (magenta). In (b), second-NN hoppings ti j = −t ′ =
−t/2 < 0 are included for the same structures and band fillings as
in (a). In (c), results are shown for 1D rings with Na = 6 (circles), 7
(squares), 8 (downright triangles), 10 (upright triangles), and 12 sites
(diamonds) having strongly competing hopping integrals: first-NN
hoppings ti j = −t < 0 and second-NN hoppings ti j = −t ′ = 2t > 0
(full symbols) as well as first-NN hoppings ti j = 0 and second-NN
hoppings ti j = −t ′ > 0 (open symbols) for Nσ = 2 (red), 4 (green),
and 6 (blue).

It is instructive to contrast the interaction-energy func-
tional of the Hubbard model for attractive interactions U <

0, which we denote in the following by W −[γ], with the
corresponding functional of the repulsive case, which we
denote by W +[γ]. Establishing any possible relation be-
tween W + and W − would be helpful to guide the search
for accurate approximations or to verify the validity of
new ones. Consider the set 
(γi j↑, γi j↓) of all normal-
ized pure states |�〉 or, for that matter, mixed states ρ̂,
yielding the density matrix γ , i.e., 〈�|ĉ†

iσ ĉ jσ |�〉 = γi jσ for
all |�〉 ∈ 
(γi j↑, γi j↓). This set is not empty since γ is
physical, i.e., N representable. One may then identify the
states |�max〉 and |�min〉 in 
(γi j↑, γi j↓) having the largest
and smallest, respectively, total number of double occu-
pations D. Let Dmax = 〈�max|

∑
i n̂i↑n̂i↓|�max〉 and Dmin =

〈�min|
∑

i n̂i↑n̂i↓|�min〉 be the corresponding maximum and
minimum D within 
, which are all functionals of γ . There
is no simple relation known to us between Dmax and Dmin for
an arbitrary γ . However, it is easy to conceive a bijective map-
ping of the set 
 onto an, in general, different set 
h in which
|�min〉 is assigned to |�max〉 and vice versa. This is achieved
by performing an electron-hole transformation on one of the
spin components. For each |�〉 ∈ 
, one obtains its image
|�h〉 ∈ 
h by replacing the fermion creation operators ĉ†

iσ by
the hole operators ĥ†

i↑ = ĉ†
i↑ and ĥ†

i↓ = ĉi↓ and by replacing
the vacuum state by the ket in which all down-spin orbitals
are occupied. It follows that the density matrix γh of any state
in 
h is given by

γ h
i j↑ = 〈�h|ĉ†

i↑ĉ j↑|�h〉 = 〈�h|ĥ†
i↑ĥ j↑|�h〉 = γi j↑, (12)

γ h
i j↓ = 〈�h|ĉ†

i↓ĉ j↓|�h〉 = 〈�h|ĥi↓ĥ†
j↓|�h〉 = δi j − γ ji↓.

(13)

Therefore, 
h ≡ 
(γi j↑, δi j − γ ji↓). Moreover, the double-
occupation operators transform as

n̂i↑n̂i↓ = n̂h
i↑(1 − n̂h

i↓) = n̂h
i↑ − n̂h

i↑n̂h
i↓, (14)

which implies that the total number of double occupations in
|�h〉 is given by

Dh = 〈�h|
∑

i

n̂i↑n̂i↓|�h〉

= 〈�h|
∑

i

(n̂h
i↑ − n̂h

i↑n̂h
i↓)|�h〉 = N↑ − D, (15)

where D is the total number of double occupations in |�〉.
Since N↑ = ∑

i γii↑ is the same for all |�〉 and |�h〉, the
change of sign in D means that the state |�min〉 yielding the
minimum number of double occupations Dmin in 
(γi j↑, γi j↓)
is mapped into the state |�h

max〉 yielding the maximum Dh
max

in 
(γi j↑, δi j − γ ji↓) and vice versa. One concludes that
the interaction energy functionals W −, corresponding to the
attraction U < 0, and W +, corresponding to the repulsion
−U > 0, are, in general, related by

W −[γi j↑, δi j − γ ji↓] = U
∑

i

γii↑ + W +[γi j↑, γi j↓], (16)
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where we have used that W −[γ] = UDmax[γ] and W +[γ] =
−UDmin[γ] for U < 0. An analogous relation is obtained by
exchanging the spin directions.

In periodic systems, we may focus on density matrices that
comply with translational symmetry. Using that the eigenvec-
tors of γ are Bloch states and, in particular, for single-band
models, the interaction-energy functional can be regarded as a
functional of the occupation-number distribution ηkσ . In this
case, Eq. (16) implies

W −[ηk↑, 1 − ηk↓] = U
∑

k

ηk↑ + W +[ηk↑, ηk↓]. (17)

Notice that the approximations to W proposed in Eq. (11) for
the attractive Hubbard model and in Ref. [34] for the repulsive
case fulfill this exact relation in their common domain of
validity, i.e., for N↑ = N↓ = Na/2. Equations (16) and (17)
can also be used to share and contrast any developments in
the treatment of attractive and repulsive correlations in the
Hubbard model within LDFT. One may furthermore note that
the mapping between the kets |�〉 and |�h〉 can be extended,
using the same electron-hole transformation, to a mapping
between the mixed states ρ̂ and ρ̂h which can be constructed
by incoherently superposing them. This implies that the Eqs.
(12), (13), and (15) relating γi jσ and γ h

i jσ or D and Dh also hold
when the averages are performed using the corresponding
ρ̂ and ρ̂h. Therefore, the Eqs. (16) and (17) connecting the
attractive- and repulsive-interaction functionals also apply to
the more general set of ensemble-representable density matri-
ces γi jσ .

The ground-state energy E0 and occupation-number distri-
bution η0 is obtained by minimizing the corresponding energy
functional

E [η] =
∑
kσ

εk ηkσ + W [η] (18)

under the constraint Nσ = ∑
k ηkσ on the number of spin-σ

fermions. Let us recall that any IFE approximation of the
form W [η] = W (S[η]) (i.e., one in which W depends on η

through S) leads to ground-state occupation numbers η0
kσ

which follow a Fermi-Dirac function with an effective tem-
perature Teff = −∂W/∂S that depends only on U and Nσ [34].
The applications discussed in the following section show that
the thus obtained Fermi-Dirac distributions are in most cases
quite close to the exact ground-state occupation numbers of
the attractive Hubbard model. Consequently, the linear IFE-
approximation given by Eq. (11) is expected to yield a sound
description of the most important ground-state observables
in the complete range of interactions from weak to strong
correlations.

IV. RESULTS

As a first application of the theory, we consider the 1D
attractive Hubbard model and compare our results with exact
numerical diagonalizations as well as with previous LDFT
studies [18]. In Fig. 2, results are given for a number of
relevant ground-state properties of a 14-site ring with NN
hopping ti j = −t < 0 and half-band filling, as functions of the
interaction strength |U |/t . One observes that the ground-state
energy E0 decreases monotonously with increasing |U |/t ,

FIG. 2. Ground-state properties of the one-dimensional (1D) at-
tractive Hubbard model on a 14-site ring with NN hoppings ti j =
−t < 0 and half-band filling as a function of the interaction strength
|U |/t : (a) Ground-state energy E0, (b) average number of double
occupations D and kinetic energy T , (c) natural-orbital occupation
numbers ηk↑ = ηk↓, and (d) single-particle density-matrix elements
γ0δ↑ = γ0δ↓ between site i = 0 and its δth NN. The linear IFE approx-
imation [Eq. (11), blue curves] is compared with exact numerical
Lanczos diagonalizations (red dashed curves) and with the results
of Ref. [18] whenever available (green crosses). The dashed black
curve in (a) shows the strongly correlated limit of E0 given by W∞ =
−|U |Na/2. The inset of (a) highlights the energy gain W∞ − E0 in
the strongly correlated limit (t/|U | � 1).

245148-5



T. S. MÜLLER AND G. M. PASTOR PHYSICAL REVIEW B 106, 245148 (2022)

since the pairing energy overcompensates the kinetic-energy
increase caused by the gradual fermion localization. The IFE
results for E0 follow the exact numerical calculations very
closely in the complete range of the interaction strength |U |/t
[see Fig. 2(a)]. In the strongly correlated limit, |U |/t →
∞, E0 diverges tending to W∞ = −|U |Na/2 as E0 � W∞ −
αt2/|U | with α > 0, a fact which is highlighted in the inset
of Fig. 2(a). The limit W∞ represents the interaction energy
of Na/2 pairs (N↑ = N↓ = Na/2) while the additional energy
lowering −αt2/|U | is a second-order perturbation correction
in the hopping integrals consisting of the virtual breaking
and recombination of pairs. The linear IFE approximation
reproduces this behavior almost exactly with a leading coef-
ficient αIFE = 2.77 which is only 0.7% smaller than the exact
value αex = 2.79 obtained from the Lanczos diagonalizations.
Furthermore, it is interesting to observe that the accuracy of
the IFE ansatz concerning E0 is not the result of an important
compensation of errors, since the average number of double
occupations D and the kinetic energy T are very well repro-
duced separately, as shown in Fig. 2(b). Only in the weakly
correlated limit (|U |/t < 1), we find that the present approxi-
mation underestimates the double occupations, which remain
too close to the Hartree-Fock value DHF = Na/4. This can
be ascribed mainly to deviations from linearity in W (S) for
nearly integer occupation numbers ηkσ � 0 or 1, i.e., for small
S, as can be seen in Fig. 1. Notice, however, that this does not
affect the accuracy of the ground-state energy E0, since for
weak interactions the kinetic energy, whose functional depen-
dence is exactly known, largely dominates. In this interaction
regime (|U |/t � 0.5), the scaling ansatz proposed in Ref. [18]
yields a small overestimation of D and is, in general, closer
to the exact results than the present calculations. However, as
soon as the interaction and hopping integrals have comparable
strengths (|U |/t � 1), the linear IFE approximation clearly
outperforms the previous real-space approach. This concerns
not only the double occupations and the kinetic energy but
also the NN bond order γ01σ shown in Fig. 2(d).

In Fig. 2(c), the Bloch-state occupation numbers ηkσ are
shown as functions of |U |/t . One observes that the present IFE
approximation reproduces the crossover from weak to strong
interactions qualitatively well. For |U |/t � 1, one obtains
ηkσ = 1 for |k| < π/2 and ηkσ = 0 otherwise, as expected
for weakly interacting fermions. As the interaction strength
increases, charge fluctuations are progressively suppressed to
favor local pairing. Consequently, ηkσ decreases (increases)
for |k| < π/2 (k > π/2) until ηkσ → 1/2 for all kσ in the
strongly correlated limit. Quantitatively, the comparison with
the exact results is in most cases remarkably good. Only for
|k| = 3π/7 (|k| = 4π/7) at intermediate interaction strength,
we find that the IFE ansatz underestimates (overestimates) ηkσ

significantly. This means that in these cases the excitations
of electrons across the Fermi energy εF = 0, which are the
result of correlations, are overestimated. The same behavior
has already been observed in the repulsive case [34], which
is not surprising since the attractive and repulsive Hubbard
models are related by an electron-hole transformation [47]. In
fact, it is easy to show that in the case of bipartite lattices and
half-band filling the ground-state occupation numbers ηkσ and
the density matrix γi jσ of the Hubbard model are independent
of the sign of U . Knowing that the IFE approximation respects

this symmetry, the same trends are observed. From a local per-
spective, we observe that our approximation underestimates
the delocalization of the electrons beyond first-NNs. Indeed,
as shown in Fig. 2(d), γ0δσ tends to zero much faster than the
exact result for δ = 3, 5, and 7. They are significantly under-
estimated in absolute value for 1 � |U |/t � 6. For even δ, we
obtain γ0δσ = 0 for all |U |/t as required by the electron-hole
symmetry. The |U |/t dependence of γ0δσ shown in Fig. 2(d)
coincides with the one observed in the repulsive model [34].

It is also interesting to assess the accuracy of the IFE
ansatz away from half-band filling. In Fig. 3, exact and IFE
results for several ground-state properties are shown for a
1D ring near 1/4-band filling, namely, Nσ /Na = 3/7. The
dependence of the ground-state properties on the interaction
strength is found to be very similar to the half-filled case.
These trends are remarkably well reproduced by the present
approach in the complete range of interaction strength, from
weak to strong correlations. Quantitatively, the IFE results are
in some cases slightly more accurate than for Nσ /Na = 1, for
example, concerning the occupation numbers ηkσ (compare
Figs. 2 and 3). The most significant deviations are observed
in the average number of double occupations D in the weakly
correlated limit [Fig. 3(b)] where D is overestimated by about
15% for |U | → 0. As discussed below, this discrepancy can be
traced back to the presence of degeneracies at the Fermi level
of the single-particle spectrum, which allows a reduction of
D in the exact correlated state below the HF value, even for
U → 0. These inaccuracies are of little consequence for the
other ground-state properties since the kinetic energy largely
dominates in this limit.

The linear IFE approximation has also been applied to
2D lattices. In Fig. 4, results are shown for ground-state
properties of the half-filled attractive Hubbard model on a
4 × 4 square-lattice cluster with NN hoppings and periodic
boundary conditions (N↑ = N↓ = 8). The ground-state energy
E0 obtained with LDFT follows the exact results very closely
in the complete range of the interaction strength |U |/t . The
trends are similar to the 1D case. In particular, the strongly
correlated limit, where E0 � W∞ − αt2/|U |, is very well re-
produced with a leading coefficient αIFE = 5.55 that is only
13% larger than the exact value αex = 4.81 [see the inset of
Fig. 4(a)].

The IFE results for the kinetic energy T [Fig. 4(b)] are
also very good, although the differences with respect to the
exact diagonalizations are more noticeable than in E0 for
intermediate |U |/t . Concerning the average number of double
occupations D, one observes that any significant discrepancies
between the IFE and exact results are restricted to the weakly
correlated limit, namely, for |U |/t � 2 [see Fig. 4(b)]. These
are most probably the consequence of the strong degeneracy
of the single-particle spectrum of the 4 × 4 cluster at the
partially filled Fermi level εF = 0. In fact, the Slater deter-
minants constructed with different degenerate Bloch states
having εk = εF = 0 can be linearly combined to enhance D
beyond the Hartree-Fock value DHF = Na/4 without causing
any kinetic-energy increase. Thus, the ground-state energy
can be lowered in the limit of small |U |/t . Both the LDFT
and exact calculations take advantage of this possibility and
yield that all four Bloch states at the Fermi level are equally
occupied with ηkσ = 1/2 [compare DIFE and Dex with DHF =
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FIG. 3. Ground-state properties of the one-dimensional (1D) at-
tractive Hubbard model on a 14-site ring with NN hoppings ti j =
−t < 0 and a band filling Nσ /Na = 3/7 as a function of the interac-
tion strength |U |/t . (a) Ground-state energy E0, (b) average number
of double occupations D and kinetic energy T , (c) natural-orbital oc-
cupation numbers ηk↑ = ηk↓, and (d) single-particle density-matrix
elements γ0δ↑ = γ0δ↓ between site i = 0 and its δth NN. The linear
IFE approximation [Eq. (11), blue curves] is compared with exact
numerical Lanczos diagonalizations (red dashed curves). The dashed
black curve in (a) shows the strongly correlated limit of E0 given by
W∞ = −|U |Nσ . The inset of (a) highlights the energy gain W∞ − E0

in the strongly correlated limit (t/|U | � 1).

FIG. 4. Ground-state properties of the two-dimensional (2D) at-
tractive Hubbard model on a 4 × 4 square-lattice cluster with NN
hoppings ti j = −t < 0, periodic boundary conditions and half-band
filling (N↑ = N↓ = 8). The linear IFE approximation [Eq. (11)] (blue
curves) is compared with exact numerical Lanczos diagonaliza-
tions (red crosses) as a function of the interaction strength |U |/t :
(a) ground-state energy E0, (b) average number of double occupa-
tions D and kinetic energy T , (c) natural-orbital occupation numbers
ηk↑ = ηk↓, and (d) density-matrix elements γ0δ↑ = γ0δ↓ between site
i = 0 and its δth NN, as labeled in the inset. The dashed black
curve in (a) shows the strongly correlated limit of E0 given by
W∞ = −|U |Na/2. The inset of (a) highlights the ground-state energy
gain W∞ − E0 in the strongly correlated limit (t/|U | � 1).

245148-7



T. S. MÜLLER AND G. M. PASTOR PHYSICAL REVIEW B 106, 245148 (2022)

Na/4 for |U |/t → 0 in Fig. 4(b)]. However, the IFE approx-
imation overestimates the ability of the system to enhance
D by predicting DIFE/Na � 0.34 whereas Dex/Na � 0.29 for
|U |/t → 0. This overestimated value of D remains nearly
constant at finite |U |/t until the IFE result matches the exact
one for |U |/t � 2. Further increase of the interaction strength
yields a monotonous increase of D in very good quantitative
agreement with the exact results. This increase of D with in-
creasing |U |/t is accompanied with a decrease of the absolute
value of the kinetic energy |T | as the fermions begin to form
pairs and localize (T � 0). Finally, as the fully localized state
is approached for |U |/t → ∞, only virtual pair-breaking re-
mains possible and T vanishes proportionally to −t2/|U |. As
shown in Fig. 4(b), all these trends are very well reproduced
by the IFE approximation to LDFT.

The dependence of the Bloch-state occupation numbers
ηkσ on |U |/t is shown in Fig. 4(c). In the noninteracting
limit, ηkσ = 1 (ηkσ = 0) for εk < εF (εk > εF ). The degen-
erate states at the Fermi level (i.e., for εk = εF = 0) have
all ηkσ = 1/2 independent of |U |/t . As |U |/t increases, one
observes that ηkσ decreases (increases) if εk < εF (εk > εF ),
until ηkσ = 1/2 is reached for all kσ in the strongly correlated
limit, which corresponds to a fully localized state. The occu-
pation numbers ηkσ obtained within the IFE approximation
are remarkably accurate for all kσ in the complete range
from weak to strong interactions. Furthermore, note that the
approximation respects all the point-group symmetries of ηkσ

in the reciprocal space, since they are inherited from the
corresponding symmetries of the dispersion relation εk.

The very good accuracy of the Bloch-state occupation
numbers ηkσ anticipates a comparably good accuracy of the
SPDM elements γi jσ , which are shown in Fig. 4(d). One ob-
serves how the nonvanishing γ01σ and γ04σ between first and
fourth neighbors are gradually suppressed as the interaction
strength |U |/t increases. This reflects the correlation-induced
suppression of charge fluctuations and the transition to a lo-
calized state as the fermions condense into localized pairs.
One may furthermore notice that the charge fluctuations at
longer distances |γ04σ | are suppressed faster than the fluctu-
ations γ01σ between NNs, a trend which is reproduced by the
proposed IFE approximation.

In Fig. 5, the effects of second-NN hoppings on the
ground-state properties of the square lattice are investigated
by considering a 4 × 4 cluster with NN hopping ti j = −t <

0 and second-NN hoppings ti j = −t ′ = −t/2. Comparison
with Fig. 4 shows that the dependencies of the kinetic, in-
teraction, and total energies as functions of |U |/t are not
strongly affected by breaking the bipartite character of the
NN square lattice. More significant changes are observed,
as expected, in the density-matrix elements γi jσ and in the
occupation numbers ηkσ of the Bloch states [see Figs. 5(c)
and 5(d)]. The accuracy of the linear IFE ansatz remains, in
general, very good when t ′ = t/2 is introduced, for example,
concerning the ground-state energy E0. This is particularly
remarkable in the crossover region from weak to strong cor-
relations (1 � |U |/t � 10) where the interplay between the
fermion delocalization, driven by the hybridizations, and the
tendency to pair formation and localization is far from triv-
ial. As in the bipartite case (t ′ = 0, Fig. 4) the asymptotic

FIG. 5. Ground-state properties of the half-filled attractive 2D
Hubbard model on a 4 × 4 periodic square lattice with NN hoppings
ti j = −t < 0 and second-NN hoppings ti j = −t ′ = −t/2. The linear
IFE approximation (blue curves) is compared with exact numerical
Lanczos diagonalizations (red crosses) as a function of the interac-
tion strength |U |/t : (a) ground-state energy E0, (b) average number
of double occupations D and kinetic energy T , (c) natural-orbital
occupation numbers ηk↑ = ηk↓, and (d) density-matrix elements
γ0δ↑ = γ0δ↓ between site i = 0 and its δth NN, as labeled in the
inset of Fig. 4 (d). The dashed black curve in (a) shows the strongly
correlated limit of E0 given by W∞ = −|U |Na/2. The inset of
(a) highlights the ground-state energy gain W∞ − E0 in the strongly
correlated limit (t/|U | � 1).
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behavior E0 � −|U |Na/2 − αt2/|U | in the strongly corre-
lated limit is qualitatively reproduced as highlighted in the
inset of Fig. 5(a). Quantitatively, the coefficient αIFE = 6.93
is larger than in the case with only first-NN hoppings (αIFE =
5.55 for t ′ = 0) which implies an increased stabilization
due to virtual pair breaking. This enhancement of α is in
qualitative agreement with the trends observed in the exact
diagonalizations, which yield αex = 5.65 for t ′ = t/2 and
αex = 4.81 for t ′ = 0. However, in all cases the IFE functional
results in an overestimation of about 20% of the binding
energy.

The average number of ground-state double occupations D
and the kinetic energy T show a dependence on |U |/t that is
very similar to the case where only NN hoppings are taken
into account [compare (b) and (c) of Figs. 4 and 5]. The exact
diagonalizations show that for |U |/t → 0, the second-NN
hoppings t ′ = t/2 cause a 17% lowering of T at the expense
of an 8% decrease of D. Since the kinetic-energy functional is
exact in LDFT, the above-mentioned kinetic-energy lowering
is exactly reproduced by the IFE approximation. However,
D is clearly overestimated in the weakly interacting regime.
This is probably related to the degeneracies at the Fermi
level of the single-particle spectrum, as in the t ′ = 0 case.
Despite the overestimation, the IFE calculations yield a 13%
reduction of D for |U |/t → 0 due to the second-NN hop-
pings t ′ = t/2, which is in good qualitative agreement with
the 8% reduction obtained in the corresponding exact so-
lution. The difficulties found at weak interactions disappear
for |U |/t � 2, where LDFT recovers its usual very good
accuracy.

In Fig. 5(c), results are shown for the Bloch-state occu-
pation numbers ηkσ . As expected, the ηkσ which are larger
(smaller) than 1/2 decrease (increase) as |U |/t increases,
reaching the common limit ηkσ = 1/2 for all k in the localized
state when |U |/t → ∞. An interesting difference with respect
to the t ′ = 0 case is observed at the Fermi energy where
t ′ = t/2 reduces the degeneracy from 6 to 4. Since εF is
occupied by three fermions, we have ηkσ = 3/4 in the weakly
correlated limit. Consequently, these occupation numbers de-
crease with increasing |U |/t , in contrast to the bipartite lattice
[see Figs. 4(c) and 5(c)]. Comparison with the exact diago-
nalizations shows that the IFE approximation reproduces all
the Bloch-state occupation numbers with very good accuracy
from weak to strong correlations. Notice, however, that ηkσ is
somewhat overestimated for k = (0, 0) (εk = −6t) and inter-
mediate |U |/t , which incidentally explains the overestimation
of |T | in this range. For example, for |U |/t = 15, we find
that ηkσ is overestimated by 8.7% for k = (0, 0) and |T | is
overestimated by about 17% [see Figs. 5(b) and 5(c)].

The density-matrix elements γ0δσ between the lattice site
i = 0 and its δth NN are given in Fig. 5(d) as a function
of |U |/t . The hopping integrals t ′ between second-NNs in-
troduce hybridizations between sites belonging to the same
sublattice (e.g., between i = 0 and i = 2, 3, and 5) which are
absent in the bipartite case [see the inset of Fig. 4(d)]. As a
result, γ0δσ is no longer zero for δ = 2, 3, and 5. In particular,
γ05σ shows a remarkable nonmonotonous behavior with a
minimum at |U |/t � 8. This is qualitatively reproduced by
the IFE ansatz, although somewhat exaggerated and slightly

FIG. 6. Ground-state properties of the two-dimensional (2D) at-
tractive Hubbard model on a 4 × 4 triangular-lattice cluster with NN
hoppings ti j = −t < 0, periodic boundary conditions, and half-band
filling (N↑ = N↓ = 8). The linear IFE approximation (blue curves)
is compared with exact numerical Lanczos diagonalizations (red
crosses) as a function of the interaction strength |U |/t : (a) ground-
state energy E0, (b) average number of double occupations D and
kinetic energy T , (c) natural-orbital occupation numbers ηk↑ = ηk↓,
and (d) density-matrix elements γ0δ↑ = γ0δ↓ between site i = 0
and its δth NN, as labeled in the inset. The dashed black curve
in (a) shows the strongly correlated limit of E0 given by W∞ =
−|U |Na/2. The inset of (a) highlights the ground-state energy gain
W∞ − E0 in the strongly correlated limit (t/U � 1).
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shifted to smaller |U |/t . This behavior might be related to the
rapid decrease of ηkσ for εk = εF = 0 in the same range of
|U |/t [see Fig. 5(c)].

As an example of a nonbipartite lattice with triangular NN
loops, we consider the 2D triangular lattice, which is modeled
by a 4 × 4 cluster with periodic boundary conditions [see the
inset of Fig. 6 (d)]. As in previous cases, the comparison
with exact results shows that the IFE approximation gives a
very accurate account of the ground-state energy E0 for all
|U |/t [see Fig. 6(a)]. In the limit of strong correlations, in
particular, we obtain the right asymptotic dependence E0 �
−|U |Na/2 − αt2/|U | with αIFE = 8.32. This should be com-
pared with the exact leading correction having αex = 6.73
as shown in the inset of Fig. 6(a). Also, the kinetic energy
T is very well reproduced, which implies that the accuracy
of E0 is not the result of strong compensation of errors in
the kinetic and interaction contributions [see Fig. 6(b)]. Only
the average number of double occupations in the weakly
interacting regime (|U |/t � 3) shows, as in previous cases,
a significant overestimation which can be traced back to
the degeneracies in the single-particle spectrum at the Fermi
level.

The Bloch-state occupation numbers ηkσ given in Fig. 6(c)
display the familiar trend as a function of |U |/t which ends up
in localization in the strongly correlated limit (i.e., ηkσ = 1/2
for all kσ at |U |/t → ∞). At half-band filling, the Fermi
energy εF is given by the highest single-particle level εk = 2t ,
which is ninefold degenerate. For |U |/t = 0, one thus finds
ηkσ = 1/9 for all the degenerate Bloch states since εF is
occupied by only one fermion per spin. The comparison with
the exact numerical results shows that the IFE approximation
yields a very accurate occupation-number distribution ηkσ

for all |U |/t . Only the occupation of the lowest-lying Bloch
state having k = (0, 0) and εk = −6t is somewhat overesti-
mated for intermediate values |U |/t . Finally, the very good
results for ηkσ also explain the high accuracy of the IFE
approximation for the density-matrix elements γ0δσ shown in
Fig. 6(d).

V. CONCLUSION

An interaction-energy functional has been developed to
investigate the ground state of the Hubbard model with at-
tractive pairing interactions in the framework of LDFT. Our
approach takes a reciprocal k-space perspective and exploits
an approximate functional relation between the interaction
energy W [η] of the Hubbard model corresponding to the
Bloch-state occupation-number distribution ηkσ and the en-
tropy S[η] of a system of noninteracting fermions having
the same occupation numbers ηkσ . This has opened up a
unique perspective to the ground-state problem of periodic
systems, which takes into account the dependence of the
central interaction-energy functional W [γ] on all elements of
the SPDM γ and thus leverages the universality of LDFT.
The relation between W [η] and S[η] has been shown to be
approximately linear for a wide range of ground-state repre-
sentable occupation-number distributions ηkσ . On this basis,
a simple and very effective approximation to W [η] has been
inferred. The flexibility and efficacy of this linear IFE ansatz
has been demonstrated in applications to the attractive 1D
and 2D Hubbard model on bipartite and nonbipartite lattices.
Comparisons with exact numerical Lanczos diagonalizations
on finite clusters have demonstrated the remarkable accuracy
of this approximation in the complete attractive-interaction
range from weak to strong correlations. The present formu-
lation, which incorporates a statistical or information-theory
perspective, turns out to open a useful alternative route in the
search for increasingly accurate and more broadly applicable
approximations to the interaction energy of strongly corre-
lated systems in the framework of LDFT.
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