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Delayed thermalization in the mass-deformed Sachdev-Ye-Kitaev model
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We study the thermalizing properties of the mass-deformed Sachdev-Ye-Kitaev model, in a regime of param-
eters where the eigenstates are ergodically extended over just portions of the full Fock space, as an all-to-all toy
model of many-body localization (MBL). Our numerical results strongly support the hypothesis that, although
considerably delayed, thermalization is still present in this regime. Our results add to recent studies indicating
that MBL should be interpreted as a strict Fock-space localization.
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I. INTRODUCTION

The prospect of finding isolated quantum many-body
systems capable of escaping from thermalization, currently
understood in the framework of the eigenstate thermalization
hypothesis (ETH) [1–3], has been one of the central aspects
of research in condensed matter physics over the last two
decades. In typical thermalizing systems, any memory of an
initial configuration quickly evolves into highly nonlocal de-
grees of freedom and is lost to a large extent. Identifying
systems defying thermalization has become even more press-
ing in the last few years, with the recent advances in building
quantum computers and other nanodevices. Such systems,
able to preserve information about their initial configurations,
are of uttermost importance to implement concrete realiza-
tions of quantum memory.

An obvious way to evade thermalization is to consider in-
tegrable systems. However, they are generically very sensitive
to perturbations, and even small imperfections—unavoidable
in practical realizations—are enough to spoil integrability and
restore thermalization. It has been understood since the sem-
inal work of Anderson [4] that disorder can provide a robust
mechanism to avoid thermalization. Anderson localization has
been studied extensively in subsequent years, leading to many
numerical and exact results which are by now well established
and accepted [5,6]. For example, it has been proven mathe-
matically that, in any dimension and for large enough disorder,
localization occurs [7], and in d = 1, any infinitesimal un-
correlated disorder is enough to induce localization [8]. The
same behavior is believed to hold in d = 2 as well [9], while
in d = 3, the presence of a finite critical disorder has been
largely established [5,6]. However, the Anderson problem is
a single-particle problem and, as such, does not describe a
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realistic situation with many particles and interactions that
cannot be neglected. Hence, it is natural to ask about the fate
of Anderson localization in the presence of interactions.

To begin with, one has to define localization in a genuine
many-body setup since the single-particle wave functions lose
their significance, and one cannot simply state that a certain
wave function is localized in space [10]. This problem has
initially been addressed through the notion of Fock-space
localization [11–13]. It is based on the observation that a
generic disordered interacting many-body problem can be re-
cast as an Anderson-like problem on a highly connected graph
defined in Fock space. Hence, the study of the possibility
of having eigenstates localized in Fock space makes sense.
Systems enjoying Fock-space localization, usually referred to
as many-body localization (MBL), display peculiar features,
making them very different from systems obeying ETH. Ex-
amples are the absence of transport [14], area-law entangled
eigenstates [15,16], a logarithmic growth of entanglement
entropy after a quantum quench [10,17], Poissonian spectral
correlations [18,19], and the emergence of an extensive set of
local integrals of motion [15,20,21]. It was later argued that
strict Fock-space localization was not necessary to display
the phenomenological features of MBL listed above [16] and
that, even in the presence of extended eigenstates in Fock
space but with an extension much smaller than the dimension
of the Hilbert space, the area-law entanglement entropy may
emerge. This point of view was later confirmed numerically
by the authors of Ref. [22], who investigated the paradigmatic
example of the disordered Heisenberg model in one dimension
(1D) [18,19]. According to their results, eigenstates in the
MBL phase have nontrivial fractal dimension in Fock space,
and they are not localized [23].

However, the absence of simple solvable models makes the
understanding of MBL extremely challenging. Many results
are either derived relying on some approximations or obtained
numerically for relatively small system sizes, accessible to
classical computers, which might not be enough to reach the
thermodynamic limit [24–30].

A notable exception is represented by the so-called mass-
deformed Sachdev-Ye-Kitaev (SYK) model [31,32], which is
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a fully connected disordered interacting model modified to
include a random mass term. This model, depending on the
strength of the mass deformation, shows a transition from
ergodic to localized in Fock space which can be studied
analytically in the large-N limit [33,34]. In addition, for in-
termediate values of the mass deformation, eigenstates are
restricted to (ergodically) cover energy shells in Fock space,
whose dimensions are much smaller than the full Hilbert space
dimension but still are exponentially large in N . By ergodi-
cally, we mean that, on a given energy shell, the eigenstate is
homogeneously distributed. We will refer to this regime as the
cluster regime. Hence, this model represents an excellent toy
model of MBL, including the clustering property emphasized
in Refs. [16,22], despite the model not having any spatial
extension.

In this paper, we reanalyze numerically the mass-deformed
SYK model, with a particular focus on understanding to which
extent its ergodic properties are absent or present in the cluster
regime. The numerical analysis is performed by means of
the adiabatic gauge potential (AGP), introduced in Ref. [35]
as a very sensitive probe of quantum chaos, which measures
the response of eigenvectors under small deformations of the
model. In agreement with Ref. [29], we show that the cluster
regime can be characterized as a region where the scaling
of AGP with system size is faster than the scaling predicted
by ETH. In addition, we investigate the ergodic properties of
this regime by studying the spectral form factor (SFF) and
the associated notion of Thouless time. Our findings show
that Thouless time has a scaling with system size which,
for large enough systems, is comparable with that in the
ergodic regime. Thus, our results suggest that, at least for
this particular model, the cluster regime must be considered
a delayed but still thermalizing regime. To observe a genuine
violation of thermalization, one must consider the regime of
Fock-space localization. Interestingly, very similar conclu-
sions were reached in Ref. [36] for other systems (see also
Refs. [37,38]).

The paper is organized as follows. In Sec. II, we recall
the main features of the mass-deformed SYK model found
in Refs. [33,34]. In Sec. III, we present our numerical results
based on the evaluation of AGP. In Sec. IV, we use the SFF
to show that the intermediate regime, in which eigenstates
are extended over clusters of dimension scaling with N , is
thermalizing. In Sec. V, we conclude our findings. In the
Appendixes, we present a detailed comparison of our nota-
tions and definitions with the corresponding ones of Ref. [33],
the AGP for a local deformation for comparison with the
extensive one used in the main text, a more detailed analysis of
the random matrix theory properties of the model under inves-
tigation (Appendix C) as well as a more detailed discussion of
the SFF definition (Appendix D).

II. THE MODEL

The model under consideration has been dubbed in the
literature as mass-deformed SYK [31–33,39,40]. As the name
suggests, it can be thought of as a deformation of the cele-
brated SYK model [41–43], by adding a quadratic random
mass term. It is realized in terms of N (with N being
an even integer) Majorana fermions, χ̂i, i = 1, . . . , N , i.e.,

quantum mechanical operators satisfying Clifford algebra re-
lations {χ̂i, χ̂ j} = δi j . The Hamiltonian reads

Ĥ ≡ 2√
N
Ĥ4 + κ Ĥ2,

Ĥ4 = −
∑

i< j<k<l

Ji jkl χ̂iχ̂ jχ̂kχ̂l ,

Ĥ2 = i
∑
i< j

Ji j χ̂iχ̂ j, (1)

where the coupling constants Ji jkl and Ji j are Gaussian dis-
tributed with vanishing mean values and variances given by

6
N3 and 1

N , respectively. Finally, κ is the mass-deformation
strength parameter, which controls the strength of the
quadratic mass deformation compared with the quartic inter-
action term [44].

The model above has been studied in Refs. [33,34] as an
analytically tractable model of Fock-space localization. As
such, we are going to use it as a platform to benchmark various
probes of the ETH/MBL transition used in the literature at
finite values of N vs their large-N predictions in the thermo-
dynamic limit. More in detail, Ref. [33] identified four major
regimes as a function of κ (see also Ref. [45]):

(1) Regime I: κ <

√
(N−2)(N−3)

2N3 . Eigenstates are ergodi-
cally extended over the full Fock space, and ETH holds for
all eigenstates.

(2) Regimes II and III—cluster regime:
√

(N−2)(N−3)
2N3 <

κ < Z
2
√

2ρ
W (2Z

√
π ). Eigenstates are ergodically extended

over energy shells whose dimension scales exponentially in
N . This is the most interesting regime: a given eigenstate in
the Fock space is extended to cover just the nearest neighbors
(or a fraction of the nearest neighbors). Such a configuration,
in standard Anderson problems in finite dimensions, would
give rise to localization. However, since the connectivity of
the mass-deformed model in the Fock space scales with N ,
these states still have an extensive support in Fock space.

The two regimes differ by the extension of the correspond-
ing energy shells (which are exponentially extended in N
in both cases): in regime II, all the nearest neighbors of a
given unperturbed state are hybridized, while in regime III,
only a fraction of the nearest neighbors are hybridized by the
quartic terms. As discussed at length in Ref. [34], states in
these regimes are homogeneously spread over the full acces-
sible shell [46], implying absence of the so-called nonergodic
extended states. The boundary between the two regions is

located at κ =
√

6
N4 (N

4 ).
(3) Regime IV—Fock-space localization: κ >

Z
2
√

2ρ
W (2Z

√
π ). Eigenstates are localized in Fock space.

We define Z ≡ (N/2
4 ) and ρ ≡ (N

4 ), and W is the Lambert W
function.

III. NUMERICAL RESULTS: AGP

The AGP has been proposed as a very sensitive probe
of quantum chaos [35] (see also Refs. [47,48]). It measures
the sensitivity of eigenstates to small perturbations of the
Hamiltonian. In chaotic models, eigenstates are expected to
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be very sensitive to deformations, distinct from integrable
systems where such a sensitivity is supposed to be much
smaller [49]. More quantitatively, let us consider a given
Hamiltonian Ĥ with eigenvectors |n〉 and energies En. We add
a small deformation to Ĥ, Ĥ → Ĥ(λ) = Ĥ + λÔ, where Ô is
a generic operator which does not commute with Ĥ, and λ is
a parameter. Then the AGP, denoted by ‖Aλ‖2, is defined as
follows (we keep the dependence on λ in |n〉 and En implicit):

‖Aλ‖2 ≡ 1

D

∑
m �=n

|〈n|Âλ|m〉|2,

〈n|Âλ|m〉 ≡ −i
ωnm

ω2
mn + μ2

〈n|∂λĤ(λ)|m〉

= −i
ωnm

ω2
mn + μ2

〈n|Ô|m〉, (2)

where ωmn denotes the energy difference, ωmn ≡ Em − En, μ

is a regularizing cutoff at Em ∼ En, and D is the Hilbert space
dimension.

The authors of Ref. [35] extensively studied the scaling
properties of ‖Aλ‖2 for several examples of integrable and
chaotic systems. Their findings indicate that, in agreement
with ETH, ‖Aλ‖2 scales exponentially with the system size
N when the system is thermalizing. On the other hand, the
scaling with the system size is much milder for integrable
systems, including the extreme case of free particles for which
‖Aλ‖2 does not scale at all with the system size.

In the case at hand, we studied the behavior of ‖Aλ(κ )‖2,
as a function of κ , for the following extensive operator:

Ô ≡ i
N−1∑
i=1

χ̂iχ̂i+1. (3)

The choice for this operator is dictated by its simplicity: since
the Hamiltonian, Eq. (1), preserves parity symmetry, any sen-
sitive operator used to evaluate the AGP must be formed by
products of even numbers of Majorana fermions. In addition,
since the model is all-to-all and has no notion of locality,
the results do not depend on which pairs of Majorana are
considered.

Finally, we have checked that results are qualitatively un-
changed when considering local (i.e., not extensive) operators
(see Appendix B for an example).

For κ = 0, we recover the usual SYK model for which
ETH holds [50,51]. Hence, to better investigate deviations
from ETH behavior, we define the following modification of
the AGP:

‖Ãλ(κ )‖2 ≡ ‖Aλ(κ )‖2

‖Aλ(0)‖2
, (4)

which we refer to simply as AGP in the following. From its
definition, ‖Ãλ(κ )‖2 is expected to be N independent in the
ETH region, i.e., for small values of κ . On the other hand,
for very large values of κ , where Fock-space localization sets
in, ‖Aλ(κ )‖2 is expected to be largely independent of N , so
that ‖Ãλ(κ )‖2 is expected to scale down exponentially with
system size.

Based on these premises, we have computed ‖Ãλ(κ )‖2

for system sizes ranging from N = 22 to 30. Results of our
numerical analysis are summarized in Fig. 1. We see that both

FIG. 1. The behavior of the adiabatic gauge potential (AGP), as a
function of the mass deformation strength κ . Results are obtained by
considering infinite temperature eigenstates, i.e., eigenstates having
energies −0.05 < E < 0.05. Vertical lines show regime boundaries
(colors reflect the N dependence of such boundaries): solid lines refer
to boundaries between regimes III and IV, dashed lines to boundaries
between regimes II and III, and dot-dashed lines to boundaries be-
tween regimes I and II.

regimes I and II follow quite closely the prediction of ETH,
with the curves collapsing on top of each other. Similarly,
for large values of disorder, the AGP is κ independent and
inversely proportional to N , as expected for a free theory.
Interestingly, we observe that the value of κ at which Fock-
space localization becomes manifest is systematically larger
than the large-N value predicted in Ref. [33].

In Ref. [35], the authors extensively addressed this point by
considering the case of an integrable many-body Hamiltonian
perturbed by a small nonintegrable perturbation. They found
that AGP detects the chaotic transition for a strength of the
nonintegrable deformation which is approximately an order
of magnitude smaller than the minimum strength necessary
to detect integrability breaking behavior with r ratios. Our
results confirm, at least qualitatively, these findings.

Much more interesting is the behavior for intermediate
values of κ , corresponding to the late cluster regime in regime
III. In this regime, we find that ‖Ãλ(κ )‖2 scales with N faster
than predicted by ETH since curves for different values of
N do not collapse on top of each other. This behavior has
already been reported in Ref. [29], where it was attributed
to a glassylike dynamics and not to a genuine MBL phase.
Interestingly, the numerical distinction between regimes II
and III was very challenging to observe in Ref. [33]. On the
other hand, AGP seems to be very sensitive to this change of
regime. We interpret this result as proof that AGP is particu-
larly sensitive to the change of regime of the energy shell, that
is, capable of identifying situations where the shell covers just
a fraction of the nearest neighbors.

All in all, our results are in excellent agreement with
Refs. [29,52], while they only partially agree with the an-
alytical predictions of Ref. [33]. From finite size analysis,
it is possible to clearly distinguish just three regimes, in-
stead of the four predicted in the thermodynamic limit: an
ergodic regime, a regime with scaling larger than ETH (cluster
regime), and finally, the Fock-space localized regime. It is in-
teresting to note that our results indicate, at least qualitatively,
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(a) (b)

(c) (d)

FIG. 2. Spectral form factor in (a) ergodic (I), (b) cluster (III), and (c) Fock-space localized (IV) regimes. While in the ergodic regime, the
spectral form factor (SFF) clearly follows the standard random matrix theory (RMT) behavior, in the cluster regime (regime III), the onset of
the RMT behavior is considerably delayed. The Fock-space localized regime does not show any RMT behavior. (d) Dependence of RTh(N ),
Eq. (6), vs system size N .

that they do not depend on the model being all-to-all since
they are very similar to those obtained in Refs. [29,52] for
local models. While we do not have a complete answer to
explain this similarity, we believe it arises because AGP is
sensitive to the eigenstates being localized, spread over few
nearest neighbors, or ergodically spread in Fock space. The
relevant notion of locality is therefore in Fock space, while in
real space, it is relevant only to further determine the associ-
ated locality in Fock space. Hence, we expect the effects of
locality in real space to be rather quantitative than qualitative.

IV. NUMERICAL RESULTS: SPECTRAL FORM FACTOR

Having found that, in the late cluster regime, AGP has a
faster scaling with N , we now probe in more detail the ther-
malizing properties of this regime. Thermalization timescales
are often associated with the so-called Thouless time, τTh,
which is by definition the time after which quantum evolution
becomes universal and described by random matrix theory
(RMT), while for shorter times, the behavior is system de-
pendent and nonuniversal, with a bump described and studied
in Ref. [53]. Thouless time has been extensively studied re-
cently via the SFF [32,53–56]. Reference [32] investigated
some aspects of Thouless time for the mass deformed SYK.
However, there, the focus was mainly on the low-temperature
region of the SYK spectrum and on the possible hints of
scrambling dynamics in the SFF, while an in-depth analysis of
the thermalizing properties in regime III was not performed.
This is done in this section.

By definition, the SFF is the Fourier transform of the
density-density correlation function. For computational pur-
poses, it is more convenient to consider a Gaussian filtered
version of it [56]. Concretely, we adopt the definition of
Ref. [24]:

G(τ ) ≡ 1

Z

〈∣∣∣∣∣
D∑

n=1

ρ(εn) exp(−i2πεnτ )

∣∣∣∣∣
2〉

, (5)

where Z is a normalizing factor to ensure G(τ 
 1) ≈ 1, the
εn are the unfolded energy levels, and ρ(εn) is the Gaussian
filtering function; see Appendix D for more details. The time
is measured in units of Heisenberg time, which is defined by
the inverse of the mean level spacing.

Given these preliminaries, we have computed the SFF
for increasing system sizes for three values of κ , i.e., κ =
0.1, 2.09, and 100. They have been chosen to be well inside
the ergodic regime, regime III, and regime IV, respectively
[57]. Our results are presented in Figs. 2(a)–2(c). Results for
k = 0.1 and 100 are in agreement with the expectations: for
k = 0.1, the SFF shows a robust ramp, in perfect agreement
with the RMT prediction and with τTh decreasing with in-
creasing system size. Similarly, when κ = 100, the SFF does
not show any agreement with RMT predictions, with τTh be-
coming identical to the Heisenberg time.

Once again, interesting results appear for κ = 2.09. We see
that, at early times, the SFF shows the usual initial decay,
followed by an intermediate regime which is not controlled
by RMT-like behavior. This early time behavior appears to be
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in very good agreement with the analog behavior exhibited by
the SFF at large disorder, κ = 100, for which the full model
is essentially controlled by the quadratic SYK2 Hamiltonian.
A faster-than-RMT ramp is clearly visible. For the pure SYK2

model, the presence of this fast ramp (exponential in time)
can be computed analytically in the large-N limit [58–60].
Our analysis shows that the exponential ramp dominates the
behavior of the SFF also in a regime of intermediate disorder.

However, at later times, but still earlier than Heisenberg
time, the SFF approaches the RMT predictions, show-
ing a ramp in agreement with RMT behavior. The SFF
decay—from the exponential ramp to the RMT ramp—looks
reminiscent of the transition experienced by the SFF for a
bunch of single-particle chaotic models when coupled by
nearest neighbor interactions, as described in Ref. [61]. Over-
all, we see this as a consequence of the interplay between
the SYK2 Hamiltonian and the interacting quartic term, so
that τTh gets inflated by ∼2 orders of magnitude (in units of
Heisenberg time).

To better quantify the ergodic properties of the SFF in
this regime and to compare them with the analog properties
of the SFF in the manifestly ergodic regime, we measured
the scaling of Thouless time with N , in units of Thouless
time measured at N = 22 [62]. In other words, we define the
following quantity:

RTh(N ) ≡ τTh(N )

τTh(22)
, (6)

and our results are reported in Fig. 2(d). For small system
sizes, the scaling of RTh with N is faster in the ergodic regime.
However, the situation starts to change for N � 30, where the
scaling in the two regimes becomes comparable. This result
strongly supports those of Ref. [29], according to which the
regime where AGP scaling is faster than ergodic is a delayed
but still thermalizing regime.

V. CONCLUSIONS AND OUTLOOK

We have studied the thermalizing properties of mass-
deformed SYK in a regime of intermediate disorder, relying
on the analytical results of Ref. [33]. In quantitative terms,
this regime—named the cluster regime in this paper—is char-
acterized by eigenstates which are extended but cover only a
fraction of the total Hilbert space.

It has been argued in Ref. [16] and further confirmed
by several subsequent numerical studies that a proper MBL
regime is not a regime in which eigenstates are localized in
Fock space—the so-called Fock-space localization discussed
in seminal MBL papers [11–13]—but it is a regime in which
eigenstates are extended but not ergodically spread over the
full Hilbert space. Hence, the cluster regime can be viewed as
the all-to-all version of the MBL regime (although in mass
deformed SYK, eigenstates are ergodically extended over
their support [34]), thus making it particularly suitable for
numerical analysis, to be contrasted with the analytical results
presented in Ref. [33].

In agreement with Ref. [29], we found that this regime
of intermediate disorder has a very clear characterization in
terms of the AGP norm, as defined in Eq. (4): it is the regime

where the AGP shows scaling with system size which is faster
than ETH, dubbed as maximally chaotic in Ref. [29].

To better characterize the dynamical features of this
regime, we have computed the SFF and have contrasted
it with the SFFs computed in the manifestly ergodic and
Fock-space localized regimes. The SFF is particularly suit-
able for such an analysis since it provides an estimate of
the timescale, Thouless time τTh, at which universality arises
and can be detected. Our analysis shows that, in this inter-
mediate regime, τTh is delayed by ∼2 orders of magnitude
as compared with τTh computed in the manifestly ergodic
regime. However, although delayed, it is still clearly smaller
than the Heisenberg time. In addition, we have studied the
scaling of τTh with system size, as compared with the anal-
ogous scaling in the manifestly ergodic regime. While at
smaller sizes the two scalings are different, these discrep-
ancies become negligible for the largest sizes we could
probe, i.e., for N = 30, 32, and 34. A previous analysis of
the Thouless time scaling for random regular graphs has
been performed in Ref. [63], where subdiffusive scaling was
identified. Unfortunately, a similar analysis for the late clus-
ter regime is very challenging, given that the only points
which could be considered are N = 30, 32, and 34. Reaching
larger system sizes will be crucial to address this interesting
point.

Overall, our results strongly suggest that the late cluster
regime should be considered a regime of delayed thermal-
ization, and although such a delay is quantitatively large,
so that it could be easily missed in time evolution analysis,
the system still appears completely thermalizing. To find a
genuinely nonthermalizing regime, i.e., a regime in which
Thouless time does coincide with Heisenberg time, one has
to go to regime IV, which is the regime of genuine Fock-space
localization.

Our results, in agreement with the analysis of Refs. [29,52]
(and considering the analytical predictions of Ref. [33]), add
to other recent results [36] questioning the usual idea accord-
ing to which the MBL phase, in disordered models, should
not be understood as Fock-space localization and that, in the
MBL phase eigenstates, are extended, and the extension scales
with system size N . The thermalizing properties of this regime
seem to become more prominent with increasing system size.
We would also like to point out the possibility that the ex-
istence of non-Fock-space-localized MBL might depend on
subtle model details, e.g., the type of disorder and interaction,
as suggested, for example, in Ref. [64]. On the other hand,
we believe that these results clearly show that mass-deformed
SYK captures all the interesting features which are at the core
of the recent debates on MBL.

Of course, our numerical results, based on full exact diag-
onalization, are limited to systems of finite size and cannot be
taken as definitive results concerning the fate of MBL in the
thermodynamic limit. Along this line, it would be extremely
important to fully understand

which dynamical mechanism triggers the faster-than-ETH
scaling of the AGP. Our results indicate that the formation of
an energy shell per se is not sufficient. It also needs to become
small enough to extend over just a fraction of the neighbors
of a given resonant site. Perhaps it could be possible to use
the solvability of the mass-deformed SYK to investigate the
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behavior of AGP and SFF in the thermodynamic limit in the
cluster regime.

Very recently, a toy model has been presented showing
a regime with eigenstates being nonergodically extended—
unlike the mass-deformed SYK model—and Poissonian
statistics [65]. This could be a good avatar to describe genuine
models of MBL without Fock-space localization. It will be
interesting to characterize this regime through the lens of
AGP.

We hope to come back to these points in the near future.
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APPENDIX A: MAPPING TO THE CONVENTIONS
OF REF. [33]

To simplify comparison, we map the conventions used in
the main text to those of Ref. [33].

To start with, Ref. [33] assumes that the Majorana
fermions, here denoted by ψ̂i (with i = 1, . . . , 2M) to distin-
guish them from the notation χ̂i used in the main text, satisfy
the algebra:

{ψ̂i, ψ̂ j} = 2δi j , (A1)

implying that χ̂i = 1√
2
ψ̂i and 2M = N .

The quartic Hamiltonian of Ref. [33], here denoted by ˆ̃H4,
reads

ˆ̃H4 ≡ 1

4!

2M∑
i, j,k,l=1

J̃i jkl ψ̂iψ̂ jψ̂kψ̂l

= 4
N∑

i< j<k<l=1

J̃i jkl χ̂iχ̂ jχ̂kχ̂l , (A2)

where we made use of the relations in Eq. (A1). The coupling
constants J̃i jkl are Gaussian distributed with mean value zero
and variance:

〈J̃2
i jkl〉 = 6J2

N3
, J2 ≡ 2

M
= 4

N
, (A3)

from which we deduce

J̃i jkl = 2√
N

Ji jkl ,
ˆ̃H4 = 4

2√
N
Ĥ4. (A4)

The quadratic part of the Hamiltonian, here denoted by ˆ̃H2, is
given by

ˆ̃H2 ≡ 1

2

2M∑
i, j=1

J̃i jψ̂iψ̂ j = 2
N∑

i< j=1

J̃i j χ̂iχ̂ j, (A5)

where the couplings J̃i j are purely imaginary, and they are
extracted from a Gaussian distribution having mean value zero

FIG. 3. The behavior of the adiabatic gauge potential (AGP), as
a function of the mass deformation strength κ , for the nonextensive
operator Ô′ defined in Eq. (B1). As we clearly see, the results are
barely distinguishable from the analogous results, for an extensive
operator, shown in Fig. 1.

and variance equal to

〈|J̃i j |2〉 = δ2

N
, (A6)

with the parameter δ being the mass deformation parameter in
Ref. [33].

Denoting by ˆ̃H the total Hamiltonian in Ref. [33], we get

ˆ̃H ≡ ˆ̃H4 + ˆ̃H2 = 4
2√
N
Ĥ4 + 2δĤ2

= 4

(
2√
N
Ĥ4 + δ

2
Ĥ2

)
= 4Ĥ, (A7)

where Ĥ is given in Eq. (1), and we identified the relation
κ = δ

2 between the mass deformation parameters.

APPENDIX B: AGP FOR A LOCAL OPERATOR

In this Appendix, we compute the AGP, ||Aλ(κ )||2, as we
did in Sec. III, for a completely local operator. In other words,
we replace the extensive operator Ô, defined in Eq. (3), with
the following nonextensive operator:

Ô′ ≡ iχ̂1χ̂2. (B1)

As already discussed in Sec. III, the behavior of ||Aλ(κ )||2
does not depend on the choice of Majorana fermions gen-
erating Ô′, given the all-to-all property of the model under
investigation. On the other hand, one may wonder whether the
nonextensive property of the operator plays a role. In Fig. 3,
we report our results.

The behavior of the plot is qualitatively unchanged when
passing from an extensive to a nonextensive operator, with
just a few minor quantitative differences. We believe that the
reason for this independence on the locality of the operator
has to be traced back to the property that, in many-body
interacting systems, the relevant notion of locality is in Fock
space and not in real space.
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FIG. 4. Comparison of the spectral properties of cases A (red
histogram and circles), B (blue histogram and crosses), and C (green
histogram and lines), the results for Poissonian random numbers
from the GUE (black full lines), and Poissonian random numbers
(black dash-dotted lines), respectively.

APPENDIX C: SPECTRAL PROPERTIES

We investigated fluctuation properties in the eigenvalue
spectra for the three realizations κ = 0.2, 2.09, and 100 with
N = 34 considered in Figs. 2(a), 2(b), and 2(c), referred to
as cases A, B, and C in the following. They are compared
with RMT results for random matrices from the Gaussian uni-
tary ensemble (GUE). For this, we removed system-specific
properties by unfolding the eigenvalues Ej, E1 � E2 · · · �
ED independently for each disorder realization to mean spac-
ing unity ε j = N̄ (Ej ). The mean integrated spectral density
N̄ (Ej ) is determined by fitting a polynomial of order 12 to the
integrated spectral density.

We analyzed short-range correlations in the eigenvalue
spectra in terms of the nearest neighbor spacing distribution
P(s) of adjacent spacings s j = ε j+1 − ε j and its cumulant
I (s) = ∫ s

0 ds′P(s′), which has the advantage that it does
not depend on the binning size of the histograms yielding

FIG. 5. Same as Fig. 4 for the power spectrum.

FIG. 6. Comparison of the distributions of the ratios of the spac-
ings between next-nearest l = 1 (upper panel) and next-next nearest
levels l = 2 (lower panel) for the cases A (red dots), B (turquoise
line), and C (black dots). For cases A and B, the curves lie on top
of each other and on top of the GUE curve; for case C, they lie on
top of the curve for 200 000 Poissonian random numbers (magenta
squares).

P(s). Another measure for short-range correlations is the
distribution of the ratios [18,66] of consecutive spacings be-
tween lth nearest neighbors r j = ε j+l −ε j

ε j+l−1−ε j−1
, where we chose

l = 1, . . . , 10 and the distribution of r̃ = min{r j,
1
r j

}. Ra-
tios are dimensionless, so the nonunfolded eigenvalues can
be used [18,66,67]. Furthermore, we considered the vari-
ance 2(L) = 〈[N (L) − 〈N (L)〉]2〉 of the number of unfolded
eigenvalues N (L) in an interval of length L, and the rigidity
�3(L) = 〈mina,b

∫ e+L/2
e−L/2 de[N (e) − a − be]2〉 as measures for

long-range correlations. Here, 〈·〉 denotes the average over
an ensemble of random matrices or of 100 eigenvalue spec-
tra, each containing 65 536 levels. For the latter, we also
performed spectral averages. Furthermore, we analyzed the
power spectrum which is given in terms of the Fourier trans-
form of the deviation of the qth nearest neighbor spacing from
its mean value q, δq = εq+1 − ε1 − q, from q to τ :

s(τ ) =
〈∣∣∣∣∣∣

1√
n

n−1∑
q=0

δq exp (−2π iτq)

∣∣∣∣∣∣
2〉

, (C1)
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FIG. 7. Same as Fig. 6 for the distributions of r̃ = min{r j,
1
r j

}.

for a sequence of n levels, where 0 � τ � 1. It exhibits for
τ  1 a power law dependence 〈s(τ )〉 ∝ τ−α [68,69], where
for regular systems, α = 2, and for chaotic ones, α = 1,
independently of whether T invariance is preserved or not
[70–75].

In Fig. 4, we compare the spectral properties of the cases
A (red histogram and circles), B (blue histogram and crosses),

and C (green histogram and lines). They are compared with
the RMT prediction for Poissonian random numbers (black
dash-dotted lines) and for the GUE (black solid lines). For
case A, the curves lie on top of the GUE curves; for case
C, they are close to the Poisson curves. The short-range cor-
relations of case B are close to those of case A, whereas
we observe clear deviations for the long-range correlations.
The same behavior is observed for the power spectra, shown
in Fig. 5. The distributions r and r̃, which provide another
measure for short-range correlations, are exhibited in Figs. 6
and 7. They agree well with the GUE results for cases A and
B and with that of Poissonian random numbers for case C.

For case C, deviations from the results for Poissonian ran-
dom numbers are only observed for ratios <0.025, whereas
the curves for cases B and C lie on top of each other and
of the RMT prediction for the GUE. This behavior was
also observed for l = 3, . . . , 10. It is in contrast to that ob-
served in the spectral properties, where clear differences are
observed.

APPENDIX D: DETAILS ON THE DEFINITION OF SFF

Each ordered energy spectrum E1 < E2 < · · · < ED is un-
folded by fitting the integrated level density with a 12th-order
polynomial. The resulting unfolded eigenvalues are denoted
by ε1 < ε2 < · · · < εD. The Gaussian filtering function, ρ(εn)
is defined as follows:

ρ(εn) ≡ exp − (εn − ε̄)2

2(η�)2
, (D1)

with ε̄ and � being the mean value and the standard deviation,
respectively, of the ensemble realization under consideration.
The parameter η determines the effective portion of the spec-
trum controlling the SFF. It is adjusted to increase the portion
of the spectrum considered as much as possible but, at the
same time, remove the hard edges of the unfolded spectra.

The prefactor Z is chosen to make the SFF at large
time equal to 1, and it is therefore taken equal to Z ≡
〈∑n |ρ(εn)|2〉.
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[25] J. Šuntajs, J. Bonča, T. Prosen, and L. Vidmar, Ergodicity break-
ing transition in finite disordered spin chains, Phys. Rev. B 102,
064207 (2020).

[26] P. Sierant, D. Delande, and J. Zakrzewski, Thouless Time Anal-
ysis of Anderson and Many-Body Localization Transitions,
Phys. Rev. Lett. 124, 186601 (2020).

[27] P. Sierant, M. Lewenstein, and J. Zakrzewski, Polynomially
Filtered Exact Diagonalization Approach to Many-Body Local-
ization, Phys. Rev. Lett. 125, 156601 (2020).

[28] D. Abanin, J. Bardarson, G. De Tomasi, S. Gopalakrishnan,
V. Khemani, S. Parameswaran, F. Pollmann, A. Potter, M.
Serbyn, and R. Vasseur, Distinguishing localization from chaos:
Challenges in finite-size systems, Ann. Phys. 427, 168415
(2021).

[29] D. Sels and A. Polkovnikov, Dynamical obstruction to local-
ization in a disordered spin chain, Phys. Rev. E 104, 054105
(2021).

[30] A. Morningstar, L. Colmenarez, V. Khemani, D. J. Luitz, and
D. A. Huse, Avalanches and many-body resonances in many-
body localized systems, Phys. Rev. B 105, 174205 (2022).

[31] A. M. García-García, B. Loureiro, A. Romero-Bermúdez, and
M. Tezuka, Chaotic-Integrable Transition in the Sachdev-Ye-
Kitaev Model, Phys. Rev. Lett. 120, 241603 (2018).

[32] T. Nosaka, D. Rosa, and J. Yoon, The Thouless time for mass-
deformed SYK, J. High Energy Phys. 09 (2018) 041.

[33] F. Monteiro, T. Micklitz, M. Tezuka, and A. Altland, Minimal
model of many-body localization, Phys. Rev. Res. 3, 013023
(2021).

[34] F. Monteiro, M. Tezuka, A. Altland, D. A. Huse, and T.
Micklitz, Quantum Ergodicity in the Many-Body Localization
Problem, Phys. Rev. Lett. 127, 030601 (2021).

[35] M. Pandey, P. W. Claeys, D. K. Campbell, A. Polkovnikov,
and D. Sels, Adiabatic Eigenstate Deformations as a Sen-
sitive Probe for Quantum Chaos, Phys. Rev. X 10, 041017
(2020).

[36] P. Sierant, E. G. Lazo, M. Dalmonte, A. Scardicchio, and
J. Zakrzewski, Constraint-Induced Delocalization, Phys. Rev.
Lett. 127, 126603 (2021).

[37] P. Sierant, M. Lewenstein, and A. Scardicchio, Universality in
Anderson localization on random graphs with varying connec-
tivity, arXiv:2205.14614.

[38] P. Sierant, M. Lewenstein, A. Scardicchio, and J. Zakrzewski,
Stability of many-body localization in kicked Ising model,
arXiv:2203.15697.

[39] J. Kim and X. Cao, Comment on “Chaotic-Integrable Transition
in the Sachdev-Ye-Kitaev Model”, Phys. Rev. Lett. 126, 109101
(2021).

[40] A. M. García-García, B. Loureiro, A. Romero-Bermúdez, and
M. Tezuka, García-García et al. Reply:, Phys. Rev. Lett. 126,
109102 (2021).

[41] S. Sachdev and J. Ye, Gapless Spin-Fluid Ground State in a
Random Quantum Heisenberg Magnet, Phys. Rev. Lett. 70,
3339 (1993).

[42] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-
Kitaev model, Phys. Rev. D 94, 106002 (2016).

[43] J. Polchinski and V. Rosenhaus, The spectrum in the Sachdev-
Ye-Kitaev model, J. High Energy Phys. 04 (2016) 001.

[44] We follow the conventions of the seminal paper by Malda-
cena and Stanford [42]. The details of the mapping from our
conventions and results to those of Ref. [33] are reported in
Appendix A.

[45] T. Micklitz, F. Monteiro, and A. Altland, Nonergodic Extended
States in the Sachdev-Ye-Kitaev Model, Phys. Rev. Lett. 123,
125701 (2019).

[46] We would like to point out the similarity of such states to the
states observed in a 1D model with a maximally correlated
disorder [76].

[47] P. Sierant, A. Maksymov, M. Kuś, and J. Zakrzewski, Fidelity
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