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Quantum nonlinear planar Hall effect in bilayer graphene: An orbital effect
of a steady in-plane magnetic field
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We study the quantum nonlinear planar Hall effect in bilayer graphene under a steady in-plane magnetic
field. When time-reversal symmetry is broken by the magnetic field, a charge current occurs in the second-order
response to an external electric field as a result of the Berry curvature dipole in momentum space. We show
that a nonlinear planar Hall effect originating from the anomalous velocity is caused by an orbital effect of an
in-plane magnetic field on electrons in bilayer graphene in the complete absence of spin-orbit coupling. Taking
into account the symmetry analysis, we derive the dominant dependence of the Berry curvature dipole moment
on the magnetic field components. Moreover, we illustrate how to control and modulate the Berry curvature
dipole with an external planar magnetic field, gate voltage, and Fermi energy.
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I. INTRODUCTION

During the last century, the Hall effect has played an impor-
tant role in the advance of technology and condensed matter
physics [1], and because of its profound relation to topology,
the family of Hall effects has been diligently scrutinized in
recent years [2–5].

When an electric field drives a current through a crystal,
the system is out of equilibrium, and the electron velocity
originates from the group velocity of the electron wave packet,
while the anomalous velocity arises from the Berry curva-
ture, which is an intrinsic property emerging from the band
structure. The conventional Hall conductivity, the quantiza-
tion of the Hall conductance in strong magnetic fields, can
be considered the zero-order moment of the Berry curvature
over occupied states [5]. The linear anomalous Hall effect
and quantum anomalous Hall effect were recently observed
in topological materials with broken time-reversal symmetry,
such as magnetically doped topological insulators [6–8] and
magnetic Weyl semimetals [9–11].

The first-order moment of the Berry curvature over the oc-
cupied states is defined by the Berry curvature dipole (BCD),
which is a pseudotensor leads to the quantum nonlinear Hall
effect [5]. It has been shown that up to second order and
dissimilar to the linear effects, the quantum nonlinear Hall
effect shows a component of the voltage oscillating at twice
the frequency of the driving alternating electric field (the
second-harmonic Hall voltage) and a steady component that
is the result of the rectification effect, by which an AC electric
field is turned into a DC signal [5]. The quantum nonlinear
Hall effect has been distinguished in 1Td -WTe2 [1,12,13] and
has been predicted to occur in some developing materials with
low crystalline symmetries [5,11,14]. For two-dimensional
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crystals with trigonal symmetry in the presence of in-plane
magnetic field, a nonzero BCD also leads to a topological
response in the nonlinear planar Hall effect [15].

In the planar Hall effect (PHE), in contrast to the or-
dinary Hall effect, the transverse voltage arises when an
in-plane magnetic field is applied. In this regime, the ap-
plied electric field, the magnetic field, and the transverse Hall
voltage are in the same plane, in contrast to the arrange-
ment in which the conventional Hall effect vanishes. In most
two-dimensional (2D) materials, the PHE has an absolutely
semiclassical origin. In thin films of antiferromagnetic semi-
conductors, the observed PHE is suggested to be the result of
band anisotropies [16]. It has also been indicated that PHE
appears in 2D electron gases on the interfaces of perovskite
oxides [17,18] and thin films of ferromagnetic semiconductors
[19–21]. Moreover, the PHE performs an important role in
the transport properties of Weyl semimetals. Recently, it was
shown that the Zeeman-induced nontrivial Berry curvature
affects the PHE in 2D trigonal crystals [15]. However, the
common aspect of all of these cases is that the PHE arises
from magnetic materials or spin-orbit origins.

In time-reversal-invariant materials, BCD is the effect of
spin-orbit coupling or warping of the Fermi surface [22]. The
quantum nonlinear planar Hall effect (QNLPHE) we discuss
here is determined by BCD when time-reversal symmetry is
broken by an applied in-plane magnetic field. This QNLPHE
has a quantum effect arising from the anomalous velocity of
Bloch electrons generated by the Berry curvature, which is not
quantized [5]. In this study, we show that a nonzero BCD is
achievable in the complete absence of spin effects in bilayer
graphene, an excellent 2D material candidate with giant in-
trinsic carrier mobilities and a tunable band gap [23,24]. In
addition, our results represent a distinct theoretical demon-
stration of a BCD which can be manipulated by magnetic
fields. Such a tunable BCD leads to a broad range of quantum
geometrical phenomena such as the magnetically switchable
circular photogalvanic effect [25], and rectification [26]. For
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all of the mentioned cases, a nonzero BCD is a requirement,
which makes them fundamentally important and interesting
[25]. In this paper, we calculate numerically the BCD of
bilayer graphene imposed by an in-plane magnetic field and
obtain an expression which shows the dependence on the
components of magnetic field as long as space inversion is
fulfilled.

The structure of this paper is as follows. In the next section,
we review the basic notions of BCD. In Sec. III we introduce
the Hamiltonian of bilayer graphene with an in-plane mag-
netic field. Although the magnetic field breaks time-reversal
symmetry, for zero gate voltage the space-inversion symmetry
is valid, which leads to an expression for BCD components
with respect to the components of magnetic field. This ex-
pression shows the dominant behavior of magnetic field. We
present the numerical results of our model in Sec. IV, where
we investigate the dependence of BCD on the energy gap,
Fermi energy, and magnetic fields, which justifies our analytic
findings. We discuss some practical aspects of our results in
Sec. V and conclude our finding is Sec. VI.

II. BERRY CURVATURE DIPOLE MOMENT

For an applied in-plane oscillating electric field with angu-
lar frequency ω, �E (t ) = Re{ �Eeiωt }. Based on the Boltzmann
transport approach, as mentioned in Sec. I, it has been shown
that two currents in the second order of the electric field
that originate from the anomalous velocity of electrons are
anticipated in a crystal: ja = Re{ j0

a + j2ω
a e2iωt } [5]. Here, j0

a
is the DC response to the applied oscillating electric field,
and j2ω

a is the second-harmonic generation current. For 2D
materials, like bilayer graphene, it has been shown that the
AC and DC currents have the following forms [5,15]:

�j0 = e3τ

2h̄2(1 + iωτ )
ẑ × �E∗( �D · �E ),

�j2ω = e3τ

2h̄2(1 + iωτ )
ẑ × �E ( �D · �E ). (1)

In the above equations, e is the absolute value of electron
charge, e > 0, τ is the scattering time, and D is the dipole
moment of the Berry curvature over the occupied states, BCD,
which is equal to

Da =
∫

k
f0(∂a�z ), (2)

where
∫

k ≡ ∫
d2k/(2π )2 and f0 is the equilibrium Fermi-

Dirac distribution function [5]. At zero temperature, f0 =
�[μ − ε(k)], where ε is the energy dispersion of electrons
and μ is the Fermi level. Thus, f0 = 1 if ε(k) < μ; otherwise,
f0 = 0. In 2D materials, the Berry curvature is a pseudoscalar
that has only an out-of-plane component. Consequently, BCD
is a pseudovector confined in the corresponding 2D plane
and is normalized to unit length [5]. Furthermore, for 2D
materials, the Berry curvature of the nth band is defined by
the following equation:

�n
z (k) = i

∑
n′�=n

〈n|∂xĤ |n′〉〈n′|∂yĤ |n〉 − (x ↔ y)

(εn − εn′ )
, (3)

FIG. 1. The AB-stacked bilayer graphene unit cell. A1 and B1

atoms on the bottom layer and A2 and B2 on the top layer are
depicted. Straight lines point out the intralayer coupling γ0; vertical
dashed lines show interlayer coupling γ1 and skew interlayer cou-
plings γ3 and γ4. The parameters U1, U2, and δ indicate different
on-site energies.

where εn is the eigenvalue of the Hamiltonian and ∂x/y ≡
∂kx/ky . It is necessary to obtain the eigenstates and eigenvalues
of the Hamiltonian of bilayer graphene in a parallel mag-
netic field to derive the Berry curvature and its corresponding
dipole. In the next section, we introduce the Hamiltonian of
bilayer graphene in an in-plane steady magnetic field, and
we consider the effect of the symmetry on the general form
of the BCD in bilayer graphene. However, the symmetry
analysis, which appears in the next section, is also valid for
any 2D material with broken time-reversal symmetry while
space-inversion symmetry is satisfied.

III. HAMILTONIAN AND SYMMETRY ANALYSIS

The AB-stacked bilayer graphene structure and its related
parameters with a lattice constant that is equal to a and inter-
layer distance d are depicted in Fig. 1. According to Fig. 1,
different on-site energies are U1 and U2 on the A1 and B2

sites, respectively, which are the on-site energies of the two
layers. δ is the energy difference between A and B sublattices
on each layer. Based on the tight-binding approximation, we
have considered the full Hamiltonian of bilayer graphene with
hopping parameters γ0, γ1, γ3, and γ4 and on-site energies
stated in Fig. 1. The band structure of bilayer graphene for a
specific set of parameters is depicted in Fig. 2. The difference
in layer bias, � = U2 − U1, generates a finite gap at the K
point of the first Brillouin zone.

To derive the Hamiltonian of bilayer graphene in a parallel
magnetic field, the in-plane magnetic field has been consid-
ered as a phase change given by a path integral of A, the vector
potential of the in-plane magnetic field. For example, to calcu-
late the HAB elements of the Hamiltonian, which are related to
the γ0 hopping parameter in the tight-binding approach, and
by considering the nearest-neighbor approximation, we have
assumed that each A atom has three nearest-neighbor B atoms.
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FIG. 2. The band structure of bilayer graphene along the �-K-
M-� direction denoted by the red line in the right inset within the
first Brillouin zone of the bilayer graphene. The left inset indicates
the opening of a gap near the K point; � = U2 − U1 = 0.6 eV. The
parameters used to calculate the band structure are γ0 = 3.16 eV,
γ1 = 0.389 eV, γ3 = 0.384 eV, γ4 = 0.14 eV, δ = 0.018 eV, a =
2.46 Å, and d ≈ 3.3 Å [27,28].

Consequently, HAB is

HAB = −γ0

3∑
j=1

exp

(
ik · (RB j − RA) − ie

h̄

∫ RA

RB j

A · dl

)
, (4)

where A is chosen to be z(By,−Bx ) to keep translation sym-
metry in the graphene plane. The details of the derivation to
reach the final Hamiltonian can be found in Ref. [29].

Hence, the 4 × 4 Hamiltonian of bilayer graphene in a
steady parallel magnetic field in the basis of (A1, B1, A2, B2)T

is [29,30]

H =

⎛
⎜⎜⎝

U1 −γ0 f1(k) γ4 f (k) −γ3 f ∗(k)
−γ0 f ∗

1 (k) U1 + δ γ1 γ4 f (k)
γ4 f ∗(k) γ1 U2 + δ −γ0 f2(k)
−γ3 f (k) γ4 f ∗(k) −γ0 f ∗

2 (k) U2

⎞
⎟⎟⎠,

(5)

where

f = exp

(
ikya√

3

)
+ 2 exp

(
− ikya

2
√

3

)
cos

(
kxa

2

)
, (6)

f1 = exp

(
ikya√

3
+ ie

ad

2
√

3h̄
Bx

)

+ exp

[
− i

(
− kxa

2
+ kya

2
√

3

)
− ie

ad

2h̄

(
By

2
+ Bx

2
√

3

)]

+ exp

[
− i

(
kxa

2
+ kya

2
√

3

)
+ ie

ad

2h̄

(
By

2
− Bx

2
√

3

)]
,

(7)

f2 = exp

(
ikya√

3
− ie

ad

2
√

3h̄
Bx

)

+ exp

[
− i

(
− kxa

2
+ kya

2
√

3

)
+ ie

ad

2h̄

(
By

2
+ Bx

2
√

3

)]

+ exp

[
− i

(
kxa

2
+ kya

2
√

3

)
− ie

ad

2h̄

(
By

2
− Bx

2
√

3

)]
.

(8)

Here, k is the electron wave vector, and B is the magnetic
field vector, i.e., B = (Bx, By, 0). We assume that the lower
layer of the bilayer is located at z = −d/2 and the upper layer
is at z = +d/2.

The time-reversal symmetry of the Hamiltonian, Eq. (5),
is broken by the planar magnetic field because, apparently,
H∗(k) �= H (−k). On the other hand, H (k) satisfies space in-
version if UH (k)U† = H (−k), where U is the operator swap
A1 ↔ B2 and B1 ↔ A2. It can be shown that for U1 = U2 or
in the absence of a gate voltage, the Hamiltonian is invariant
under space inversion.

In order to resolve the symmetry properties of BCD in
bilayer graphene imposed by an in-plane magnetic field, we
consider the following expansion for Berry curvature (BC) in
terms of the magnetic field components:

�(kx, ky, Bx, By) =
∑

m,n�0

am,n(kx, ky)Bx
mBy

n, (9)

where m and n are integers and am,n(kx, ky) are coefficients
of the expansion, which are functions of momentum (kx, ky).
Since Eq. (9) represents BC in the presence of a magnetic
field, a0,0(kx, ky ) = 0. The Berry curvature is invariant under
inversion symmetry (U , which can be recognized as x → −x
and y → −y), which leads to the following constraint for the
am,n coefficients:

am,n(kx, ky) = (−1)m+nam,n(−kx,−ky ). (10)

Moreover, taking into account the reflection symmetry with
respect to the y axis (x → −x) or the x axis (y → −y) gives
the following relations, respectively:

am,n(kx, ky ) = (−1)nam,n(−kx, ky),

am,n(kx, ky ) = (−1)mam,n(kx,−ky). (11)

According to Eq. (2), the BCD is obtained by integrating
the derivatives of BC over the Brillouin zone. Making use
of Eqs. (10) and (11), we show that the terms in the BCD
expansion which contain both even or odd values of m and
n vanish. Hence, one of the exponents (either m or n) must
be odd. The proof of this statement is presented in Appendix
A. Accordingly, the BCD of our model in the presence of an
in-plane magnetic field has the following form:

Dx = By

∫
k

f0

∑
m,n�0

∂a2m,2n+1(kx, ky)

∂kx
Bx

2mBy
2n, (12)

Dy = Bx

∫
k

f0

∑
m,n�0

∂a2m+1,2n(kx, ky)

∂ky
Bx

2mBy
2n. (13)

Hence, whenever the inversion symmetry is satisfied in bilayer
graphene, for a magnetic field in the x (y) direction a nonzero
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FIG. 3. The change in Dx (Dy) versus � (the on-site energies
U2 = −U1 = �/2), depicted by a solid line (dashed line) where
Bx = By = 1 T. The Fermi energy is 10 meV.

Dy (Dx ) is predicted. This means that for a nonzero Bx (By)
at By (Bx ) = 0 T, Dy (Dx ) should be the only nonzero com-
ponent of BCD, which shows a linear dependence on Bx (By).
This argument is also valid for any 2D material with broken
time-reversal symmetry while space inversion symmetry is
satisfied.

IV. TUNABLE BCD IN BILAYER GRAPHENE

In this section, we present numerical results for the BCD
for bilayer graphene in the presence of an in-plane magnetic
field. We use the following parameter values in our numerical
calculations: γ0 = 3.16 eV, γ1 = 0.389 eV, γ3 = 0.384 eV,
γ4 = 0.14 eV, and δ = 0.018 eV; the lattice spacing is a =
2.46 Å, and interlayer spacing is d ≈ 3.3 Å [27,28]. Our nu-
merical results verify the general form of the BCD presented
in Eqs. (12) and (13). In other words, as the magnetic field
approaches zero, the BCD of our system vanishes regardless
of the position of the Fermi energy or any applied gate voltage,
so the deduced Hall effect is a genuine Hall effect. Moreover, a
linear dependence of BCD on either Bx or By is also observed.
The details of the numerical calculations are described in
Appendix. B.

A. Gap-dependent BCD

Early studies on the TaAs family of Weyl semimetals
showed that a zero or small gap region in the band structure
leads to a large BCD [31]. The relation between the gap
and BCD can be understood based on Eq. (3), where the
smaller gap in the denominator causes the larger value of
the BCD. Accordingly, the control on the band structure and
wave functions will come out with the control on the BCD
[11]. For bilayer graphene in a planar steady magnetic field,
an applied in-plane magnetic field opens a gap in the band
structure of bilayer graphene. For example, in the absence
of any applied external gate voltage, U1 = U2 = 0 eV, and at
Bx = By = 1 T, a gap of the order of 10−5 meV is deduced in
our system. Although the amount of gap is small, it leads to a
large gradient of the Berry curvature of bilayer graphene.

We plot in Fig. 3 the x and y components of the BCD of bi-
layer graphene for Bx = By = 1 T versus the on-site energy �

defined by U2 = −U1 = �
2 at chemical potential μ = 10 meV.

FIG. 4. The variation of the BCD versus the Fermi level μ.
The solid (dashed) line depicts Dx (Dy) where (Bx, By ) = (0, 1) T
[(Bx, By ) = (1, 0) T] and U2 = U1 = 0 eV. Whenever both compo-
nents of the magnetic field are nonzero, (Bx, By ) = (1, 1) T, both
the solid and dashed lines should be considered for Dx and Dy,
respectively.

Both components of the BCD show monotonically decreasing
behavior versus �, where the maximum is at � = 0, which
proves the effect of the magnetic field to produce the BCD. By
applying a gate voltage (presented by the on-site energies), the
gap of the system is dominated by the effect of � rather than
the gap created by the magnetic field. Increasing � washes
out the BCD created by the magnetic field, which is clearly
seen for � > 10 meV in Fig. 3.

B. Fermi energy dependence

The Berry curvature dipole is a Fermi surface property
which depends on the position of the Fermi energy. This
is the motivation to obtain the BCD for different values of
chemical potential. We plot in Fig. 4 both Dx and Dy versus
the Fermi energy μ for (Bx, By) = (1, 1) T and zero on-site
bias U1 = U2 = 0. Both plots show nonmonotonic behavior
versus μ, where the maximum BCD appears at μ = 10 meV.
The asymmetry between Dx and Dy for equal components of
magnetic field is due to the asymmetry of the geometry of the
lattice, where the x direction is along the zigzag edges. BCD
is zero at μ = 0, where the Fermi energy is in the middle
of the gap between filled and empty bands. According to
the expression for the BCD [Eq. (2)], for the latter case we
would obtain zero. This means that only partially filled bands
contribute to a nonzero BCD.

Moreover, we have also calculated the BCD for (Bx, By) =
(1, 0) T and U2 − U1 = � = 0 eV. In agreement with our
results in Sec. III, a nonzero BCD is observed only in the y
direction, which falls on the dashed line in Fig. 4, while Dx

is zero. If we switch the components of the magnetic fields to
(Bx, By) = (0, 1) T, a nonzero BCD in the x direction is de-
duced that is parallel to the zigzag edges (solid line in Fig. 4),
while Dy = 0. The symmetry analysis of Sec. III, which led
to Eqs. (12) and (13) is justified by our numerical results
presented in Fig. 4. In addition, the overlap of Dx in Fig. 4
for (Bx, By) = (1, 1) T with the case with (Bx, By) = (0, 1) T
means that in the general form of the BCD [Eqs. (12) and (13)]
the linear term of expansion has the dominant effect. This is
also the case of Dy for (Bx, By) = (1, 1) and (Bx, By) = (1, 0).

245143-4



QUANTUM NONLINEAR PLANAR HALL EFFECT IN … PHYSICAL REVIEW B 106, 245143 (2022)

FIG. 5. The variation of Dx (Dy) versus the in-plane magnetic
field is shown by a solid line (dashed line), where the Fermi energy
is 10 meV and U2 = −U1 = �/2 = 2.5 meV. (a) The magnetic field
in the y direction is constant, By = 1 T, while Bx changes from 0 to
10 T. (b) The magnetic field in the x direction is fixed to Bx = 1 T,
while the other component, By, changes form 0 to 10 T.

C. BCD dependence on the in-plane magnetic field

Here, we study the effect of a steady in-plane magnetic
field on BCD for a nonzero gate voltage. It has to be
mentioned that a nonzero gate potential (� �= 0) breaks the
inversion symmetry of our model and we cannot rely on the
arguments that led to Eqs. (12) and (13). Accordingly, we
considered two cases at nonzero on-site energy � = 5 meV,
(a) the effect of Bx on the BCD for fixed By = 1 T and (b) the
response to By at fixed Bx = 1 T.

We plot both Dx and Dy versus Bx at fixed By = 1 T and
� = 5 meV in Fig. 5(a). We observe a nonzero and almost
constant value for Dx even at Bx = 0, which shows that it is
mainly controlled by the fixed value of By. However, Dy shows
a linear behavior versus Bx, which resembles the leading term
obtained in Eq. (13).

In Fig. 5(b), the components of BCD are plotted versus By

at constant values of Bx = 1 T and � = 5 meV. Similar to
the case in Fig. 5(a), Dy is nonzero and constant versus By,
suggesting its dependence on Bx. Moreover, Dx has an almost
linear dependence on By, which looks like the leading term of
Eq. (12). It has to be mentioned that the zigzag direction of
graphene is along the x axis, which breaks the symmetry by
exchanging x ↔ y.

Although a nonzero gate voltage breaks the space-
inversion symmetry of our model, the numerical results reveal
that the dependence of Dx (Dy) on magnetic fields is domi-
nated by the leading terms given in Eq. (12) [Eq. (13)].

V. DISCUSSION

An applied in-plane magnetic field has two effects on bi-
layer graphene: (i) it breaks the time-reversal symmetry, and
(ii) the magnetic field opens a band gap, that however this
band gap is small but it leads to a large BCD. A symmetry
analysis based on the space-inversion symmetry concludes
that the BCD depends on the components of an in-plane
magnetic field, which was presented in Eqs. (12) and (13).
Although a nonzero gate voltage (on-site energies) breaks the
space-inversion symmetry, our numerical results in Sec. IV C
indicate that the magnetic field dependence of the BCD is
dominated by the first term in Eqs. (12) and (13).

We mentioned in Sec. II that a nonzero BCD leads to
two types of the second-order currents, a DC one and an
AC one. The magnitudes of these terms are proportional to
the second-order susceptibility times a squared electric field
term. Moreover, based on the Boltzmann kinetic formalism,
the magnitude of the susceptibility tensor is proportional to
e3τDx(y)/2h̄2(1 + iωτ ) [5,15]. So the results are valid for an
oscillating electric field caused by terahertz or microwave ra-
diation types, where ωτ ≈ 1. For a deduced Dy = −10−10 m
caused by Bx = 8 T and By = 1 T (presented in Fig. 5), in bi-
layer graphene under a planar magnetic field and considering
τ = 0.15 × 10−12 s, we can show that for |E | = 106 V/m and
ω = 2.1 × 1013 rad/s, the magnitude of the current density in
bilayer graphene is 0.11 A/cm. It has to be mentioned that the
linear term of conductivity leads to a larger current density
compared to the quantum nonlinear term, which we discussed
here. However, the nonlinear term represents the topological
aspect of the model that is to be considered as the corrections
on the linear term.

Higher frequencies can be studied with modifications to
the Boltzmann equation via quantum kinetic theory [32–34],
which could be considered in future works. Additionally, at
zero magnetic field each energy band has degeneracy for
spin-up and spin-down electrons. When a magnetic field is
applied to the bilayer graphene, the degeneracy of the spin-up
and spin-down electrons is broken by the applied magnetic
field, and the energy difference between spin-up and spin-
down electrons is a Zeeman energy equal to �Ez = 2SμBB,
where S is the spin of an electron and μB is the Bohr magne-
ton. Considering S = 1/2 leads to a �Ez = 5.8 × 10−5 eV/T.
Hence, for a 2 T magnetic field, we get �Ez ≈ 10−1 meV. In
addition, in our study, the Fermi level energy changes so that
0 � μ � 40 meV. According to the value of Fermi energy, we
can expect the total current density produced by spin-up and
spin-down electrons to increase up to two times the calculated
current density.

VI. CONCLUSION

This paper represents an analytical study confirmed with
numerical results of the QNLPHE in bilayer graphene, which
can be controlled by an in-plane steady magnetic field in
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the absence of spin-orbit coupling. The proposed strategies
of a tunable BCD could also be applied to a wide range of
other two-dimensional materials, such as phosphorene [35],
which indicates that our findings pave the way to discover
exotic nonlinear phenomena in 2D materials. We revealed a
QNLPHE with a Hall voltage that is quadratic with respect
to the applied electric field. The orbital-induced Berry dipole
is strongly enhanced in AB-stacked bilayer graphene and
reaches the nanometer scale. The aim of this work was to
show that this topological effect emerges even in the com-
plete absence of spin-orbit coupling in 2D Dirac materials,
where two or more bands cross or nearly cross. Additionally,
recently recognized optoelectronic and nonlinear transport ex-
periments can give direct access to the dipole moment of the
Berry curvature in nonmagnetic and noncentrosymmetric ma-
terials [25,36,37]. The predicted effects could also be utilized
in applications that demand second-harmonic generation or
rectification, which are used, for instance, in wireless com-
munications, infrared detectors, and energy-harvesting appli-
cations. Moreover, such a magnetically switchable BCD may
ease the observation of a broad range of quantum geometrical
phenomena like the geometric properties of Bloch states in a
large number of 2D materials and help in the consideration
of other quantum geometrical phenomena [36,38], and the
facilitation of fabrication and upscaling of the approach could
allow exotic phases of matter attractive in twistronics [1].
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APPENDIX A: SYMMETRY ANALYSIS

As mentioned in the main text, Eqs. (12) and (13) are valid
whenever U1 = U2, which means that the underlying sys-
tem has space-inversion symmetry. Under this condition, the

Berry curvature [Eq. (9)] should also obey the space-inversion
symmetry of the system. Moreover, the honeycomb lattice is
invariant under reflections with respect to the x or y axis. In
this situation, we can show that the following identities are
valid:

am,n(kx, ky)Bx
mBy

n = am,n(kx,−ky )(−Bx )mBy
n

= am,n(−kx, ky)Bx
m(−By)n

= am,n(−kx,−ky)(−Bx )m(−By)n. (A1)

In the above equations, we have considered that under reflec-
tion with respect to the x axis kx → kx, ky → −ky, Bx → −Bx,
and By → By. Similarly, under the reflection with respect
to the y axis, we have kx → −kx, ky → ky, Bx → Bx, and
By → −By. In addition, the inversion symmetry is given by
kx → −kx, ky → −ky, Bx → −Bx, and By → −By.

According to the definition of the BCD [Eq. (2)] and the
expression for Berry curvature proposed in Eq. (9), we will
show that in the final expression for the BCD either m or
n must be odd. Those terms which contain exponents (m, n)
that are both odd or both even vanish in the final expression
for the BCD. To prove this, we would like to stress that the
BCD comes from an integration on the Brillouin zone (BZ)
which can be considered symmetrically around the origin of
k space. The integrand of Eq. (2) for Dx contains the following
derivative:

��

�kx
= �(kx + �kx, ky, Bx, By) − �(kx, ky, Bx, By)

�kx
. (A2)

According to the reflection symmetry with respect to the y
axis, for each occupied state with kx > 0 there is a state at
−kx in the BZ which gives

��

�kx
= �(−kx, ky, Bx, By) − �(−(kx + �kx ), ky, Bx, By)

�kx
.

(A3)
We rewrite the derivatives given in Eqs. (A2) and (A3) using
the expression for BC [Eq. (9)]:

��

�kx
=

∑
am,n(kx + �kx, ky)Bx

mBy
n − ∑

am,n(kx, ky)Bx
mBy

n

�kx
, (A4)

��

�kx
=

∑
am,n(−kx, ky)Bx

mBy
n − ∑

am,n( − (kx + �kx ), ky)Bx
mBy

n

�kx
. (A5)

In accordance with Eq. (A1), when m and n are both even and
odd numbers, we have

am,n(kx, ky) = am,n(−kx, ky). (A6)

Therefore, the corresponding terms (of both even and odd
m, n) vanish in summing up the integration to obtain Dx. A
similar explanation rules out the presence of both even and

odd exponents in the final expression of Dy. That means either
m or n should be an odd integer.

In the next step, we consider the contribution of those terms
with odd m and even or zero n. Thus, we can assume that
m = 2k + 1 and n = 2k′ (k, k′ = 0, 1, 2, . . . ), which leads to
the following forms for Eqs. (A2) and (A3):

��

�kx
=

∑
a2k+1,2k′ (kx + �kx, ky)Bx

2k+1By
2k′ − ∑

a2k+1,2k′ (kx, ky)Bx
2k+1By

2k′

�kx
, (A7)

��

�kx
=

∑
a2k+1,2k′ (−kx, ky)Bx

2k+1By
2k′ − ∑

a2k+1,2k′ ( − (kx + �kx ), ky)Bx
2k+1By

2k′

�kx
. (A8)
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FIG. 6. The dependence of Dx and Dy versus 1
N , where N is the

number of mesh grids in each direction. The solid line (dashed line)
represents Dx (Dy), where the other parameters are Bx = By = 1 T,
μ = 10 meV, and � = 0 eV.

The application of Eq. (A1) for odd m and even n gives the
subsequent identity

a2k+1,2k′ (kx, ky) = a2k+1,2k′ (−kx, ky). (A9)

Consequently, the summation of Eqs. (A7) and (A8) in the in-
tegrand of Dx vanishes. The only remaining terms, which lead
to nonzero Dx, are even m and odd n as presented in Eq. (12).
Similar arguments verify the expression for Dy presented in
Eq. (13), which completes our proof.

APPENDIX B: NUMERICAL METHOD TO CALCULATE
THE BCD

The following numerical approach has been used to obtain
the BCD. First, the BZ is split into a discretized mesh of
kx(i) and ky( j), where kx(i) = 2π i

N for i = 0, 1, . . . , N − 1,
with similar values for ky( j). Then, based on Eq. (3), the
discretized value of �n

z (kx(i), ky( j)) is assigned to a matrix
of N × N . This means that � is represented by a matrix in
k space. The derivative of the Berry curvature in the x or
y direction is derived using a finite difference method. We
implemented this approach at fixed parameters of the model
for different mesh grids, i.e., N . Our results show that conver-
gence is obtained for N ∼ 2000. We have calculated both Dx

and Dy of our model at Bx = By = 1 T and μ = 10 meV and
in the absence of any gate voltage for different mesh grids,
as shown in Fig. 6. The horizontal axis is the inverse of mesh
numbers in each direction, i.e., 1/N . However, producing data
with N = 2000 requires a large amount of CPU time; for
instance, to obtain a single point of the BCD CPU time of
14 days was spent on a machine with 80 cores. This leads
us to settle on the value of N = 500 to produce all data
points and investigate the dependence of the BCD on different
parameters. Although the BCD value changes drastically from
N = 500 to N = 2000, the extrapolation to N → ∞ gives
a nonzero result for BCD. Moreover, if we keep only the
values of N = 1000, 1500, 2000, we observe a weaker mesh
finite-size effect, which indicates that the final result will be
nonzero.
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