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3

We numerically study a 3

fractional quantum Hall system with even number of electrons using the exact

diagonalization where both the strong Landau-level (LL) mixing and a finite width of the quantum well have been
considered and adapted into a screened Coulomb interaction. With the principal component analysis, we are able
to recognize a compressible-incompressible phase transition in the parameter space made of the magnetic field
and the quantum well width by the competition between the first two leading components of the ground-state
wave functions, which is consistent with the low-lying spectral feature and previous works in the odd-electron
system. In addition, the presence of the subdominant third component suggests an incompressible transition
occurring as the LL mixing strength grows into a certain parameter region associated with the ZnO experiments.
We further investigate the strongly LL-mixed phase in this emerging region with the Hall viscosity, wave function
overlaps, and the entanglement spectra. Results show it can be well described as a particle-hole symmetrized
Pfaffian state with the dual topological properties of the Pfaffian and the anti-Pfaffian states.
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I. INTRODUCTION

The nature of the even denominator fractional quantum
Hall effect (FQHE) is still unclear in many aspects [1]. In
wide or double quantum wells, even denominator FQHE
can be explained by the Halperin state [2]. But for those
FQHEs with non-Abelian excitations, an understanding for
their nature is still a puzzle. For % FQHE, the Pfaffian [3]
or anti-Pfaffian wave function [4] is proposed to be the most
promised candidate. However, either the numerical calcula-
tion of wave function overlaps or the thermal conductance
experiment [5] challenges these trial wave functions. Some
theoretical approaches try to explain the thermal conductance
experiment by modeling the ground state with Pfaffian—anti-
Pfaffian domains [6] or by considering the partial equilibration
of the thermal transport [7]. Other trial wave functions are
also proposed in the spirit of the composite fermion paring
[8,9]. However, they are either energetically unfavorable or
unmatched with numerical overlap calculations. Nevertheless,

the topologically nontrivial feature of the % FQHE, which

is experimentally confirmed by the Majorana mode with %
thermal Hall conductance, should be recognized.

In studying the FQHE of a realistic two-dimensional elec-
tron gas (2DEG), Landau level (LL) mixing is an important
effect to be considered. To scale the strength of the LL mix-
ing, one must define a dimensionless parameter k = Ec/E;
where Ec = €2 /el is the Coulomb interaction strength and
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Er;, = ho, is the LL gap with the cyclotron frequency w. =
|e|B/m* where e is the electron charge, B the magnetic field,
and m* the effective mass. If « — 0, the LLs are considered
infinitely gapped and thus the LL mixing is negligible.

For the GaAs quantum well, considering the material pa-
rameters and the magnetic field used in experiments, the LL
mixing there has a moderate strength with x ~ 1, which is
strong enough to affect the nature of the FQHE state. It has
been argued that the perturbative theory would still be feasible
and the induced three-body interaction will break the particle-
hole (PH) symmetry [10]. Given that the (anti)Pfaffian state
is the unique zero-energy state of some three-body interaction
in a half-filled system, the % FQHE state is thus related to a
Pfaffian or an anti-Pfaffian state when the LL mixing is taken
into account. However, in the ZnO/MgZnO heterostructure
[11-13] or black phosphorene [14] the effective mass of the
electron is about one magnitude higher than that in a GaAs
quantum well, leading to an extremely large « >> 1. There,
the LL mixing is so strong that the perturbative theory could
not be available. More importantly, the strong LL mixing has
been argued possible to recover the particle-hole symmetry
[15], which will be reclaimed in this work. It is reasonable
to expect that the ground states of the % FQHE:s in the ZnO
quantum well should be biased from that in GaAs.

For a strongly LL mixing system with a finite filling (for
instance, v = %), the electrons are distributed in far more
than three LLs, causing a huge Hilbert space. The computer
resource for such a large system would be exhausted in most
conventional approaches. A substitutive way to study the
strongly LL-mixed system is to project the 2DEG into a single
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relevant LL with the effectively screened Coulomb interaction
in the random-phase approximation (RPA) [16-18], of which
the Hilbert space is sufficiently small for the exact diagonal-
ization scheme. The screened Coulomb potential containing
the information of all the other LLs can be used to inter-
pret the stability of the % FQHE [17,19], which agrees with
the experimental results [11,12]. In our present work on the
strongly LL-mixed % fractional quantum Hall system with a
finite width of the quantum well, we adopt the same screening
treatment for the electron-electron interaction to construct an
effective model Hamiltonian. With the numerical spectra and
principal component analysis (PCA) [20] on the ground-state
wave functions, we obtain a phase diagram in the parameter
space consisting of the magnetic field and the width of the
quantum well with several phase transitions. An incompress-
ible phase with a large LL mixing strength can be associated
to parameters of the ZnO samples, and physical properties of
its ground state are investigated through the calculations of the
Hall viscosity, wave function overlaps, and the entanglement
spectra [21].

II. MODEL HAMILTONIAN

We consider a %-ﬁlling FQHE system with the 2DEG ex-
tended a bit in the perpendicular (z) direction due to the finite
width of the quantum well. For simplicity, the confinement po-
tential of the quantum well is assumed to be an infinity square
well. Thus, the z component of the wave function is given
by ¢ (z) = \/2/L,sin(mmrz/L;) with the quantum number m
indexing the band and L, for the width of the quantum well.
The full wave function of the 2DEG takes a two-part form as
WU(r, z) = ¢ (2)¥(r), where r is the in-plane coordinate. On
the torus, the in-plane part of the wave function has the form
of ¥, ;(r) in the Landau gauge with n for the LL index and
i for the guiding center index. On a sphere, the in-plane part
Y should be replaced by the wave function on the zero-width
sphere, and i for the angular momentum.

In the toroidal geometry, the many-body Hamiltonian of a
Coulomb interaction system is given by
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where the first term is kinetic energy with the summation over
all LL indices n, guiding center indices i, and spin indices
o. Symbol ¢ (c') stands for electron annihilation (creation)
operator. As to the electron-electron interaction term, consid-
ering the strong LL mixing, we treat it with the screening
scheme as modeled in Ref. [19]. The electron distribution
is the same as the noninteracting picture so that we can
concentrate ourselves on the highest occupied LL, in which
the electron-electron interaction is screened by all the virtual
processes between the LLs with different filling in the RPA.
We believe that this screening scenario is a good approach
to describe the strongly LL-mixed system although some of
the correlations are neglected. Under such treatment, we can
constrain the system in the half-filled n = 1 LL. If all electrons
can be regarded fully spin polarized due to the large magnetic

field [17], the Hamiltonian is reduced to
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where the screened Coulomb interaction matrix element has
the form of
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In the above expression, q is the discrete in-plane momentum,
N is the LL degeneracy, 8" includes the periodic boundary
condition, L,(x) is a Laguerre polynomial, and ) means that
the ¢ = 0 term is excluded in the summation.

As we consider only the first band at m = 1, the effective
Coulomb potential V(g) is given by
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Such dressed Coulomb potential is obtained by the pure
Coulomb potential divided by the static dielectric func-
tion €,(q, q;). In calculating the dielectric function, we use
the noninteracting retarded density-density response function
x,?n (g, gz, ® — 0) in the RPA in the static limit for simplicity.
The dielectric function is then given by
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where m; and n; mark the band and the LL indices,
and Egy n).0 and Vg, ). are the kinetic energy and
the filling factor of the LL (m;,n;) with spin o, re-
spectively. The form factor is written as Gy'(q, ;) =

iq:L.Fy, n,(—Q)&m,.m, (—q) with the functions
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The expression of Eq. (6) indicates a summation over all LLs.
In practice, it is necessary to set a truncation since the high-
energy LLs contribute little to the studied system.

In the spherical geometry, the Hamiltonian can also be
written in a form similar to Eq. (2) by using Haldane’s pseu-
dopotential
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where we approximately use the planar pseudopotential and
both the thickness and the screening corrections have been
included in V(q).

As shown in the above effective Hamiltonians, both the
strength of the magnetic field and the width of the quantum
well will soften the Coulomb interaction and thus significantly
modify the properties of the strongly correlated system. Topo-
logical phase transitions might occur [18] given continuous
variations in the parameter space made of B and W, which
is the half-width of the wave function in the z direction and
W = L,/1.5 for an infinity square well. Such possible phase
transitions and the topological features of the corresponding
quantum states can be explored through the calculated energy
spectra and state wave functions as we numerically solve the
model Hamiltonians using the exact diagonalization. Since
different topological states on the sphere may correspond to
different spherical shifts, thus different Hilbert spaces, it could
be difficult to probe a possible topological phase transition
with continuously varying parameters in the spherical geom-
etry. Therefore, in our analysis we mainly take the toroidal
geometry [22,23]. The parallelogram unit cell of the torus is
framed by two basis vectors Zl and Zz with the aspect ratio
|| = L;/L, and the aspect angle 6 between them. Within the
cell, there are N, electrons and N; magnetic flux quanta with
N; = 2N, corresponding to the half-filled second LL. Several
state wave functions in the spherical geometry at specified
spherical shifts are also studied for comparison purposes.

III. PHASE TRANSITIONS

In a previous work [19], strongly LL-mixed systems with
odd number of electrons on the torus have been studied in the
(B, W) parameter space. The compressible-incompressible
phase transition is detected there by monitoring the variation
of the excitation energy gap. The 2DEG is found generally
incompressible in the BW > 30 T nm region and the phase
diagram can be used to explain the missing or the appearance
of the experimental observation of the % FQHE in different
ZnO samples [12,13]. However, considering the underlying
pairing nature of the even denominator FQHE, a study on
an even-electron system would be more relevant and may
provide more fundamental information. Different from an
odd-electron system where the ground state is nondegenerate
and a well-defined excitation gap can serve as the incom-
pressibility probe, an even-electron system on the torus can
have its ground state locating “degenerately” at three char-
acteristic pseudomomentum sectors (N, /2, 0), (0, N./2), and
(N./2,N,/2) (with the twofold center-of-mass degeneracy
subtracted) due to the topological nature of the Pfaffian state
[24] and the complete degeneracy is lifted in a finite-sized sys-
tem. Thus, for the even-electron system in our consideration it
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FIG. 1. The low-lying excitation spectra of an N, = 12 system on
the torus with a square unit cell for (a) and (c) but a rectangular cell
of the aspect ratio |7| = 0.95 for (b) and (d). The parameter set (B =
9.6 T, W = 5 nm) used in (a) and (b) stands for the experimental ZnO
sample a while (B = 7.2 T, W = 5 nm) in (c) and (d) for sample b.
The ground states at three characteristic pseudomomentum sectors
have been labeled and marked in the spectra.

is in doubt whether we still can determine an incompressible
gap to detect the phase transition. Nevertheless, we can first
observe the low-lying energy spectra of the system at distinct
phase regions to gain a general impression.

A. Energy spectra

To get a close comparison with the experimental results
of the ZnO quantum well [12], we investigate the excitation
spectra of the even-electron systems at two selected parameter
sets. One is corresponding to the incompressible 2DEG in the
sample @ (B = 9.6 Tand W = 5 nm) and the other (B = 7.2 T
and W = 5 nm) for the compressible 2DEG in sample b. The
material parameters are adopted from the ZnO for the effective
mass m* = 0.3m, with electron mass m, and the dielectric
constant € = 8.5.

In Fig. 1, we show the low-lying spectra of an N, = 12
system with a square unit cell and a more general rectangular
cell at |[t| = 0.95. The systems with less electrons exhibit
similar spectra. As seen in Figs. 1(a) and 1(b) for the incom-
pressible sample a, the lowest three states remain staying at
the three characteristic sectors of (0,6), (6,0), and (6,6), alike
the Pfaffian state on the torus. If we treat them collectively as a
threefold manifold gapped from other higher energy states, we
note this separation gap and the splitting band width among
them are sensitive to the cell geometry. For instance, the three
states would be degenerate with a hexagonal cell. However,
for the compressible sample b, this general feature of char-
acteristic threefold manifold is missing though the (6,6) state
remains as the global ground state. In Fig. 1(c), the lowest
(0,6) state and the lowest (6,0) state (degenerate pair due to
the additional symmetry of the square cell) are much closer to
the upper states in comparing with the incompressible sample
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case. In Fig. 1(d) with a rectangular cell, the lowest (0,6) state
is lifted from the lowest (6,0) state and no longer holds in
the characteristic threefold manifold since some states at other
sectors have lower energies.

These spectral observations suggest the incompressible
phase can be qualitatively associated with the form of
the characteristic threefold manifold. However, due to the
finite-size effect it is ambiguous to define an energy gap
between this manifold and a higher excitation level. More-
over, this manifold is only valid for the ground state with
Pfaffian-like properties. These issues limit our ability of us-
ing the energy spectrum alone to quantitatively detect the
compressible-incompressible transition for an even-electron
system. Instead, we use calculated wave functions as the
probe for the phase transition. Considering the lack of explicit
knowledge for the quantum states at different phase regions,
we exploit the PCA method to analyze the system as described
in the next section.

B. Principal component analysis

As an unsupervised machine learning approach, PCA has
been applied to study quantum phases in several FQHE sys-
tems [20]. There, distinct principal components (PCs) are
extracted directly from the parametrized wave functions us-
ing a singular value decomposition technique. By tracing
the evolution and switching of the predominant PCs, one is
able to categorize different quantum phases and detect their
transitions.

In our PCA practice, considering the spectral features and
the importance of the three lowest states in the characteristic
sectors (N,/2,0), (0,N,/2), and (N, /2, N,/2), the input data
are taken from the ground-state wave functions at these char-
acteristic sectors and the investigated parameter space spans in
arangeof B € [1,20 T]and W € [1, 16 nm] in adapting to the
ZnO experiments. For simplicity, we consider the LL-mixed
system with a square unit cell and an even number of electrons
up to N, = 12. Since the (N,/2,0) state and the (0, N./2)
state are degenerate due to the square symmetry, we discuss
only the (0, N,/2) and (N,/2, N,./2) states in the following.
By monitoring the weights of PCs in the considered parameter
space, we note only a few PCs [two for the (0, N./2) state and
three for the (N,/2, N,/2) state] exhibit significant nonzero
presence with their sum weight near unity and other PCs are
negligible. Therefore, we focus on these leading PCs in our
analysis. By tracing the relative evolution of the leading PCs,
we are able to draw a phase diagram of an example N, = 12
system as shown in Fig. 2.

For the lowest (0,6) state, there are two leading PCs com-
peting and their weights switch along a curved boundary
(dashed purple line) in the parameter space as shown in
Fig. 2(a), indicating the occurrence of a phase transition. We
note that an earlier work [19] with an odd-electron (N, =11)
system has obtained a similar phase diagram where the com-
pressible and incompressible phase regions are identified
through the incompressible gap. Mapping with those results,
we expect the parameter region in our diagram with the large B
and W, i.e., the first PC-dominated region, would correspond
to an incompressible phase while the phase at the opposite
side would be compressible. The further evidences are shown
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FIG. 2. Weight distributions of the leading PCs in the (B, W)
parameter space for the manifold states of an N, = 12 system on
the torus with a square unit cell. The plot (a) stands for two leading
PCs of the ground state at the (0,6) pseudomomentum sector where
the dashed (purple) curve sketches the compressible-incompressible
phase boundary by the switching of the two PCs and the locations
of the experimental ZnO samples a and b are marked. The plot
(b) shows the weights of three leading PCs as a function of B for the
ground state at the (6,6) sector when the width is fixed to W = 5 nm.
The plot (c) stands for the first two PCs of the (6,6) ground state with
the dot-dashed line corresponding to the plot (b). The plot (d) stands
for the third leading PC of the (6,6) ground state with its largest
distribution inside the incompressible region mostly falling in the
range of ke € [2, 3].

as we mark two experimental samples with their correspond-
ing parameters in the diagram. Although both samples seem
to be locating in the assumed incompressible side, the sample
b is already much closer to the boundary. One might suspect
the sample b, that actually falls in the transition zone, to be
more compressible especially at finite temperature, which is
also demonstrated by its low-lying spectra.

For the (6,6) ground state, there exist three leading PCs;
one example is shown in Fig. 2(b) for the wave functions
at the width W = 5 nm. The competition and switching be-
tween the first two PCs provide us with a similar phase
diagram for the compressible-incompressible phase transi-
tion as shown in Fig. 2(c) while the subdominant third PC
presents some extra feature. Within the incompressible zone,
we note that there is a narrow region near the compressible-
incompressible phase boundary where the third PC emerges
accompanied with the suppression of the second PC. If we
define a rescaled LL mixing parameter ki = ¢ /*E¢/E;
in considering the effect of the finite width of the quantum
well, this particular region mostly locates within the range
of ke € [2, 3] as shown in Fig. 2(d). Since the composition
of the PCs at this region is different from that with less ke,
a phase transition is suspected as the LL mixing strength of
an incompressible system grows to the x. € [2, 3] range. We
note some earlier experimental and numerical work [18,25]
for a strong LL-mixed system with zero-width quantum well
have suggested a possible phase transition occurring within
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the incompressible range « € [2, 3]. Our discovery with the
subdominant PC supports their results.

IV. INCOMPRESSIBLE QUANTUM STATE
WITH STRONG LL MIXING

For the incompressible phase at small LL. mixing, a few
of the earlier theoretical and numerical works have proposed
it to be a Pfaffian or an anti-Pfaffian state due to pertur-
bative three-body interactions. At large LL mixing where
the perturbation theory is invalid, our treatment in previous
sections with a screened Coulomb interaction suggests an
incompressible phase transition emerges as the growing LL
mixing strength approaches the k¢ € [2, 3] range. Even if we
leave the incompressible region with less k. as a transition
zone from the small perturbative L. mixing phase, there is
an absence of knowledge for the incompressible states within
the emerged phase region . € [2, 3]. In this section, we
will investigate the physical properties of the quantum states
in this region. Note that the incompressible sample a of the
7ZnO experiment [12] locates within this region, and in the
following discussion we choose the corresponding parameter
set (B =9.6 Tand W = 5 nm) as the representative case for a
better understanding of the experiments.

A. Hall viscosity

Hall viscosity, which is defined as n = %Eﬁh with the aver-
age particle density 71 and the average orbital spin per particle
5, has been used to characterize the topological property of
a FQHE state [26]. It is closely related to the spherical shift
S, which is another topological probe defined on the sphere
[27], by relation of § = 25. On the torus, given the geometry
is parametrized by a complex number 7 = 1, + ity = |t|e?,
the mean orbital spin § (as well as the relevant n and S)
can be calculated through the Berry phase of a considered
many-body state W when it adiabatically varies around an
enclosed path in the geometric parameter space. For a circular
path around a center 1y and with a radius pg(< 139), it gives

_ ow
5= - + —Im// drld7:2< >/D, (10)

with the normalization factor D = N,[ ———
A/ 1=(p0/120)?

numerical study, the integral in the second term of Eq. (10)
is evaluated by evenly discretizing the circular path into M
pieces and the result then can be counted as a sum of the
normalized local Berry curvature as Y, Bi. The topologi-
cal nature of an incompressible state requires the calculated
orbital spin 5 (or shift S) to converge to a certain rational
number for a small py and a large M, regardless of the
choice of 19, e.g., § = % for Pfaffian state and 5 = —% for
anti-Pfaffian state.

We take Hall viscosity as our first probe of the topological
property of the incompressible state with strong LL mixing.
For a system associated with the representative parameter
set, we focus on the three lowest states in the characteristic
threefold manifold. The mean orbital spin of the ground state
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FIG. 3. The local Berry curvature for the ground states of the

= 12 Coulomb system at pseudomomenta (a) (6,0), (b) (0,6),
and (c) (6,6). In the calculation we used 200 discrete steps along
a circular path with its center 7y = i (square geometry) and radius
po = 0.001. The resultant § around different circular paths are col-
lected in (d) where their corresponding centers 7, are labeled and
two dashed lines mark the expected values for a Pfaffian state and an
anti-Pfaffian state as a comparison.

at each characteristic pseudomomentum sector is calculated
and the results for an example N, = 12 system with M = 200
and py = 0.001 are shown in Fig. 3. Other smaller systems are
found owning quantitatively similar features.

As presented in Figs. 3(a)-3(c), the local Berry curvatures
are homogeneously close to zero in the whole integral region,
resulting in a vanished sum for the Berry phase. The smooth
distribution of the local Berry curvature without dramatic
fluctuations indicates that the investigated state carries a stable
topological order. Furthermore, the consequent 5 are plotted
in Fig. 3(d) for different integral paths, indicating a universal
convergence to § = 1/2, which is neither the expected value
for the Pfaffian state nor for the anti-Pfaffian state. Note
that a particle-hole symmetric state at half-filling has 5 = %;
our numerical results suggest the investigated incompressible
state would more likely be a PH symmetric state rather than a
PH-asymmetric Pfaffian or anti-Pfaffian state. One would not
be surprised by the PH symmetry of the ground state as con-
firmed by the above calculation since the screened Coulomb
potential is essentially a two-body interaction. At strong LL
mixing, we believe this RPA renormalized two-body inter-
action is sufficient enough to make the system regain the
PH symmetry which could be broken in the appearance of
perturbative three-body interactions in less LL mixing cases.

B. Wave function overlap

Considering the alike spectral feature with the same
characteristic threefold manifold as the Pfaffian (|pf)) or
anti-Pfaffian (lapf)) state and the PH-symmetric nature re-
vealed through the Hall viscosity calculation, it is reasonable
to construct a PH-symmetrized Pfaffian state (|spf)) as a
possible candidate state to describe the incompressible sys-
tem at large LL mixing. Such symmetrized state is an equal
weight superposition of a Pfaffian state and its particle-hole
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TABLE 1. The wave function overlaps between the Coulomb
ground states at three characteristic pseudomomentum sectors and
the candidate model states of the Pfaffian |pf), anti-Pfaffian |apf),
and PH-symmetrized Pfaffian |spf) for an N, = 12 system on the
torus with a square unit cell at the parameter set (B=9.6 T, W =5
nm).

KpfIGS)| l(apfIGS)| I(spf1GS)
(%.,0),N, =10 0.797 0.797 0.973
0,%),N, =10 0.797 0.797 0.973
(%, %) N, =10 0.73 0.73 0.989
(’%, 0),N, =12 0.76 0.76 0.958
0,%),N, =12 0.76 0.76 0.958
(L X)) N, =12 0.776 0.776 0.949

flipped state (|pf)) in a non-normalized form of |spf) =
Ipf) £+ |pf). Fora % FQHE system with neglected LL mixing
effect, numerical studies showed |spf) can have a much larger
overlap with the system ground state when comparing with
the (anti-)Pfaffian state. For the strong LL mixing system,
we carry out the same exam with the wave function overlap.
The (anti-)Pfaffian states used in the calculation are gener-
ated as the densest zero-energy ground state of a three-body
pseudopotential [28,29].

In Table I, we list the numerical results for a represen-
tative system with the square unit cell but different electron
numbers. The ground states (|GS)) of the screened Coulomb
potential at three characteristic sectors are all investigated.
The system ground state has exactly equal overlap with a
Pfaffian state and with an anti-Pfaffian state but the value is no
more than 0.80. Contrarily, the wave function overlap between
the Coulomb ground state and the PH-symmetrized state is
generally larger than 0.94. With such high (nearly unitary)
overlap, it is conceivable to take the |spf) as an effective
model state for the strongly LL-mixed incompressible phase.

We get a more general view as we extend such numerical
comparison in the full investigated parameter space. The re-
sult for an example N, = 12 system with a square unit cell
is shown in Fig. 4. In the incompressible region, the sym-
metrized Pfaffian state at each characteristic sector exhibits
a larger wave function overlap with the Coulomb ground state
than a sole Pfaffian (or anti-Pfaffian) state. It is also notable
in Figs. 4(b) and 4(d) that the most distributive zone (with
overlaps larger than 0.90 and up to 0.973) of the symmetrized
Pfaffian state is consistent with the emerging phase transition
region of ki € [2, 3]. This reassures our supposition of the in-
compressible state with large LL mixing as a PH-symmetrized
Pfaffian state.

Combining the results from PCA and wave function over-
laps, we are able to draw a sketch of a phase diagram with
three different phases in the (B, W) parameter space as shown
in Fig. 5. The blue region corresponding to the case with a
dominant second PC represents a compressible phase. The
green region where the sample a locates is an incompressible
phase with emergence of the third PC, which can be well
described by the PH-symmetrized Pfaffian wave function. The
last phase represented in red is another incompressible phase
with weaker LL mixing.

] Overl?p 16

0.9
0.8
0.7 g
0.6
05 4

1248

5 10

15 20
Overl?p

W (nm)

0.9
0.8
0.7
0.6
0.5

0.4
15 20 5 10 15 20

B(T)

5 10

FIG. 4. The wave function overlap between the Coulomb ground
state and a candidate model state distributes in the (B, W) parameter
space for an N, = 12 system on the torus with a square unit cell.
The plots (a) and (b) are at the (0,6) pseudomomentum sector while
the plots (c) and (d) are at the (6,6) sector. The candidate state in
(a) and (c) is a Pfaffian state while the candidate state in (b) and
(d) is the PH-symmetrized Pfaffian state. Dashed curves here mark
the compressible-incompressible phase boundaries as in Fig. 2.

Thus far, one important question for the incompress-
ible phase with a large LL mixing is raised: Whether the
topology of the Pfaffian state and the anti-Pfaffian state is
canceled in such a symmetrized Pfaffian state where the
Pfaffian and anti-Pfaffian states have the same weight. If
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FIG. 5. The sketch of the phase diagram in (B, W) parameter
space, obtained according to the ground state at the sector (6,6) of the
N, = 12 system given in Fig. 2. The boundary of the compressible
phase (blue region) and the incompressible phase (green region)
is the same as the dashed line in Figs. 2(c), 2(d), 4(c), and 4(d).
The green region is the incompressible phase where the third PC
appears and is described by the PH-symmetrized Pfaffian state. The
red region is another incompressible phase with the large first PC and
weaker LL mixing.
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so, the ground state of the % FQHE in ZnO, not like the
PH-Pfaffian state [9], is then topologically trivial and the
non-Abelian excitation disappears. To explore the topological
properties of such an incompressible state, which is close to
the symmetrized Pfaffian state, we calculate its entanglement
spectrum.

C. Entanglement spectrum

The entanglement spectrum is composed of “levels” &
which are obtained by the singular value decomposition of the
matrix form of the ground state and are related to the entangle-
ment entropy [21]. To compute the entanglement spectrum of
the ground state, we need to divide the many-body state into
two parts, block A and block B. For completeness, we work in
both the spherical and toroidal geometries.

In the spherical geometry, based on the previous Hall vis-
cosity calculation, we take the shift § = 1 to calculate the
screened Coulomb system at the selected parameter set. The
obtained spectrum reveals the system is incompressible with
a nondegenerate ground state gapped from other higher en-
ergy states. In calculating the entanglement spectrum of this
incompressible ground state, we set the bipartition block A to
mostly locate on the semisphere with a positive z component
of the angular momentum. The electron numbers of two par-
tition blocks are Ny(py and it requires that Ny + Ngp = N,. The

orbit numbers of two blocks are N> with N4, + N, = N;.
The z components of the total angular momenta of two blocks
are L® with L4 + L8 = 0.

The low-level entanglement spectra of different divisions
for an example N, = 14 system are drawn in Figs. 6(a)-6(c).
These spectra show a two-sided structure and at the edge of
each side there are several lower levels gapped from higher
levels. These gapped lower levels exhibit certain patterns,
such as 1,1,3,5,... or 1,2,4,7,..., when one counts them along
the L? decreasing (increasing) direction at the large (small) Lg‘
side. These unique edge-level counting patterns match with
the “fingerprint” feature of a Pfaffian or an anti-Pfaffian state
according to the conformal field theory (CFT). As a reference,
we also draw the entanglement spectra of a Pfaffian state
(with N, = 16 and shift S = 3) and its PH-conjugate state,
the anti-Pfaffian state (with N, = 14 and shift § = —1), at
different root configuration cutting edges in Figs. 6(d)—6(f)
and Figs. 6(g)-6(i), respectively. There, the spectra of the
(anti-)Pfaffian exhibit a one-sided gapped edge with the
fingerprint patterns counted decreasingly for Pfaffian and
increasingly for anti-Pfaffian. Thus, the incompressible
Coulomb state owns topological features of both the Pfaffian
and the anti-Pfaffian state. However, we could not straightly
construct a combination state of a Pfaffian and an anti-Pfaffian
on the sphere since these two states have different spheri-
cal shifts. Consequently, we could not go further to check
the agreement between the screened Coulomb state and the
PH-symmetrized Pfaffian state in spherical geometry. The
comparison between them can be achieved in the toroidal
geometry.

On the torus, the entanglement spectrum of a FQHE state
shows a towerlike structure [30], which is quite different
from the spherical case since herein each bipartition block
contains two chiral edges. In the thin-torus limit, the entire
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FIG. 6. (a)-(c) Low-level entanglement spectra of the Coulomb
ground state for an N, = 14 system on the sphere with the shift § = 1
at different bipartition sets of (a) (N,, N;‘,,,) = (Np, N3,) = (7, 14),
(b) (Ny, N£~b) = (6, 13), and (c) (N4, Nfrb) = (7, 13). In comparison,
the entanglement spectra of a Pfaffian state with N, = 16 and § = 3
are shown in (d)—(f) for different bipartition cuttings based on the
root configuration of the Pfaffian state [21]. As the PH-conjugate
counterpart, the entanglement spectra of an anti-Pfaffian state with
N, = 14 and S = —1 are also shown in corresponding panels (g)—(i)
for reference. In all cases, the gapped lower levels at spectrum edges
exhibit special counting patterns as labeled in the plots.

entanglement spectrum can be understood as a direct suppo-
sition of the two nearly independent CFT edges since they are
far away from each other. However, as the toroidal geometry
deviates from this limit, e.g., with a square unit cell, two
CFT edges get more correlated due to a short distance. In
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FIG. 7. The entanglement spectra of the Coulomb ground state,
Pfaffian state, and PH-symmetrized Pfaffian state at the pseudomo-
mentum sectors (a) (0,6), (b) (6,0), and (c) (6,6) for an N, = 12
system on the torus with a square unit cell. The bipartition blocks
are evenly cut with Ny = 6 and N,’;(,,B ) =12. Only the major tower
around |AK,| < 4 is shown for a better comparison.

this case, the spectrum becomes more complex, in lack of
a simple physical description. Nevertheless, one can probe
the topological property of a FQHE state with the toroidal
entanglement spectra by comparing its low-lying levels to
those candidate model states.

In Fig. 7, we exhibit the entanglement spectrum of the
ground states, Pfaffian state, and PH-symmetrized Pfaffian
state at (N,/2,0), (0, N./2), and (N./2, N,/2) sectors for the
N, = 12 system with each block containing N,/2 electrons
and N;/2 orbits. Smaller systems provide similar results. At
each sector, the spectrum levels are calculated according to
the translational momentum K4, which is a sum (mod N;)
of the orbit indices for all occupied electrons in block A. In
addition, we note that the Pfaffian and the anti-Pfaffian states
own the same edge environment due to the PH symmetry,
thus sharing the identical entanglement spectrum. We focus on
the major tower structure around the minimum level of which
the momentum is shifted to be K4 = 0. It clearly shows that
the low-lying levels of the ground-state entanglement spec-
trum closely match with those of the symmetrized Pfaffian
state both in their level positions and their patterns while there
is some mismatching with the sole Pfaffian (anti-Pfaffian)
state, indicating that the sample a would rather share the
same topological universality class with the symmetrized
Pfaffian state.

The above analysis reassures that the strongly screened
Coulomb state can be well described by a PH-symmetrized

Pfaffian state and is confirmed to carry the nontrivial dual
topological nature of the Pfaffian and anit-Pfaffian states.

V. SUMMARY

In this paper, we study the strongly LL-mixed % fractional
quantum Hall system with even number of electrons and
a finite width of the quantum well by adapting a screened
Coulomb interaction as the effective Hamiltonian. The calcu-
lated low-lying spectra reveal a three-fold manifold feature
in a certain region of the parameter space made of the
magnetic field and quantum well width. With the PCA on
the wave functions of these manifold states, we detect a
compressible-incompressible phase transition in the param-
eter space by the competition between the first two leading
PCs, which is consistent with the ZnO experiments and early
works on an odd-electron system. The significant presence
of a subdominant third PC inside the incompressible region
suggests an additional transition as the LL mixing grows into
a certain strength range, which agrees with the discovery in
some early experiments and numerical works with zero-width
quantum well. Further calculations on this emerging phase
with the Hall viscosity and wave function overlaps show that
its ground states own PH symmetry and match well with
the PH-symmetrized Pfaffian state rather than a sole PH-
nonsymmetric Pfaffian or anti-Pfaffian state. The investigation
of the entanglement spectra in both spherical and toroidal
geometries demonstrates that this strongly LL-mixed phase
carries the nontrivial topological properties with dual features
of the Pfaffian and anti-Pfaffian states.

Our results show that the % FQHE experimentally observed
in the ZnO system has different topological properties from
the conventional GaAs system which is believed to be gov-
erned by the (anti)Pfaffian state. Such a strongly LL-mixed
FQHE state is another favorable plateau to utilize the even
denominator FQHE [31], of which non-Abelian excitations
are expected. In a thermal transport experiment, two Majorana
modes with half-integer Hall thermal conductance are ex-
pected. Although the two channels are in opposite directions
and may be canceled overall, in a partial equilibrated transport
[7] the two different modes may be distinguished to some
extent in the ZnO system.
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