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Fermi arcs from dynamical variational Monte Carlo
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Variational Monte Carlo is a many-body numerical method that scales well with system size. It has been
extended to study the Green function only recently by Charlebois and Imada [Phys. Rev. X 10, 041023 (2020)].
Here we generalize the approach to systems with open boundary conditions in the absence of translational
invariance. Removing these constraints permits the application of embedding techniques like cluster pertur-
bation theory (CPT). Using this approach we provide robust evidence of the existence of Fermi arcs in the
one-band Hubbard model, an enduring problem in the physics of the pseudogap in cuprate high-temperature
superconductors. We study the behavior of the Fermi surface and of the density of states as a function of
hole doping for clusters of up to 64 sites, well beyond the reach of modern exact diagonalization solvers. We
observe that the technique reliably captures the transition from a Mott insulator at half filling to a pseudogap,
evidenced by the formation of Fermi arcs, and finally to a metallic state at large doping. The ability to treat large
clusters with quantum cluster methods helps to minimize potential finite-size effects and enables the study of
systems with long-range orders, which will help extend the reach of these already powerful methods and provide
important insights on the nature of various strongly correlated many-electron systems, including the high-Tc

cuprate superconductors.

DOI: 10.1103/PhysRevB.106.245132

I. INTRODUCTION

Solving important problems in the field of correlated
electrons often requires the development of new numeri-
cal methods. Currently, the toolbox at our disposal includes
determinant-based [1–4] and continuous-time [5] quantum
Monte Carlo, capable of treating fairly large systems but lim-
ited by the fermion sign problem to a rather restricted set of
problems or parameters; exact diagonalization that is free of
the sign problem but limited to small systems; diagrammatic
approaches [6], including diagrammatic Monte Carlo [7];
and variational methods, such as infinite projected entangled-
pair states (iPEPS) and density matrix renormalization group
(DMRG) [8–10].

Here we develop and benchmark a numerical approach
based on sign-problem-free variational Monte Carlo (VMC)
[11–22]. We generalize the Green function calculation re-
cently introduced in dynamical variational Monte Carlo
(dVMC) [13] in order to relax the constraints of periodic
boundary conditions and translation invariance. This gener-
alized dVMC can treat clusters with open boundaries, scales
well as a function of system size, does not require any analytic
continuation, and works for any interaction strength; it can be
incorporated into embedding approaches, such as dynamical
mean-field theory [23–25] or its cluster extensions [26–32],
which are powerful sets of tools to study correlated many-
electron systems. We note that related approaches have been
developed to compute dynamical structure factors using varia-
tional Monte Carlo [33–39]; however, these techniques do not
provide direct access to the Green function. We combine our

generalization of dVMC with a simple embedding method,
cluster perturbation theory [40–42], to answer the important
question of the existence of Fermi arcs in the paramagnetic
state of the one-band Hubbard model as it applies to high-Tc

cuprates.
Let us explain this problem in the context of the ground

state of cuprates in strong magnetic fields, where supercon-
ductivity is destroyed or has negligible effects. At half filling,
these materials are antiferromagnetic Mott insulators. Upon
increasing the hole concentration p from zero, an itinerant
antiferromagnet survives up to p ∼ 0.05 [43], followed by a
pseudogap phase. The pseudogap phase extends to roughly
p = p∗ ∼ 0.19 [44,45], beyond which the material settles in a
Fermi liquid state, at around p = 0.25. An intervening charge-
density-wave state [46] is often present within the pseudogap
phase. Local-spin moments and glassy behavior are also ob-
served in some compounds [47].

The pseudogap phase remains a puzzling phenomenon in
cuprates. It is characterized by Fermi arcs [48–50] observed
in angle-resolved photoemission spectroscopy (ARPES) [51]
and in scanning tunneling microscopy [52]. The absence of
a connected Fermi surface contradicts the intuition provided
by band theory and apparently violates Luttinger’s theorem.
Moreover, there is a drastic change in the carrier density from
p to 1 + p, as measured by Hall conductivity, when increasing
p through p∗ [53–55].

Many different phenomenological models predict arclike
structures [56–62]. However, when different phenomeno-
logical theories with different ingredients predict the same
phenomenon, it becomes difficult to discriminate exactly
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which ingredient is responsible for that phenomenon. A more
reliable approach is to start from a simple microscopic model
of interacting electrons, for instance, the t - J or Hubbard
model, to see whether the phenomenon naturally emerges
from such a minimal description. This is the course of action
followed here.

In order to study the Fermi surface, it is important to use
an embedding approach such as cluster perturbation theory
(CPT) [40–42] or cluster-DMFT (c-DMFT) [29,31,32,63].
With these embedding approaches, it is possible [62] to
recover the full k-point dependence of the Fermi surface
[42,62,64–68] using a periodization scheme for the cluster
Green function. A number of studies have reported what ap-
pear to be Fermi arcs using these techniques [64,69,70], with
the caveat of low energy resolution caused by the small cluster
size. In order to lift this caveat, larger clusters are necessary.
The method presented in this work surmounts this signifi-
cant technical hurdle. We will show that this general dVMC
approach provides strong evidence of Fermi arcs and repro-
duces directly the ARPES Fermi surface across the whole
pseudogap transition. In the dynamical cluster approximation
(DCA), the destruction of the Fermi surface in the pseudogap
is attributed to a momentum-selective Mott transition [71–73]

The remainder of the paper is organized as follows. We
introduce the method in Sec. II, followed by a set of bench-
marks versus exact diagonalization in Sec. III. In Sec. IV we
look at the Fermi surface and density of states of the Hubbard
model with parameter sets simulating underdoped hole-doped
cuprates. Finally, we discuss the meaning of these results
and potential further applications of the dVMC technique in
Sec. V. Details of the approach are provided in an Appendix.

II. METHOD

In this section we introduce the general dVMC technique, a
method to compute the Green function for strongly correlated
electrons. This extends the recently developed dVMC method
[13] to treat systems with general boundary conditions, with-
out assuming translational invariance.

A. VMC for the ground state

The first step of the dVMC method is to compute the VMC
ground state. We therefore begin with a brief description of
the VMC method as applied to lattice systems, for which the
occupation number basis is most convenient.

In VMC, the expectation value of any operator Â is com-
puted as

〈Â〉 = 〈�|Â|�〉
〈�|�〉 =

∑
x

〈�|Â|x〉〈x|�〉
〈�|�〉 (1)

=
∑

x

ρ(x)
〈�|Â|x〉
〈�|x〉 where ρ(x) = |〈x|�〉|2

〈�|�〉 , (2)

where |�〉 is the variational ground state and the sum∑
x |x〉〈x| is over the complete set of all possible electronic

configurations for the system. The number of possible con-
figurations grows in a combinatorial fashion with the number
of electrons and lattice sites, making it computationally in-
tractable to sum over every configuration for large systems.

Instead, this sum is estimated via Monte Carlo sampling,
which can achieve arbitrary precision with a sufficient number
of samples.

The Monte Carlo estimate for the expectation value of any
observable is given by

〈Â〉MC = 1

NMC

NMC∑
s

〈�|Â|s〉
〈�|s〉 , (3)

where NMC is the number of Monte Carlo samples where
each sample s is a specific electronic configuration in real
space, each of which is generated with probability ρ(s) using
a Metropolis algorithm.

VMC calculations typically begin with an ansatz for the
ground-state wave function. Here we choose the representa-
tion employed in Refs. [11–13]:

|�〉 = PGPJ |φ〉, (4)

|φ〉 =
⎛
⎝∑

i, j

fi j ĉ
†
i↑ĉ†

j↓

⎞
⎠

Ne/2

|0〉, (5)

PG = exp

(∑
i

gin̂i↑n̂i↓

)
, (6)

PJ = exp

⎛
⎝∑

i �= j

vi j n̂in̂ j

⎞
⎠, (7)

where |0〉 is the vacuum state, ĉ†
iσ is the creation operator for

an electron of spin-σ at site i, n̂iσ = ĉ†
iσ ĉiσ , and Ne is the total

number of electrons in the ground state (an even number). The
parameters fi j , gi, and vi j are variational degrees of freedom
whose values are determined via minimization of the ground-
state energy � = 〈�|Ĥ |�〉/〈�|�〉.

B. Green function via general dVMC

The dVMC method was first introduced in Ref. [13] as
a technique to compute the Green function from VMC for
periodic clusters with translational invariance. In order to use
this approach in the context of embedding techniques (clus-
ter perturbation theory, cluster dynamical mean-field theory,
etc.), it is essential to relax the constraint of periodic boundary
conditions and translational invariance. Here we introduce the
general dVMC method that can be applied to clusters without
periodic boundary conditions or translational invariance. In
Sec. II E we highlight the differences between the general
dVMC method and the original constrained version of the
technique presented in Ref. [13].

In order to measure the excited sectors of the Hamiltonian
(Ne + 1 and Ne − 1), we build a collection of excited states:
ĉ†

iσ |ψimσ 〉 for the Ne + 1 sector and ĉiσ |ψimσ 〉 for the Ne − 1
sector, where we have introduced |ψimσ 〉 = B̂imσ |�〉. The op-
erator B̂imσ can be any Ne conserving operator. By experience,
we have determined that the following set of operators,

B̂i0σ = 1, (8)

B̂i1σ = n̂iσ̄ , (9)
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B̂imσ = n̂bim,σ̄ n̂b′
im,σ , m � 2, (10)

is “effective,” meaning it is not complete nor orthonormal and
can be computed efficiently within our VMC implementation.
Here i is the site index, σ is the spin index, and m is the
excitation label. The first two states in this set of excitations
(m = 0 and m = 1) have no degree of freedom, but for m � 2
the operator B̂imσ contains parameters bim and b′

im that depend
on m. This choice of |ψimσ 〉 is flexible enough to produce
a sufficiently large number of independent states for m =
2, . . . , Nexc − 1, where Nexc is the number of excitations per
site. The b(′)

im are chosen so that they are within a given number
of nearest-neighbor hops from site i. Typically a range of two
to three hops is used, which yields Nexc ∼ 40–100. A more
detailed discussion and an example of the excitation scheme
can be found in Appendix A. Heuristically, we expect that the
excited state with one more particle at position i is affected
by the site occupations in the ground state only over a finite
distance of i.

It is worth repeating that the purpose of this set of excited
states is to provide a basis to expand the excitation sector of
the Hamiltonian. This is similar to the Krylov subspace used
in the band Lanczos method [74,75], but here the effective
basis in which we expand the Hamiltonian contains some
freedom to choose the order, the type, and the number, Nexc, of
excitations. However, by convention we take the m = 0 state
to be trivial (B̂i0σ = 1), a constraint that will prove useful later.

With this basis for excited states we can measure the ex-
cited sectors of the Hamiltonian as

H+
imσ, jnσ ′ = 〈ψimσ |ĉiσ Ĥ ĉ†

jσ ′ |ψ jnσ ′ 〉, (11)

H−
imσ, jnσ ′ = 〈ψimσ |ĉ†

iσ Ĥ ĉ jσ ′ |ψ jnσ ′ 〉. (12)

The main difference between this approach and the band
Lanczos method is that the effective basis chosen here is
not orthonormal, thus the overlap matrix is not equal to the
identity matrix and needs to be measured:

S+
imσ, jnσ ′ = 〈ψimσ |ĉiσ ĉ†

jσ ′ |ψ jnσ ′ 〉, (13)

S−
imσ, jnσ ′ = 〈ψimσ |ĉ†

iσ ĉ jσ ′ |ψ jnσ ′ 〉, (14)

where i = 0, . . . , N − 1, m = 0, . . . , Nexc − 1, and σ = ±1.
It is useful to express the left-hand side of Eqs. (11)–(14) in
the more compact matrix notation, S± and H±, where the size
of the vector space is set by the combination of i, m, and σ .
Hence the dimension of S± and H± is 2NNexc, or only NNexc

if we focus on one spin only. With the exception of the Green
function matrix, we omit the ± superscript in the remainder
of this section in order to maintain a concise notation.

Now that we have the overlap matrix S in this nonorthogo-
nal basis, we can define an abstract Green function matrix of
the same dimension as S and H. Following Ref. [77], we can
express this matrix in the nonorthonormal basis as

G±(z) = S[(z ± �)S ∓ H]−1S (15)

= S1/2[(z ± �)1 ∓ M]−1S1/2, (16)

where M ≡ S−1/2HS−1/2 is Hermitian. The matrix M can be
expressed using its eigenvalue decomposition as M = UEU†.

FIG. 1. Schematic representation of the filtered matrices S̄ =
V̄D̄V̄†. The pale red and blue squares represent the original ma-
trices V and D, respectively. The matrix D̄ contains only positive
eigenvalues.

This step helps to speed up the matrix inversion done at each
complex frequency z. Finally, for the Green function matrix
we have

G±(z) = S1/2U((z ± �)1 ∓ E)−1U†S1/2 (17)

= Q((z ± �)1 ∓ E)−1Q†, (18)

where Q ≡ S1/2U (recall that S is Hermitian). The matrix S
has the eigenvalue decomposition S = VDV†, and the square
root or inverse square root of S is obtained by taking the
square root of the elements of the diagonal matrix D.

C. Filtering algorithm

In principle, the overlap matrix S, as defined in Eqs. (13)
and (14), is positive definite. In practice, however, we obtain
only Monte Carlo estimates of these matrix elements, which
are not constrained to satisfy this condition. Consequently,
negative eigenvalues can emerge in the spectrum of S. All that
is required to reduce the effect of the Monte Carlo noise and
restore the positive definiteness of S is to truncate the matrix
D (the spectrum of S) and keep only the positive eigenvalues,
resulting in a smaller matrix D̄. We do a similar truncation for
the columns of V, resulting in a rectangular matrix V̄. With
these truncated matrices we can construct the filtered overlap
matrix S̄ = V̄D̄V̄†.

This filtering is done before the operations in Eqs. (15)–
(18): we replace only S by its filtered version S̄, but it affects
these four equations and the resulting matrices M, U, E,
and Q.

Note that we refer to the matrix S̄ as filtered and not trun-
cated because it has the same dimension as the original matrix
S (see Fig. 1 for an illustration of the filtering procedure). For
the sake of speed, one last simple optimization can be done
on the spectrum Ē itself. Indeed, truncating nc dimensions out
of the matrix D results in nc null vectors in Q and nc null
eigenvalues in E that can be removed, without affecting the
result.

D. Green function

Let us recall that the matrix G±(z) is an abstract construc-
tion and to obtain the Green function requires one last step.
The indices of our matrix notation are imσ , corresponding to
site, excitation, and spin, but the Green function that we are
looking for does not contain any excitation index m. Since
we chose the first element m = 0 of the vector in Eq. (10)
to be the trivial excitation, the Green function is obtained by
summing the electron and hole Green functions and keeping
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TABLE I. Comparison of ED and VMC ground-state energy per site (EED/N and EVMC/N , respectively), double occupancy (DED and
DVMC), and the Sz-Sz correlation (〈Sz

i Sz
j〉ED and 〈Sz

i Sz
j〉VMC). The sites for the Sz-Sz correlation are indicated in red in Fig. 2. The first 6 rows

show results at half-filling and the remaining rows show results for doped systems. The error estimate on the energy in the 2 × 2 case was
omitted since it is very small and unreliable.

Ne EED/N EVMC/N DED DVMC 〈Sz
i Sz

j〉ED 〈Sz
i Sz

j〉VMC

2×2 4 −4.3300587 −4.3300576 0.032496 0.03268(38) −0.6128 −0.6127(14)
2×3 6 −4.36297 −4.36168(39) 0.042213 0.04194(17) −0.42790 −0.43290(65)
A8 8 −4.34301 −4.34120(10) 0.054275 0.05426(98) −0.2277 −0.2313(24)
B10 10 −4.385580 −4.381509(72) 0.052058 0.05305(80) −0.3476 −0.3407(19)
3×4 12 −4.40944 −4.403467(59) 0.050780 0.05112(86) −0.3925 −0.4056(23)
4×4 16 −4.42553 −4.419112(52) 0.051814 0.0530(11) −0.372674 −0.3892(26)

2×2 2 −0.8019377 −0.8019377 0.008648 0.008549(63) −0.13578 −0.13523(26)
2×3 4 −0.76348 −0.763390(12) 0.01436 0.01427(12) −0.19466 −0.19986(45)
A8 6 −0.67643 −0.671260(60) 0.02798 0.02941(19) −0.07254 −0.07318(49)
B10 8 −0.6824 −0.669543(78) 0.02943 0.03095(20) −0.03942 −0.05782(50)
3×4 10 −0.6690 −0.646762(83) 0.02872 0.03305(21) −0.05137 −0.05828(56)
4×4 14 −0.6326 −0.60704(13) 0.03929 0.04312(57) −0.2478 −0.2120(16)

only m = n = 0:

Gi j,σ (z) = [G+(z) + G−(z)]i j,σ=σ ′,m=n=0. (19)

This treatment yields a Green function equivalent to summing
the hole and electron Green function in the Lehmann repre-
sentation:

G−
i j,σ (z) =

∑
�

〈�|ĉ†
iσ

∣∣E−
�

〉〈
E−

�

∣∣ĉ jσ |�〉
z − � + E−

�

, (20)

G+
i j,σ (z) =

∑
�

〈�|ĉiσ

∣∣E+
�

〉〈
E+

�

∣∣ĉ†
jσ |�〉

z + � − E+
�

, (21)

where the states |E±
� 〉 are obtained by solving the general-

ized eigenvalue problem H|E�〉 = E�S|E�〉. However, in many
cases, as in VMC, the ground state is not known explicitly, so
we can only know |E±

� 〉 via its projection onto other states.
This is the case here, where in Eq. (18) the rectangular matri-
ces Q±

imσ,�, when evaluated at m = 0, represent the projection

〈�|ĉ(†)
iσ |E±

� 〉. When we evaluate the Green function on the real
axis ω, z = ω + iη where η is a small Lorentzian broadening.

E. Differences with translation invariant dVMC

In the translationally invariant case, the matrices intro-
duced in this section (G, S, and H) can be Fourier transformed
and become block diagonal (diagonal in k). Each k point can
then be treated separately, and the matrices that need to be
sampled with Monte Carlo and diagonalized are only of size
2Nexc × 2Nexc.

Additionally, we have introduced here a noise-filtering ap-
proach, which is essential to the general dVMC algorithm
presented here and can likely improve results for transla-
tionally invariant systems with periodic boundary conditions,
though it did not prove to be important in the previous study
[13]. The code that we have developed for this paper is an
extension of the code used in Ref. [13], as well as mVMC
[11], and QCM [76].

F. Cluster perturbation theory (CPT)

Cluster perturbation theory is a technique designed to
compute spectral properties of strongly correlated systems
[40–42]. The central idea behind the approach is to construct
a superlattice of clusters that are coupled by intercluster hop-
ping terms. The cluster problem is solved with dVMC as the
impurity solver to obtain the cluster self-energy from which
the CPT Green function can be obtained according to

G(k, ω) = 1

N

∑
i j

e−ik·(Ri−R j )

[
1

ω + iη − t(k) − �c(ω)

]
RiR j

,

(22)
where �c(ω) is the cluster self-energy and t(k) is the hop-
ping matrix, with elements ti j (k) = ∑

a e−ik·ata+Ri,R j , where
the sum is over all superlattice vectors, a, and Ri, R j are
the positions of the sites within each cluster. Note that the
matrix dimension of �c(ω) and t(k) differs from the matrix
dimensions of the previous sections. This approach yields a
periodized and translationally invariant Green function with
arbitrary k-point resolution.

This procedure can be seen as reconstructing the full lattice
by tiling the cluster’s self-energy. Although the noninteract-
ing part of the Hamiltonian ti j (k) is exact, the self-energy

c,i j (ω) is null between clusters. In order to reduce the effect
of this approximation, it is necessary to treat larger clusters.
In the Results section to follow, we study the pseudogap
phase of the Hubbard model for large clusters in order to
investigate the existence and nature of the Fermi arcs, but
we first present a set of benchmark calculations versus exact
diagonalization.

III. BENCHMARKS AGAINST EXACT
DIAGONALIZATION

To gauge the accuracy of the technique we perform a set of
benchmarks against exact diagonalization on small clusters of
various sizes and shapes. We begin by introducing the model.
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FIG. 2. Cluster geometries. For each cluster the pair of sites
drawn in red indicates the bond along which the spin-spin correlation
is computed in Table I.

A. Model

We apply this technique to the Hubbard model:

Ĥ =
∑
i j,σ

(ti j ĉ
†
iσ ĉ jσ + H.c.) + U

∑
i

n̂i↑n̂i↓, (23)

where ti j includes first (t), second (t ′), and third (t ′′) nearest-
neighbor hoppings.

In the results presented in Sec. IV we choose (t, t ′, t ′′) =
(−1.0, 0.3,−0.2), which is a parameter set believed to be
relevant the case of certain cuprate superconductors [69,78].
We treat clusters of different sizes, shapes, and doping, up to
N = 64 sites and Ne = 64 electrons. Unless otherwise indi-
cated, we set the Hubbard interaction strength to U = 8. We
used a Lorentzian broadening factor η = 0.1.

B. Benchmarks on small clusters

We begin with a comparison of the VMC and exact diago-
nalization (ED) ground states for clusters up to N = 16 sites
(Fig. 2) at and away from half filling. For these calculations
we take (t, t ′, t ′′) = (−1.0, 0.0, 0.0), U = 8. In Table I we
present results for the ground-state energy, double occupancy,
and spin-spin correlation functions for both techniques for all
the clusters in Fig. 2. At half filling the VMC ground-state en-

ergy shows excellent agreement with the ED result, generally
to within 1%, while the double occupancy and spin-spin cor-
relation function are accurate to within 5%. Away from half
filling the ground-state energy is accurate to within 5%, and
the double occupancy and spin-spin correlation are generally
within 15% of the ED result.

In Table II we present a comparison of the VMC and ED
ground states as a function of interaction strength for two 16-
site clusters, a 16 × 1 cluster and a 4 × 4 cluster, both at half
filling. The VMC ground state is generally highly accurate,
with the ground-state energy within 1% of the exact result and
the observables within 5%.

Having calibrated the accuracy of the VMC ground state,
we proceed with a comparison of the spectral function ob-
tained using dVMC to that obtained using ED. We present
several example calculations in Fig. 3. For a cluster of four
sites the VMC result is exceptionally accurate, nearly indis-
tinguishable from the exact result. With increasing cluster size
the VMC result continues to capture the prominent features,
including the gap, with reasonable accuracy, though it does
not reproduce many of the smaller structures present in the
exact solution. We provide a numerical comparison of the
spectra versus the number of excitations in Table III, which
shows the results of Kolmogorov-Smirnov tests [79] com-
paring the dVMC and ED spectra. Table IV shows a similar
comparison at several values of interaction strength for the
16×1 and 4×4 cluster.

We present a final comparison between dVMC and
ED for a 4×4 cluster at half filling with (t, t ′, t ′′) =
(−1.0, 0.3,−0.2) at increasing values of interaction strength.
In Fig. 4 we show the Fermi surface from dVMC and ED.
The agreement is excellent for low to high interaction. Small
features caused by the superlattice structure at U = 4 present
in ED are absent in dVMC. Figure 5 shows the spectral
function along a triangular path in the first quadrant of the
Brillouin zone (BZ). Again we find excellent agreement with
ED, with only minor quantitative differences evident even at
large interaction strengths. The parameters of Figs. 4 and 5
correspond to those used in the main text of the article. This
is the largest square cluster that can be benchmarked against
ED, and from these results we conclude that CPT with dVMC
is a reliable method to capture the physics observed in CPT
with ED.

FIG. 3. Comparison of the local spectral function Aii(ω) computed using dVMC vs ED for the Hubbard model with (t, t ′, t ′′) =
(−1.0, 0.0, 0.0), U = 8. The ED results are shown in black and the dVMC results in color. The cluster shapes are shown in the inset, with the
colors denoting the sites for which the spectral function is shown in the main plot.
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TABLE II. Comparison of exact diagonalization and VMC ground-state energy, double occupancy, and Sz-Sz correlation vs U . We show
results for a 16×1 cluster and a 4×4 cluster. Notation as in Table I. The error estimate on the energy in the U = 0 case was omitted, since it is
very small and unreliable.

U EED/N EVMC/N DED DVMC 〈Sz
i Sz

j〉ED 〈Sz
i Sz

j〉VMC

16×1 0 −1.22974 −1.22974 0.2500 0.2525(19) −0.1675 −0.1677(14)
1 −1.49962 −1.49927(12) 0.2139 0.2157(21) −0.1984 −0.1981(13)
4 −2.55117 −2.54990(27) 0.1004 0.0994(15) −0.3262 −0.3159(26)
8 −4.31482 −4.31451(17) 0.0367 0.0360(12) −0.4168 −0.4096(32)

4×4 0 −1.36803 −1.36803 0.2499 0.2507(19) −0.2094 −0.2097(11)
1 −1.65222 −1.65159(16) 0.1962 0.1964(14) −0.1873 −0.1854(11)
4 −2.70288 −2.69918(35) 0.1148 0.1148(12) −0.2999 −0.2915(21)
8 −4.42553 −4.41896(76) 0.0518 0.0530(11) −0.3727 −0.3892(26)

IV. RESULTS

In the following three sections we present a systematic
study of the spectral function of the two-dimensional (2D)
Hubbard model computed using CPT [40–42] with dVMC as
the impurity solver. We study, in turn, the doping dependence,
cluster size, and then shape dependence, and finally discuss
the computational cost.

A. Doping dependence

We begin by investigating the behavior of the Fermi surface
as a function of hole doping. We treat square clusters of three
different sizes, N = 16, 36, 64.

Beginning with the smallest cluster [Fig. 6(a)], at large
doping we observe a roughly cylindrical Fermi surface consis-
tent with the system being in the normal metallic phase. As the
density is increased (the number of holes is reduced) the Fermi
surface loses intensity and the spectral weight becomes more
concentrated in the nodal region. At a density of n = 0.875
there is a loss of spectral weight in the antinodal regions and
clear evidence of the formation of Fermi arcs, suggesting that

TABLE III. Kolmogorov–Smirnov error in the local spectral
function per site vs range of excitations for different cluster geome-
tries (see Fig. 2). Ne is the number of electron and nh is the number
of nearest-neighbor hops allowed in the selection of the excitation
operator B̂imσ . See Eq. (10) and Appendix A. The first 6 rows show
results at half-filling and the remaining rows show results for doped
systems.

Ne nh = 1 nh = 2 nh = 3 nh = 4

2×2 4 0.00719 0.00690 − −
2×3 6 0.07210 0.03054 0.02469 −
A8 8 0.10592 0.09223 0.06395 −
B10 10 0.12057 0.10797 0.10158 0.08518
3×4 12 0.10141 0.07766 0.05224 0.04967
4×4 16 0.10933 0.08581 0.07762 0.07156

2×2 2 0.00516 0.00486 − −
2×3 4 0.06217 0.04108 0.03306 −
A8 6 0.09602 0.05887 0.04654 −
B10 8 0.09608 0.06599 0.05793 0.05875
3×4 10 0.12825 0.09039 0.08496 0.08357
4×4 14 0.17240 0.12759 0.11380 0.10958

the system has entered the pseudogap phase. At half filling
(n = 1.0) the Fermi level lies in the Mott gap and there is no
significant spectral weight at the Fermi surface.

This transition is also evident in the density of states. At
half filling the Mott gap is opened, but as the density is
decreased (hole doping increased) the gap closes and a Van
Hove singularity forms at the Fermi level. We find a similar
evolution for the cluster of 36 sites [Fig. 6(b)], as well as
the cluster of 64 sites [Fig. 6(c)]. The important qualitative
features of both the Fermi surface and the density of states
are in good agreement for each cluster size, with only some
quantitative differences evident.

B. Cluster size dependence

We proceed with a comparison of the Fermi surface for
clusters of two different sizes at the same density in order to
examine the dependence on cluster size. We compare results
for a cluster of 16 sites [Fig. 6(a)] to a cluster of 64 sites
[Fig. 6(c)], respectively.

At a density of n = 0.750 we observe a cylindrical Fermi
surface for both cluster sizes, with a region of slightly higher
spectral weight appearing to develop in the nodal region. The
concentration of spectral weight in the nodal region becomes
more evident at a density of n = 0.875, for both clusters,
though it is somewhat more concentrated near the node for
the 64-site cluster. At half filling both clusters show negligible
spectral weight at the Fermi level, consistent with the density
of states, which shows that the Fermi level indeed lies in the
gap. Generally, we observe that the behavior of the spectral
function and the density of states is not strongly dependent
on system size, and larger clusters retain the same qualitative

TABLE IV. Kolmogorov–Smirnov error in the local spectral
function per site vs U . Notation as in Table III.

U nh = 1 nh = 2 nh = 3 nh = 4

16×1 1 0.03159 0.02633 0.02767 0.02840
4 0.05730 0.05176 0.05102 0.05089
8 0.05821 0.04807 0.04485 0.04412

4×4 1 0.03435 0.03218 0.03296 0.03501
4 0.08105 0.06304 0.06372 0.06311
8 0.10933 0.08581 0.07762 0.07156
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FIG. 4. Fermi surface vs interaction strength, comparison with
ED impurity solver for 4 × 4 cluster at half filling with (t, t ′, t ′′) =
(−1.0, 0.3, −0.2). The top row shows the FS computed using CPT
with dVMC as the impurity solver and the bottom row with ED as
the impurity solver. (a), (d) U = 1, (b), (e) U = 4, and (c), (f) U = 8.

features as smaller clusters with some quantitative differences.
However, the cluster geometry does appear to play a more
important role, as we discuss in the following section.

C. Cluster shape and size dependence

Having examined the behavior of the Fermi surface as a
function of doping as well as cluster size, we now consider
the effect of cluster geometry. We symmetrize the Fermi sur-
faces by averaging the reflection with respect to diagonals
kx = ±ky. In Fig. 7 we show the spectral weight at the Fermi
level for different clusters with n = 0.875. We observe that the
rectangular clusters have more spectral weight near the edges
of the BZ than the square clusters, whose Fermi surfaces are
more consistent with Fermi arcs. A similar effect is visible
at n = 0.8333, where the rectangular clusters [Figs. 8(a), 8(b)
and 8(d)] have relatively more spectral weight near the edges
of the BZ than the square cluster [Fig. 8(c)], which shows

FIG. 5. Spectral function vs interaction strength, comparison
with ED impurity solver. The top row shows the CPT spectral func-
tion computed using dVMC as the impurity solver and the bottom
row using ED as the impurity solver. This is the same system as in
Fig. 4.

clearer evidence of the formation of Fermi arcs. This effect is
also observed in the 12-site ED calculation. In fact, our dVMC
result [Fig. 8(a)] reproduces exactly the result shown in Fig. 3
(at U = 8) of Ref. [69].

D. Computational cost

In this section we provide an estimate of the typical compu-
tational cost for two system sizes, the first a 4×4 cluster (ED
and dVMC) and the second an 8×8 cluster (dVMC only). Cal-
culations were performed on an AMD 7532 CPU (2.40 GHz).
A discussion of the scaling behavior of the algorithm can be
found in Appendix B.

For the 4×4 system [Fig. 6(a) n = 1.0], the dVMC calcu-
lation of the ground state and the excitations required 3.5 h
for each step. Sampling was done with ten MPI tasks on
eight OpenMP processes. Each MPI task required 0.5 GB. In
comparison, the full ED calculation takes around 30.5 h on a
single core and requires above 500 GB in memory (making it
hard to parallelize). For this example, though the computation
time is similar, the memory needed for dVMC is much smaller
than ED.

Because of the exponential scaling in ED, it is not possible
to treat systems much larger than 16 sites. But the scaling is
considerably better for dVMC (polynomial in cluster size and
variational parameters) and we can reach 64 sites. The result
in Fig. 6(c) (n = 1.0) required 45 and 20 h of computation,
respectively, for the ground state and excitations. Sampling
was done with 10 MPI tasks on 10 OpenMP processes, with
each MPI task requiring 4 GB of memory.

V. DISCUSSION

The technique has several important advantages. First, it
has favorable scaling with system size, which enables the
treatment of systems beyond the capacity of current exact
diagonalization solvers, typically limited to about 16 sites near
half filling. Second, the method is quite flexible and can be
straightforwardly adapted to make use of any variational wave
function; it is not constrained to the Slater-Jastrow-Gutzwiller
ground state used here. For instance, one novel choice would
be artificial neural network ansatzes inspired by ideas from
machine learning [19–22].

The key idea here is that we never express any state in the
full 4N Hilbert space. It is only necessary to calculate a set
of projections (〈�|Ĥ |x〉 and 〈x|�〉) on the variational ground
state |�〉 in order to obtain a good approximation of the true
ground state and the excitation spectrum [Eqs. (11)–(14)].
This is in contrast to the traditional Lanczos and band Lanczos
methods, where a few vectors of the full Hilbert space need
to be computed before obtaining the low dimension effective
Hamiltonian, thus limiting studies to clusters of about 20 or
even fewer sites. This constraint is removed with the present
Green function calculation algorithm. It can be used with any
ground state from which we can calculate static observables.

As a demonstration of the capabilities of the technique, we
have performed an extensive set of CPT calculations on the
2D Hubbard model. Our results show good agreement with
exact diagonalization impurity solvers for small clusters, and
for large clusters they capture the important features of the
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FIG. 6. Fermi surface (top row) and density of states ρ(ω) (bottom row) for different dopings n for a (a) 4×4, (b) 6×6, and (c) 8×8 cluster.
The blue dashed line shows the antiferromagnetic zone boundary.
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FIG. 7. Fermi surface vs cluster size and shape for a fixed density n = 0.875. We note that all of the results have been symmetrized.

Fermi surface as a function of hole doping, such as the forma-
tion of Fermi arcs marking the transition to the pseudogap, a
result that has been disputed for small clusters [62]. We treat
large clusters of up to 64 sites, beyond the reach of current
ED impurity solvers, to examine the dependence on cluster
size and find that the results are converged for clusters of 16
sites or more, with only minor quantitative differences evident
between the Fermi surfaces at N = 16 and N = 64.

We do, however, observe some dependence on the shape
of the cluster, with square clusters giving the clearest indi-
cation of the formation of Fermi arcs. Although this effect
is consistent with ED results [69], it is clearly exposed here
by our dVMC results for clusters of various shapes and sizes.
This effect is likely caused either by the asymmetry of the
superlattice or by the symmetrization of the Fermi surface that
we impose. This suggests that it is preferable to use square
clusters in order to study the pseudogap transition in future
quantum cluster method calculations.

Our observation of Fermi arcs for various system sizes
provides convincing evidence of their existence in the doped
Hubbard model, a notable and important result considering
that the origin and robustness of these features remain an
open question, as noted in Refs. [62,80]. Reference [62]
demonstrated that it is not possible to distinguish between
the formation of hole pockets and Fermi arcs for small clus-
ters. Though we have used the G-scheme periodization in
this work, the tendency towards the formation of Fermi arcs
for very large clusters offers compelling evidence that the

existence of these features is not strongly dependent on the
periodization scheme. As discussed in Sec. II F, the effect of
neglecting the self-energy between clusters, as is done in CPT,
diminishes with increasing cluster size.

Figure 6(c) reproduces precisely what is observed in
ARPES measurements (e.g., Fig. 20 of Ref. [81]). In other
words, in the paramagnetic Hubbard model we observe a
Mott insulator at half filling, Fermi arcs in the underdoped
region, and a large Fermi surface in the overdoped region.
We observe only Fermi arcs and no trace of hole pockets.
This confirms that the single-layer, one-band Hubbard model
in the paramagnetic state contains the minimal ingredients to
produce the Fermi arcs as observed in ARPES.

The existence of these Fermi arcs is in direct contradiction
with the hole-pocket picture suggested by quantum oscilla-
tions experiments [43,82–86]. Hole pockets are expected in
a metallic antiferromagnetic state close to half filling, a case
we did not consider. Similarly, oscillations can come from
pockets that appear in other broken symmetry states, such
as charge order [87]. Fermi arcs should not produce any
quantum oscillation signal due to the incoherent nature of
the antinodal region, as seen in Figs. 6–8. This is confirmed
by the experiments of Ref. [43] that observed both arcs and
pockets in the same five-layer material with both ARPES
and quantum oscillations but where quantum oscillations are
explained by the observed hole pockets, with no Fermi arc
contribution. Indeed, quantum oscillations require coherent
transport of electrons around the Fermi surface. Most likely

FIG. 8. Fermi surface vs cluster size and shape for a fixed density n = 0.8333. All results have been symmetrized as in Fig. 7.
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no electrons accomplish even a single period around the Fermi
surface before getting scattered in the antinodal region, result-
ing in the absence of a quantum oscillation signal from Fermi
arcs.

VI. CONCLUSION

In this work we have introduced and benchmarked an ex-
tension of the original dVMC method, which is designed to
compute the Green function for strongly correlated systems.
This method removes the constraint of periodic boundary
conditions and translational invariance that was a requirement
of the original dVMC technique [13]. In addition, we have
introduced a filtering algorithm to reduce Monte Carlo noise
and improve the quality of the results. The difference between
exact diagonalization results and our approach is of order 5%
at most for the largest clusters available.

The method is free of the sign problem and does not require
analytic continuation. In principle, there is no restriction on
the choice of a strongly correlated Hamiltonian, and it can be
used to study any magnetic phase with equivalent precision
for large and small interaction. It can be implemented with
complex numbers, for instance, to treat spin-orbit coupling.
One additional extension reserved for future work is to adapt
the formalism to measure the Nambu Green function in order
to treat systems with superconducting phases. The formalism
is sufficiently versatile to be used to measure the Green func-
tion for any kind of variational ground state, including neural
network ansatzes. Finally, the features discussed here make
the approach applicable to a variety of embedding techniques,
including cluster dynamical mean-field theory (CDMFT) and
dynamical cluster approximation (DCA), among others. By
applying this generalized dVMC approach with cluster per-
turbation theory on unprecedentedly large cluster sizes, we
claim that we have demonstrated that Fermi arcs with no trace
of hole pockets can form near half filling in the single-band
Hubbard model.
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APPENDIX A: EXCITATION SCHEME

In the following, we detail how the set of excited states
is generated. As described in Sec. II B, the excited states are
given by ĉ†

iσ |ψimσ 〉 for the Ne + 1 sector and ĉiσ |ψimσ 〉 for the
Ne − 1 sector, where the state |ψimσ 〉 is defined by B̂imσ |�〉.
The operator B̂imσ creates three distinct types of excitations.
In principle, additional types of excitations can be used to
construct this basis, but we observe that accurate results can
be obtained using only the three types included here. The first
two B̂imσ are the identity (corresponding to m = 0) and n̂iσ̄

(m = 1). These two excitations are important because of their
contribution to the effective basis. For m > 1 we have another

TABLE V. List of B̂im↑ [see Eqs. (9) and (10)], for corner (i = 0),
edge (i = 1), and interior (i = 5) sites. We list only a subset of i and
m in order to remain concise. The colors correspond to the examples
illustrated in Fig. 9.

m \ i 0 1 5 ...

0 1 1 1 ...
1 n̂0↓ n̂1↓ n̂5↓ ...
2 n̂4↑n̂4↓ n̂5↑n̂5↓ n̂9↑n̂9↓ ...
3 n̂4↑n̂1↓ n̂5↑n̂2↓ n̂9↑n̂6↓ ...
... ... ... ... ...
9 n̂1↑n̂1↓ n̂2↑n̂2↓ n̂6↑n̂6↓ ...
10 n̂1↑n̂2↓ n̂2↑n̂6↓ n̂6↑n̂13↓ ...
11 n̂8↑n̂8↓ n̂0↑n̂0↓ n̂4↑n̂4↓ ...
... ... ... ... ...
29 n̂5↑n̂5↓ n̂9↑n̂9↓ n̂1↑n̂1↓ ...
30 n̂5↑n̂2↓ n̂9↑n̂6↓ n̂1↑n̂13↓ ...
31 n̂2↑n̂4↓ n̂6↑n̂5↓ n̂13↑n̂10↓ ...

type of excitation created by the operator B̂imσ = n̂bim,σ̄ n̂b′
im,σ .

Typically it is not computationally feasible to include all pos-
sible combinations of bim and b′

im in the set of excitations.
Instead, we must select a subset of excitations, which we
choose based on an empirical rule designed to identify rele-
vant excitations.

As a concrete example of the procedure for selecting the
B̂imσ , let us consider the case of a 4 × 4 cluster. This cluster is
illustrated in Fig. 9. The set of sites within nh = 2 hops for a
4×4 cluster is indicated by the blue shaded region, first for a
corner site (i = 0), followed by an edge site (i = 1), and then
an interior site (i = 5). Only three values of m are illustrated
in each of these three cases (three values of i), but many more
excitations are possible. Here, we used Nexc = 32. In Table V
we show a partial list of all the excitations we keep for this
cluster, with nh = 2, including those shown in Fig. 9.

We note that the number of neighbors within nh = 2 hops
(blue shaded region) is different depending on the site i. The
corner site (i = 0) has only Nmin

b = 5 while an interior site
(i = 5) has Nmax

b = 10. As a computational convenience we
choose an equal number of excitations for each cluster site, but
in principle the number of excitations can be different for each
site. The maximum number of excitations per site (assuming
we require all sites to have the same number of excitations)
is given by Nexc = 2 + Nmin

b (Nmin
b + 1), where Nmin

b is the
number of neighbors for site i with the fewest neighbors,
generally a corner site. For example, in Fig. 9(a), Nmin

b = 5
and thus Nexc = 32. The Nmin

b and (Nmin
b + 1) factors come

from the number of positions in the blue shaded region, where
we can put an electron of the same spin σ and different spin
σ̄ , respectively, for excitations associated to Eq. (10). For
noncorner sites there are more neighboring sites and therefore
more possible excitations, but we choose to truncate the set of
excitations for these sites in order to keep Nexc = 32 for all i,
as listed in Table V.

Finally, in Table VI we show the number of excitations
kept versus nh for two different clusters: 4 × 4 and 8 × 8. This
table shows the growth of Nexc as a function of nh. The total
number of excitations, NexcN , sets the number of rows and
columns, i.e., the dimension, of the matrices S, M, U, and E
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FIG. 9. Illustration of few B̂im↑ [see Eq. (10)] for (a) corner (i = 0), (b) edge (i = 1), and (c) interior sites (i = 5) of a 4 × 4 cluster. The
blue shaded region represents all the sites that can be reached from site i with nh = 2 nearest-neighbor hops. The colored arrows (green, blue,
and red) represent the position and the spin of the n̂i,σ operator, and the orange arrow is the position and the spin of the ĉ†

iσ operator. The colors
correspond to the colored entries of Table V.

from Eqs. (15)–(18), and also roughly gives the number of
eigenenergies and poles contained in the Green function. If
this number grows too large it becomes too computationally
expensive to obtain the eigenvalues of S and M. This threshold
is indicated by the numbers in red in Table VI. As a point of
reference, for a 2 × 2 cluster, this scheme yields a maximum
number of excitations per site Nexc = 14, which is relatively
small and therefore easily computable.

For the sake of clarity and simplicity, we have not included
all the details of our method for generating excitations with
the operator B̂imσ . Generally, we find that B̂imσ where the
sites b(′)

m are near site i tend to be more important. In any
case, provided the number of electrons Ne and the spin Sz

are conserved, any excitation generated by the operator B̂imσ

can contribute to the sampling of the effective basis. For suf-
ficiently large sets of excitations generated according to these
principles, our results for the converged Green function are
relatively insensitive to the specific excitations chosen.

APPENDIX B: SCALING

The bottleneck of the computation of the spectrum is the
Monte Carlo sampling of H±

imσ, jnσ ′ in Eqs. (11) and (12). As
detailed in Appendix B of Ref. [13], the computation time
scales with the number of Pfaffian evaluations.

TABLE VI. Number of excitations Nexc = 2 + Nmin
b (Nmin

b + 1)
and its relation to the number of neighbors of the corner site Nmin

b

as a function of the number of hops nh. We show these numbers for
two square clusters: 4 × 4 and 8 × 8. NexcN , the size of the matrices,
is also shown.

4 × 4 8 × 8

nh Nmin
b Nexc NexcN Nmin

b Nexc NexcN

1 2 8 128 2 8 512
2 5 32 512 5 32 2048
3 9 92 1472 9 92 5888
4 12 158 2528 14 212 13568
5 14 212 3392 20 422 27008
6 15 242 3872 27 758 48512

There are 2N2(1 + 2Nt ) Pfaffian evaluations in total per
Monte Carlo sample, where Nt is the number of hopping terms
in the cluster (Nt = 12N − 20

√
N + 4 for square clusters) and

N is the number of sites. The Pfaffian evaluation alone should
then scale as O(N3), but there are a number of other small
operations, including anticommutation, that must be done in
order to obtain all the elements of H±

imσ, jnσ ′ . So the scaling is
polynomial with a lower bound of O(N3).

In order to obtain a more accurate estimate of the scaling
with N and Nexc, we measured the computation time per
Monte Carlo sample on a set of square clusters, see Fig. 10.
For both datasets the scaling behavior was fitted with a curve
of the form aNb + c, which yielded an estimated scaling of
O(N3.5) for a constant Nexc = 20 and O(Nexc

1.5) for a constant
N = 64. We note that the scaling as a function of Nexc is quite
favorable. This is due to the form of the excitations, Bimσ , that
we consider. These excitations were chosen because they can
be computed from relatively few anticommutation operations
and evaluations of the occupation numbers associated with
an excitation Bimσ on a given configuration |x〉. Other VMC
implementations could benefit from a different choice of ex-
citation scheme.

These tests were done with computation parameters sim-
ilar to those used in the main text of this article. For larger
or smaller values of N and Nexc, other components of the
algorithm will determine the prevailing scaling behavior.

(a) (b)

FIG. 10. Time per Monte Carlo sample as a function of N in
(a) and as a function of Nexc in (b). The blue dots represent the
execution times, and the red curves are a fit to the function aNb + c.
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For example, the Monte Carlo sampling is generally the
bottleneck, but it scales relatively well with Nexc. The postpro-
cessing procedure, however, requires matrix diagonalizations,

which are relatively fast when Nexc is modest but dominate
when Nexc become prohibitively large, as highlighted in red in
Table VI.
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