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Non-Abelian bosonization of topological insulators and superconductors
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Applying the method of [Nucl. Phys. B 972, 115565 (2021)], which bosonizes massless relativistic free
fermions, we derive the (non-Abelian) bosonized theory for free fermion topological insulators and supercon-
ductors that have, in addition to the U(1) charge, time reversal and charge conjugation symmetries and flavor
symmetries. For the case we consider, the flavor symmetries render the topological classification Z. The results
are nonlinear σ models with the topological θ term. In addition, we present the theory of a class of bosonic
symmetry-protected topological states, whose boundaries are critical spin liquids.
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I. INTRODUCTION

The subject of symmetry-protected topological states
(SPTs) is a new frontier in condensed matter physics. SPTs
can be divided into two types: the bosonic ones [1] and the
fermionic ones [2–4]. A well-known example of the bosonic
SPT is the spin 1 chain [5], whose boundary harbors spin
1/2’s. This bosonic SPT has been realized experimentally
[6,7]. The fermionic SPTs, namely topological insulators and
superconductors, are realized by a wide class of quantum
materials. Like the bosonic SPT, as long as the protection sym-
metry is not broken, the boundary of these materials harbors
gapless fermion excitations.

Theoretically, the bosonic and fermionic SPTs are de-
scribed very differently. Nonlinear σ (NLσ ) models with the
topological θ term are used to describe the bosonic SPTs. In
contrast, prototype free fermion SPTs are described by the
massive Dirac or Majorana theory. In Ref. [8], the present
authors were able to (non-Abelian) bosonize the massless free
fermions living on the boundary of a class of Z-classified
free fermion SPTs. These massless fermions can also be the
low-energy quasiparticles of a lattice fermion problem. There
the protection symmetry of the SPTs is emergent.

In this paper, we apply the method developed in Ref. [8] to
(non-Abelian) bosonize the aforementioned topological insu-
lators and superconductors. One might wonder how a boson
theory can capture the fermion excitations. The Bose field in
this paper corresponds to the particle-hole excitations (in case
of Majorana fermion the hole is the same as the particle) of the
fermions. The fermion excitations, as long as they are local,
correspond to solitons in the Bose field [8]. However, there is
the limitation that we have not been able to write the fermion
operator in terms of the boson field. However, this should not
impose too strong a constraint because in the Hamiltonian (or
the action) only fermion bilinear can occur.

The bosonization theories are NLσ models with the topo-
logical θ term. The required fermion symmetries and the
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bosonized nonlinear σ model are summarized in Tables I and
V of the Supplemental Material (SM) [9]. Making an analogy
with the spin chains, the topologically trivial fermion SPT is
analogous to the spin 0 chain and the topologically nontrivial
fermion SPT is analogous to the spin 1 chain. Similar to
spin chains, under open boundary conditions the action of
the gapless boundary excitations are NLσ models with the
Wess-Zumino-Witten term. Of course, here the WZW term
manifests the Berry phase of massless fermions instead of spin
1/2’s.

In addition to the above, we also present a class of bosonic
SPTs, whose boundaries are critical spin liquids. The best-
known example of critical spin liquid is the conformal field
theory of the antiferromagnetic Heisenberg chain, namely,
the SU (2) level-1 WZW theory, or the O(4) NLσ model
with WZW term. If we view this critical spin liquid as being
protected by the emergent SU (2)L × SU (2)R [or O(4)] sym-
metries, it can be viewed as the boundary theory of a bosonic
SPT whose action is a NLσ model with the topological θ

terms [10,11]. In two spatial dimensions the O(5) NLσ model
with the WZW term is a conformal field theory, which is
alleged to describe the “deconfined quantum critical point”
[12,13]. If we regard its criticality as being protected by the
O(5) symmetry, it too can be realized on the boundary of a
bosonic SPT whose action is the O(5) NLσ model with the
topological θ term. Thus, after the bosonization, the fermion
and bosonic SPTs, and their boundary theories, are unified.

II. TARGETS OF BOSONIZATION: THE TOPOLOGICAL
INSULATORS AND SUPERCONDUCTORS

The topological insulators and superconductors we aim
to bosonize all have nonchiral boundary modes, besides the
Q, T,C symmetries.1

1Q, T,C stands for charge conservation, time reversal, and charge
conjugation considered in the “tenfold way” classification [2,3],
where there are flavor symmetries. Moreover, we require the flavor
number to be sufficiently large (see later) so that the homotopy group
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The Hamiltonian of the fermion SPTs under consideration
has the following form:

H =
∫

dd x ψ†(x)

[
−i

d∑
i=1

�i∂i − m0MB

]
ψ (x). (1)

Here ψ is the Majorana or Dirac fermion field depending on
whether we are talking about topological superconductors or
insulators. In Eq. (1) and the rest of the paper, we shall use d
to denote the space dimension and D to denote the space-time
dimensions. Including n flavors, ψ has 2n, 4n, 4n components
in d = 1, 2, 3. In Table I of the SM [9] we list the �i, MB, and
the protection symmetry of these SPTs. In addition, we restrict
the number of fermion flavor number, n, to be greater or equal
to nc, so that the WZW term in the bosonized boundary NLσ

(see later) has “stabilized” [8]. The values of nc are given in
Table II of the SM [9].

III. BOUNDARY GAPLESS FERMION MODES

The boundary of the fermion SPTs in Eq. (1) can be
modeled by a domain wall where m0 changes sign. The Hamil-
tonian is given by Eq. (1) except m0 is replaced with m0 f (xd ),
where xd is, say, the last spatial coordinate. The function f (x)
is given by, say, tanh(x/λ), where λ is the width of the domain
wall. The Hamiltonian of the gapless fermions on the domain
wall is given by [14]

Hdw =
∫

dd−1x χ†(x)

[
−i

d−1∑
i=1

γi∂i

]
χ (x). (2)

In the above γi = P�iP , χ = Pψ, where the projection op-
erator is given by

P = (i�dMB + I )/2.

The boundary symmetry generators are equal to
P (bulk symmetry generators)P . Because (i�dMB)2 = I
and Tr[i�dMB] = 0, the number of components in χ is half of
that in ψ . The boundary γ matrices and symmetry generators
are summarized in Table III of the SM [9].

IV. BOSONIZED EQ. (2)

Applying the method in Ref. [8], the non-Abelian
bosonized action of Eq. (2) is the NLσ model with the level-1
WZW term. The action and the OPM of such NLσ models are
summarized in Table IV of the SM [9].

Here the boundary space-time manifold is SD, and DD+1 is
a D + 1 dimensional disk such that ∂ (DD+1) = SD. The order
parameter QC,R appearing in the NLσ model are matrices
in the OPM. In the following we explain the meaning of the
WZW term.

corresponding to the topological terms has stabilized. Due to the
flavor symmetries the topological classification of the fermion model
we consider is always Z. In reality most systems have flavor sym-
metries. For example, graphene has spin and valley flavors, bilayer
graphene has spin, valley, and layer flavors, and in many condensed
matter systems there is often the orbital flavor.

For example, the WZW term for the D = (2 + 1) dimen-
sional boundary of a topological insulator is given by

WWZW[Q̃C] = 2π i

256π2

∫
D4

tr[Q̃C (dQ̃C )4]. (3)

Here QC, Q̃C are matrices in U (n)
U (n/2)×U (n/2) . In Eq. (3)

Q̃C (τ, x, y, u) is a smooth one-parameter extension of the
space-time configuration QC (τ, x, y). At u = 0, Q̃C (τ, x, y, 0)
is a constant matrix independent of τ, x, y.2 At u =
1, Q̃C (τ, x, y, 1) = QC (τ, x, y). Moreover, in Eq. (3)

∫
D4

→
∫ 1

0
du

∫
S3

d3x,

Q̃C (dQ̃C )4 = εμνρλQ̃C∂μQ̃C∂νQ̃C∂ρQ̃C∂λQ̃C, (4)

where μ, ν, ρ, λ ∈ {τ, x, y, u}. Physically the WZW term is
the accumulated Berry phase during the adiabatic evolution
(as a function of u) from Q̃C (τ, x, y, 0) to Q̃C (τ, x, y, 1). It
can be shown that exp(−WW ZW ) is independent of the values
of Q̃C for u < 1.

To show exp(−WWZW) only depends on the value of
Q̃C (τ, x, y, u = 1) we consider two different Q̃C , namely,
Q̃C

1 (τ, x, y, u) and Q̃C
2 (τ, x, y, u), with

Q̃C
1 (τ, x, y, u = 1) = Q̃C

2 (τ, x, y, u = 1).

Since the WZW term is purely imaginary, the relative phase
factor exp(−WWZW) associated with Q̃C

1,2 is

exp
(−WWZW

[
Q̃C

1

] + WWZW
[
Q̃C

2

])
. (5)

In addition, because the WZW term involves ∂u [see Eq. (4)],
negating the sign of the WZW term can be accomplished
by reversing the integration limit in u. Consequently we can
regard WWZW[Q̃C

1 ] − WWZW[Q̃C
2 ] as the integral from u = 0 to

u = 1 back to u = 0 (recall that Q̃C
1,2 agree at u = 1). This is

the WZW term defined on the closed manifold S4. The con-
dition that the exp(−WWZW) is well defined requires Eq. (5)
to be equal to 1, which means WWZW[Q̃C

1 ] − WWZW[Q̃C
2 ] is an

integer multiple of 2π i. The reason the preceding statement
holds is because the value of WWZW/2π i on S4 is precisely the
topological invariant, namely, the wrapping number,

Q = 1

256π2

∫
S4

tr[Q̃C (dQ̃C )4], (6)

of the S4 → OPM map. For the OPM given in Table IV of the
SM [9] π4(OPM) = Z, i.e., Q = integer.

V. BOSONIZED EQ. (1)

In Table V of the SM [9] we summarize the non-Abelian
bosonized theory of Eq. (1) under closed boundary condition
(SD), where Q is precisely the topological invariant in Eq. (6).

2For such an extension to exist it requires the homotopy group of
the space-time to the OPM map to be trivial, namely πD(OPM) = 0.
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FIG. 1. Light blue sphere is a schematic representation of the
OPM of the m0 = 0 theory in Eq. (1). The black circles represent
the one-parameter family of submanifolds in OPM used to derive the
θ term in Table V of the SM [9] from the WZW term in Table VI.
The red points represent ∓MB and the blue arrowed arc indicates the
direction of the increasing u.

In Sec. IV we have seen that the WZW term in Table IV of the
SM [9] becomes the topological term (the “θ term”) in Table
V of the SM [9] when the space-time manifold is closed in
the u direction. If we interpret u as a spatial coordinate, since
the NLσ model in Table IV of the SM [9] is the bosonized
action of Eq. (2), it suggests the the NLσ model in Table V
of the SM [9] is the bosonized action of Eq. (1). Conceptually
this is the quantum wire construction [15–18], where u plays
the role of the interwire coordinate. Depending on how the
u loops are closed one may end with a topological trivial or
nontrivial SPT.

In this section we consider closed boundary conditions. We
start from the gapless critical point of the SPT phase transition
by setting m0 = 0 in Eq. (1) and apply the method of Ref. [8]
to bosonize such a gapless theory. The results are given in
Table VI of the SM [9]. To derive the boson theory for the
gapped SPT phases we turn on mass terms which (1) gap the
critical point and (2) reduce the symmetry of the critical point
to that of the SPT phases.

In Fig. 1 we schematically represent the OPM of the m0 =
0 theory by the light blue sphere, where ±MB corresponds to
the two red points. If the order parameter fluctuates uniformly
in the light blue sphere, the full symmetry of the m0 = 0
fermion theory will be recovered. This symmetry is larger than
the symmetry in Table I of the SM [9] for m0 �= 0. To reduce
the symmetry, we select a family of submanifolds in the OPM
of the m0 = 0 theory, so that after the order parameter uni-
formly fluctuates in the submanifold, only the symmetries in
Table I of the SM [9] are restored. These submanifolds are
parametrized by u and have the properties that (i) at u = 0
and u = 1 the submanifold shrinks to ∓MB, (ii) the fermions
remain gapped in the submanifolds at any value of u, and
(iii) at any value of u, after the order parameter uniformly
fluctuates, only the symmetry in Table I of the SM [9] is
restored. These submanifolds are shown schematically as the
black circles in Fig. 1, while the direction of increasing u is
shown as the blue arrowed arc.

Mathematically these submanifolds are given in the rows
labeled as “Sub-OPM” in Table VII of the SM [9]. The
fermion mass in the submanifolds is parametrized by M(u)

and the QR,C corresponding to M(u) are given in the rows
labeled by “QR,C” in Table VII of the SM [9]. Note that
the submanifolds formed by QR,C agree with the OPM in
Table V of the SM [9]. Substituting the QR,C in Table VII
of the SM [9] into the WWZW in Table VI of the SM [9]
computes the accumulated Berry’s phase as u increases from
0 to 1. It is straightforward to show that the result is iθQ,
where Q is given in Table V of the SM [9], and the value of
θ depends on the end value of u. Tuning the end value of u
from 0 to 1 changes θ from 0 to 2π . The above derivation of
the θ term from the WZW term is analogous to that carried
out in Ref. [19], where the authors derive the O(3) NLσ with
θ = π term from the O(4) NLσ model with WZW term in
D = 1 + 1.

VI. CRITICAL SPIN LIQUIDS AS THE
BOUNDARY OF SPIN SPTS

In Secs. 15 and 16 of Ref. [8] it is shown that the d =
1 O(4) and d = 2 O(5) NLσ models with level-1 WZW term
can be derived from the “π -flux” [20] “spinon” mean-field
theory after the “charge”-SU (2) confinement. The SU (2) con-
finement is to enforce the no double occupation constraint of
Mott insulators [21], so that the low energy degrees of free-
dom are spins rather than spinons. This confinement requires
the low energy spinon mass to be SU (2) singlet, which selects
the four masses in the d = 1 O(4) NLσ model and the five
masses in the d = 2 O(5) NLσ model, respectively.

The gamma matrices and the symmetry generators of the π

flux phase spinons are given in the column of Table III of the
SM [9] labeled by “boundary of topological superconductors.”
[The reason that we consider the boundary of topological
superconductors rather than the “boundary of topological in-
sulators” is that the charge SU (2) gauge fields break the
spinon conservation [8].] The relevant flavor number is n = 4
for D = 1 + 1 and n = 8 for D = 2 + 1, respectively (note
these values are greater than the respective nc in Table II of
the SM [9]).

The “critical spin liquid” in D = 0 + 1 corresponds to free
spin 1/2’s. This was not discussed in Ref. [8], where the
flavor number is n = 4 (here nc = 4 also). Hence there are
four Majorana fermion zero modes (or two complex fermion
zero modes—one for spin up and the other for spin down).
Under the charge-SU (2) confinement only one of the spin zero
modes is occupied. This gives rise to a spin 1/2. The coherent
state path integral for such spin 1/2 is the O(3) NLσ model
with the WZW term.

The criticality of the d = 0, 1, 2 spin liquids is protected
by the O(3), O(4), and O(5) symmetries, respectively. The
OPM and the WZW term of the NLσ models associated with
these spin liquids are given in the second column of Table
VIII of the SM [9]. These critical spin liquids are realized at
the boundary of d = 1, 2, 3 bosonic SPTs whose NLσ models
and the associated θ terms are given in the third column of
Table VIII of the SM [9].

VII. CONCLUSION

We have bosonized a class of Z-classified fermion SPTs.
The results are NLσ models with the topological θ term.
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In particular, the trivial SPT corresponds to θ = 0 and the
nontrivial SPT corresponds to θ = 2π . Tuning the θ value
from 0 to 2π triggers the SPT phase transition. Finally, we
present the bosonic SPTs whose boundaries are critical spin
liquids. It is satisfying that after bosonization the field theories
for the fermion and bosonic SPTs, and their boundaries, are
unified.
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