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Heavy-fermion representation for twisted bilayer graphene systems
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We construct a heavy fermion representation for twisted bilayer graphene (TBG) systems. Two local orbitals
(per spin/valley) are analytically found, which are exactly the maximally localized zero modes of the continuum
Hamiltonian near the AA-stacking center. They have similar properties to the Wannier functions found in a recent
study, but also have a clear interpretation as the zeroth pseudo Landau levels (ZLL) of Dirac fermions under
the uniform strain field created by twisting. The electronic states of TBG can be viewed as the hybridization
between these ZLL orbitals and other itinerant states, which can be obtained following the standard procedure
of orthogonalized plane wave method. The “heavy fermion” model for TBG separates the strongly correlated
components from the itinerant components and provides a solid base for the comprehensive understanding of the
exotic physics in TBG.
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I. INTRODUCTION

Magic-angle twisted bilayer graphene (MATBG) has
aroused continuous interest due to their rich and exotic elec-
tronic phases [1–5]. These novel states are believed to closely
relate to the eight flat bands near the charge neutrality point,
which was first predicted by Bistritzer and MacDonald using
the continuum BM model [6]. Extensive efforts have been
made on understanding various aspects of these fascinating
systems [7–60].

The previous experimental and theoretical studies on
MATBG indicate that both the localized and itinerant fea-
tures can be found in the moiré flat bands. On the one hand,
both the STM and transport measurements show Mott-like
physics, suggesting very localized nature of the flat bands
[48–52,54]. On the other hand, the topological nature found
by previous theoretical studies rules out the probability that
the flat bands are purely constructed by some well separated
localized orbitals. It must contain some itinerant components
to form the topological bands [19,39,59]. The coexistence
of the both components can also be seen from the typical
dispersion of the flat bands: Despite the complete vanishing
of the Fermi velocity at the moiré Dirac points, the flat bands
acquire some prominent dispersion near the moiré �̄ point,
indicating considerable mixing with the itinerant components.

A recently proposed heavy fermion model shed light on
this subtle problem [39]. In that model, two maximally local-
ized Wannier orbitals ( f orbitals) are constructed using some
low energy bands while all the other orbitals (c orbitals) are
obtained using the k · p expansion around the moiré Brillouin
zone (mBZ) center. The complete flatness of the f bands
is reminiscent of the pseudo Landau level representation for
TBG [9].
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In the present paper, inspired by Ref. [39], we propose a
more rigorous way to derive the band structure of TBG that
can be expressed in terms of both the localized and itinerant
basis, from a standard method developed in the early years
of density functional theory, the orthogonalized plane wave
(OPW) method [61]. In such a method, the entire crystal
space is divided into two types of area: the area close to the
nucleus and the interstitial area between different nucleus. In
the area near the nucleus, the crystal potential is very deep,
fast varying, and close to a typical central potential. Therefore,
the atomic wave functions can be used as a very efficient basis
set to represent the eigenstates near this area, which are called
core level states in solid state physics. In contrast, the potential
is shallow and slowly varying in the interstitial area. It is much
efficient to express the solution of the Schrödinger equation in
this area by the plane waves with an extra condition that the
core level states have to be projected out from the plane wave
basis used to represent the valence bands. Such a modified
plane wave basis set is called OPWs, which has been further
developed to the pseudopotential methods and can be viewed
as part of the foundation of modern density functional theory
[61]. Such a separation of localized (atomic like orbitals)
and itinerant basis (OPW) is also a very crucial first step
towards the further in-depth studies, such as LDA+DMFT
and LDA+Gutzwiller, on the strongly correlated effects in
many materials. In the present study, we reconstruct the moiré
subband structure from a brand new OPW perspective. First of
all, as pointed out already in our previous paper, near the AA-
stacking center the TBG Hamiltonian can be approximated as
Dirac electrons moving under pseudomagnetic field caused by
twisting and the corresponding eigenstates are pseudo Landau
levels (PLL) under the symmetric gauge condition [9]. Among
these PLLs, the zeroth PLL (ZLL) is the most localized and
can be viewed as the “core level state” of TBG or equivalently
the “ f orbitals” discussed in Ref. [39]. Next, we construct
the OPWs by projecting out these ZLL states from the plane
wave basis adopted to represent the BM model. By following
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the standard procedure of OPW method, we can reformulate
the BM model precisely into two very different basis set, the
local orbitals and itinerant bands as suggested in Ref. [39], but
without any fitting parameters to adjust.

The localized orbitals in our approach are exactly zero
modes of the Hamiltonian around AA-stacking centres. The
full Hilbert space is partitioned into the localized ZLL sub-
space and its orthogonal subspace, the OPW subspace. By
turning on the hybridization between the two subspace, the
exact BM Hamiltonian can be fully restored. This method can
also be applied to TBG systems with smaller angles. Based
on this new representation, we can further derive the k · p
expansion around the Dirac points and the high order magic
angles can be inferred by the vanishing of the signed Fermi
velocity. We can also generalize our method to analyze the
band structures of the twisted multilayer graphene (TMG)
systems, where large overlaps between the two low-energy
bands and the localized orbitals are also observed. Finally a
new mean-field variational approach can be proposed to show
the important role played by the extremely localized ZLL
orbitals in the correlated insulator phases for the commen-
surate filling cases, where the various of symmetry breaking
orders are mainly taken place in ZLLs suggesting the possible
emergence of strong correlation effects in these ZLLs when
they are fractionally filled or at high temperature.

This paper is organized as follows. In Sec. II, a brief
review of the BM Hamiltonian is given, followed by the
rough demonstration of the hybridized ZLL+OPW model. In
Sec. III, the model is applied in small-angle TBG systems and
some TMG systems. The oscillating Fermi velocity and magic
angle series are also discussed here. In Sec. IV, the variational
method and numerical results for MATBG at integer fillings
are shown. In Sec. V, a summary is made.

II. FORMULATION OF THE MODEL

A. The continuum model

For small-angle TBG systems, the continuum BM Hamil-
tonian is widely used [6,53,62]. The atomic valley η is a good
quantum number, giving an emergent Uv (1) symmetry. We
follow the formulation in Ref. [57] and constrain our discus-
sion in the valley η = −1 for simplicity. The BM Hamiltonian
reads

HBM =
(−vF (p − h̄K1) · σ e−i�K·rU (r)

ei�K·rU †(r) −vF (p − h̄K2) · σ

)
, (1)

where p = −ih̄∇ is the momentum operator, vF is the bare
Fermi velocity, and the Pauli matrices σ = (−σx, σy) are de-
fined in the space of A, B sublattice of graphene. The moiré
and atomic lattice constants are Lθ = a/[2 sin(θ/2)] and a =
0.246 nm, respectively. K1 and K2 are Dirac points of layer
1 and layer 2, and �K = K2 − K1 = (0, kθ ), kθ = 4π/(3Lθ ).
The tunneling from layer 2 to layer 1 is described by the moiré
potential e−i�K·rU (r), with

U (r) =
(

u0 u1

u1 u0

)
eiq1·r +

(
u0 u1ω

u1ω
−1 u0

)
eiq2·r

+
(

u0 u1ω
−1

u1ω u0

)
eiq3·r, (2)

where ω = exp(i2π/3) and q1 = kθ (0, 1), q2 =
kθ (−√

3/2,−1/2), q3 = kθ (
√

3/2,−1/2). u0 and u1 denote
the intra- and inter-sublattice tunneling amplitudes. Usually
u0 < u1 due to lattice corrugation effects [57]. In this paper
the above parameters are fixed as h̄vF = 0.5944 eV · nm,
u1 = 0.11 eV and u0 = 0.8u1.

The BM Hamiltonian in the two valleys can be transformed
to each other through C2y, C2z, or T (time reversal) operations,
while in each valley it has C3z, C2x, and C2zT symmetries.
For the Hamiltonian defined in Eq. (1), there also exists an
additional particle-hole symmetry P that guarantees the bands
to be symmetric about the charge neutrality point.

B. Zeroth pseudo Landau levels

In this subsection we present the zeroth pseudo Landau
level (ZLL) wave functions. Following the spirit in Ref. [9],
first we apply the gauge transformation H̃ = V †(r)HBMV (r),

V (r) = 1√
2

(
eiK1·r eiK1·r

ieiK2·r −ieiK2·r

)
σ0, (3)

which gives a Hamiltonian H̃ with a more symmetric form.
Then we expand the moiré potential Eq. (2) to the linear order
of r/Lθ around the AA-stacking center r = 0. The resulting
local Hamiltonian can be written as

H̃AA =
(−vF (p + eA) · σ −3iu0

3iu0 −vF (p − eA) · σ

)
, (4)

where e is the elementary charge, A = Bθ (−y/2, x/2) is the
pseudo vector potential with field strength Bθ = 3u1kθ /(evF ).
The pseudofield is locally generated by the moiré potential
near the AA-stacking center, and usually it has a large magni-
tude. For θ = 1.05◦, the field strength reaches Bθ ≈ 114 T.

In Ref. [9] the intra-sublattice tunneling term ±3iu0 in
H̃AA is dropped. Then the simplified Hamiltonian can be
interpreted as two fermions coupled to the opposite magnetic
fields B = ±Bθ êz, which has chiral zero modes that are just
the zeroth Landau levels of Dirac fermions. However, our
further analysis shows that the ZLL states obtained in such
an approximate way cannot be used as the efficient localized
orbitals to construct OPW [see Fig. 1(b)], although they are
well localized around AA-stacking centers. Neglecting the
intra-sublattice tunneling term is too rough an approximation
for the quantitative analysis.

Fortunately, the chiral zero modes of H̃AA still exist even
if the intra-sublattice tunneling is present, due to the chi-
ral symmetry represented by the operator C = �̃zσ̃z so that
C−1H̃AAC = −H̃AA, where �̃z and σ̃z are Pauli matrices
defined in the layer and sublattice space after the gauge
transformation Eq. (3). After some analytical derivation and
transforming back to original representation, the two max-
imally localized ZLL wave functions are found to be (see
Supplemental Material, SM, for details [63])

	1(r) = 1√
2

⎛
⎜⎜⎝

−eiK1·reiφw1(r)
eiK1·rw0(r)

−ieiK2·reiφw1(r)
−ieiK2·rw0(r)

⎞
⎟⎟⎠, (5)
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FIG. 1. (a) Real space distribution of the two components w0(r)
and w1(r) of ZLLs. The pink-dashed line represents w0(r) if u0 = 0
[w1(r) = 0 in this case]. (b) The completely flat bands formed by
ZLLs (5) and (6) (red) and the bands formed by the old ZLLs (with
u0 = 0) proposed in Ref. [9] (pink). (c) The BM bands of TBG with
the color representing their overlap with ZLLs:

∑
t |〈	k̄,t |ψBM

k̄,n
〉|2.

(d) The decoupled bands in the ZLL (red) and OPW subspaces
(black). The inset shows the quadratic touching of the decoupled
bands and the original BM bands (blue-dashed lines) near the mBZ
center. All figures are plotted at θ = 1.05◦.

	2(r) = 1√
2

⎛
⎜⎜⎝

eiK1·rw0(r)
eiK1·re−iφw1(r)

ieiK2·rw0(r)
−ieiK2·re−iφw1(r)

⎞
⎟⎟⎠, (6)

where r = |r|, φ = arg(x + iy). They are two generalized ze-
roth Landau level wave functions under the symmetric gauge
with the lowest angular momentum Lz and will be chosen as
the two localized orbitals to construct OPWs. The functions
wn (n = 0, 1) appearing above are

wn(r) = C0
eλ2

θ−r2/(4l2
B )√

2π l2
B

Jn

(√
2λθ r

lB

)
, (7)

where Jn(x) are Bessel functions and C0 is some normalization
factor. We now give a further interpretation to the parameters
lB and λθ . The magnetic length lB = √

h̄/(eBθ ) quantifies the
degree of localization [64]. The spread of the well localized
ZLLs, roughly estimated as

√
2lB, is about 0.25Lθ for θ =

1.05◦ [see Fig. 1(a) for the shape of w0(r) and w1(r)]. The
dimensionless factor λθ = 3u0lB/(

√
2h̄vF ) characterizes the

degree of sublattice polarization. Our ZLLs will evolve to
those fully sublattice-polarized ones in Ref. [9] when u0 is
reduced to zero. More interestingly, if we expand Eqs. (5) and
(6) using Landau level basis and keep only the leading terms,
they reduce to the same analytical form as the (fitted) Wannier
functions proposed in Ref. [39].

Two Bloch ZLLs are constructed by summing over all Nm

ZLLs located at different moiré sites R, and they can finally

be expressed using plane waves

|	k̄,t (r)〉 = 1√
Nm

∑
R

eik̄·R|	t (r − R)〉

=
∑
Gα

LGα,t (k̄)|k̄ + G, α〉, (8)

with t = 1, 2. |k̄ + G, α〉 denotes the plane wave with wave
vector k̄ + G at layer/sublattice α, and L(k̄) is the transfor-
mation matrix from plane waves to ZLLs. At each k̄ (we
add a bar on k to indicate that it lives in the mBZ, other-
wise it should be understood as a vector in the atomic BZ),
the two Bloch ZLLs (8) are not strictly orthonormal, but
|〈	k̄,t |	k̄,t ′ 〉 − δtt ′ | ∼ 10−2 is always satisfied for our param-
eters at θ = 1.05◦. Further normalization procedure can thus
be safely neglected.

The two ZLLs account for a dominant proportion of the
flat BM bands, as indicated in Fig. 1(c). The overlap be-
tween the flat bands and ZLLs is relatively large near the
moiré Dirac points, but approaches zero at the mBZ center,
where the flat bands completely consist of itinerant states that
will be introduced below. This is because the (degenerate)
ZLLs form a two-dimensional representation of the group
D3 at �̄, while the (nondegenerate) BM flat bands form two
one-dimensional representations there. This fact explains why
some previous two-orbital tight-binding models with finite
hopping cutoffs cannot fit the BM bands well near the mBZ
center [51,52,57,58].

We place all other PLLs in the OPW subspace intro-
duced below since they are not well localized around the
AA-stacking center. Their spatial spread is comparable with
the moiré supercell and will deviate from the true eigenstates
since the local Hamiltonian (4) is reasonable only near the
AA center. Incorporating them into the local orbitals will
unnecessarily complicate the present model.

C. Orthogonalized plane waves

The complete Hilbert space can now be separated into
two orthogonal subspaces. One of them is the ZLL subspace
spanned by the localized ZLL orbitals (8). Its orthogonal
complement space should contain all states that are orthogonal
to the ZLLs. A general approach to construct such basis is
subtracting their ZLL components from the plane waves,

|k, α〉opw ∼ |k, α〉 −
∑

t

|	k̄,t 〉〈	k̄,t |k, α〉. (9)

Basis functions with this form was first introduced by Herring
in his famous orthogonalized plane wave (OPW) method [61],
so we might name this subspace the OPW subspace as well.

Although mathematically clear, basis with the form Eq. (9)
is not convenient to use since further orthonormalization pro-
cedure is necessary. A better method is to calculate the kernel
(null) space of the two Bloch ZLL wave functions (8) at
each k̄ directly. In practical calculations, the singular value
decomposition method is applied [63]. And finally the OPW
basis is formally written using plane waves as

|�k̄,a〉 =
∑
Gα

AGα,a(k̄)|k̄ + G, α〉, (10)
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with a = 1, 2, . . ., 4NG − 2, NG is the number of reciprocal G
vectors within the cutoff (in this paper we take 61 G vectors
around each atomic Dirac point). The transformation matrix
A(k̄) satisfies ∑

Gα

A∗
Gα,a(k̄)AGα,a′ (k̄) = δaa′ ,

∑
Gα

L∗
Gα,t (k̄)AGα,a(k̄) = 0. (11)

D. Hybridized ZLL+OPW representation

The BM Hamiltonian (1) is expressed under ZLL and OPW
basis as (at each k̄)

HBM(k̄) =
∑

tt ′
Hzll

t,t ′ (k̄) f †
k̄,t

fk̄,t ′ +
∑
aa′

Hopw
a,a′ (k̄)d†

k̄,a
dk̄,a′

+
(∑

ta

Hcp
t,a(k̄) f †

k̄,t
dk̄,a + H.c.

)
, (12)

where f †
k̄,t

( fk̄,t ) and d†
k̄,a

(dk̄,a) are creation (annihilation) op-

erators for ZLL states and OPW states, respectively. Hzll(k̄) =
L†(k̄)HBM(k̄)L(k̄) ≈ 0 and Hopw(k̄) = A†(k̄)HBM(k̄)A(k̄)
are Hamiltonian kernels in the ZLL and OPW subspaces, and
Hcp = L†(k̄)HBM(k̄)A(k̄) describes the coupling between
them. Written in Eq. (12), the BM Hamiltonian is understood
as a hybridization of two localized ZLL orbitals with many
itinerant OPW states.

What is really interesting is the separate band structures
when we turn off the coupling between ZLLs and OPWs, i.e.,
when we artificially set the third term in Eq. (12) to zero,
Hcp = 0. In this case the decoupled bands in the ZLL and
OPW subspaces are shown in Fig. 1(d). The well localized
ZLL orbitals generate two almost completely flat bands (with
maximum bandwidth ∼0.5 meV), while the OPW states con-
tribute all high-energy bands, which usually have a stronger
dispersion and look quite similar to the remote BM bands
except near the mBZ center. The quadratic touching near
the mBZ center [Fig. 1(d), inset] is a salient feature, where
the OPW bands behave like the energy bands of the Bernal-
stacking bilayer graphene [65] near the atomic Dirac points.
It is the coupling Hcp that provides the exchange channel
between these two subspaces, making the completely flat ZLL
bands dispersive and topological, and finally splitted into the
flat bands predicted by the BM model.

Before ending this section, we want to mention that the
coupling term Hcp is the key to distinguish our model from
that in Ref. [39]. In the present study we choose to respect the
actual dispersion of all high-energy bands, rather than focus
only on the low-energy window near �̄ point. To recover the
complete bands, many OPWs will be inevitably involved.

III. APPLICATIONS IN OTHER TWISTED GRAPHENE
SYSTEMS

A. Smaller-angle systems

The ZLL wave functions (5) and (6) are uniquely deter-
mined by the values of θ , vF , u0, and u1. The precise analytical
form of ZLL wave functions is a huge advantage that gets

FIG. 2. (a) The BM bands and its overlap with ZLLs at the
second magic angle θ = 0.438◦. (b) The decoupled bands in the
ZLL (red) and OPW (black) subspaces. (c) The Fermi velocity
(at K̄1) plotted as a function of the dimensionless parameter α(θ ).
The first five magic angles (blue stars) are found to be α1 = 0.577
(θ1 = 1.079◦), α2 = 1.422 (θ2 = 0.438◦), α3 = 1.988 (θ3 = 0.313◦),
α4 = 2.947 (θ4 = 0.211◦), and α5 = 3.499 (θ5 = 0.178◦).

us free from the Wannierization procedure in Ref. [39] for
each specific set of parameters. It is noteworthy that the ZLLs
in real (reciprocal) space become even more localized (flat)
in TBG with smaller twisting angles, as indicated by the
magnetic length

lB
Lθ

=
√

h̄vF

4πu1Lθ

∝ 1√
Lθ

. (13)

In this subsection we extend our analysis to the second magic
angle, where the Fermi velocity at the Dirac points vanishes
again but the lowest two bands are no longer gapped from
other bands.

Figure 2 shows the BM energy bands and the decoupled
bands at the second magic angle θ = 0.438◦. The lowest two
OPW bands become flat around the mBZ center, extending
the quadratic touching to a larger range. The complex in-
tersections between the decoupled bands lead to a discrete
distribution of ZLL components when the coupling is re-
stored. By keeping the two ZLL bands, only six nearest OPW
bands and the couplings among them, an eight-band model
can be constructed (not shown), which accurately reproduces
the BM bands within the gaps near ±25 meV.

As the angle decreases, more zero-energy PLLs with
higher angular momentum can also localize within the moiré
supercell. They are expected to play some roles near the
charge neutrality point and might be responsible for the com-
plexity of bands there.

B. Magic angle series: A new perspective

Before this study, there have been several theoretical at-
tempts to analyze the physical [7,9] or mathematical [8,10]
origins of the magic angle series. Our model provides a per-
spective to revisit it: without hybridization the ZLL bands
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are completely flat, whose dispersion will be induced by the
coupling to the OPW states. A k · p model focusing on how
the ZLLs are altered by OPWs near the moiré Dirac points can
be constructed using the perturbation theory. Such effective
Hamiltonian at k̄ ≈ K̄1 for ZLL orbitals is found to be (see
SM [63])

Hzll
eff(k̄) ≈ −Hcp(k̄)

1

Hopw(k̄)
Hcp†(k̄). (14)

The momentum gradient of Hzll
eff at the moiré Dirac points

defines the Fermi velocity operator, which can be expressed
using our notations as

h̄v(θ ) = −∇Hcp
K̄1

1

Hopw
K̄1

Hcp †
K̄1

− Hcp
K̄1

1

Hopw
K̄1

∇Hcp†
K̄1

+Hcp
K̄1

1

Hopw
K̄1

∇Hopw
K̄1

1

Hopw
K̄1

Hcp †
K̄1

, (15)

where the subscript K̄1 denotes that all matrices and their
gradients are defined at this Dirac point.

Equation (15) makes the direct calculation of the Fermi
velocity (no requirement of the eigenenergy) possible. It is
found that the Fermi velocity operator always keeps the form
v(θ ) = −v(θ )σ. As shown in Fig. 2(c), the velocity v(θ ) os-
cillates with θ and crosses the zero at some discrete angles that
are exactly the magic angles. Near some other angles, v(θ )
diverges because the OPW bands touch the ZLL bands (zero
energy) there. In this case the above perturbation method fails
to predict the actual Fermi velocity. Fortunately, near all first
five magic angles, the OPW and ZLL bands are well separated
near the Dirac points—see Fig. 2(b) and SM [63]—so our
calculation in these regions is trustworthy. Our study iden-
tifies the emergence of magic angles with exactly vanishing
Fermi velocity as a typical character of the BM model. In
more realistic models like the tight-binding model considering
the relaxation effects, this character can be severely smeared
[14,52].

C. Twisted multilayer graphenes

In this section we discuss the generalization of our model
to two types of twisted multilayer graphene (TMG) systems.

The first kind of TMG contains the twisted (M + N)-
layer graphene systems [66–71]. In these materials the twist
happens only in the interface of the upper and lower Bernal-
stacking multilayers, so we can always treat them as a TBG
sandwiched between other graphene sheets. The continuum
Hamiltonian can thus be roughly written as (in each valley)

Hαβ
MN =

⎛
⎝Hα

M−1 Tα

T †
α HBM Bβ

B†
β Hβ

N−1

⎞
⎠, (16)

where Hα
M−1 (Hβ

N−1) is the Hamiltonian of the upper M − 1
(lower N − 1) layers with the stacking chirality α (β). Tα and
Bβ represent the tunneling between TBG and its nearest lay-
ers. Turning off Tα and Bβ gives an isolated TBG subsystem,
where the ZLLs and the OPWs can be constructed as usual. In
general such systems no longer have strict local zero modes
like TBG.

FIG. 3. (a) Band structures (the color indicates the overlap with
ZLLs) and the decoupled bands in ZLL and OPW subspaces for
1.05◦ twisted 1 + 2 trilayer graphene. [(c),(d)] The same plots for
alternating twisted trilayer graphene with angle θ = 1.40◦. We only
show the bands in the valley η = −1.

The BM bands and the decoupled bands in ZLL and OPW
subspaces of the twisted 1 + 2 trilayer graphene (θ = 1.05◦)
are shown in Figs. 3(a) and 3(b). One of the common features
of twisted (M + N) multilayers is the existence of two narrow
bands near the charge neutrality point. The ZLLs spread to
a larger energy range through the additional interlayer tun-
neling, and the OPW bands deviate from the BM bands even
away from the mBZ center. The two narrow bands still hold
relatively larger ZLL components, in line with the localized
states found numerically [69]. Again at the mBZ center the
two flat bands are composed entirely of OPW orbitals.

The second group covers the so-called alternating twisted
multilayer graphenes, in which the lth layer is twisted by
the angle (−1)lθ/2. The applicability of our model on such
systems relies on the fact that their continuum Hamiltonian
can be exactly mapped to a direct sum of some renormalized
TBGs (plus a monolayer for odd layers) [72,73], and each of
them can be separately treated under our theoretical frame-
work.

As an example, the trilayer Hamiltonian Htri can be trans-
formed as (in the valley η = −1)

Htri(p, r) = V
(

HBM(p, r)
HD(p)

)
V†, (17)

where V is a layer-transformation matrix, HD = −vF (p −
h̄K1) · σ is the monolayer Dirac cone, and HBM is just the
BM Hamiltonian (1) with interlayer couplings replaced by√

2u0 and
√

2u1. Distinguishing the local ZLLs in HBM from
all other states leads to the bands shown in Figs. 3(c) and
3(d). This time both the (effective) monolayer and bilayer
host the active itinerant orbitals, while only the latter will
couple to the local ZLLs if no strain or external fields exist. It
will be interesting to relate our ZLL+OPW representation to
the recently proposed heavy-fermion character of this system
[74].
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IV. FULL-BAND HARTREE-FOCK CALCULATION

A. Formulation of the variational method

The hybridized ZLL+OPW representation also provides
a new viewpoint to revisit correlated insulating states [1,3–
5] that have been studied extensively [29–38]. It was spec-
ulated in Ref. [9] that the Coulomb interaction can split the
eight-folded ZLL bands through symmetry breaking, leading
to various insulating states. We now quantify this general idea
by introducing a new variational method.

The Coulomb interaction is written in plane wave basis as

H I = 1

2Nm

∑
kμ

∑
k′μ′

∑
q

vqc†
k+q,μ

c†
k′−q,μ′ck′,μ′ck,μ, (18)

where μ ≡ (s, η, α) is the composite spin, valley and
layer/sublattice index. In this paper the double-gate screened
interaction is adopted,

vq = e2 tanh(dsq)

2ε0εs�mq
, (19)

where q = |q|, �m = √
3L2

θ /2 is the area of each moiré cell,
and ε0 is the permittivity of vacuum. We fix the screening
length ds = 20 nm and the dielectric constant εs = 10 in this
study.

Now let us illustrate our Hartree-Fock (HF) variational
method. The trial wave function |0; λ〉 is taken as the ground
state of the following “mean field” Hamiltonian,

H trial = HBM +
∑

l

∑
k̄

∑
ξξ ′

λlOl
ξ,ξ ′ f †

k̄,ξ
fk̄,ξ ′ , (20)

where ξ ≡ (s, η, t) denotes the composite spin, valley and
angular momentum (Chern number) index of ZLLs. λl (l = 1,
2, . . ., 64) are variational parameters that take real values. The
corresponding order matrices Ol have the form siτ jσk (i, j,
k = 0, x, y, z), where si, τ j , σk are Pauli matrices representing
the spin, valley, and angular momentum degrees of freedom.
Given a set of parameters λl , the trial wave function |0; λ〉
offers a single-particle density matrix

ρ
Gμ

G′μ′ (k̄) = 〈0; λ|c†
k̄+G,μ

ck̄+G′,μ′ |0; λ〉, (21)

and the optimal ground state is obtained by minimizing the
total energy, which is an implicit function of λl and can be

FIG. 4. Quasiparticle bands of MATBG at ν = 0. [(a),(b)] KIVC
bands obtained using the variational method and the self-consistent
method, respectively. [(c),(d)] The corresponding VP bands. The
color represents the overlap between the nth band with the eight
ZLLs,

∑
ξ |〈	k̄,ξ |ψHF

k̄,n
〉|2, ξ = (s, η, t ). We have set the chemical

potential μc = 0.

written through the density matrix as

etot = 1

Nm
(E0[ρ] + EH[ρ] + EF[ρ]). (22)

Expressions of the kinetic energy E0, Hartree energy EH, and
Fock energy EF can be found in SM [63]. We adopt a 12 ×
12 k̄-mesh sample and 61 G vectors in calculations. Finally,
the derivation process of the BM Hamiltonian (1) implies
that the Hartree-Fock potential at the charge neutrality point
has already been included. Therefore, it should be removed
from our calculations to avoid double counting [30,31,35,36].
Correspondingly, in our approach the density matrix ρ in the
expressions of EH and EF will be replaced by ρ̃ = ρ − ρ0 (ρ0

is the density matrix of the BM Hamiltonian at ν = 0).
Such variational scheme implies the conjecture that the

localized ZLL orbitals play the dominant role in breaking
the system into various ordered states [9,39]. The itinerant
OPWs constitute only ∼20% of the flat bands. Therefore,
we put symmetry-breaking orders only in the ZLL subspace
during the variational procedure. More specifically, the second
term of Eq. (20) governs how the eight localized orbitals are
combined and splitted by adjusting the order parameters λlOl ,

TABLE I. The order parameters Ol , order strength λl , and the condensation energy obtained through the variational method eVar and
self-consistent method eSCMF for the KIVC and VP states at integer fillings. All numbers have the units meV.

ν Order Ol λl eVar eSCMF

0 KIVC τxσz 25.233 −50.658 −56.135
VP τz 21.565 −51.044 −54.661

1 KIVC I0, σz, τx, τxσz, sz, szσz, szτx, szτxσz 14.265, 7.245, 6.814, 19.465, 5.653, −7.263, −6.839, 6.535 −48.371 −54.860
VP I0, σz, τz, τzσz, sz, szσz, szτz, szτzσz 13.711, 7.152, 16.938, 7.175, 5.179, −7.174, 5.179, −7.174 −48.581 −54.083

2 KIVC I0, sz, τxσz, szτxσz 25.758,12.611,14.038,14.038 −43.866 −54.923
VP I0, sz, τz, szτz 24.511,11.540,12.052,11.538 −43.727 −54.196

3 KIVC I0, σz, τx, τxσz, sz, szσz, szτx, szτxσz 33.486,7.971,8.024,7.194,7.823,7.971,8.024,7.194 −35.782 −52.755
VP I0, σz, τz, τzσz, sz, szσz, szτz, szτzσz 33.458,7.957,6.984,7.989,6.991,7.951,7.704,7.956 −35.707 −52.719
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FIG. 5. Quasiparticle bands of MATBG at ν = 2. [(a),(b)] KIVC
bands obtained using the variational method and the self-consistent
method, respectively. [(c),(d)] The corresponding VP bands. The
color represents the overlap with the ZLL orbitals. The chemical
potential μc = 0.

while the OPWs and the couplings between them are left
unchangeable.

B. Ground states at integer fillings

In this subsection we present the main results for MATBG
at integer fillings ν = 0, 1, 2, 3. Minimizing the total energy
(22) generates several gapped insulating states at each filling.
The numerical results are summarized in the Table I (other
ordered states with higher energies are not shown).

At ν = 0, the convergence can be well obtained by in-
troducing only one order parameter for each ordered state.
Two competitive groups of states are found to have lower
energies than others. The first group is the Kramers intervalley
coherent states (KIVC) [31,38] with the condensation energy
−50.658 meV, whose order parameter can be fixed as τxσz.
The second group includes the valley-polarized state (VP,
τz), spin-polarized state (SP, sz), and spin-valley-locked state
(SVL, τzsz). All these flavor-polarized states have exactly the
same energy −51.044 meV. The quasiparticle bands for KIVC
state and VP state are shown in Fig. 4. Since they have very
close energies, we may just treat the KIVC states and flavor-
polarized states as two degenerate candidates of the actual
ground state.

At other fillings, some flavor degeneracies of the above
low-energy states will be further lifted, and more variational
parameters are involved to split the eight ZLL orbitals. Take
the KIVC state as an example, four dominant order parameters
I0 = s0τ0σ0, sz, τxσz, szτxσz are necessary at ν = 2, and other
four orders σz, szσz, τx, szτx are also essential at ν = 1, 3 to
remove the spin degeneracy. The quasiparticle bands at ν = 2
are shown in Fig. 5.

In our HF variational approach the symmetry breaking
order parameters are limited within the ZLL subspace, which

is completely local and k̄-independent. Therefore, the number
of the variational parameters is at most 12 in our approach (if
we fix the gauge), which makes the calculation much feasible.
Once the convergence is obtained, the resulting ground state
then provides a starting state to perform the full self-consistent
mean-field calculation, where the variational parameter will
be the completely k̄-dependent single-particle density matrix
introduced in Eq. (21). As shown in Figs. 4 and 5, the HF
bands obtained using these two methods are quite similar,
which strongly supports our conclusion that the correlation
effects in MATBG are mainly limited within the ZLLs, rather
than the OPWs.

Finally we note that the strong coupling conjecture here
may collapse in the chiral limit u0 = 0, and a brief discussion
is given in SM [63].

V. SUMMARY

In conclusion, we have proposed a new representation
for TBG, which clearly distinguishes the local ZLL orbitals
from all other itinerant OPW states. The ZLLs are the exact
zero-mode eigenstates of the BM Hamiltonian near the AA-
stacking center. They have similar properties to the Wannier
functions given in Ref. [39]. Besides, they also have a clearer
interpretation as the generalized zeroth Landau levels of Dirac
fermions and can be analytically determined from the model
parameters. The BM flat bands near the magic angle are then
understood as the outcome of the interplay between the local
ZLLs and the itinerant OPWs. Due to the universal existence
of ZLLs, this model can be applied to smaller-angle TBG and
TMG systems. A Fermi velocity with a sign can be defined
and calculated for TBG with the help of this representation,
which successfully explains the robustness of the magic angle
series.

The clear division of localized and itinerant components in
the band structure of TBG provides a feasible way to treat the
correlation and topological features of TBG at the same time.
As we have demonstrated in the present study, the correlation
effects only need to be considered within the ZLLs rather
than the OPWs, which greatly mimics the situation of heavy
fermion materials. Next, it will be interesting to look at vari-
ous of correlation effects generated by the coupling between
the ZLLs and OPWs especially for the noninteger doping,
including the Kondo physics, some possible heavy fermion
behaviors, the RKKY-coupling-induced symmetry breaking
order, and the superconductivity.

Note added. Recently a new superconducting theory in
TBG appeared [46], which is based on a similar picture of
local electrons hybridized with the itinerant ones. In that study
the pairing attraction is assumed to involve exclusively the
local orbitals.
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