
PHYSICAL REVIEW B 106, 245128 (2022)

Type-II corner modes in topolectrical circuits
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We study the rich properties of a topolectrical (TE) circuit array consisting of lossless basic electrical
components, such as capacitors and inductors, which can be designed to exhibit higher-order topological phases
(HOTP). The HOTP of the circuit exhibits the characteristics of higher-order topology, i.e., unconventional
bulk-boundary correspondence with strongly localized corner modes, and higher winding numbers. More
interestingly, a type-II corner mode emerges in the presence of long-range interaction, which is realized in
the TE circuit by the introduction of next-nearest neighbor (NNN) coupling capacitances. Unlike the usual
(i.e., “type-I”) corner modes that are localized at a particular sublattice node due to the chiral symmetry, the
type-II corner modes possess a spatial extent with an exponential decay length. We analytically derive this decay
length as a function of the circuit parameters. The NNN coupling is also associated with the tilt parameter
in the admittance spectrum of the circuit. The admittance spectrum is reminiscent of that of Dirac fermions.
Changing the tilt parameter can lead to a transition from the type-I to the overtilted type-II Dirac dispersion.
This overtilting results in a hybridization of the bulk and corner modes in which the distinct corner modes
disappear. Furthermore, the type-I and type-II corner modes can be distinguished by their impedance readout.
By virtue of their flexibility, the TE circuits provide an ideal platform to demonstrate unusual features of HOTPs
arising from long-range interactions, and to engineer different types of robust topological corner modes.
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I. INTRODUCTION

Topological phases in condensed matter constitute a fast
emerging topic in contemporary physics [1–4] on account of
their exotic characteristics such as unidirectional transport [5],
spin and valley Hall effects [6–10], quantized conductances
[11–13], and boundary states [14], which exhibit robustness
owing to topological protection [15]. The underlying physics
of the topological structure of matter is general and transcends
quantum theory, being ultimately based on the properties
of the parameter space [16,17]. Hence, topological phases
and band structures are not just confined to condensed mat-
ter systems. Starting from the pioneering work of Haldane
[18], such topological phenomena have been observed in a
multitude of seemingly unrelated settings, e.g., photonic sys-
tems [19,20], ultracold atomic gases in optical lattices [21],
mechanical systems [22], acoustic systems [23], plasmonic
systems [24], microcavities [25], and optical waveguides [26].
Conventionally, topological phases exhibit a boundary state
with a dimensionality of one less than that of the system,
e.g., a topological phase in a three-dimensional system would
sport a two-dimensional (surface) boundary state. Recently
this concept of bulk-boundary correspondence has been gen-
eralized to higher-order topological phases (HOTPs) [27–31],
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where an n-order topological phase is associated with a higher
topological invariant for n > 1, and has a boundary state
of dimensionality (d − n) where d is the system dimen-
sionality. To date, HOTPs have also been demonstrated in
various platforms including microwave [32], photonics [33],
acoustics [31], and optical lattice [34] systems. In two- or
three-dimensional systems, the boundary state may take the
form of corner states.

Recently, the effects of long-range interactions on the topo-
logical characteristics of the Lieb [35] and Kagome lattices
[36] have been investigated in photonic structures [36–38].
However, the effect of long-range interactions has not been
fully investigated, such as the estimation of the decay rate
of corner modes in the presence of NNN coupling. In ad-
dition, it is not straightforward to modulate the strength
and form of the long-range interactions in the aforemen-
tioned photonic platforms. In this paper, we will analyze
the role of long-range interactions on HOTPs and their cor-
ner modes based on a newly established platform known
as topolectrical (TE) circuits [39–46], which is based on
electrical components. Research in TE circuits has built a
bridge between the two different domains of circuit the-
ory on one hand and quantum theory and topology on the
other [40,42,43,43,47–50]. The accessibility and ubiquity of
basic circuit components would presage efficient and accu-
rate practical modeling of various topological phenomena via
TE circuits [50–52]. Moreover, one can readily incorporate
long-range interactions in TE circuits by means of couplings
beyond the nearest neighboring nodes. In addition, the reso-
nant electrical responses of a TE circuit can serve as signatures
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FIG. 1. Topolectrical circuit model that hosts higher-order topological phases with type-II corner modes. Here the orange, magenta, green,
and cyan circles denote the A, B, C, and D sublattice nodes, respectively. (a) Circuit array consisting of capacitors and inductors. (The unit cell
is delineated by a dashed rectangle.) The capacitor C1 denotes intracell coupling while C2 and CN represent the intercell and the next-nearest
nodes coupling, respectively. Note that the capacitive couplings can take negative values, in which case they correspond to frequency-dependent
inductances in the physical circuit [i.e., −Ci = −(ω2Li )−1]. (b) Grounding mechanism of our TE circuit. All nodes are connected to the ground
by a common capacitor inductor (L). Furthermore, two parallel capacitors of 2C1 and 2C2 connect the A and B nodes to the ground to ensure
uniform diagonal terms in the Laplacian matrix throughout the whole circuit.

of the boundary modes of the resulting topological systems
[40]. In view of these advantages, the TE circuit frame-
work is employed in our study on the effect of long-range
interactions on HOTPs and their corner modes. Recently,
long-range coupling has been investigated in a quadrupolar
system [53] implemented on an electrical platform where
the chiral symmetry breaking induces an indirect gap phase,
which makes it difficult to distinguish the corner modes from
the bulk bands, hence destroying the topological quadrupole
phase.

In this work, we theoretically propose a TE circuit based on
a modified two-dimensional SSH model which hosts higher-
order topological phases (HOTPs) with corner modes. We
demonstrate the emergence of “type-II” corner modes [20,54]
due to the introduction of next-nearest neighbor (NNN)
coupling in the circuit lattice. The effects of long-distance
couplings on corner modes have earlier been studied in a
different system in Ref. [38]. The corner modes in our system
have a finite spatial extent with probability density profiles
that exponentially decay at much slower rates away from the
corner nodes due to the broken chiral symmetry compared to
the conventional “type-I” corner modes, which are localized
on a particular lattice site (i.e., corner modes) with very large
inverse decay lengths (of infinity in the thermodynamic limit)
and protected by chiral symmetry. In contrast, the long-range
NNN coupling breaks chiral symmetry and also results in the
tilting of the Dirac fermionlike admittance dispersion. Beyond
a critical NNN coupling strength, the admittance dispersion
assumes an overtilted form, leading to the disappearance of
the corner modes due to their hybridization with the bulk

modes. Our TE-based analysis of the effect of long-range
coupling on the topological corner modes demonstrates the
applicability of these circuits to model higher-order topologi-
cal phases. The fact that these circuits are readily tunable and
implemented in practice, e.g., by using established printed cir-
cuit board technology, opens a new avenue for the accessible
modeling and realization of higher-order topological phases
prior to their translation to other (e.g., condensed matter)
platforms.

II. TOPOLECTRICAL CIRCUIT MODEL

Consider a periodic two-dimensional topolectrical circuit
lattice consisting of lossless capacitances and inductances as
shown in Fig. 1. As will be shown later, the lattice can po-
tentially host a higher-order topological phase (HOTP) and
associated corner modes, which are protected by certain sym-
metries. The unit cell of the circuit consists of four different
types of sublattice nodes labeled as A, B, C, and D, which
are denoted as orange, magenta, green, and cyan circles in
Fig. 1(a), respectively. The intracell and intercell hopping
amplitudes are denoted by C1 and C2, respectively. Note that
the coupling capacitance can assume a negative value, which
corresponds to a frequency-dependent inductive coupling in
a physical circuit. We incorporate a long-range electrical cou-
pling by connecting the nondiagonal next-nearest neighboring
(NNN) nodes with coupling capacitors CN. (We call the CN

coupling a NNN coupling because the nodes coupled together
are separated by nearest neighbor coupling nodes. For exam-
ple, the D NNN nodes are separated by a C NN node along the
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x direction and a A NN node along the y direction.) Thus, in
general, the amplitude and phase of the coupling between the
different nodes in the TE circuit can be tuned by adjusting the
capacitance/inductance coupling between the nodes. All the
electrical nodes are connected to the ground via an inductor L.
As we shall see later, the common inductor L sets the diagonal
elements of the admittance matrix of the circuit and thus its
resonant frequency condition. Furthermore, to ensure that all
the diagonal elements in the Laplacian matrix assume the
same value, additional grounding capacitances of 2C1 and 2C2

are connected in parallel to the other grounding capacitances
for the type A and D nodes, as depicted in Fig. 1(b). The
enforced uniformity of the diagonal elements in the Laplacian
matrix is analogous to setting the on-site energies of all the
lattice sites to the same value, so that there is effectively
no potential energy difference between one site relative to
another.

A. Circuit Laplacian

The Laplacian of the higher order TE circuit model shown
in Fig. 1 (divided by iω, where ω is the angular frequency of
the driving current), which is analogous to the tight-binding
Hamiltonian model, can be expressed as

−JTE(kx, ky) = 2CN[cos(kx ) + cos(ky)]σ0 ⊗ σ0 + [C1

+ C2 cos(kx )]σ0 ⊗ σx + C2 sin(kx )σz ⊗ σy

+ [C1 + C2 cos(ky)]σy ⊗ σy + C2 sin(ky)σx

⊗ σy −
(

2(C1 + C2 + 2CN) − 1

ω2L

)
σ0 ⊗ σ0

(1)

in the (A,B,C,D) node basis where σ = (σx, σy, σz ) are the
Pauli matrices, Ci and −Ci denote the capacitive and in-
ductive coupling strengths between different sublattice sites,
respectively, and the resonant frequency is given by ωr =
1/

√
2(C1 + C2 + 2CN)L. CN represents the long-range NNN

hopping amplitude along both the x and y directions. The
eigenvalues of the Laplacian can be expressed as

ETE =2CN[cos(kx ) + cos(ky)]

±
√

2
{
C1

2 + C2
2 + C1C2[cos(kx ) + cos(ky)]

}
.

(2)

Note that the Laplacian in Eq. (1) is a four-by-four matrix
but there are only two distinct values of the eigenvalues in
Eq. (2), which implies a twofold degeneracy in the admittance
values. In the absence of NNN coupling, i.e., when CN = 0,
the admittance equation resembles that of the Benalcazar-
Bernevig-Hughes (BBH) model [55–58] and hence shows
two distinguishable topological phases, i.e., the trivial and
nontrivial phases for |C1/C2| > 1 and |C1/C2| < 1, respec-
tively. Interestingly, at the phase transition point (C1 = ±C2),
the bulk admittance gap closes at either (kx, ky) = (π, π )
or (0,0) depending on the sign of C1/C2. In the presence
of only NN hopping, the Laplacian in Eq. (1) satisfies chi-
ral symmetry, i.e., �JTE(kx, ky)�−1 = −JTE(kx, ky) with � =
σ0 ⊗ σz. This chiral symmetry is broken with the incorpora-
tion of NNN coupling. However, the Laplacian with CN still

obeys the reflection symmetries along x and y direction with
MxJTE(kx, ky)M−1

x = JTE(−kx, ky) and MyJTE(kx, ky)M−1
y =

JTE(kx,−ky ), where Mx = σz ⊗ σx and My = σx ⊗ σx are the
reflection operators along the x and y directions, respectively.
Interestingly, Mx and My do not commute with each other, i.e.,
Mx · My �= My · Mx.

B. Admittance dispersion

To illustrate the behavior of the system, we study the
evolution of the admittance dispersion of the TE system and
the spatial distribution of its eigenmodes when the width of
the system is made finite (20 unit cell width) first in the y
direction and then in both the x and y directions (see Fig. 2).
Figure 2(a) shows the dispersion relation for a TE circuit with
periodic boundary conditions along both the x and y directions
and C1 = 0.5 mF, C2 = 1 mF, and CN = 0.3(C2/

√
2). For this

set of parameters, there are well-separated upper and lower
bands corresponding to the ± branches of Eq. (2). The bands
exhibit the aforementioned x and y reflection symmetries. The
presence of the long-range coupling CN breaks the chiral sym-
metry between the upper and lower bands. Figure 2(b) shows
the admittance dispersion of the TE circuit in a nanoribbon
geometry, i.e., infinite along the x direction with periodic
boundary conditions (PBC), and with a finite width of 20 unit
cells and open boundary conditions along the y direction. The
finite width along the y direction leads to the emergence of
discrete subbands in the dispersion relation. The fact that these
are bulk bands can be ascertained from the voltage amplitude
profile of the eigenmodes in the band (note that the voltage
amplitude profile is the TE analog of the quantum mechanical
particle density). Consider, for example, the kx = 0 mode
corresponding to the lowest eigenmode in the top bulk band
and labeled as P in Fig. 2(b). As shown in the upper inset
of Fig. 2(b), this eigenmode has a voltage amplitude with a
significant distribution within the interior of the nanoribbon.
In addition to the quantized bulk modes, topological edge
modes, denoted by the thicker line in the dispersion relation,
emerge inside the bulk band gap between the quantized upper
and lower bulk bands. These edge modes are localized near
the edges of the nanoribbon, as exemplified by the kx = 0
mode corresponding to the edge band and labeled as Q. As
plotted in the lower inset of Fig. 2(b), the voltage profile for
this mode shows significant localization at both edges. Finally,
Fig. 2(c) shows the admittance eigenvalues of the TE circuit
in a nanoplate geometry, i.e., with finite widths of 20 unit cells
along both the x and y directions, and open boundary condi-
tions in both. The confinement along both in-plane directions
leads to discrete eigenvalues, which are plotted besides part
of the dispersion of Fig. 2(b) corresponding to the nanoribbon
geometry. Some of these eigenvalues fall within the admit-
tance ranges of the nanoribbon bulk and edge modes. These
are exemplified by the modes labeled as R and T, respectively.
Mode R is “bulklike” with a voltage profile distribution that is
mostly confined in the interior of the nanoplate, while mode
T has “edgelike” characteristics with its voltage distribution
being confined along the edges of the nanoplate. In addition to
these bulk and edgelike modes, additional topological modes
emerge in the nanoplate geometry that have no counterparts
in the nanoribbon geometry, and thus fall within the gaps
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FIG. 2. (a) Dispersion relation of a TE circuit with periodic boundary conditions along both the x and y directions, and C1 = 0.5 mF,
C2 = 1 mF, and CN = 0.3(C2/

√
2). (b) Dispersion relation of the same TE circuit in a nanoribbon geometry with a finite width of 20 unit cells

along the y direction and infinite width with periodic boundary conditions along the x direction. The dark blue line denotes the edge modes.
The kx = 0 modes labeled as P and Q in (b) are bulk and edge modes, respectively, as shown in the plots of the square of the voltage amplitude
on the right. The gray box denotes the area of the dispersion plot shown in the zoomed-in view on the left of (c). (c) The red horizontal lines
on the left show the discrete admittance eigenvalues of the circuit with a nanoplate geometry. The four plots show the spatial distribution of
the square of the voltage amplitude over the finite (20 × 20 unit cell) TE circuit with the nanoplate geometry. It can be clearly seen that modes
R and T correspond to a bulk mode and an edge mode, respectively, while modes S and U correspond to type-II corner modes, which are
localized in the vicinity of the corner nodes but exponentially decay away from them.
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FIG. 3. The admittance spectra of a finite TE circuit array with nanoplate geometry of size 20 × 20 unit cells along both the x and
y directions which are plotted as a function of C1 with C2 = 1 mF at four different values of NNN coupling strengths: (a) CN = 0 mF,
(b) CN = 0.25 mF, (c) CN = C2

2
√

2
= 0.35355 mF, and (d) CN = 0.45 mF. In the secondary plot on the right of each main plot with C1 = 0.5

mF and C2 = 1.0 mF, the admittance spectrum is plotted along the direction kx = ky = k for an infinite TE circuit with periodic boundary
conditions along the x and y directions and the same corresponding values of CN, C1 and C2. The thick blue lines in the main plots in (a) and
(b) denote the corner modes. The dotted lines on the right mark the maxima of the upper bands and the minima of the lower bands.

between the bulk and edge modes of the nanoribbon. These
additional modes are the corner modes, as exemplified by
the modes labeled as S and U. Unlike the more familiar
edge modes which have an approximately constant amplitude
along the length of each edge on the nanoplate, the voltage
amplitude of the corner modes decays exponentially away
from each of the four corners of the nanoplate. In this case, we
obtain a new type of corner mode, which we term as type-II
corner modes, where along with the typical localization at
the corners, we have an exponentially decaying spatial distri-
bution away from the corners. This higher-order topological
phase is the direct result of the long-range interactions in the
TE circuit which are represented by the NNN coupling. Next,
we investigate the effects of CN and the NN coupling capac-
itances C1 and C2, as well as the long-range NNN coupling
CN on the topological edge modes in the TE circuit. In Fig. 3,
we plot the admittance spectra as a function of the intracell
coupling C1 for a TE circuit with a nanoplate geometry, i.e.,
with a finite width of 20 unit cells along both the x and y
directions for four representative values of CN. In Fig. 3(a), we
find that in the absence of CN, there exist well-defined higher-
order corner modes as depicted by the thick blue line. The
circuit array hosts these topological phases for NN coupling
values such that |C1/C2| < 1, while for |C1/C2| > 1, the topo-
logical modes are absent because the system is in the trivial
phase. Therefore, the topological phase transition between the
second-order topological and trivial phases occurs at C1 = C2.
This is reminiscent of the transition between the first-order

topological and trivial phases of the SSH model. Moreover,
the admittance dispersion is symmetric about zero admittance.

However, a different evolution of the boundary modes is
observed with the introduction of a nonzero NNN coupling
CN in the TE circuit. Introducing a finite CN leads to the tilting
of the boundary modes as C1 is varied [see Figs. 3(b) and 3(c)].
The admittance dispersion also becomes asymmetric with re-
spect to the zero-admittance axis. Consider the dispersion for
the same system but with periodic boundary conditions along
both the x and y directions and for C1 = 0.5 mF and C2 = 1.0
mF, plotted along the wave-vector direction of kx = ky ≡ k
(see plot on the right of each panel). We find that at small
values of CN, an energy gap exists between the top of the upper
band and the bottom of the lower band. However, at a critical
value of CN = Ccritical

N = C2/(2
√

2), the energy gap closes.
We will now discuss the gap closure and its effect on the

topological corner modes. The critical NNN coupling value of
CN = C2

2
√

2
where the corner modes touch the bulk bands [see

Fig. 3(c)] can be derived as follows. At this critical value of
CN, the bottom of the upper band at kx = ky = 0 falls below
the top of the lower band at kx = ky = ±π , and the energy gap
between the upper and lower bands vanishes. The minimum of
the upper band at kx = ky = ±π is E+ = −4CN + √

2|C1 −
C2|, while the maximum of the lower band at kx = ky = 0 is
E− = 4CN − √

2(C1 + C2) [see right panel of Fig. 3(c)]. The
minimum of the upper band occurs when C1 = C2, and the the
lower and upper bands overlap when E− > E+ ⇒ CN > C2

2
√

2
.
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Above this critical value of CN, the bulk and corner modes
mix [see Fig. 3(d)]. At this point, the corner modes are no
longer evident in the admittance spectra. The critical value of
CN = Ccritical

N = C2

2
√

2
can also be related to the overtilting of

the admittance dispersion. The Laplacian in Eq. (1) can be
block diagonalized about the high symmetry line kx = ky = k
to give

U −1J2D(k)U =
(

J+(k) 0
0 J−(k)

)
, (3)

where U is a unitary transformation. Such a unitary transfor-
mation can be accomplished by, for example

U =

⎛
⎜⎜⎜⎝

1√
2

0 − 1√
2

0
1√
2

0 1√
2

0
0 1 0 0
0 0 0 1

⎞
⎟⎟⎟⎠. (4)

The J±(k) matrix can be expressed as J±(k) =
4CN cos(k)σ0 + √

2[C1 + C2 cos(k)]σx ± √
2C2 sin(k)σy.

Expanding J±(k) around k = π/2,

J±(q) = −4CNqσ0 +
√

2(C1 − C2q)σx ±
√

2C2σy, (5)

where q is a small perturbation to k = π/2, i.e., k = π/2 + q.
From Eq. (5), it is clear that the NNN capacitor gives rise
to a tilt term −4CNqσ0 in the low-admittance Laplacian in
addition to a term analogous to a one-dimensional Dirac
fermion Hamiltonian −√

2C2qσx, and q-independent terms√
2C1σx ± √

2C2σy which correspond to effective exchange
couplings. With the increase of the CN, the tilting of the ad-

mittance dispersion in �k space increases. At the critical value
of CN = Ccritical

N = C2

2
√

2
, the tilting term −4CNqσ0 becomes

equal in magnitude to the coefficient of −√
2C2 in the qσx

term corresponding to the Dirac fermion Hamiltonian, and the
resulting dispersion relation becomes overtilted [59–61]. This
is reminiscent of the transition from a type-I to a type-II Dirac
fermion Hamiltonian [62–64]. Note that the tilt direction of
the boundary modes can be switched by switching the sign of
CN through the replacement of the capacitive NNN hopping
with an inductive NNN coupling.

C. Inverse localization length of type-II corner modes

We will now analyze one of the hallmark effects of the
long-range coupling, i.e., the exponential decay of the corner
modes and the tilt induced in the admittance dispersion by the
next-nearest neighbor (NNN) coupling. Figure 4(a) shows the
admittance spectrum of a TE circuit described by JTE(kx, ky )
in Eq. (1) with a nanoplate geometry at different values of the
NNN coupling CN. The admittance spectrum shows an almost
linear tilting of the midgap corner modes for comparatively
small values of CN. In contrast, a moderately large CN (i.e.,
CN � Ccritical

N ) results in the overlapping of different bands and
vanishing of the admittance band gap signifying the insulating
to metallic phase transition, as well as the mixing of the topo-
logical corner modes with the bulk modes. We will now derive
the inverse localization length in the presence of CN . We first
consider the CN = 0 limit for a semi-infinite system extending
over x ∈ (0,∞), y ∈ (0,∞) and show the existence of the
“true” or type-I normal modes in this system. The Laplacian
in Eq. (1) at resonant frequency for this system in the basis
ACBD reduces to

JTE

∣∣∣
CN=0

= −

⎛
⎜⎜⎝

0 0 C1 + C2 exp(−ikx ) −C1 − C2 exp(iky)
0 0 C1 + C2 exp(−iky) C1 + C2 exp(ikx )

C1 + C2 exp(ikx ) C1 + C2 exp(iky) 0 0
−C1 − C2 exp(−iky) C1 + C2 exp(−ikx ) 0 0

⎞
⎟⎟⎠. (6)

Consider kx = ky = −i ln(−C1/C2). When |C1| < |C2|, as is
the case for the range of C1 for which zero energy edge modes
exists in Fig. 3(a), kx and ky have positive imaginary parts.
This combination of kx and ky then corresponds to modes that
are localized near the lower left corner of the system, and the
Laplacian is reduced to

JTE

∣∣∣
CN=0;kx=ky=−i ln(−C1/C2 )

=
(

C1 − C2
2

C1

)⎛
⎜⎜⎝

0 0 1 0
0 0 1 0
0 0 0 0

−1 1 0 0

⎞
⎟⎟⎠.

(7)
The Laplacian has the eigenvalue 0 and two nontrivial
eigenmodes, which we denote as ψ1,2(�r) and are explicitly
given by ψ1(�r) = (−C1/C2)x+y 1√

2
(1, 1, 0, 0)T and ψ2(�r) =

(C1/C2)x+y(0, 0, 0, 1)T. The eigenmode of kx → +i∞ is also
an eigenmode of the system with the eigenvalue of 0 at CN =
0. This eigenmode corresponds to a Kronecker delta-localized
mode that has a finite value only at the leftmost edge of the

system [because exp(ikxx) → +∞ as x → −∞]. The Lapla-
cian in Eq. (1) effectively becomes

JTE

∣∣∣
CN=0

= C2

⎛
⎜⎜⎝

0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠, (8)

which has the eigenvalue of 0 and the corresponding
eigenvectors of (1, 0, 0, 0)T and (0,0,0,1). The correspond-
ing spatial eigenmodes, which we denote as ψ3,4(�r), can
hence be written as ψ3(�r) = δx,0(1, 0, 0, 0)T and ψ4(�r) =
δx,0(0, 0, 0, 1)T. Similarly, the eigenmodes with ky = +∞
correspond to Kronecker delta-localized modes that are lo-
calized at the lower edge of the system. Their corresponding
eigenmodes, which we denote as ψ5,6(�r), are then given
by ψ5(�r) = δy,0(0, 1, 0, 0)T and ψ6(�r) = δy,0(0, 0, 0, 1)T. In
addition, when both kx = ky = +i∞, there are another two
nontrivial eigenmodes with 0 eigenergy that are given by
ψ7(�r) = δx,0δy,0(1, 1, 0, 0)T and ψ8(�r) = δx,0δy,0(0, 0, 0, 1)T.
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Because ψ1(�r) to ψ8(�r) are all eigenmodes with the eigen-
value of 0, any linear combination of these eigenmodes is
also an eigenmode with the same eigenvalue. In particu-
lar, the linear combination of ψlower-left(�r) = ψ2(�r) + ψ8(�r) −
(−C1/C2)yψ4(�r) − (−C1/C2)xψ6(�r), i.e.,

ψlower-left(�r) =
[(

−C1

C2

)x+y

+ δx,0δy,0 −
(

−C1

C2

)y

δx,0

−
(

−C1

C2

)x

δy,0

]⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠ (9)

constitutes a corner mode localized at the lower-left corner
with the eigenvalue of 0 satisfying the boundary conditions
that the wave function vanishes along the boundaries parallel
to the x and y axes, i.e., at y = 0 and x = 0, respectively. The
fact that ψlower-left(�r) is constructed from the eigenvectors of
rank-deficient Laplacians is a hallmark of a topologically non-
trivial mode. ψlower-left(�r) represents the corner mode localized
at the lower left corner of the system considered with a decay
length of ln(|C2/C1|) in the limit of an infinite-sized system.
Corner modes with the eigenvalue of 0 localized at the other
three corners can also be constructed in a similar manner. This
also ensures the existence of chiral symmetry of the system in
the absence of CN .

We will now consider the effect of NNN coupling in
modifying the spatial distribution of the corner modes. The
decay rate of the type-II corner modes increases significantly
with the increase of CN. In brief, a finite CN results in the

replacement of the infinite imaginary k terms that gave rise to
the Kronecker delta terms in Eq. (9) by finite values of |kx,y|.
This replacement occurs because the terms proportional to CN

in the diagonal elements of Eq. (1), and correspondingly the
eigenvalues of the Laplacian, will go to infinity when k has
infinite imaginary values. The corresponding eigenvector will
then take on a more complicated expression containing more
than a single nonzero component, unlike the eigenvector in
Eq. (9) which contains only a single nonzero component. The
admittance eigenvalue Ecorner of the isolated corner modes can
be estimated via perturbation theory [54] as

Ecorner = [2(C1 + C2 + 2CN) − (ω2L)−1] − 4CNC1C
−1
2 ,

(10)
which has the form of a linear relation of the corner
modes with the NNN hopping CN. (Note that we have set
the driving frequency to fr = 1

2π
(
√

2(C1 + C2 + 2CN )L)−1

so that the k-independent terms proportional to the 4 × 4
identity matrix in Eq. (1) cancel out to zero. One can
also set another frequency (i.e., the driving frequency)

at 1
2π

(√
2(C1 + C2 + 2CN − 4CNC1

C2
)L

)−1
, where the corner

modes will fall exactly on the zero-admittance line. To avoid
confusion to the reader, we now do not refer to this driving
frequency of fr = 1

2π
(
√

2(C1 + C2 + 2CN )L)−1 as “the reso-
nant frequency” when CN is finite but refer to it as simply
as “the driving frequency.)” Equation (2) can be expanded
in the vicinity of k → π + iλ to determine the inverse local-
ization length λ of the corner modes such that the relation
E2D = Ecorner is satisfied. Explicitly, for a given AC angular
frequency of ω, λ is given by

λ = cosh−1

(
−C1(C2

2 + 4C2CN − 8C2
N) + 2C2CN[ 1

ω2L − 2(C2 + 4CN)] + C2

√
	

8C2C2
N

)
, (11)

where 	 = 8C2
2C2

N + C2
1 (C2

2 + 8C2CN − 8C2
N) + 4C1C2CN[2

(C2 + 4CN) − 1
ω2L ]. We plot the logarithm of the inverse local-

ization length of the corner modes in Fig. 4(b) at the resonant
frequency (i.e., ω = ωr = 2π fr). As expected, the inverse
localization length of the type-II corner modes falls to zero
at CN = Ccritical

N , at which the admittance band gap vanishes
and the bulk admittance modes become mixed with the corner
modes [see Fig. 4(b)].

Note that, in our analytical derivations for Eqs. (5) to (10)
in Sec. II C, we have adopted a boundary condition where
the four nodes in the unit cell beyond the edge of the finite
system are both zero in the presence of next-nearest coupling.
Therefore, the corner modes can be expressed as a linear
combination of four terms with different inverse localization
length (ILL) if the coupling strengths in the x and y direc-
tions are different [65,66], as shown explicitly in Eq. (9) for
the CN = 0 and semi-infinite system case. Equation (9) also
shows that all of these four terms contain either the com-
mon finite decay length of ln(|C1/C2|) along both the x/y
directions and/or Kronecker-delta localizations at the edges.
Equation (10) gives the finite corresponding decay length
for finite CN in a semi-infinite system. We have numerically

decomposed the corner states for the finite system shown in
Fig. 2(c) into their component PBC eigenstates and found that
these states are dominated by only a single finite value of the
decay length.

D. Impedance spectra

In the previous section, we investigated how the admit-
tance spectra vary with the change in NNN hopping. In this
section, we evaluate the two-point impedance spectra of the
HOTP circuit in Fig. 1 with long-range interactions and show
that the spectra provide an accessible way to distinguish var-
ious corner mode configurations under different values of the
NNN coupling capacitances. The two-node impedance of a
finite electrical network can be evaluated using the Green’s
function method [39] as

Zpq = 1

iω

∑
j

ψ∗
j;pψ j;p + ψ∗

j;qψ j;q − ψ∗
j;pψ j;q − ψ∗

j;qψ j;p

E j

(12)

= (
JTE

−1
p,p + JTE

−1
q,q − JTE

−1
p,q − JTE

−1
q,p

)
, (13)
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where ψ j;n is the right eigenvector of the circuit Laplacian and
Ej its corresponding eigenvalue. JTE

−1
l,m is the (l, m)th element

of the inverse of the admittance matrix [39,44]. To connect
the impedance spectra to the evolution of the topological
corner modes, we calculate the impedance Z(x=1,y=1,A),(x′,y′,D)

between the A node of the unit cell at the lower left corner
and the D node of the unit cell at the arbitrary coordinates
(x, y). We plot the impedance spectra of a system with 20 unit
cells along the x and y directions under open boundary condi-
tions. Interestingly, the impedance distribution in the untilted
and undertilted cases closely follows the spatial distributions
of the eigenmodes with nearly zero admittance. As can be
seen in Fig. 5(a), very large impedance values appear in the
vicinity of one of the corners in the absence of long-range
hopping (CN = 0). The occurrence of these large impedance
values can be explained by considering Eq. (12) and Fig. 3(a).
Figure 3(a) shows that there exist nearly zero-admittance non-
trivial modes. These modes dominate the impedance value in
Eq. (12) because Zpq is inversely proportional to the eigenen-
ergies Ej . In contrast, a finite value of CN with a magnitude
smaller than Ccritical

N induces a tilt in the admittance dispersion.
As a result, most of the nontrivial modes shift to nonzero
admittance [see Fig. 3(b)], and the bulk admittance band gap
decreases. The impedance magnitude therefore falls sharply.
Although the maximum impedance still occurs at the same
corner, the two neighboring edges now also have significant
magnitudes of impedance relative to that at the corner [see
Fig. 5(b)].

Note that the impedance distributions follow that of the
nearly zero-admittance modes (rather than just corner modes)
in the type-I and type-II regimes of the system. This is be-
cause for the type-II regime [which is depicted in Fig. 3(b)],
the nearly zero-admittance modes consist of both the corner
mode as well as the edge mode. Both of these modes are in
the vicinity of the zero-admittance line and lie approximately
at the same distance from it [see Fig. 3(b)]. The corresponding
impedance measurement shown in Fig. 5(b), which would

pick out the nearly zero eigenmodes, would thus have substan-
tial contributions from both the corner and the edge modes.
This is unlike the type-I regime, where the corner mode is
the only eigenmode with close to zero admittance, while
the edge modes lie significantly further away from the zero-
admittance line [see Fig. 3(a)]. The corresponding impedance
measurement [see Fig. 5(a)] shows localization only at one
of the corners, indicating substantial contribution only from
the corner mode. In summary, the type-I regime (contribution
only from type-I corner mode) can be distinguished from that
of the type-II regime (admixture of type-II corner mode and
edge mode) by means of the impedance measurement.

Finally, when the magnitude of the NNN coupling is
increased beyond that of the critical value (i.e., |CN| �
|Ccritical

N |), the admittance band gap vanishes and the nontriv-
ial corner modes mix with the bulk modes. As a result, the
impedance spectra no longer exhibit corner localization but
are instead randomly distributed along both spatial directions
[see Figs. 5(c) and 5(d)].

E. Simulation with realistic components and experimental
proposal

In this section, we examine the type-II corner modes
by considering circuits with intrinsic resistances and real-
istic components via the LTspice electric circuit simulation
software. Although the LC components are treated as ideal
lossless circuits elements above, in realistic circuits, resis-
tances due to the components themselves and the wiring are
inevitable. To perform the circuit simulation, we used a 4-
by-4 unit cell circuit with four nodes in each unit cell, as
discussed above. We performed the simulation with 64 nodes,
which is sufficient to evaluate the replicability of the type-II
corner modes under realistic resistances. For the components
connecting each pair of nodes link, we picked Würth Elek-
tronik 885012208013 (1 µF ± 10%) for C2, Würth Elektronik
885012209002 (0.22 µF ± 10%) for CN and Würth Elek-
tronik 744025100 (10 µH ± 20%) for the common grounding

FIG. 4. Inverse localization characteristics of the type-II corner modes. (a) The admittance spectra of the TE circuit described in Eq. (1)
under OBC with 10 × 10 unit cells in the x and y directions, which are plotted as functions of CN with C1 = 1 mF, C2 = 2 mF. The thick
magenta line denotes the corner modes. (b) Logarithmic inverse localization length of the corner modes, which is plotted as a function of the
long-range hopping CN at resonant frequency of f = fr = 1

2π
(
√

2(C1 + C2 + 2CN )L)−1. Circuit parameters used: C1 = 1 mF, C2 = 2 mF. The
corner modes exponentially fall near CN ≈ Ccritical

N = C2
2
√

2
, where the vanishing of the admittance gap is accompanied by the mixing of the

corner and bulk admittance modes.
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FIG. 5. Impedance spectra of the circuit described by Eq. (1) under OBC in x and y directions for different values of CN. Note that each
pixel in the plot corresponds to a unit cell containing four nodes, and not to each individual node. (a) Impedance Z(x=1,y=1,A),(x′,y′,D) for the
higher-order TE lattice with NN interaction only (i.e. CN = 0). The large impedance localization at the corner is due to the presence of the
nearly zero-admittance corner modes. (b) Z(x=1,y=1,A),(x′,y′,D) for an undertilted higher-order TE system with |CN| < |CN|critical (i.e., CN = 0.15
mF). The impedance is localized in the vicinity of one corner and neighboring edges. (c) and (d) Z(x=1,y=1,A),(x′,y′,D) for CN = Ccritical

N (i.e.,
CN = 0.35355 mF) in (c) and CN > Ccritical

N (i.e., CN = 0.45 mF) for (d). Note that the large impedance is no longer localized to a corner node
because of the mixing between the bulk and corner modes. We consider a system size of 20 × 20 unit cells. The resonant frequency is set at
f = fr = 1

2π
(
√

2(C1 + C2 + 2CN )L)−1. Common circuit parameters used: C1 = 0.5 mF, C2 = 1 mF, and L = 100 µH.

inductors attached to every node to the ground from the LT-
spice database. The tolerance values are sufficient to test the
topological modes under notable variations. These specific
components were chosen because of their low series resis-
tances and their availability in the market. Theoretically, the
effect of the series resistances can be modeled by replacing the
couplings in the circuit Laplacian [Eq. (1)] with (iωC)−1 →
(iωC + RC )−1 for capacitors and iωL → iωL + RL for induc-
tors. According to the data sheet of the components chosen,
the series resistances of the components are <10 m
, which
is much less than the theoretically calculated resistance values
that may affect the topological modes. Because the admit-
tance profile of the circuit under OBC along both directions
is obtained by varying the intracell coupling capacitors C1

in Fig. 3, we suggest the use of variable capacitors for the
experimental realizations instead of using different circuits
setups with different C1 values. Using variable capacitors also
reduces the risk of the variations that may possibly come with
different components.

For the circuit simulation, we consider the C1 couplings
as variable capacitors and set their series resistance values
as that of the C2 capacitors (∼6.5 m
 Würth Elektronik
885012208013). The circuit admittance spectrum can be ob-
tained through the circuit Laplacian, which relates the voltage
response to the injected currents, i.e., I = JTE · V where I and
V are the matrices of the injected current and voltages at the
nodes, respectively. Therefore, to obtain the circuit Laplacian
through the simulation, we follow these steps: (i) We inject
current with a constant magnitude at a circuit node and export
the voltage responses of every node in the entire circuit, (ii)
The exported voltage values are inserted to the corresponding
matrix column of the voltage matrix. (iii) We then repeat this
process by injecting current into a different node of the circuit
in each iteration to build up the current and voltage matrices
column by column until we obtain the full voltage matrix.
(iv) The inverse of the voltage matrix gives us the circuit
Laplacian (i.e., J = V−1 · I). (v) The eigenvalue spectrum
of the Laplacian obtained through the simulation yields the
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FIG. 6. Simulated admittance spectrum and the square of the voltage spatial distribution of type-II corner modes with 4 × 4 unit cells.
(a) The admittance spectrum in the presence of the NNN couplings (CN ) was obtained using the LTspice electric circuit simulation software. For
the simulation, the chosen component values and their documentation labels are C2 = 1 µF (Würth Elektronik 885012208013), CN = 0.22 µF
(Würth Elektronik 885012209002), and L = 10 µH (Würth Elektronik 744025100). The driving AC frequency is set at the resonant frequency
of fr = 35.588 kHz. (b) The square magnitude of the voltage spatial distribution at C1 = 0.3 µF. Even though the parasitic effects temper the
magnitude of the voltage profile, the corner modes still efficaciously survive.

admittance spectrum. After all these steps, we observe that
the simulated admittance spectrum [Fig. 6(a)] of our circuit
depicted in Fig. 1(a) is in agreement with the theoretically cal-
culated spectrum [Fig. 3(b)]. Our simulation therefore shows
that the type-II corner modes still survive despite the presence
of parasitic effects.

Beyond the simulations, experimental setups require more
careful attention to realise such topological states. For exam-
ple, parasitic effects arise not only because of the components
themselves but can also be due to contact resistance and
weldings. Besides the parasitic effects, the presence of ac-
tive circuit elements such as operational amplifiers (OpAmps)
may break the circuit because of energy pumping or sinking
by the OpAmps. To protect the circuit from such effects, it is
advisable to ground every node with a resistor that consumes
sufficient energy but damps the energy pumping from the
ground. The use of high-speed, high-precision OpAmps such
as the LT1056 also ensures the circuit reaches stability quickly
without allowing any voltage accumulation around defects.
By considering such effects, the topological modes that our
circuit hosts can be realizable in realistic circuits. Further-
more, the spatial distribution of the square of the magnitude
of node voltage at C1 = 0.3 µF is plotted in Fig. 6(b), which
shows the localization of corner modes at the corner nodes
and the significant decrease in the voltage density at other
nodes along the edges. Interestingly, even though the parasitic
effects temper the magnitude of the voltage profile, the corner
modes still dramatically survive [see Fig. 6(b)], indicating
the robustness of the corner modes in our TE model against
perturbations and system disorders.

III. CONCLUSION

In summary, we characterized higher-order topological
phases (HOTPs) based on a topolectrical (TE) circuit model.
In particular, we analyzed the emergence of a type-II corner
mode in the presence of long-range interactions which are

realized in TE circuits by the introduction of next-nearest
neighbor (NNN) coupling capacitances. Unlike the conven-
tional type-I corner modes that are localized at the corner
sublattice nodes with very large inverse decay lengths in the
absence of long-range coupling, the type-II corner modes that
emerge in the presence of long-range coupling, which breaks
the chiral symmetry of the system, are localized on the corner
nodes with a finite inverse decay length (e.g., much slower
exponential decay). This results in a spread of the eigenstates
density distribution towards the edges. The NNN coupling
also induces a tilt in the admittance dispersion of the circuit,
and beyond a critical value results in a transition to the over-
tilted Dirac dispersion. This in turn leads to a hybridization of
the bulk and corner modes, resulting in the disappearance of
distinct corner modes. Furthermore, we numerically obtained
the impedance between the lower-left corner of the system and
arbitrary unit cells using the Green’s function method. The
impedance spectra of the different corner mode configurations
exhibit different characteristics. More specifically, type-I and
type-II corner modes can be distinguished by the corner and
edgelike spatial distribution of their impedance, respectively.
This impedance behavior reflects the zero-admittance non-
trivial modes and tilted nonzero corner modes, respectively.
We demonstrate the emergence of type-II topological corner
modes based on the TE circuit framework, which unlike its
condensed matter counterpart, allows ready implementation
and fine tuning of the coupling strengths. Due to this flexi-
bility, TE circuits provide an ideal platform to demonstrate
unusual features of higher-order topological phases arising
from long-range interactions, and to engineer and modulate
their robust topological corner modes.
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