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Theoretical analysis of resonant inelastic x-ray scattering spectra of Ca2RuO4
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We calculate the resonant inelastic x-ray scattering (RIXS) spectra of a 4d-electron Mott insulator Ca2RuO4

that exhibits spin-orbit entangled magnetic ordering. Considering the Ru L3-edge RIXS, we identify four differ-
ent types of excitations: magnetic dipolar transitions, quadrupolar transitions changing total angular momentum
by �J = 2, spin-state transitions with �S = 1, and t2g → eg orbital transitions across the crystal-field and
Hund’s coupling derived levels. We provide analytical expressions for the magnetic transitions and the �J = 2
transitions in the tetragonal compression limit, which are generally applicable to other compounds with t4

2g

configurations in a square lattice. Intriguingly, we find that upon tetragonal compression the dipole-forbidden
�J = 2 transitions acquire large spectral weights with pronounced polarization dependencies, which are con-
sistent with the experimental observations. Our numerical simulations show that this is due to a constructive
interference between dipolar and quadrupolar scattering channels.

DOI: 10.1103/PhysRevB.106.245127

I. INTRODUCTION

Materials with 4d valence electrons may exhibit exotic
magnetism that arises from the competition of spin-orbit
coupling and crystalline electric fields [1–5]. Single-layered
perovskite Ca2RuO4 is reported to undergo a series of phase
transitions upon cooling; a metal-to-insulator transition at
357 K [6–9], an orbital ordering at 260 K [10,11], and an
antiferromagnetic ordering at 110 K [6,7,10,11]. This may
suggest that charge, orbital, and spin are identifiable as sepa-
rate degrees of freedom. However, the reduced static magnetic
moment of ∼1.3 μB [6] and the observation of spin-orbit en-
tangled excitations [4,5,12] suggest strong coupling between
these degrees of freedom.

The Ru4+ ion nominally has the low-spin t4
2g configuration,

whose low-energy manifold is spanned by the states of or-
bital L = 1 and spin S = 1, but a usual assumption has been
that the orbital moment is completely quenched by tetragonal
crystalline electric fields (CEF). This would lead to pure spin
S = 1 moment with 2 μB. However, the reduced moment size
suggests a substantial orbital moment that aligns antiparallel
to the spin. It is, however, also incompatible with the strong
spin-orbit coupling (SOC) limit that favors nonmagnetic ions
with pure J = 0 singlet ground state. In the intermediate
regime, where CEF and SOC are of comparable strengths and
compete with each other, excitonic magnetism emerges, char-
acterized by soft magnetic moments and their longitudinal
fluctuations [3]. This longitudinal excitation is also known as
“Higgs” mode, and has been observed using inelastic neutron
scattering [4] and Raman spectroscopy [5].

*bjkim6@postech.ac.kr

Resonant inelastic x-ray scattering (RIXS) is a very pow-
erful tool for investigating electronic and magnetic excitations
with its wide sensitivity to charge, spin, and orbital [12,13],
which can be differentiated based on their different dependen-
cies on momentum transfer, x-ray polarization, and incident
photon energy [14–17]. For example, in the RIXS study of
Kitaev-spin-liquid candidate RuCl3 [18], both spin and elec-
tron interaction parameters were extracted self-consistently
from the experiment. Such comprehensive information about
Ca2RuO4 is essential for a unified understanding of its rich
array of exotic phenomena, including current-induced strong
diamagnetism [19–23], orbital ordering [10,11], high har-
monic generation [24], and spin nematicity [3,25].

Here, we develop a comprehensive theory describing the
RIXS spectra of Ca2RuO4 using the general RIXS operators
introduced in Ref. [26]. In the following Sec. II, we discuss
the multiplet level structure of the t4

2g ions, and classify pos-
sible transitions between the different spin-orbital states that
contribute to the RIXS spectra. Next, each class of excita-
tions is analyzed in detail, in the order of increasing energy:
magnetic transitions (Sec. III), �J = 2 transitions (Sec. IV),
and spin-state transitions (Sec. V). We provide analytical so-
lutions of the magnetic transitions in terms of an effective
(“pseudospin”) operator S̃ = 1, which describes the effec-
tive low-energy states in the tetragonal compression limit. In
line with recent attempts to analyze the magnetic excitations
using various approaches, such as spin-orbit exciton model
[27] and density functional theory [28], we describe in de-
tail the derivation of the pseudospin correlation functions, as
well as their application in the RIXS spectra calculations.
The polarization dependence of the �J = 2 transitions is
also investigated in the limit of compressive tetragonal field.
The analytical solutions are obtained using the single-ion
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FIG. 1. (a) Evolution of the spin-orbital multiplet structure of
the t2g

4 electronic configuration upon Coulomb interactions JH , spin-
orbit coupling ξ , and tetragonal distortion �. Hund’s coupling JH =
0.336 eV and ξ = 0.13 eV are adopted from Ref. [12]. The multiplets
with different |S, L〉 quantum numbers are represented by different
colors. (b) A magnified view of the shaded area in (a). Compressive
distortion (� > 0) brings the |J = 1, Jz = ±1〉 doublet level close to
the |J = 0〉 ground state, comprising a pseudospin S̃ = 1 model.

approximation (Sec. IV), which is supported by the obser-
vation that the excitations are nearly dispersionless [12]. In
Sec. V, the spin-state transitions and the cubic-crystal-field
transitions are numerically calculated using the single-ion
approximation. We present the polarization dependence of the
overall spectra, which can be useful in interpretation of future
RIXS studies of Ca2RuO4 and other transition-metal com-
pounds of low-spin d4 ions, such as Os4+, Ir5+, etc. Section VI
summarizes the main results, and the Appendix specifies the
RIXS scattering geometry considered in this study.

II. THE MULTIPLET STRUCTURE

Figure 1 shows the t4
2g multiplet structure as a function of

tetragonal splitting (�, in units ξ = 0.13 eV). The Coulomb
interaction is parametrized in terms of the Racah parameters
B and C [29], and we assume Hund’s coupling within t2g

orbital sector JH = 3B + C and C/B = 4 [30]. Other relevant
interactions read as follows:

Hso = ξ
∑

i

�li · �si, (1)

Hcub = 10Dq
[

3
5 neg − 2

5 nt2g

]
, (2)

Htet = �

3
(nxz + nyz − 2nxy) + �e

2
(nz2 − nx2−y2 ). (3)

Equations (1) to (3) denote SOC, cubic and tetrago-
nal CEFs, respectively. The coupling constants are effective
model parameters typically smaller than in free ions, due to
the p−d covalency effects in a solid [31]. The cubic field
10Dq is assumed to be large enough, allowing the analysis
of the energy levels in Fig. 1 to be confined to the t4

2g config-
uration, neglecting a possible small admixture of high-energy
t3
2geg states.

First, the Coulomb interactions (JH ) divide the fifteen states
of t4

2g configuration into three groups of different spin S and or-

bital L quantum numbers. Following the Hund’s rules, ‖S = 1,
L = 1〉 multiplet of the largest spin number (red) forms the
low-energy manifold, from which ‖S = 0, L= 2〉 multiplet of
the largest orbital number (blue) and ‖S = 0, L = 0〉 singlet
(gray) are separated by ∼2JH and ∼5JH , respectively. The
spin quantum number in these excited states (S = 0) is dif-
ferent from that in the lowest multiplet (S = 1), and thus, the
transitions between them are referred to as spin-state transi-
tions (S = 1 → 0).

Second, when SOC (ξ ) is introduced, the ‖S, L〉 multi-
plets are further split into |J = L + S〉 basis. In Fig. 1(b), the
‖S = 1, L = 1〉 multiplet is divided into |J = 0〉, |J = 1〉, and
|J = 2〉 states that are located at 0, ∼ 1

2ξ , and ∼ 3
2ξ , respec-

tively. We note that they are slightly shifted upwards in the
figure as the interaction parameters JH and ξ deviate from the
LS Russel-Saunders coupling limit of JH/ξ → ∞.

Finally, when compressive tetragonal CEF (� > 0) is in-
troduced, the |J = 1〉 triplet splits into |J = 1, Jz = 0〉 singlet
and |J = 1, Jz = ±1〉 doublet. The singlet approaches |J = 2〉
levels upon the compression, comprising a group of excited
states at ∼ 1

2 (3ξ + �), which we refer to as “J = 2 transi-
tions” because they mostly consist of |J = 2〉 levels. On the
other hand, the doublet |J = 1, Jz = ±1〉 is brought close to
the ground state |J = 0〉, and those three levels compose a
low-energy pseudospin S̃ = 1 manifold. The collective exci-
tations within the pseudospin manifold are dipolar active, and
thus can be understood as magnetic fluctuations. We also note
that in the limit of � → ∞, the orbital degrees of freedom
are completely quenched out, and therefore, the pseudospin
converges to a pure spin S = 1 triplet.

III. MAGNETIC TRANSITIONS

Magnetism in Ca2RuO4, where the tetragonal field � and
SOC are of a similar order, has been described in terms
of pseudospin S̃ = 1 [4,5]. We start by transforming the
pseudospin operators into the magnetic bosons previously
introduced in Ref. [3]. After a few simplifications, the Hamil-
tonian becomes diagonalized, leading to analytic forms of
the boson correlation functions. They are then applied onto
the general RIXS operators derived in Ref. [26], which gives
analytic expressions for the RIXS spectra of the magnetic
excitations in Ca2RuO4.

More specifically, the pseudospin magnetism in t4
2g system

can be described in terms of s and T = (Ta, Tb, Tz ) hard-core
bosons [3], which correspond to the occupancy of |J = 0〉
singlet and of |J = 1〉 triplet states, respectively. The s and
T operators satisfy the bosonic commutation rules, and their
hard-core nature is implemented via the single occupancy
constraint ns + nT = 1 [32]. The latter is essential to repro-
duce the correct algebra of the operators acting within the
physical J multiplet states. The low-energy Hilbert space is
further reduced upon strong compressive CEF (� > 0), which
largely increases the energy cost of |J = 1, Jz = 0〉 level (i.e.,
Tz boson) and thus makes its contribution negligible. The mag-
netic moments then mostly arise from s, Ta, and Tb bosons,
which can be related to the pseudospin operators S̃ = 1 as
described below.

Under the constraint ns + na + nb = 1, the pseudospin op-
erators obeying the commutation relation [S̃i, S̃ j] = iεi jk S̃k are
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expressed via s and Tα operators as follows:

S̃a = −i(s†Ta − T †
a s),

S̃b = −i(s†Tb − T †
b s),

S̃c = −i(T †
a Tb − T †

b Ta). (4)

One can also introduce real fields u and v (i.e., T = u +
iv) and gauge out the phase factor of the s boson, converting
it into a scalar number. This results in the relations S̃a/b =
2s va/b and S̃c = 2(uavb − vaub). The pseudospin interactions
are described by adopting the phenomenological Hamiltonian
introduced and quantified in Ref. [4],

H = J
∑
〈i j〉

(S̃i · S̃ j − αS̃icS̃ jc)

+ E
∑

i

S̃2
ic + ε

2

∑
i

(
S̃2

ia − S̃2
ib

)
∓ A

∑
〈i j〉

(S̃iaS̃ jb + S̃ibS̃ ja). (5)

Here, J denotes nearest-neighbor isotropic exchange, α

is XY-type exchange anisotropy, E and ε are tetragonal and
orthorhombic single-ion anisotropies, respectively [33], and
A is bond-directional pseudodipolar interaction whose sign
depends on the bond. When they are all positive and the A term
is small, the antiferromagnetic order with magnetic moments
oriented along b axis as in Ca2RuO4 is stabilized. Expressed
in terms of s, vα , and uα , the Hamiltonian Eq. (5) takes the
following form:

H = 4J
∑
〈i j〉

sis j

[
viav ja + vibv jb ∓ A

J
(viav jb + vibv ja)

]

+ (1 − α)(u × v)ic(u × v) jc+
∑

i

(
E + ε

2

)(
u2

ia + v2
ia

)

+
(

E − ε

2

)(
u2

ib + v2
ib

)
. (6)

In the magnetically ordered state with 〈S̃b〉 = 〈2s vb〉 
= 0,
vb boson acquires a finite static value 〈vib〉 = √

ρ eiQ·Ri , where
ρ is condensate density and Q = (π , π ) is the ordering vector.
We then separate the vb boson field into static and fluctuating
parts, vib = √

ρ eiQ·Ri + ri, where ri represents longitudinal
fluctuations of the magnetic order parameter. Using the har-
monic approximation and the hard-core constraint s2 + u2 +
v2 = 1, we find

H � 4J
∑
〈i j〉

(1 − ρ)viav ja − ρ(1 − α)uiau ja

+ (1 − 2ρ)2

1 − ρ
rir j ∓ A

J
(1 − 2ρ)(viar j + riv ja)

+
∑

i

(
E + ε

2
+ W ρ

)(
u2

ia + v2
ia

)

+
(

E − ε

2
+ W ρ

)(
u2

ib + r2
i

) + W ρ

(
2 − ρ

1 − ρ

)
r2

i . (7)

Here, W = 8J and the mean-field order parameter ρ is

ρ = 1

2

(
1 − 1

τ

)
, (8)

where τ = W/(E − ε/2). The pseudodipolar interaction A
[the fourth term in Eq. (7)] couples the longitudinal mode r
to the transversal magnons v; in the following, we neglect this
term, which is rather weak in Ca2RuO4 (A/W � 0.05) [4].
The Hamiltonian then becomes quadratic and diagonal, and
the dispersion relations of the longitudinal r mode 	q and of
the transverse (u, v) modes ωq are obtained through Fourier
transformations,

	q = √
AqBq, where

Aq = W
2τ

τ + 1

(
1 + γq

τ 2

)
,

Bq = W
τ + 1

2τ
, (9)

and

ωq = √
aqbq, where

aq = W
τ + 1

2τ
(1 + γq) + ε,

bq = W
τ + 1

2τ

[
1 − τ − 1

τ + 1
(1 − α)γq

]
+ ε. (10)

Here, γq = (cos qx + cos qy)/2 is a square lattice geomet-
rical factor. The results (9) and (10) are consistent with the
equations used in the previous experimental study [4] on in-
elastic neutron scattering in Ca2RuO4. The spectral functions
of the r, ub, va, and ua fields are

1

π
〈rr〉′′q = 1

4

√
Bq/Aq δ(ω − 	q),

1

π
〈ubub〉′′q = 1

4

√
Aq/Bq δ(ω − 	q),

1

π
〈vava〉′′q = 1

4

√
bq/aq δ(ω − ωq),

1

π
〈uaua〉′′q = 1

4

√
aq/bq δ(ω − ωq). (11)

Equations (9)–(11) can be used to calculate the correlation
functions of various physical observables in the magnetically
ordered state. The relations of the pseudospin operators S̃ to
u, v fields are obtained by expanding Eq. (4) up to a linear
order. For instance, pseudospin dipolar S̃α and quadrupolar
S̃2

a − S̃2
b moment operators are related to transverse (u, v) and

longitudinal r fluctuations as follows:

S̃a = 2
√

1 − ρ · va + · · · ,

S̃b = 2
√

ρ(1 − ρ) eiQ·R + 2
1 − 2ρ√

1 − ρ
· r + · · · ,

S̃c = 2
√

ρ eiQ·R · ua + · · · ,

S̃2
a − S̃2

b = −ρ − 2
√

ρ eiQ·R · r + · · · , (12)

where dots (· · · ) stand for two-magnon (i.e., quadratic in
u and v fields) contributions. We note that the pseudospin
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operator S̃b parallel to the magnetic moment mostly cou-
ples with the longitudinal mode r, while the operators
S̃a and S̃c perpendicular to the ordered moments cou-
ple with the transverse modes u and v. Their correlation
functions can thus isolate the longitudinal mode from the
transverse modes depending on the pseudospin directions
determined by a proper choice of the scattering geometry,
as demonstrated by polarization-dependent RIXS studies in
Refs. [14,34].

Now, we utilize the results obtained above to calculate
the RIXS spectra of Ca2RuO4, focusing on pseudospin S̃ = 1
sector first. To this end, we follow a formalism of the pre-
vious study [26] describing the RIXS operators in terms of
pseudospins S̃ = 1. Specifically, we adopt Eqs. (30) and (31)
of Ref. [26], and, using the above Eq. (12), express them in
terms of the bosonic excitations in magnetically ordered state.
Keeping only terms linear in longitudinal r and transversal u,
v magnon excitations, we obtain

RQ = A · √
ρ eiQ·R · r + B · 4

√
ρ(1 − ρ) eiQ·R · va

+ C · 4ρ
√

1 − ρ · ua + · · · , (13)

RM = cxyPb · 1 − 2ρ√
1 − ρ

· r + cxyPa ·
√

1 − ρ · va

+ czPc · √
ρ eiQ·R · ua + · · · . (14)

Here, the polarization factors are

A = −bxy(εaε
′
a − εbε

′
b),

B = −bxy(εaε
′
b + εbε

′
a),

C = bz(εbε
′
c + εcε

′
b),

P = (ε × ε′). (15)

The coefficients

cxy = −
(

2 cos φ0 + 1√
2

sin φ0

)
(cos φ1 + sin φ1),

cz = bxy = −2 sin φ1 (cos φ1 − sin φ1),

bz = 1√
2

sin φ0 (cos φ1 + sin φ1) − 2 cos φ0 sin φ1, (16)

are determined by tetragonal field � and SOC parame-
ter ξ through tan φ0 = (

√
9 − 4δ + 4δ2 + 1 − 2δ)/2

√
2 and

tan φ1 = 1/(δ + √
1 + δ2), where δ = �/ξ .

RQ (13) and RM (14) represent contributions to the RIXS
operator from magnetic quadrupolar and dipolar channels, re-
spectively. Total RIXS operator reads as R = RQ + i RM [26],
and the magnetic RIXS spectra are given by

I (ω) ∝ 〈R†R〉′′q = 〈R†
QRQ〉′′q + 〈R†

MRM〉′′q. (17)

We note that total RIXS intensity in Eq. (17) could be
separated into quadrupolar and dipolar contributions because
they address magnetic excitations at different momentum
transfer—for example, when the dipolar operator RM has
access to the longitudinal mode at q, the quadrupolar oper-
ator RQ excites the same mode at q + Q. In the following,
however, we will show that this is not the case in general,

and the quadrupolar and dipolar channels can interfere for
J = 2 transitions, leading to considerable influences on the
spectra.

Using Eqs. (13) and (14), spectral functions 〈R†
QRQ〉′′q

and 〈R†
MRM〉′′q are expressed via the bosonic correlators of

Eq. (11). Collecting all the terms, we arrive at the following
results:

〈R†
QRQ〉′′q = A2

4
ρ(1 − ρ)

τ√
τ 2 − γq

· δ(ω − 	q+Q)

+ 4B2 · ρ(1 − ρ)2

√
bq+Q

aq+Q
· δ(ω − ωq+Q)

+ 4C2 · ρ2(1 − ρ)
√

aq

bq
· δ(ω − ωq), (18)

and

〈R†
MRM〉′′q = 1

4
c2

xyP2
b · 1

τ
√

τ 2 + γq

· δ(ω − 	q)

+ 1

4
c2

xyP2
a · (1 − ρ)

√
bq

aq
· δ(ω − ωq)

+ 1

4
c2

z P2
c · ρ

√
aq+Q

bq+Q
· δ(ω − ωq+Q). (19)

Equations (18) and (19) quantify the RIXS spectra of
Ca2RuO4 at low energies ω � �, ξ, J . The spectra comprise
magnetic amplitude (Higgs) mode oscillations with energy
	q, and magnons with energy ωq; the corresponding spectral
weights are determined by microscopic parameters �, ξ, J ,
etc., and by the polarization factors that can be controlled
through the scattering geometry.

IV. J = 2 TRANSITIONS

We now turn to J = 2 transitions, the excitations from the
ground state to a group of ascending levels seen in Fig. 1(b).
As located above the S̃ = 1 levels, they cannot be described
by the pseudospin operators, but by the general RIXS opera-
tors derived in Ref. [26]. Multiplying the operators with the
polarization vectors ε′

out and εin given in Eqs. (A2) and (A3)
of the Appendix, we obtain polarization dependence of the
J = 2 transitions as

R = RQ + iRM

= 1

2
ε′

out ·

⎛
⎜⎝

2Qxx −iNz − Qxy iNy − Qzx

iNz − Qxy 2Qyy −iNx − Qyz

−iNy − Qzx iNx − Qyz 2Qzz

⎞
⎟⎠ · εin,

(20)

where Qαβ and N are components of the quadrupolar and
dipolar RIXS operators, respectively (in this section, we use
the same approximations as in the previous study [26]—that
is, the LS coupling scheme and the single-ion approximation.
We also note that the Qαβ operators include scalar compo-
nent although ineffective in our inelastic scattering geometry,
where ε′

out and εin are perpendicular to one another as shown
in the Appendix). The explicit forms of Qαβ and N have been
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TABLE I. Dipolar and quadrupolar RIXS operator matrix ele-
ments in the cubic limit � = 0. sθ and cθ are abbreviations for sin θ

and cos θ , respectively, where θ is the incident angle. The initial state
is the |J = 0〉 singlet, and the final states are indicated at the first
column in |J, Jz〉 basis.

|J = 0〉 to RQ[πσ ′] RM [πσ ′] RQ[ππ ′] RM [ππ ′] Intensity

|1, 0〉 −
√

6
2 sθ

3
2 s2

θ

|2, ±2〉 ∓ i
2
√

3
sθ − 1

4
√

3
s2θ

1
12 s2

θ (1 + c2
θ )

|2, ±1〉 ± 1
2
√

3
cθ ± 1

2
√

3
c2θ

1
12 (c2

θ + c2
2θ )

|2, 0〉 1
2
√

2
s2θ

1
8 s2

2θ

given in Table I of Ref. [26] in terms of L and S operators.
Therefore, for calculations of the matrix elements of Qαβ and
N operators between different J-levels, it is convenient to
express |J , Jz〉 wave functions in ‖S = 1, L = 1; Sz, Lz〉 basis.
We obtain the following relations:

|J = 0, Jz = 0〉 = sin φ0√
2

(‖1,−1〉 + ‖ − 1, 1〉)

− cos φ0‖0, 0〉, (21)

|J = 1, Jz = ±1〉 = ± cos φ1‖ ± 1, 0〉 ∓ sin φ1‖0,±1〉,

|J = 1, Jz = 0〉 = 1√
2

(‖1,−1〉 − ‖ − 1, 1〉), (22)

|J = 2, Jz = ±2〉 = ‖ ± 1,±1〉,
|J = 2, Jz = ±1〉 = sin φ1‖ ± 1, 0〉 + cos φ1‖0,±1〉,

|J = 2, Jz = 0〉 = cos φ0√
2

(‖1,−1〉 + ‖ − 1, 1〉)

+ sin φ0‖0, 0〉, (23)

where S = 1, L = 1 quantum numbers are implied on the
right-hand side wavefunctions ‖Sz, Lz〉. The parameters φ0

and φ1 are defined as after Eq. (16), and they depend on
δ = �/ξ . For a given �/ξ ratio, the RIXS operator in Eq. (20)
depends only on the scattering geometry and thus is a func-
tion of single variable θ , the incidence angle of x-ray (see
Appendix for details). The resulting RIXS matrix elements
for transitions to high-energy |J, Jz〉 levels are summarized
in Tables I and II for the cubic limit (�/ξ → 0) and for the

TABLE II. Dipolar and quadrupolar RIXS operator matrix ele-
ments in the strong compressive tetragonal field limit (�/ξ → ∞).
sθ and cθ are abbreviations for sin θ and cos θ , respectively. The
initial state is the |J = 0〉 singlet, and the final states are indicated
at the first column in |J, Jz〉 basis.

|J=0〉 to RQ[πσ ′] RM [πσ ′] RQ[ππ ′] RM [ππ ′] Intensity

|1, 0〉 1√
2
sθ

1
2 s2

θ

|2, ±2〉 ± i
2 sθ

1
4 s2θ

1
4 s2

θ (1 + c2
θ )

|2, ±1〉 − i√
2
cθ − 1√

2
cθ ± 1√

2
c2θ ∓ i√

2
2c2

θ (1 + c2
θ )

|2, 0〉 − i
2 sθ

1
4 s2θ

1
4 s2

θ (1 + c2
θ )

FIG. 2. Polarization dependence of the J = 2 transitions.
(a) RIXS intensity of each component in the J = 2 transitions. The
compressive tetragonal limit and the cubic limit are assumed in
the upper and lower panels, respectively. The transitions associated
with the |J = 2, Jz = ±1〉 levels (orange) exhibit large amplification
and pronounced polarization dependence under the tetragonal com-
pression. (b) Total intensity of the J = 2 transitions calculated for
intermediate CEF values. The |J = 2, Jz = ±1〉 transitions dominate
other transitions and decide the overall polarization dependence at
�/ξ � 1.

compressive tetragonal limit (�/ξ → ∞), respectively, and
they are represented in Fig. 2(a).

Most prominently, the RIXS intensity associated with the
transitions to |J = 2, Jz = ±1〉 is largely amplified by the
tetragonal compression. They also exhibit a pronounced po-
larization dependence, leading to a huge spectral change upon
increasing θ , which is also observed in experiments [12,13].
This enhancement is so large that it decides the polarization
dependence of the entire J = 2 transitions, even at �/ξ ∼ 1
[see Fig. 2(b)]. It can be also seen by the RIXS operator matrix
elements in Table II. Unlike any other transition in Tables I
and II, the transition to |Jz = ±1〉 states at the compressive
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limit is allowed by all four RIXS channels [see the third row
in Table II]. The dipolar and quadrupolar operators are then
constructively added at θ = 0◦ while they cancel each other at
θ = 90◦, leading to a drastic intensity modulation, which is a
hallmark of interference phenomena.

The behavior exhibited by the |J = 2, Jz = ±1〉 transition
can be also accounted for by the wavefunction modification
upon tetragonal fields. In Eqs. (22) and (23), only the wave-
functions with Jz = ±1 are coupled to each other via φ1

parameter. At the cubic limit (sin φ1 = cos φ1), they are made
of equal amount of ‖Sz = ±1〉 and ‖Lz = ±1〉 wavefunc-
tions, consistent with the fact that they are eigenstates of L · S
and J2 operators. This spherical symmetry renders the RIXS
channels to obey the selection rules; quadrupolar channels
have access to only |J = 2〉 levels whereas dipolar channels
are confined to |J = 1〉 levels. Under a tetragonal distortion,
however, the symmetry is broken (i.e., sin φ1 
= cos φ1), and
|J = 2〉 levels are intermixed with |J = 1〉 levels due to the
orbital quenching. This enables both dipolar and quadrupolar
channels to reach out to the same states, leading to their
superposition and the interference discussed above.

V. SPIN-STATE TRANSITIONS AND t2g − eg

CRYSTAL-FIELD EXCITATIONS

The excitations beyond LS coupling scheme (i.e., beyond
‖S = 1, L = 1〉 multiplet) involve quantum numbers other
than S, L, and J for their analytic expressions, which makes
derivation of the effective RIXS operators to be challeng-
ing and unpractical. Therefore, here we calculate the RIXS
spectra covering full energy range by employing numerical
methods. We start with a general RIXS operator, which con-
sists of two consecutive dipole transitions,

R =
∑
α,β

Rαβε′
αεβ,

Rαβ ∝
∑

{dn+1 p5}
〈dn′|P+

α |dn+1 p5〉〈dn+1 p5|Pβ |dn〉, (24)

where P is a dipole operator that excites a core p electron to a
valence d orbital. |dn〉, |dn′〉, and |dn+1 p5〉 are multi-electron
wavefunctions involving t3

2geg as well as t4
2g configurations,

and they are obtained by diagonalizing the Hamiltonian with
the single-ion approximation that includes the microscopic
interactions introduced in Sec. II. As in the previous sec-
tions, the fast-collision approximation [35–39] is implied in
Eq. (24). This approximation assumes that the dynamics of
the intermediate states |dn+1 p5〉 is much faster than that of
the low-energy spin and orbital excitations in the final states,
making thereby the RIXS operators to be virtually indepen-
dent of the incident photon energy. Being well justified for the
transitions within the low-energy J states considered above,
this approach becomes only qualitative for the high-energy
t2g → eg orbital transitions, whose intensities may be affected
by various corrections to the fast-collision approximation
[40].

Influences of the condensed magnetic moments are inves-
tigated by replacing the nonmagnetic ground state |0, 0〉 with

a magnetic state |G〉 whose moment is aligned along either a
or b axis,

〈Ma〉 
= 0 →

|G〉 = cos ψ |0, 0〉 − sin ψ√
2

(e−i π
4 |1, 1〉 − ei π

4 |1,−1〉), (25)

〈Mb〉 
= 0 →

|G〉 = cos ψ |0, 0〉 − sin ψ√
2

(ei π
4 |1, 1〉 − e−i π

4 |1,−1〉), (26)

where the wavefunctions are given in the |J, Jz〉 basis [see
Eqs. (21) and (22)], and ψ represents the condensate density
ρ as cos ψ = √

1 − ρ and sin ψ = √
ρ [3]. By averaging

spectra obtained from Eqs. (25) and (26), we consider the
presence of twin magnetic domains in the crystal. For the
collective magnetic transitions, we use the analytical results
presented in Sec. III with the pseudospin Hamiltonian param-
eters J = 5.8 meV, E = 27 meV, α = 0.15, and ε = 4.0 meV
[4], leading to condensate density ρ � 0.23 (i.e., ψ � 28.5◦).
The other transitions are calculated numerically, using mi-
croscopic interaction parameters ξ � 0.13 eV, � � 0.254 eV,
10Dq � 3.1 eV, and JH � 0.34 eV adopted from Ref. [12]
(we keep the same notation JH=3B + C for describing the
Coulomb interactions, although the Kanamori model shown
in Appendix B of Ref. [12] is valid only for t2g electrons).
Tetragonal splitting �e of the eg orbitals, which point to the
ligand ions, is expected to be larger than that for t2g states;
we assume �e = 2�. A Lorentzian broadening of 140 meV
is used for the states below 1.8 eV, and based on experi-
mental observations [12], a larger broadening of 600 meV is
used for the high-energy states above 1.8 eV, which might be
ascribed to interactions with underneath particle-hole contin-
uum and/or strong Jahn-Teller coupling of eg electrons to the
lattice. Quantitative effects of these couplings on the RIXS
spectra, as well as going beyond the fast-collision approach
for these high-energy transitions, remain an interesting prob-
lem for future study.

The resulting RIXS spectra including both magnetic and
high-energy excitations are plotted on a unified scale in Fig. 3.
The main spectral features are indicated at the bottom panels,
and they are labeled as A or B depending on whether they
mostly arise from t4

2g or t3
2geg configurations. The low-energy

A0 features correspond to the magnetic transitions including
the magnons and the Higgs mode. The Higgs mode (pur-
ple stick) accounts for appreciable RIXS spectral weight,
although it requires high-energy resolution to be isolated from
the magnons. The A1 feature includes the J = 2 transitions,
which exhibit dominant spectral weights and strong polariza-
tion dependence. We note that |J = 1〉 components condensed
into the magnetic ground state [see Eqs. (25) and (26)] re-
produce much of the interference phenomena discussed in
Sec. IV; RIXS transitions from the condensed |J = 1〉 states
interfere at |J = 2, Jz = ±2〉 in much the same way as those
from the singlet |J = 0〉 interfere at |J = 2, Jz = ±1〉.

The A2 and A3 features are the spin-state transitions to
‖S = 0, L = 2〉 levels colored blue in Fig. 1(a) [the tran-
sition to ‖S = 0, L = 0〉 singlet (gray) is omitted due to
the negligible scattering cross section]. They accompany a
change of the spin quantum numbers (S=1 → 0), and thus are
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FIG. 3. Polarization dependence of the Ca2RuO4 RIXS spectra. The magnetic transitions (low-energy peaks denoted by A0) are calculated
based on the analytical results from Sec. III, and other transitions are numerically calculated using the single-ion approximation. The scattering
plane is chosen to align the in-plane momentum transfer q|| [see Eq. (A1)] along (a) [H , 0] and (b) [H , H ] directions. Red dots in (a) denote the
momenta measured in Ref. [12]. (c) The RIXS spectra are plotted from bottom to top panels for five representative θ values (0◦, 30◦, 45◦, 60◦,
and 90◦) whose momentum transfers are indicated by blue arrows in (a) and (b) (corresponding H values are given in units of π ). Transitions
are represented by vertical sticks whose positions and heights correspond to their energies and spectral weights, respectively. The Higgs modes
are colored by purple, and the low-energy sectors for magnetic transitions are magnified in the insets. Lorentzian broadenings are used for the
transitions, and they are piled up to describe overall shape of the spectra (dashed profiles). The main spectral features are labeled at the bottom
panels as A0 ∼ A3 and B1 ∼ B2, the latter mostly arises from t3

2geg levels.
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anticipated to be weak in inelastic neutron scattering exper-
iments. They are separated by ∼�. The higher-energy A3

feature is composed of a doublet and a singlet while the lower-
energy A2 feature consists of two singlets that were degenerate
in Fig. 1(a). This accidental degeneracy is associated with the
relation U ′ = U − 2JH supported by the rotational invariance
of the Coulomb interactions between t2g electrons [30]. This
degeneracy is lifted in Fig. 3 where the rotational invariance
is broken by introduction of eg electrons. The A2 and A3

features also exhibit different polarization dependencies; upon
increasing θ , the A3 feature nearly vanishes whereas the A2

feature maintains its spectral weight. We also note that A2

is visible only when magnetic moments are condensed in the
ground state, being a possible indicator for the magnetic order.

The B1 and B2 features are transitions to t3
2geg states around

cubic CEF energy ∼10Dq. According to the bottom panel of
Fig. 3(b), the B1 feature corresponds to the high-spin states
‖t3

2geg, S = 2〉 where the spin components of the four electrons
are aligned parallel. On the other hand, the B2 feature mostly
arises from ‖t3

2geg, S = 1〉 states, some of which form a broad
continuum above 3.5 eV along with ‖t3

2geg, S = 0〉 states. At
θ = 0◦, the position of B2 roughly coincides with the cubic
CEF strength ∼10Dq, and the B1 feature is located at ∼3JH

below. Upon increasing θ , the B1 feature vanishes while B2

gradually transfers its spectral weight to lower energies.
As discussed above, the spectral features can be identified

by their characteristic polarization dependencies as well as by
their relative intensities. This enables us to use their energy
positions for estimating various microscopic interaction pa-
rameters. Specifically, � can be estimated from the distance
between the A2 and A3 spin-state transitions, and their center
of mass approximately coincides with ∼2JH . Additionally, the
A1 feature, corresponding to the J = 2 transitions, is centered
around ∼ 1

2 (3ξ + �), being a measure of ξ . Our analysis thus
provides a basis for using RIXS spectra to quantify various
coupling parameters in Ca2RuO4 and other excitonic-magnet
candidates, as well as in t4

2g compounds of similar electronic
structures.

VI. SUMMARY

We have calculated the RIXS spectra of Ca2RuO4 at the Ru
L3 edge using the RIXS operators in Ref. [26]. The excitations
are classified into magnetic transitions, J = 2 transitions,
spin-state transitions, and cubic crystal field transitions. The
analytic solutions are provided for the collective magnetic
excitations and for their RIXS transitions in terms of the
pseudospin operators. The J = 2 transitions are investigated
in the cubic limit and in the compressive tetragonal limit using
the single-ion approximation. We find that, upon a tetragonal
compression they obtain huge spectral weights and exhibit
prominent polarization dependence, which can be ascribed to
a strong interference between dipolar and quadrupolar RIXS
channels. The other high-energy excitations, i.e., the spin-state
transitions and the cubic-crystal-field transitions, are numeri-
cally investigated. All four transitions are then plotted on a
unified scale, which provides us an overall picture of their
relative intensities and characteristic polarization dependen-
cies. In general, the results presented in this paper enable one
to readily interpret the RIXS spectra of excitonic magnetism

FIG. 4. RIXS scattering geometry considered in our calculation.
(a) The magnetic structure and the coordinate systems. The moments
are antiferromagnetically aligned along b axis. (b) The RIXS scatter-
ing geometry. The scattering plane is made normal to b (or a + b)
axis when the momentum �q‖ is transferred along [H, H ] (or [H, 0])
direction. Note that [H, H ] is parallel to a axis. The angle between
the incident light and ab plane is denoted as θ .

materials, and to estimate their key coupling parameters from
the spectral features observed.
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APPENDIX: THE SCATTERING GEOMETRY

In Fig. 4(a), tetragonal (xy) and orthorhombic (ab) coordi-
nates are introduced to describe the crystalline and magnetic
unit cell, respectively. The ab coordinates are oriented along
the next-nearest-neighbor directions, as rotated by 45◦ relative
to xy coordinates. We note that real space vectors and recip-
rocal vectors are given in ab and xy coordinates, respectively,
unless otherwise stated. The in-plane magnetic moments are
assumed to be along b axis in Sec. III. Figure 4(b) shows our
RIXS geometry where the scattering plane is defined as to
contain a (or a − b) axis when the momentum �q = �k − �k′ is
transferred along [H, H] (or [H, 0]) direction. The scattered
light k′ is made perpendicular to the incident light, the same
scattering geometry frequently used in RIXS experiments to
suppress the elastic Thomson scattering [12]. It enables us to
express the experiment parameters in terms of single variable
θ , the angle between the incident x-ray and ab plane. Specifi-
cally, the in-plane momentum transfer is

q‖ = ‖�k − �k′‖ cos(θ + 45◦), (A1)

and the light polarizations are

q ‖ [H, 0] → επ
in =

(
sin θ√

2
,− sin θ√

2
,− cos θ

)
,

επ ′
out =

(
cos θ√

2
,−cos θ√

2
, sin θ

)
,

εσ ′
out =

(
1√
2
,

1√
2
, 0

)
, (A2)
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q ‖ [H, H] → επ
in = (sin θ, 0,− cos θ ),

επ ′
out = (cos θ, 0, sin θ ),

εσ ′
out = (0, 1, 0), (A3)

where the polarization vectors are given in ab coordinates. We
assume the incident light and scattered light are π polarized
and unpolarized, respectively.
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