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The composite fermion (CF) theory gives both a phenomenological description for many fractional quantum
Hall (FQH) states, as well as a microscopic construction for large scale numerical calculation of these topological
phases. The fundamental postulate of mapping FQH states of electrons to integer quantum Hall (IQH) states
of CFs, however, was not formally established. The Landau level (LL) projection needed for the microscopic
calculations is in some sense uncontrolled and unpredictable. We rigorously derive the unitary relationship
between electrons and the CFs, showing the latter naturally emerge from special interactions within a single
LL, without resorting to any projection by hand. In this framework, all FQH states topologically equivalent to
those described by the conventional CF theory (e.g., the Jain series) have exact model Hamiltonians that can
be explicitly derived, and we can easily generalize to FQH states from interacting CFs. Our derivations reveal
fundamental connections between the CF theory and the pseudopotential/Jack polynomial constructions, and
argue that all Abelian CF states are physically equivalent to the IQH states, while a plethora of non-Abelian CF
states can be systematically constructed and classified. We also discuss about implications to experiments and
effective field theory descriptions based on the descriptions with CFs as elementary particles.
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I. INTRODUCTION

Recently it has been shown that anyons (including
fermions) in a single Landau level (LL) of the fractional
quantum Hall (FQH) effect can be bosonized [1]. This implies
that any FQH states, including the ground states and the quasi-
holes, can be understood as quantum fluids of bosonic degrees
of freedom. This is fundamentally due to the conformal invari-
ance of the Hilbert spaces in a single LL, and the bulk-edge
correspondence within these Hilbert spaces that can connect
bulk states to the edge excitations described by the chiral
Luttinger liquid theory [2,3]. Thus statistical transmutation
can be naturally performed between any two types of anyons,
and we can in principle write down effective field theories for
the same topological phase with either fermionic or bosonic
degrees of freedom.

The ability of bosonization of any FQH quantum fluids
also implies we can fermionize these quantum fluids. The
fundamental degrees of freedom of all systems we are inter-
ested in here are electrons. Thus to identify emergent bosons
or fermions from the many-body wavefunctions of electrons,
we need to make sure these emergent particles are countable,
and they have an unambiguous set of quantum numbers just
like the electrons. Without loss of generality, in this paper we
will focus on the lowest Landau level (LLL) on the spherical
geometry [4]. For electrons, if we fix the strength of the
magnetic monopole at the center of the sphere to be 2S, then
each electron can be understood as a spinor with total “spin”
S, which is equivalent to its total angular momentum on the
sphere. Throughout this paper we will be dealing with spinless
fermions, so we use the term “spin” to denote the total angular

momentum of the particle to emphasise its spinor structure
on the spherical geometry. On this two-dimensional manifold
the single particle state has two quantum numbers, and it is
an eigenstate of the total angular momentum operator L̂2,
and the z component of the angular momentum operator L̂z.
It is important to note, however, that no matter how many
electrons are added to the sphere, each electron has the same
spin (the eigenvalue of L̂2) S in the LLL, independent of
the number of electrons present. Each electron can thus be
indexed with a quantum state |m, S〉, with m running from
−S to S. One should note the total number of orbitals in
the LLL is given by 2S + 1. The fully filled LLL thus con-
tains 2S + 1 electrons and is represented by the product state
| − S, S; −S + 1, S; · · · , S − 1, S; S, S〉.

The description above can be applied to any single LL;
for the nth LL we just need to replace S with S + n. In
the bosonization scheme [1], the magnetic fluxes inserted to
the quantum fluid on the sphere can be treated as bosons if
we fix the number of electrons Ne instead (in contrast to the
monopole strength being fixed for electrons). In this way, no
matter how many fluxes are inserted, each flux can be treated
as a boson, or a spinor on the sphere with total spin S = Ne/2.
Each boson is thus a quantum state |m, S〉 with m running
from −S to S, and the bosonic nature is revealed when we
look at the allowed quantum numbers of the multiboson states
[1]. For example with two bosons, the allowed total spins are
given by 2S − k with k being a non-negative even integer. In
contrast for two electrons, it is fermionic because the allowed
total spins are 2S − k with k being a positive odd integer.

The ability to map an anyonic or fermionic basis to a
bosonic basis immediately implies we can map an anyonic

2469-9950/2022/106(24)/245126(19) 245126-1 ©2022 American Physical Society

https://orcid.org/0000-0001-8726-4890
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.245126&domain=pdf&date_stamp=2022-12-16
https://doi.org/10.1103/PhysRevB.106.245126


BO YANG PHYSICAL REVIEW B 106, 245126 (2022)

basis in the FQH fluids to a fermionic basis. Indeed, this
is the underlying concept of the composite fermion theory
[5,6], which reinterpret many experimentally observed FQH
states as integer quantum Hall (IQH) states of a new type of
fermionic degrees of freedom: the composite fermions (CF).
Phenomenologically, each CF is a bound state of one electron
with an even number of vortices. While the interaction be-
tween electrons are strong, the effective interaction between
CFs are conjectured to be weaker, which is supported by
finite size numerical calculations [7,8]. The CF theory is very
successful in explaining many experimental observations. It
also leads to effective field theory descriptions of the FQH
phases [9,10], by using CFs as the elementary Fock space
degrees of freedom, together with a number of assumptions
built in the original CF theory.

The conventional CF theory is most useful with the
Coulomb interaction in the LLL, which is one of the most
experimentally relevant regimes. The famous Jain series of
the Abelian FQH states observed in the experiments are well
described by the IQH of CFs, presumably because with the
LLL Coulomb interaction, the interaction between the CFs are
weak compared to the emergent incompressible gaps at those
FQH states. In higher LLs, the effective Coulomb interaction
becomes long ranged, so that the short range part of the inter-
action is no longer dominant. There, the CFs become strongly
interacting just like electrons, and thus the CF description of
the FQH states becomes cumbersome. This is also true for
many theoretically predicted non-Abelian FQH states, which
are some of the most interesting aspects of the FQH physics
that may also lead to universal topological quantum comput-
ing [11–13]. Model Hamiltonians of these non-Abelian states
induce strong interaction between CFs, and more complicated
schemes involving partons are developed in understanding
these exotic topological phases [14]. For these systems and
other more exotic FQH phases, it is increasingly more difficult
to justify the FQH to IQH correspondence via numerical anal-
ysis, and there are few rigorous understandings on conditions
under which such correspondence is valid.

The Landau level projection. From a technical perspective,
the CF theory can readily generate many-body wavefunctions
by attaching vortices [e.g., by the multiplication of the factors∏

i< j (zi − z j )n] to an IQH wavefunction. This is followed by
a very specific operation in the CF theory, which is the pro-
jection into the LLL, or the so-called LLL projection. While
the original IQH states are orthonormal and form a complete
basis, the resulting projected FQH many-body wavefunctions
are generally not. This is because the LLL projection is not
a unitary transformation from the electron basis to the CF
basis. The central assumption of the CF theory is a one-to-one
correspondence between the projected and unprojected CF
wavefunctions, at least for the states that are physically im-
portant. Such an assumption entirely relies on the numerical
checking of finite system sizes based on the short range (e.g.,
LLL Coulomb) interactions. While for simple Jain series such
numerical evidence is strong, generalizing the CF theory to
more complicated FQH states can be more speculative. In
some cases the LLL projection will cause the entire wave-
function to vanish, which may not be easy to predict until the
actual numerical calculation is done [15]. On the other hand
it is important to note that while it is in principle possible that

the LLL projection may change the topological properties of
the FQH states, that is believed not to be the case for the Jain
series and many other more exotic topological phases [16].

It is useful to first think about if the unprojected CF wave-
functions are relevant to the physics of the FQH states they
are supposed to describe. There have been attempts in finding
model Hamiltonians for the unprojected CF wavefunctions.
Such approaches either require the projection of the Hilbert
space into several low-lying LLs [17,18], or into the subspace
where the number of particles in each LL is conserved [19].
Both projections have to be implemented by hand, and cannot
be realized by taking the limit of the cyclotron energy going
to zero (they are thus toy models not easily associated to
experiments). It is also not feasible to check if these model
Hamiltonians are adiabatically connected to the realistic ones
with large cyclotron energy, which in practice is the necessary
ingredient for realising any FQH phases. Note that in principle
such checking requires finite size scaling, as for any finite
systems there is level repulsion; for example the Pfaffian
and anti-Pfaffian phases are adiabatically connected for any
finite systems on the torus, even though we know they are
topologically distinct. Unfortunately finite size scaling for the
adiabatic gap is generally impossible due to the small system
sizes that are numerically accessible.

From a phenomenological point of view, the CF theory
does not have to insist on the LLL projection, as long as
the unprojected CF wavefunctions can describe the essential
physics of the FQHE (e.g., the filling factor, the topological
shift, the edge physics, etc.) and explain the experimental
data. Indeed in many cases the effective field theories are
constructed from the unprojected CF theory only [20,21]. The
danger of this approach is two-fold, given that the physics
of FQHE entirely arises from the Hilbert space of a single
Landau level, and all universal properties should agree with
the limiting case when the magnetic field goes to infinity
(or the effective mass goes to zero). First of all, it is not
guaranteed that the projected CF wavefunctions have the same
physics as the unprojected ones; the predictive power of the
CF theory thus almost entirely rely on finite size numerical
checking. One should note finite size numerical analysis by
no means always predict the same behaviours in the thermo-
dynamic limit. For FQH topological phases, just looking at
the ground-state wavefunction overlap for finite systems is not
sufficient; one has to also analyze the incompressibility gap,
the overlaps of the quasiholes, as well as the counting and the
bandwidth of the quasiholes. All these properties depend very
sensitively on the details of the electron-electron interaction
especially when the accessible system sizes are small, and
they need to be taken into account when making predictions
with the effective field theories.

Secondly, it is desirable to have a more microscopic
derivation of the CF theory, to understand if the unprojected
CF wavefunctions (and thus the LLL projection itself) are fun-
damentally necessary, or if they are just auxiliary numerical
tools convenient for some large scale numerical computations.
The LLL projection is a nonunitary process that does not have
any tuning parameters. This implies that the unprojected CF
wavefunctions do not really capture the physics of the LL
mixing, since the mixing is continuously controlled by the
details of the Hamiltonian (i.e., the relative strength between
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the interaction and kinetic energy). For cases where the higher
LL components of the unprojected wavefunctions are small
(e.g., the Jain series, where the overlap with the LLL projected
wavefunction is high), then from a topological point of view
the projected and unprojected CF wavefunctions are equiv-
alent or adiabatically connected. In other cases, even if the
unprojected wavefunctions are still conjectured to correspond
to the projected ones, their physical properties (e.g., the varia-
tional energy) can be very different due to the large component
in higher LLs.

One can thus highlight some of the undesirable properties
of the LLL projection. It produces many-body wavefunctions
that are not linearly independent and sometimes vanish-
ing, and the resulting states do not have physical or model
Hamiltonians [22] such that they are the exact eigenstates.
It is highly specific to the LLL, while in contrast the same
topological phases can be realized in any LL with the proper
microscopic Hamiltonians. The LLL projection is also not
exactly compatible with the particle-hole conjugation, a well-
defined unitary operation within a single LL. For example,
the CF wavefunction of the Laughlin phase at ν = 1/3 is
not the exact PH conjugate of the CF wavefunction of the
anti-Laughlin phase at ν = 2/3, although it should be noted
the pair of CF wavefunctions are approximately PH conjugate
to a very high level of accuracy from numerical computations.
Probably most importantly the projection is a nonunitary op-
eration, that prevents us from treating the composite fermions
as rigorous microscopic objects, beyond a phenomenological
description. While there is very little doubt that these concerns
may not be important for the simplest Abelian Jain series in
the LLL, a careful understanding of its physical implications
(and its necessity) may be important for applying CF theories
to other more interesting (and more exotic) FQH phases.

Relationship to other theories. Perhaps the more interesting
issues concern with the various different methods in under-
standing the FQH effect. The full microscopic Hamiltonian
for electrons in a quantum Hall system is given by

Ĥfull = Ĥkinetic + Ĥint, (1)

where the first term on the right-hand side (RHS), the single
particle kinetic energy Hamiltonian that gives the Landau
levels, is the dominant energy scale. Thus at low temper-
ature, the relevant dynamics is within a single LL, which
is a strongly interacting system with a constant kinetic en-
ergy. With no usual perturbative techniques applicable, many
new mathematical tools are developed in trying to charac-
terise such systems. In addition to the CF theory, the FQH
states were first studied with model wavefunctions and the
model Hamiltonians [23,24]. Later on the two-body model
Hamiltonians were generalized to few-body model Hamil-
tonians in the form of generalized pseudopotentials [12].
These are interaction Hamiltonians that effectively project
into certain relative angular momentum sectors of a cluster of
electrons, and they offer the minimal models for both Abelian
and non-Abelian topological phases. It was also discovered
that the model wavefunctions of some FQH phases can be
reinterpreted as conformal blocks of certain conformal field
theories [11,25,26], or as Jack polynomials [27] and their
generalizations [28–30]. The null spaces of the model Hamil-
tonians have conformal symmetry leading to the bulk-edge

correspondence and universal edge dynamics of the quantum
Hall fluids [2,3,31]. Effective theory approaches including the
conformal field theory (CFT) and the topological field theories
(TFT) become powerful tools in conjecturing about the nature
and the properties of many FQH states. It is, however, difficult
to justify the rigour and applicability of these effective field
theory descriptions from the microscopic picture.

In principle, while the same physics can be understood
from different perspectives, these different perspectives can
be reconciled among one another in a consistent and unam-
biguous manner. This has yet to be the case for the FQH
effect. It is intriguing why we cannot find local exact quantum
Hamiltonians for all of the CF wavefunctions except for the
Laughlin states. The failure in this implies some aspects of
these CF wavefunctions are not physically relevant (since
they may not be physically realizable even in principle),
and they may not be the simplest ways of describing these
FQH phases (e.g., the Jain series). An illustrative example
is the anti-Laughlin states, or the particle-hole conjugates
of the Laughlin states that have simple well-defined model
wavefunctions and model Hamiltonians. The CF wavefunc-
tions from reverse flux attachment and the LLL projection,
however, are more complicated and with no known local
Hamiltonians. They have very high overlap with the known
model wavefunctions, and thus captures all the essential
physics of the anti-Laughlin topological phases. Nevertheless,
the differences between these CF wavefunctions and the exact
anti-Laughlin wavefunctions are in principle physically irrel-
evant, and it is desirable for such differences to be eliminated
within the CF theory.

The popular effective topological field theory (TFT) de-
scription is usually based on the IQH description of CFs or
partons before the LLL projection. In principle, such TFT
describes a rather different topological system not within a
single LL. It is not easy to justify numerically for some
CF states that the topological nature remains the same after
the LLL projection. This is especially true for the quasihole
manifold that determines the central charge of the edge theory
and the braiding (Abelian vs non-Abelian) of the quasiholes.
The predictions from the effective theories would require the
quasihole bandwidth to be much smaller than the tempera-
ture, which may not be the case in the presence of realistic
interactions [32,33]. Numerical analysis also shows even for
the simplest FQH states, the LLL projection introduces miss-
ing states [15], nontrivial dynamics (e.g., nonzero dispersion
and bandwidth of the quasihole excitations [15]), CF level
mixing [8], etc. All these are experimentally relevant for
the robustness of the topological properties predicted by the
effective TFT.

The relationship between the model wavefunctions and
the conformal blocks lead to the conjecture that dynamical
properties of certain FQH states can be governed by confor-
mal symmetry in two dimensions. For example the Gaffnian
and the Haffnian phases are believed to be gapless, given
the associated CFT are nonunitary and/or irrational [34,35].
Interestingly, some CFT related FQH states have very high
overlap with the Jain series, and the corresponding ground
states have identical topological indices [30,36,37]. From a
dynamical point of view, however, the CFT related states
are believed to be gapless and non-Abelian, while the Jain
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series are believed to be gapped and Abelian. It is nevertheless
important to understand the fundamental relationship between
the CFT formalism and the CF theory, given that most of
the arguments are based on effective theories and numerical
evidence [38,39].

II. THE OBJECTIVES

In this paper, we propose a general fermionization scheme
that closely mirrors the spirit of the CF theory, yet is dis-
tinctive in several important microscopic aspects. The goal
is to establish a more complete microscopic understanding
of the underlying postulates of the CF theory, as well as
to systematically examine the connections between the CF
theory, the effective CFT and TFT descriptions, and the model
Hamiltonians. At a more practical level, we propose new
numerical methods in computing the properties of the FQH
liquids, and point to possible sources where the experimen-
tal measurements can differ from the predictions of the CF
theory, especially for the more exotic FQH phases requiring
stringent constraints on different energy scales. The latter is
made possible with the construction of model Hamiltonians
within a single LL for a large number of CF-based FQH states,
with which we can compare with the realistic Hamiltonians in
various experiments.

Explicitly, we establish that the composite fermions as
emergent particles can be rigorously constructed as a micro-
scopic basis obtained from a unitary transformation of the
electron basis. In this new framework, CF wavefunctions are
constructed directly within a single LL, without the need of
the LLL projection. We argue these CF wavefunctions are
topologically equivalent to the conventional CF wavefunc-
tions for the Jain series, and the difference between them
are unimportant nonuniversal physics that is irrelevant given
the unpredictable microscopic details in experiments. Also
unlike the conventional cases, the CF wavefunctions proposed
here have exact model Hamiltonians. The concepts of “�”
levels (referred to as CF levels in this paper) and the inter-
action between CFs are no longer phenomenological from
numerical analysis, but now can be analytically defined with
explicit microscopic Hamiltonians.

The model Hamiltonians proposed here with the familiar
pseudopotential formalism are also analytical tools to imple-
ment the fundamental postulates of the CF theory exactly, that
we are mapping a strongly interacting FQH phase of electrons
to a noninteracting IQH phase of composite fermions. For
such mapping to be exact, we need the degenerate lowest
energy eigenstates (e.g., the ground state and the quasihole
states) of the Hamiltonians to be product states of the CFs,
much like the case of the IQH from the single particle kinetic
energy. The CFs need to be noninteracting and nondispersive,
and the Hamiltonians cannot mix different CF levels, analo-
gous to the kinetic energy not mixing the Landau levels. Note
that with the Coulomb interactions, all these properties are
only approximately satisfied even for the simple Jain series.
With the model Hamiltonians as references, we can thus iden-
tify which part of the realistic interactions are “perturbations”
to the model Hamiltonians, and such perturbations induce
interaction, dispersion and CF level mixing in real systems.

We apply the fermionization scheme to the well-known
Jain series and the composite fermi liquid, as well as their
particle-hole conjugate states. For all these cases, the model
Hamiltonians within a single LL can be explicitly constructed
in principle, of which the ground states and the quasihole
states are exact degenerate (i.e., zero energy after the proper
constant energy shift with respect to the chemical potential
if needed) eigenstates. The microscopic model wavefunctions
are completely within a single LL by construction, and we
hope to argue using these examples that all FQH states that
can be understood via the CFs should be constructed in the
same manner. Indeed, the fermionization scheme allows us to
take any FQH states of electrons, and replace the electrons
with any type of CFs in a rigorous way via a unitary trans-
formation (together with their model Hamiltonians). In this
way, a large family of FQH states can be constructed, going
beyond the Jain series to include states arising from strong
interaction between CFs. While the “same” FQH states with
different types of CFs (of which the electrons are one special
case) occur at different filling factors, they are inherently
physically equivalent. We will show in details on how starting
from the principle Read-Rezayi series, the filling factors of
the family of the FQH states constructed from the principle
series has a fractal distribution, allowing us to understand
a large number of FQH states in a systematic and unified
manner.

The organization of the paper will be as follows: In Sec. III,
we show explicitly the fermionization scheme on how the
CFs emerge as a unitary transformation from the electron
basis that can be naturally defined within the null spaces
of model electron-electron interactions, and we list a set of
criteria that needs to be satisfied for the mapping between the
FQH of electrons to the IQH of CFs we have constructed. In
Sec. IV we apply the fermionization scheme to the familiar
Jain series, in particular showing that the FQH states of the
series we have constructed do not require the LLL projection
and they all have exact model Hamiltonians. One example is
an exact model Hamiltonian for the Jain ν = 2/5 state, which
is incompressible, Abelian, and the ground state is identical
to the Gaffnian model state. Moreover, the particle-hole (PH)
conjugation of the CFs can be naturally defined, leading to the
construction of the PH conjugate Jain series again satisfying
the exact FQH to IQH mapping without the LLL projection.
In Sec. V we focus on the composite fermi liquid (CFL),
proposing the exact model wavefunctions (and the model
Hamiltonians) for this gapless phase. We discuss about the
PH conjugation of the CFL, the microscopic calculation of
its dynamical properties, as well as implications to the ef-
fective theories and experimental results. While we mostly
use the CFL at ν = 1/2 as an example, the discussions in
this section also apply to other CFL at ν = 1/(2p), p > 1.
In Sec. VI, we treat the electrons and the CFs on the equal
footing and illustrate a fractal structure for the distribution
of the filling factors on the real axis, corresponding to the
Abelian and non-Abelian FQH states of CFs, all of them with
model Hamiltonians that can be explicitly constructed. This
gives a natural way of understanding many of the FQH states
from strongly interacting composite fermions. In Sec. VII
we summarize the main results and discuss about the future
outlooks.
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III. A GENERAL FERMIONIZATION SCHEME

Just like we can have many different types of bosons in the
bosonization scheme to describe the same FQH phase, we can
also have different types of fermions when we fermionize the
many-body states. The composite fermions are constructed
phenomenologically by attaching each electron with an even
number of magnetic fluxes [5,6]. We will closely examine this
process and start with a vacuum on the sphere with an initial
magnetic monopole strength 2S, which is fixed. Adding elec-
trons to the vacuum does not change the number of orbitals,
and each electron is a spinor in the LLL with total spin S, inde-
pendent of the number of electrons added. Now let us consider
adding composite fermions (CFs), each with one electrons and
q fluxes (and q is even). We denote such composite fermions
as CFq. Again we require each CFq to have a fixed spin S;
for it to be a good particle quantum number, S needs to be
independent of the number of CFq added, even though adding
CFs changes both the number of electrons and the magnetic
fluxes on the sphere. Unlike the case for electrons, here we do
not require S = S.

Let us first look at the case when one CFq is added to
the vacuum, giving a state with one electron and 2S + 1 +
q orbitals. This electron thus is a spinor with total spin
S = S + q

2 . Since this is a state with a single CFq, we
will treat this CFq as a fermion with S = S + q

2 as well.
A multi-CFq state with k CFs should thus be represented
as |m1, S; m2, S; · · · ; mk, S〉. To achieve this in a well-
defined way, we need to find the Hilbert space spanned by
|m1, S; m2, S; · · · ; mk, S〉, such that there is a unitary transfor-
mation between |m1, S; m2, S; · · · ; mk, S〉 and the many-body
wavefunctions in the electron basis in this Hilbert space. It is
also straightforward to reveal the statistical properties of the
CFq once the Hilbert space is defined [1].

To define such a Hilbert space, note that a many-body state
with k CFs contains k electrons and 2S + 1 + kq orbitals.
In the full Hilbert space the eigenstates of L̂2 within this
subspace give the counting that does not indicate we have k
fermions, each with a spin S. Instead as expected, the counting
corresponds to k fermions (i.e., electrons) each with a spin of
S + kq/2 (note the k dependence). Thus in the full Hilbert
space, the CFq we defined are not really “particles”. It turns
out (not surprisingly, since the conventional CF wavefunctions
give exact Laughlin wavefunctions without LLL projection)
that the only way for these spin S particles to behave like
fermions is to confine the Hilbert space to the null space of
the following model Hamiltonian:

Ĥq =
q/2∑
i=1

V̂ 2bdy
2i−1 , (2)

where V̂ 2bdy
i is the ith two-body Haldane pseudopoten-

tial (PP) [24], and Ĥq is thus the model Hamiltonian for
the Laughlin phase at ν = 1/(q + 1). We denote the null
space of Ĥq as Hq. If we diagonalize L̂2 within Hq for k
electrons and 2S + 1 + kq orbitals, the eigenstate counting
corresponds exactly to k fermions, each with spin S that
is independent of k. We thus show that spin S composite
fermions with q fluxes attached to one electron are emergent

fermionic particles with microscopic interaction Ĥq between
electrons.

More specifically, let us look at states with Ne electrons and
No orbitals in Hq, which is the subspace that automatically im-
poses the constraint that No � (q + 1)Ne − q. We also require
Ne � q, and this will become apparent later on. All states in
Hq can be organized as simultaneous eigenstates of L̂2 and L̂z,
given as follows:

|lz, l, αlz,l〉e =
∑

λ

clz,l,αlz ,l ,λ|mλ〉e, (3)

L̂z|lz, l, αlz,l〉e = lz|lz, l, αlz,l〉e, (4)

L̂2|lz, l, αlz,l〉e = l (l + 1)|lz, l, αlz,l〉e, (5)

where αlz,l labels the degeneracy of states with quantum num-
bers lz, l , and |mλ〉e are the monomials, or Slater determinants
of electrons with Ne electrons and No orbitals. We now look at
the full Hilbert space of Ne fermions in Ño = No − q(Ne − 1)
orbitals. Its Hilbert space dimension equals exactly with that
of Hq, so the states again can be organized as simultaneous
eigenstates of L̂2 and L̂z,

|lz, l, αlz,l〉CF =
∑

λ

dlz,l,αlz ,l ,λ|mλ〉CF, (6)

L̂z|lz, l, αlz,l〉CF = lz|lz, l, αlz,l〉CF, (7)

L̂2|lz, l, αlz,l〉CF = l (l + 1)|lz, l, αlz,l〉CF, (8)

where |mλ〉CF are the monomials, or Slater determinants
of this new types of fermions with Ne fermions and Ño

orbitals. The one-to-one mapping between |lz, l, αlz,l〉e and
|lz, l, αlz,l〉CF thus allows us to define the following unitary
transformation:

|mλ〉CF =
∑

lz,l,αlz ,l

d̃lz,l,αlz ,l ,λ|lz, l, αlz,l〉CF

:=
∑

lz,l,αlz ,l

d̃lz,l,αlz ,l ,λ|lz, l, αlz,l〉e

=
∑

lz,l,αlz ,l ,λ′
d̃lz,l,αlz ,l ,λclz,l,αlz ,l ,λ′ |mλ′ 〉e, (9)

where each monomial in the CF basis is a linear combina-
tion of the Laughlin quasihole states, and the coefficients
d̃lz,l,αlz ,l ,λ, clz,l,αlz ,l ,λ′ can be readily obtained from the L̂2 diag-
onalization.

The null space of Eq. (2) is spanned by the familiar
Laughlin states and their quasiholes. This is the only family of
FQH states where the conventional CF construction is “exact”,
in the sense the conventional CF wavefunctions agree with
model wavefunctions exactly without the need of the LLL
projection. Thus these are the only conventional CF wave-
functions where model Hamiltonians exist. What we show
here is that a unitary transformation between the electrons and
CFq is only possible for a specific truncated Hilbert space:
the null space of Eq. (2). It is thus an emergent property, and
a fermionization process that is only exact with a specific
toy model electron-electron interaction, which is different
from the realistic LLL Coulomb interaction. We will extend
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the same interpretation to other CF states in the following
sections.

The FQH and IQH correspondence. The fundamental pos-
tulate of the CF theory is that the fractional quantum Hall
states of the electrons can be mapped to the integer quantum
Hall (IQH) states of a new type of fermions, the composite
fermions. In many cases, the effective topological field theo-
ries (TFT) are constructed in the context of the IQH systems,
and they are used to describe the topological phases of the
FQH systems (e.g., single component fermions in a partially
filled LL), with the assumption of the validity of the FQH to
IQH mapping. It is thus important to better understand the
FQH and IQH correspondence in more details. The prediction
of the topological indices of the FQH phases from the effec-
tive field theories based on the CF construction requires such
correspondence to be robust in the presence of the various
different energy scales in realistic systems.

It is necessary to emphasize again that in the effective
topological field theory description, all energies are sent by
hand to either infinity or zero. Let Ei be the energies are sent to
infinity (e.g., the incompressibility gap that is responsible for
the robustness of the Hall conductivity and the Hall viscosity),
and εi be the energies that are sent to zero (e.g., the quasihole
energy bandwidth that is responsible for the robustness of the
central charge and the non-Abelian braiding). Each of these
energies emerge from the interaction between electrons in
the realistic system, and generically they could all be finite.
The necessary condition for the topological properties as pre-
dicted by the effective field theories to be robust is thus for
Ei � ET � εi, where ET is the energy scale of temperature
and disorder.

The IQH systems with an infinite magnetic field clearly
satisfy the ideal conditions of the effective TFT, where the
incompressibility gap is infinity and the quasihole bandwidth
is strictly zero when the interaction effect is ignored. In
the conventional CF theory, however, for practical purposes
the Coulomb interaction between electrons is often used.
With this microscopic interaction Hamiltonian (or similar
Hamiltonians after taking into account of the sample thickness
and LL mixing, etc.), the FQH and IQH correspondence is
not exact, at least at the quantitative level. Unlike electrons
in IQH, the CFs are not noninteracting, although the effective
interaction between CFs could be weaker than that between
electrons. Thus states in a single CF level (in analogy to the
LL) are not degenerate, and with mixing to other CF levels.
While in many cases the “imperfect” correspondence can be
ignored because Ei � ET � εi holds, it is not easy to know
how general such correspondence is within the CF theory, or
how to quantify the “noises” coming from the LLL projection,
especially for the more exotic topological phases.

We thus endeavour to formulate an exact correspondence
between FQH and IQH, without requiring the process of the
LLL projection. We define the nature of the “exact correspon-
dence” with the following attributes:

(1) The FQH ground state and the quasihole states can be
reinterpreted as product states of CFs;

(2) The ground state can be reinterpreted as a Slater deter-
minant CFs in a fully filled CF level;

(3) The FQH ground states and quasihole states have exact
model Hamiltonians.

FIG. 1. Construction of the Laughlin state and Laughlin quasi-
holes, and the corresponding root configurations [27] (the middle
column) of the highest weight states on the sphere, when the vacuum
contains three magnetic fluxes. The left column gives total spin (or
the total angular momentum on the sphere) of the multiple CF2 states,
obtained from the sum of individual CF2 each with spin S + 1 = 2,
subtracting the total relative angular momentum. The right column
gives the schematic representation of adding (at most) 5 CF2 to a
single CF level with three magnetic fluxes.

The requirement of exact model Hamiltonians can also
be made precise. Such Hamiltonians satisfy the following
conditions:

(1) The Hilbert space of the Hamiltonian is a single LL;
(2) The FQH ground state and the quasihole states are

exact eigenstates;
(3) All states within a single CF level with the same num-

ber of CFs have the same energy, so there is no dispersion of
or interaction between CFs;

(4) There is no mixing between CFs within the CF level
and CFs outside of the CF level (in analogy to no LL mixing
for electrons in IQH).

All four conditions are needed for the correspondence
between FQH and IQH to be exact. One should note that
for IQH, the presence of Coulomb interaction will also lead
to LL mixing. For Galilean invariant systems where the cy-
clotron energy scales with the magnetic field B while the
interaction scales with

√
B, the coupling between different

LLs can be suppressed by taking B → ∞. Thus for the exact
model Hamiltonian on the FQH side, we should also allow the
coupling between CFs within the CF level and CFs outside
of the CF level to be suppressed by tuning some parameters
in the Hamiltonian to infinity. Accordingly, our generalized
fermionization scheme should allow the microscopic con-
struction of CFs satisfying all conditions listed above.

IV. THE JAIN SERIES AND THE RELATED CF STATES

We have already shown for the Laughlin states, the CFq

emerges as well-defined, noninteracting quasiparticles only
with pseudopotential model Hamiltonians. We will first ex-
amine the Laughlin states in more details, followed by
generalizing the same construction to the Jain series, as well
as particle-hole conjugate states both in terms of electrons
and CFs.

A. The Laughlin states

Let us first show the exact correspondence between the
FQH and IQH can be established for the Laughlin states (as
illustrated in Fig. 1). These states are the simplest in the sense
that in the CF theory, the ground states and the quasihole states
do not require the LLL projection. Having established that
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in the sub-Hilbert space of Hq, the CFq are indeed fermions
with spin S = S + q

2 , we have shown that CFq as the emer-
gent topological objects result from short range interaction
between electrons, corresponding to the well-known model
Hamiltonians of the Laughlin states.

This also naturally allows us to have a “Slater determinant”
state of CFq, when all possible single CFq state (a total of
2S + 1 of them) are occupied. One can denote such a state
as | − S, S; −S + 1, S; · · · ; S − 1, S; S, S〉, which in itself is
a many-body, strongly entangled state in the electron basis.
It is easy to check for such fully filled “Slater determinant”
states, the relationship between electron number Ne and the
orbital number No is given by No = (q + 1)Ne − q, so | −
S, S; −S + 1, S; · · · ; S − 1, S; S, S〉 is precisely the Laughlin
ground state at filling factor ν = 1/(q + 1). We can interpret
these ground states as product states in the CF basis with no
CF orbital entanglement, a statement that can now be made
precise mathematically.

When fewer than 2S + 1 CFq are added to the vacuum, we
obtain the Laughlin quasihole states. The quasihole subspace,
or indeed Hq, are spanned by orthogonal product states of the
CFq. Thus CFq in Hq is completely analogous to the nonin-
teracting electrons in the LLL: the Hilbert space is spanned
by the Slater determinants of the corresponding particles. In
particular, there is no interaction between CFs, even though
the electrons are strongly interacting with Ĥq.

Thus all attributes listed previously are satisfied, if and only
if the interaction between electrons is given by the model
Hamiltonians of the Laughlin phases. The more realistic
Coulomb interactions, on the other hand, will lead to inter-
action between CFq within the same CF level, as well as the
mixing of CFq within and outside of the CF level. The quasi-
hole states will thus no longer be degenerate. More precisely,
the CFq are weakly interacting with the Coulomb interaction
only in the sense that the leading pseudopotential components
of the LLL Coulomb interaction are dominant, giving the
incompressibility gap as the dominant energy scale as com-
pared to the interaction between CFs. Taking the Laughlin
state at ν = 1/3 as an example, we can write the effective
interaction as

V̂eff = V̂ 2bdy
1 + δV̂ . (10)

With the LLL Coulomb interaction we have V̂eff = e− 1
2 q2

/q
in the momentum space (where �q is the 2D momentum and
q = |�q|). Only δV̂ , which consists of two-body pseudopoten-
tials V̂ 2bdy

i>1 , leads to interaction between the CF2. Thus CF2 are
weakly interacting in the sense that ||δV̂ || < ||V̂ 2bdy

1 ||. Also,
δV̂ leads to mixing between different CF levels, and such level
mixing can only be suppressed by taking ||V̂ 2bdy

1 || → ∞.

B. Adding composite fermions to filled CF bands

After adding 2S + 1 CFq with S = S + q
2 , we have a com-

pletely filled CF band, and the resulting “Slater determinant”
state corresponds to the Laughlin ground state at ν = 1/(q +
1). We can no longer add CFq to this filled band within Hq,
which is the null space of the pseudopotential Hamiltonian Ĥq

given by Eq. (2). This implies that further addition of CFq will
come with an energy cost given by Ĥq. In analogy to adding

electrons to a filled LL (i.e., electrons in higher LLs have
larger spins on the sphere), the additional CFq will also have a
larger spin. Starting with a filled CF band, we let the additional
CFq carry a total spin of S = S + q

2 + 1. We thus need to find
the proper condition for these CFq to behave like fermions
carrying the same total spin, independent of the number of
CFq added.

We again illustrate this with the specific case of q = 2, so
the filled CF band with S = S + 1 corresponds to the Laughlin
ground state at ν = 1/3. We can denote this as the lowest CF
level. Additional CF2 carry the spin of S = S + 2. If we add k
such CF2 (where the maximum possible value of k is 2S + 5),
we are looking at the sector with Ne = 2S + 3 + k and No =
6S + 7 + 2k. Diagonalization of Ĥ1 gives a branch of low-
lying states giving the right counting of k fermions in each L̂2

sector. All states, however, are in the complement of the null
space H1.

Given that these additional CF2 each has a total spin of
S = S + 2, there are in total 2S + 5 single CF states, which
forms a band that we denote as the second CF level. With
Ĥ1, the CF2 in the second CF level will interact with each
other, and they will also interact with CF2 in higher CF levels
(which we will define rigorously later on). We thus need to
modify the electron-electron interaction, so as to make the
FQH and IQH correspondence exact. It turns out that for the
S = S + 2 CF2 to have the right counting of the fermions in
the second CF level, they have to stay in the null space of the
Gaffnian model Hamiltonian constructed from the three-body
pseudopotentials [12],

ĤG = V̂ 3bdy
3 + V̂ 3bdy

5 . (11)

This implies with the following Hamiltonian:

Ĥ ′ = λ1Ĥ1 + λ3ĤG, (12)

we can define the second CF level as part of the null space
of ĤG, when the first CF level is completely filled. In this
way, the CF2 in the second CF level are again well-defined
fermions, but Ĥ1 will induce interactions between CF2 within
the second CF level, as well as mixing with states outside of
ĤG null space, which we can naturally define as higher CF
levels. If we take the limit of λ3/λ1 → ∞, which is analogous
to the tuning of B → ∞ for the IQH, the mixing between
different CF levels will be suppressed. With Ĥ ′, as long as the
lowest CF level is completely filled, the finite energy states
are spanned by product states, or Slater determinant states of
CF2 in the second CF level.

What we still need is for all these product states to be
degenerate, if we would like to map the second CF level
to the second LL in the IQH picture. To achieve that, let
us look at the three-body pseudopotential V̂ 3bdy

6 , noting that
ĤH = ĤG + V̂ 3bdy

6 is the model Hamiltonian for the Haffnian
state [35]. The null space of ĤH contains the null space of
V̂1. Thus for the CF2 in the lowest CF level, V̂ 3bdy

6 does not
introduce any interaction between them. It will, however, in-
troduce interactions between CF2 in the second CF level, and
also induce mixing between those CF2 in higher CF levels.
The latter, however, can be suppressed by taking λ3 → ∞.
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FIG. 2. The top panel is Eq. (13) with c6 = 0, the bottom panel
is Eq. (13) with c6 = 0.525. The lowest CF level is completely filled
with 9 CF2, and the second CF level contains 2 CF2 (black plots),
3 CF2 (red plot), and 4 CF2 (blue plot). One can see the addition of
V̂ 3bdy

6 can flatten the CF band and give better correspondence between
the FQH and IQH.

We can thus construct the following Hamiltonian:

Ĥ ′′ = λ1
(
V̂ 2bdy

1 + c6V̂
3bdy

6

) + λ3ĤG. (13)

Here c6 is the parameter we can tune to minimize the band-
width of the CF2 in the second CF level.

From Fig. 2 we can see the addition of V̂ 3bdy
6 can signifi-

cantly flatten the band of CFs in the second CF level, at the
same time giving a clear gap for neutral excitations with holes
(or the absence of CF2) in the lowest CF level. Further band
flattening can be tuned by adding pseudopotential interactions
V̂ n-bdy

k , as long as its null space Hn-bdy
k satisfies the following

condition:

HL ⊂ Hn-bdy
k ⊂ HG, (14)

where HL is the null space of V̂ 2bdy
1 , and HG is the null

space of the Gaffnian model Hamiltonian V̂ 3bdy
3 + V̂ 3bdy

5 . The
three-body pseudopotentials satisfying Eq. (14) also include
V̂ 3bdy

7 and V̂ 3bdy
8 , and a general discussion about the hierarchy

of the pseudopotential null spaces can be found in [40–42].
Since there are infinite number of suitable pseudopotentials
if we include those involving more than three electrons, we
conjecture that we can always find the right combination of
them, which we denote as δV̂ n-bdy

1 , that allows us to make the
band of CF2 in the second CF level completely flat in the

thermodynamic limit. The resulting Hamiltonian is given as
follows:

Ĥ = λ1

(
V̂ 2bdy

1 + δV̂ n-bdy
1

)
+ λ3ĤG, (15)

where the null space of δV̂ n-bdy
1 contains HL but is a proper

subspace of HG. We propose this Hamiltonian should be
the model Hamiltonian for the Jain state at the filling factor
ν = 2/5.

There are several important features for this construction.
Here, the FQH and IQH correspondence is exact, in contrast
to the original CF theory. The many-body wavefunctions of
the ground state and quasihole states of the ν = 2/5 phase
can all be understood as product states of CF2 in the second
CF level, and these states are constructed without resorting to
the projection into the LLL. The ground state of the ν = 2/5
phase is the Gaffnian model wavefunction, but the quasihole
excitations are strictly Abelian, with exact correspondence to
the IQH states. It is important to note that just like in the CF
theory [32,33], the quasiholes can only be created by remov-
ing CFs in the second CF level. The lowest CF level should
be kept completely filled. The additional Gaffnian quasihole
states responsible for the non-Abelian properties correspond
to the removal of CF2 in the lowest CF level, which cost
a finite amount of energy due to the presence of V̂ 2bdy

1 in
Eq. (15), and are gapped out at low temperature [32,33].

There are arguments that the Gaffnian model Hamiltonian
is gapless in the thermodynamic limit [34,36,38,39]. With
the model Hamiltonian we have constructed, however, it is
clear the spectrum is gapped with finite λ1, even though the
ground state is the exact Gaffnian model state in the limit
of λ3/λ1 → ∞. We thus show explicitly here a topological
phase with Eq. (15), with all topological features identical
to those claimed by the Jain ν = 2/5 phase and thus distinct
from the Gaffnian phase, yet the ground state is identical to
the Gaffnian model wavefunction [32]. One should note that
all quasihole states of Eq. (15) are identical to the Gaffnian
quasihole wavefunctions as well, if we only allow removal
of the CF2 in the second CF level. They form an Abelian
subspace of the entire Gaffnian quasihole manifold.

The scheme we propose can be extended to higher CF
levels. When the lowest N CF levels are fully occupied,
additional CF2 are fermions with total spin S = S + N + 1,
which lives within the null space of a properly constructed
(N + 2)−body interaction. We conjecture it is always possible
for model Hamiltonians to be constructed within the LLL,
such that the FQH to IQH correspondence is exact for the
entire Jain series at ν = n/(2n + 1). The CF wavefunctions
constructed this way are not identical to the conventional CF
wavefunctions from the LLL projection. They, however, have
very high wavefunction overlap for all numerically accessible
system sizes. For example, for the next Jain state at ν = 3/7,
we can construct a model Hamiltonian with 4-body pseu-
dopotentials, leading to a model wavefunction related to the
S3 conformal field theory [37] or constructed from the local
exclusion conditions [30,43]. Such model wavefunctions have
very high overlap with the conventional Jain state from the
LLL projection, and the related quasiholes are contained in
the null space of such model Hamiltonian. Thus similar to the
Jain state at ν = 2/5, we can construct a model Hamiltonian
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for the Jain state at ν = 3/7 within the same LL with the
spectrum that can be mapped to the IQH involving three CF
levels.

All the arguments above can be generalized to the case of
q > 2, corresponding to the Jain series at the filling factors
ν = n/(qn + 1). While it is tedious to check for each state that
the new approach here produces model wavefunctions that
always have very high overlap with the wavefunctions from
the conventional CF theory involving the LLL projection, they
are indeed the case for the states we have checked. Although
only limited numerics are performed to check that we can
always construct model Hamiltonians giving noninteracting
CFq with (almost) flat CF levels (especially for higher CF
levels), its generality is likely true given that there are in-
finite number of parameters to tune, for there are infinite
number of pseudopotentials with null spaces satisfying the
condition analogous to Eq. (14) for all the Jain states. Inde-
pendent of the conventional CF theory, the arguments here
give a well-defined scheme for the construction of model
wavefunctions and Hamiltonians for all Jain states within a
single LL, from rigorously defined composite fermion product
states.

C. The particle-hole conjugation

In a single LL, each FQH state at filling factor ν has a
particle-hole (PH) conjugate partner at filling factor 1 − ν,
which is a distinct topological phase also with a well-defined
microscopic model Hamiltonian [44,45]. This PH conjugation
is defined by the unitary transformation between electrons
and holes. In the composite fermion theory, these states are
constructed using the ingenious procedure of “reverse flux
attachment”. This is a physically intuitive process, but with
two caveats. Firstly, all states with reverse flux attachment
requires the LLL projection, even for the PH conjugate state
of the simplest Laughlin phases. Secondly, states constructed
from reverse flux attachment are not exact PH conjugates of
their partners at the microscopic level (even after the LLL
projection), although numerically they tend to be very good
approximations [46] and are thus believed to describe the
same topological phase (at least for the Jain states). As a
consequence, there is no known exact model Hamiltonian
even for the simplest states [e.g., the CF “anti-Laughlin” state
at ν = 2p/(2p + 1)] from reverse flux attachment, though
the model Hamiltonian for the actual “anti-Laughlin” state
at ν = 2p/(2p + 1) clearly should be the same as that of the
Laughlin state at ν = 1/(2p + 1).

At the microscopic level, applying the PH conjugation to
an electron many-body state is a straightforward procedure.
In the second quantized language, the many-body wavefunc-
tion is a linear combination of the occupation basis, each
representing a monomial or a Slater determinant state. The
PH conjugate of this occupation basis can be simply ob-
tained by switching an unoccupied orbital (denoted with “0”)
to an occupied orbital (denoted with “1”), and vice versa.
For example, the Laughlin ground state |ψ〉L at ν = 1/3
with three electrons and seven orbitals, and its PH conju-
gate (the anti-Laughlin state at ν = 2/3) |ψ〉AL, are given

FIG. 3. Similar to Fig. 1, here we show the construction of the
Jain ν = 2/5 state and its quasiholes, with the corresponding root
configuration. All these states are zero energy states of the Gaffnian
model Hamiltonians.

below:

|ψ〉L ∼ |1001001〉 − 3|1000110〉 − 3|0110001〉
+6|0101010〉 − 15|0011100〉, (16)

|ψ〉AL ∼ |0110110〉 − 3|0111001〉 − 3|1001110〉
+6|1010101〉 − 15|1100011〉. (17)

Both states are the exact eigenstates of V̂ 2bdy
1 .

Let us for now call all the Jain states with ν < 1/2 as
the usual FQH states, and their particle-hole conjugate states
with ν > 1/2 as the PH FQH states. The PH conjugate of the
vacuum for the FQH states is naturally the fully filled LL,
which serves as the new vacuum (or the PH vacuum) for the
PH-FQH states. Similarly, since the CFq for the FQH states
contains one electron and q fluxes, its PH conjugate (which we
call the PH-CFq) consists of q − 1 electrons and q fluxes. This
is analogous to the reverse flux attachment, or the composite
fermion of “holes”, but here a PH-CFq is a microscopically
well-defined fermion in a single LL. It is easy to see that
when we add PH-CFq to the PH vacuum, they behave like
S = S + q

2 fermions in the null space of the PH conjugate of
Eq. (2). Thus after adding 2S + 1 PH-CFq, we get the ground
state of the anti-Laughlin states at filling factor ν = q/(q + 1),
which again is a Slater determinant state of the PH-CFq [see
Fig. 4(a)].

Similarly, once the lowest PH-CF level is completely filled
up with 2S + 1 PH-CFq, further addition of PH-CFq will
carry a spin of S + 1, which can be defined using the PH
conjugate of Eq. (15). Fully filling the second PH-CF level
with 2S + 3 PH-CFq will give a product state of PH-CFs at
ν = (2qn − 1)/(2q + 1) corresponding to the PH conjugate
of the Jain state at ν = 2/(2q + 1) [see Fig. 4(b)]. We propose
all PH conjugate of the Jain series at ν = n/(qn + 1) can be
constructed in the same way. Note that in this way, not only
are all the PH Jain states constructed without resorting to the
LLL projection, they all have model Hamiltonians, which are
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FIG. 4. (a) The PH conjugate version of Fig. 1, where PH-CF2

are added to the vacuum of three magnetic fluxes to form the anti-
Laughlin state at ν = 2/3. (b) The PH conjugate version of Fig. 3,
where PH-CF2 are added to the second CF level to form the PH
conjugate of the Jain ν = 2/5 state.

simply the PH conjugate of the model Hamiltonians of the
original Jain series.

The particle-hole conjugation of composite fermions. So far
we have only discussed about the PH conjugation of electrons,
leading to the transformation from CFq (one electron bound
to q fluxes) to PH-CFq (q − 1 electrons bound to q fluxes).
Since PH conjugate is well defined for any fermions, we can
go beyond PH conjugation of electrons and construct FQH
states with the PH conjugation that maps an orbital occupied
with a CFq to an empty orbital, or vice versa. In this way,
many more Jain states can be constructed without using the
reverse flux attachment or the LLL projection.

This can be illustrated with the Laughlin state at ν = 1/5.
It is an IQH state of CF4, each consisting of one electron and
four magnetic fluxes, and the ground state corresponds to the
fully filled CF level. On the other hand, we can also reinterpret
it as the FQH state at filling factor ν = 1/3 of CF2. In this case
the CF level is partially filled, so we can take the particle-hole
conjugate within this CF level. The resulting FQH state of the
CF2 at filling factor ν = 2/3 corresponds to the FQH state of
electrons at ν = 2/7. This topological phase is well-known
from the conventional CF theory, but here the state can be
constructed without reverse attachment or LLL projection, but
with an exact PH conjugation.

We would like to emphasise that every product state of CFq

is a many-body wavefunction of electrons within a single LL.
The PH conjugate of the CF product state within the CF level
is thus another CF product state, which is also a well-defined
many-body wavefunction of electrons within a single LL. In
this way, we can write down the many-body wavefunction
of the electron FQH state at ν = 2/7 explicitly. It is not

microscopically identical to the state from the conventional
CF theory, but it has an exact a model Hamiltonian. This
microscopic Hamiltonian can be obtained by noting that for
the ν = 2/7 phase, it is the anti-Laughlin phase at ν = 2/3 of
CF2. The model Hamiltonian for the electron state ν = 2/3
is well known, and the model Hamiltonian for the CF2 state
at ν = 2/3 can thus be systematically derived from unitary
transformation, which we will go in more details in Sec. VI A.

V. THE COMPOSITE FERMI LIQUID

One of the greatest achievements of the composite fermion
theory is the model of the composite fermi liquid (CFL)
for the compressible phase at filling factor ν = 1/q, where
q > 0 is even [9,47]. Taken as the limit of the Jain series
of ν = n/(qn ± 1) with n → ∞, this is a gapless phase that
is conjectured to be a fermi liquid of composite fermions
with vanishing effective magnetic field. Using this model, the
trial wavefunction can be constructed by flux attachment to
the fermi liquid, followed by the LLL projection. A number
of predictions of the composite fermi liquid theory are also
supported by the experimental evidence [6,48,49].

Our first task is to see if the CFL wavefunction can be
constructed without using the LLL projection, with the CFq

we proposed in the previous section in a consistent manner.
It is also worth noting that the traditional CFL wavefunction
from flux attachment to a fermi liquid [47] is not obvious
from the limit of the Jain series at the microscopic level. Here
we will take this limiting process seriously, which we will
illustrate with the case of q = 2. The CFL occurs at ν = 1/2,
obtained from adding CF2 to the vacuum with no effective
magnetic fluxes [in contrast to the example in Fig. 1, where the
vacuum has three effective magnetic fluxes]. The lowest CF
level thus has two single CF2 states, with each CF2 carrying
the total spin of 1/2. We can thus keep adding CF2, filling
up the consecutive CF levels. Note that no matter how many
CF2 are added, the filling factor is kept fixed at ν = 1/2.
Moreover, when N lowest CF levels are completely filled, we
obtain the wavefunction, which is a special ground state of the
Jain series at ν = N/(2N + 1), with the number of electrons
Ne = N (N + 1). This wavefunction has the filling factor at
exactly ν = 1/2 at any value of N . One can also add or remove
CF2 from this special state, without changing the filling factor.

The important message here is that if we start with the
proper vacuum, the CFL ground state is well defined for
any finite systems, when a finite number of CF levels are
completely filled, and the top CF level is partially filled. Thus
topologically they are no different from the Jain states (ground
states or quasihole states), with the additional constraint that
the filling factor is exactly ν = 1/2. We thus also have a
model Hamiltonian for the CFL as proposed in the previous
section, leading to the microscopic wavefunctions that are
automatically within a single LL. There is a root configuration
of the CFL state with N completely filled CF levels, given as
follows:

N︷ ︸︸ ︷
11 · · · 11

N+1︷ ︸︸ ︷
000 · · · 00 · · ·

N︷ ︸︸ ︷
11 · · · 11

N+1︷ ︸︸ ︷
000 · · · 00︸ ︷︷ ︸

N

N︷ ︸︸ ︷
11 · · · 11 (18)

245126-10



COMPOSITE FERMION THEORY: A MICROSCOPIC … PHYSICAL REVIEW B 106, 245126 (2022)

where all monomial basis of the CFL are squeezed [27] from
the root configuration. For N = 1 we have the Laughlin state
at ν = 1/3 with two electrons, and for N = 2 we have the
Gaffnian state with six electrons, etc. All quasihole states cre-
ated by removing CFs from Eq. (18) are also CFL states, with
their corresponding root configurations satisfying no more
than N electrons in any N + 1 consecutive orbitals. There
is thus no fundamental difference between the CFL states
and the Jain states describing the gapped FQH states, as they
should be, though this was not explicit or apparent in the
conventional construction. For small systems (and thus small
N), the CFL states are gapped with short range interaction
(e.g., V̂LLL). The gap however is expected to vanish in the limit
N → ∞, as we will discuss in Sec. V B.

It is not possible to numerically construct such model
states exactly for large value of N . We can, however, just
diagonalize a short range interaction (e.g., V̂1 or V̂LLL) within
the basis squeezed from the root configuration. The ground
state in the truncated Hilbert space has extremely high overlap
with the exact ground state from the full Hilbert space, indicat-
ing the CFL states we constructed indeed describe the physics
at ν = 1/2 in the LLL, and they have high overlap with the
CFL constructed conventionally with the LLL projection [50].
Our construction also shows the CFL states are highly PH
symmetric, though in principle they do not have the exact PH
symmetry even in the thermodynamic limit.

A. The emergence of the fermi surface

The fermi surface of the CF2 at ν = 1/2 is defined by
the fermi wave vector kF , which is an intrinsic property of
the CFL wavefunction independent of the dispersion of the
single CF. We show here that kF can be readily computed from
the CFL wavefunction given by Eq. (18), which agrees with
the numerical value computed from the conventional CFL
wavefunction, or the value deduced from flux attachment to
a fermi liquid [51,52]. The computation here is exact in the
thermodynamic limit.

From the fundamental definition of the fermi surface, kF is
the smallest wave vector of a single CF2 that can be added to
a CFL. Starting with a rotationally invariant CFL with fully
filled N CF levels given by Eq. (18), an additional CF2 to the
next CF level carries a total spin S = 1

2 + N . Since the total
number of magnetic fluxes of the CFL is No = 2(N2 + N +
1), the radius of the sphere is given by R = √

N2 + N + 1lB,
where lB is the magnetic length. Thus the wave vector of the
additional CF, which is the fermi wave vector, is given by

kF = lim
N→∞

S

R
= l−1

B =
√

4πnCF, (19)

where nCF = Ne/(4πR2) is the CF density at ν = 1/2, with
Ne the number of electrons (or CF2). For CF2 constructed
from flux attachment to electrons, the CF density is naturally
the electron density. Similarly, for PH-CF2 obtained from flux
attachment to holes, its density is given by the hole density that
determines the fermi wave vector [48]. Here kF is determined
by Eq. (18) describing noninteracting CF2 from interacting
electrons, but since we have established a rigorous mapping
between CF2 and electrons, even with interacting CF2, kF is
universal due to the Luttinger theorem [51,53,54], as long as

we are still in the fermi liquid phase. More importantly, kF is
invariant to the specific form of the effective single CF disper-
sion, unlike the CF fermi energy. Such emergent dispersion
depends on the details of the electron-electron interaction and
is thus nonuniversal as we will discuss next.

B. The dynamics near the fermi surface

Whether or not the CFL states are the proper gapless
ground state at ν = 1/2 of course is entirely dependent on
the electron-electron interaction. There is strong numerical
evidence that the CFL states have very high overlap [50] with
the exact ground states of short range (e.g., V̂1 or V̂LLL) inter-
actions. The same interactions also show the gap of the Jain
series 
N to scale as 
N ∼ 1/N [55,56], agreeing with the
assumption that the CFs for the Jain state at ν = 1/(2N + 1)
experience an effective magnetic field B∗ = B/(2N + 1). This
effective magnetic field is given by the number of magnetic
fluxes of the vacuum. It is however important to note that

N is numerically computed from finite systems where N
is small, and this is a point we will come back to later. It is
also numerically shown that for short range interactions, at the
fixed filling factor ν = 1/(2N + 1), the single CF2 excitations
are more or less equally spaced [46,57] with energy spacing
proportional to B∗. All these numerical evidence suggests that
the CF levels are equally spaced with short range interactions.
It is thus believed there is an emergent Galilean invariance
for the CF2 (or CFq in general), from which we can properly
define an effective mass for the CF2. Note that for electrons,
only Galilean invariant systems (i.e., quadratic dispersion)
leads to equally spaced Landau levels.

It is important to point out, however, in principle all these
are dynamical behaviours of the CF2 in the presence of an
effective magnetic field, which are necessary but not sufficient
conditions for the formation of CFL with the quadratic disper-
sion at ν = 1/2, when the effective magnetic field vanishes.
They are also numerical evidence of simple interaction models
for finite system sizes, and it is not clear how robust equal
energy spacing for CF levels is in the thermodynamic limit,
and against sample thickness, LL mixing and other factors in
realistic experiments. For a more detailed analysis, we look at
the CFL with N fully filled CF levels. The exact expression of
the fermi wave vector is given by

kF,N = l−1
B

1 + 2N

2
√

N2 + N + 1
, (20)

which is the momentum of the CF2 added to the (N + 1)th CF
level. Note that in contrast to the addition of one electron to
the fermi surface at a fixed area that alters the electron density,
here an addition of a CF2 to the CFL fermi surface keeps the
density fixed but increases the area (i.e., each CF2 contains
two magnetic fluxes). Let EN , ẼN+n,1 be the energy of the
CFL before and after the addition of one CF2 to the (N + n)th
CF level, so 
N,n = ẼN+n,1 − EN is a charge gap of the CFL,
or the Jain state at ν = N/(2N + 1). To get the fermi energy,
we need to rescale the magnetic field to keep the area fixed,
with the magnetic length lB → lB

√
(N2 + N )/(N2 + N + 1).

Since the energy of the CFL fundamentally comes from the
Coulomb interaction between electrons which is inversely
proportional to the magnetic length, after rescaling it gives
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FIG. 5. (a) For electrons, a fermi liquid on the sphere comes from adding electrons to the sphere without any magnetic field. (b) Similarly
the CFL on the sphere at ν = 1/2 is obtained by adding CF2 to the sphere with no effective magnetic field. (c) Adding CF2 to the vacuum
can never bring the filling factor beyond ν = 1/2. When ν > 1/2, the physics of CFL can only be described by the PH-CF2, which gives the
particle density for the quantum fluid.

us EN+n,1 = ẼN+n,1

√
(N2 + N + 1)/(N2 + N ). We thus ob-

tain the following expression for the fermi energy, when the
additional CF2 is added to the (N + 1)th CF level:

EF = EN+1,1 − EN = 
N,1 + 1
2εN + O(N−1), (21)

where εN = ẼN+1,1/(N2 + N + 1) is the energy density (per
electron or CF2).

All physically relevant measurements explore the dynam-
ics near the fermi surface, and the scaling of 
N , εN with
respect to the system size completely determines the emer-
gent single particle behaviours of the CF2. The two quantities
are also readily computed by numerics. The single particle
dispersion of the CF2 can be complicated and nonuniversal,
just like band dispersions in crystals. Let us assume a generic
dispersion to the leading order with Ek = αkβ . We thus have
the following relationships:

EF = αkβ
F . (22)

Substitution of EF and kF into Eq. (21) gives us in the limit
limN→∞ εN = ε̃ = 2αl−β

B , where lB comes from the magnetic
field before rescaling, or before the addition of the CF2. Re-
member that the CFL is gapless so limN→∞ 
N,1 = 0. At the
fermi surface, we also have the following fermi velocity:

vF = ∂Ek

∂k

∣∣∣
kF

= lim
N→∞

lBN
∂
N,n

∂n

∣∣∣
n=1

= αβl1−β
B

= lB lim
N→∞

N
N = 1

2
lBβε̃, (23)

where 
N is the smallest charge gap of the Jain state at ν =
N/(2N + 1) with N (N + 1) electrons, when an additional CF2

is added to the (N + 1)th CF level. Again the gapless nature of
the CFL requires limN→∞ 
N = 0. The two readily measur-
able physical quantities here are kF and vF . One should note
kF is independent of the microscopic details, or the specific

form of 
N . It can be measured with the quantum oscillation
or the geometric oscillation of the magnetoresistance [48,49].

The fermi velocity vF , on the other hand, depends on the
microscopic details. In particular, if 
N decays slower than
1/N , the fermi velocity will diverge. If 
N decays faster than
1/N , then vF will be zero at the fermi surface, giving a flat
band of CF2. The dispersion exponent β can be extracted if

N decays exactly at 1/N . These different types of CFL are
determined entirely by the microscopic interaction between
electrons, and can be extensively analysed using numerical
computations.

It is also important to emphasise we can only talk about
CF2 at filling factor ν � 1/2. This is obvious from our
construction, and also natural given each CF2 contains one
electron and two fluxes, so the filling factor can never go
beyond ν = 1/2. For filling factor ν � 1/2, only PH-CF2 are
well-defined particles, which can form its own CFL which is
the PH conjugate of the CFL from electrons. This is clearly
demonstrated in geometric resonance measurement, and was
previously explained from the numerical computation of the
conventional CFL using the LLL projection. Here we show
the asymmetry in the geometric resonance near ν = 1/2 is a
direct consequence of the nature of the CFs, without the need
of numerical computation or finite size scaling [see Fig. 5].

C. The effective Hamiltonian of the CFL

The most well-known effective theories of the CFL are
the Halperin-Lee-Read theory of massive composite fermions
[9], and more recently the Dirac composite fermion theory
by Son [58–60]. In both cases, the starting point is to attach
magnetic fluxes to electrons, thus the theories are manifestly
not within the LLL. It is thus useful to start with the micro-
scopic Hamiltonian and understand how the effective theories
of the CFL could emerge entirely within a single LL. The full
Hamiltonian of the interacting electrons in a quantum Hall
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system is given as follows:

Ĥelectron = K̂ ( p̂i,Ai, m) +
∫

d2qVqρ̂qρ̂−q, (24)

which is a more explicit representation of Eq. (1). The first
term K̂ is the kinetic energy that defines the LLs, which
depends on the particle momentum p̂i, the electromagnetic
vector potential Ai, and the electron mass m. The second term
of Eq. (24) gives the electron-electron interaction, where Vq is
the interaction in the momentum space, and ρ̂q = ∑

i eiqri is
the bare electron density operator. We work in the limit of the
strong magnetic field, formally taking the cyclotron frequency
ωc = eB/m → ∞.

It is important to note that in this limit, the physical Hilbert
space is a truncated space of a single LL, in which the two
spatial coordinates no longer commutes. Thus the electrons
are no longer point particles in this space, but “quasiparticles”
occupying a finite area, with the same quantum numbers (e.g.,
charge and spin) of an electron. It is these “quasiparticles”
that are the fundamental degrees of freedom in a single LL. In
this microscopic picture, the composite fermions are not from
the flux attachment to electrons as point particles, but flux
attachment to these “quasiparticles”. These CFq are funda-
mental degrees of freedom within the subspace of a single LL.
For example, CF2 are the fundamental “fermions” in the null
space of V̂1. The relationship between “quasiparticles” and
CF2 is in complete analogy to the relationship between elec-
trons and “quasiparticles”. Thus the CFq defined in this paper
are fundamentally different from the composite fermions in
the HLR theory or the Dirac fermion theory in a subtle way.

One should also note that only K̂ depends on the external
electromagnetic field, thus the Hall conductivity as a response
to Ai is entirely determined by the kinetic energy. For trans-
lationally invariant systems, Lorentz invariance also dictates
that the Hall conductivity is given by the electron density,
independent of the nature of the electron-electron interaction
[61]. The importance of the interaction term is physically due
to its determination of the energy spectrum. If a gap arises
from the interaction, then the Hall conductivity plateau can
develop due to the Anderson localization in the presence of
disorder. Similarly, the longitudinal resistance also depends
on the energy spectrum, which will be suppressed if the tem-
perature is smaller than the ground state gap of the energy
spectrum. For example, the CFL is gapless, but away from
the half filling and in the presence of a periodic potential,
a small gap will open when the CF fermi wave vector is
commensurate with the potential periodicity, leading to the
geometric resonance observed in the experiments.

Thus all effective theories of the FQH (including the CFL)
should be derived only from the interaction part of Eq. (24),
with the understanding that the Hilbert space is a single LL. In
principle, such effective theories capture the energy spectrum
of the system (e.g., the dispersion of the CFq), but they do
not “predict” the Hall conductivity of the system; it has to
be put in by hand and fixed by the electron density of the
system. Other topological indices, including the Hall viscos-
ity, topological spins and the quasihole degeneracy, on the
other hand, should be captured by the effective theories. As-
suming at ν = 1/2, the CFL has a well-defined dispersion
relation given by Eq. (22) (i.e., 
N scales with 1/N), we will

thus have the following:

Ĥ ′
electron =

∫
d2qVqρ̄qρ̄−q = ĤCF2

=
∑

i

α
(√

p̂2
CF,i,x + p̂2

CF,i,y

)β

+ V̂CF, (25)

where ρ̄q is the guiding center density operator of electrons
within a single LL satisfying the GMP algebra [62]

[ρ̄q1
, ρ̄q2

] = 2i sin
q1 × q2l2

B

2
ρ̄q1+q2

, (26)

p̂CF is the momentum operator of a single CF2, and V̂CF gives
the interaction between CF2. Note that the Hilbert space of
CFq is only a subspace of the single LL, and here we are
assuming Ĥ ′

electron or ĤCF2 does not mix that subspace with
states in the single LL outside of that subspace. For realistic
interaction such mixing should be nonzero especially in nu-
merical calculations, which is the source of “slight” violation
of the Luttinger theorem for finite systems [52].

In general with two-body interaction between electrons,
the effective interaction between CF2 can be exactly derived,
leading to both two-body and few-body interactions (see
Sec. VI A). We thus have the following general expression:

V̂CF =
∞∑

n=2

∑
k,αk

λk,αk ,nṼ
n-bdy

k,αk
, (27)

where Ṽ n-bdy
k,αk

is the n-body pseudopotential projecting into the
sector of the total relative angular momentum k of a cluster of
n CF2, while αk labels the degeneracy of such pseudopoten-
tials. Note that V̂CF is not the full effective interaction between
CF2 (instead ĤCF2 is the full effective interaction). Rather
V̂CF = ĤCF − ĤCFL, where ĤCFL is the model Hamiltonian of
the Jain state at ν = N/(2N + 1) in the limit of N → ∞.

If we increase the magnetic field from ν = 1/2, this is
equivalent to the formation of the Jain state from a vacuum
with a finite number of magnetic fluxes (in contrast to zero
magnetic flux at exactly ν = 1/2). We can thus naturally treat
these additional magnetic fluxes as a gauge field coupling
to the CF2, with the minimal coupling leading to p̂CF,i,a →
p̂CF,i,a − |e|Ãa with the resulting LL-like energy spectrum,
which we dub as the CF levels. Note that the effective cou-
pling constant |e| is distinct from the electron charge, since
Ã is an effective gauge field distinct from the electromagnetic
gauge. There is no response of Ĥ ′

electron or ĤCF2 in Eq. (25) to
the electromagnetic vector potential A. The only information
of the background magnetic field comes from the magnetic
length lB appearing in the GMP algebra of Eq. (26).

VI. THE FQH FRACTALS

A rigorous mathematical construction of the CFq as
fermionic particles forming an orthonormal basis of Slater
determinants allows us to understand many FQH states in
a unified manner. Let us take the CFL phase at ν = 1/4 as
an example, which is experimentally accessible. In the usual
CF description, it is a CFL of CF4. There is no apparent
PH symmetry and the numerical exposition of this state is
technically more demanding. However, now we can easily
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understand the ν = 1/4 phase as the CFL of CF2 at filling fac-
tor ν∗ = 1/2. Formally, Eq. (18) describing the electron filling
at ν = 1/2 is a linear combination of electronic monomials
or Slater determinant states. In each of the Slater determi-
nant, we can reinterpret electrons as CF2, leading to the same
state of Eq. (18) as a linear combination of the Slater de-
terminant of CF2 (where each digit “1” indicates occupation
of a CF2 instead of an electron). This state describes the CFL
at filling factor ν = 1/4, which has the identical physics of the
CFL at ν = 1/2, just with a different type of fermions.

Since every CF Slater determinant is a well-defined linear
combination of the electron wavefunctions, the wavefunction
of the CFL at ν = 1/4 can be unambiguously constructed as
a state automatically within a single LL, and one can show
it has high overlap with the exact ground state of the LLL
Coulomb interaction. In fact, if we have a model Hamiltonian
for electron-electron interaction of the CFL at ν = 1/2 (e.g.,
V̂LLL), it is also the model Hamiltonian of the CFL at ν = 1/4,
if it describes the effective interaction between CF2. We can
also unambiguously map this CF Hamiltonian to an elec-
tron Hamiltonians that give the exact physics (including the
nonuniversal dynamics) of the ν = 1/4 CFL corresponding
to the CFL at ν = 1/2, which we will give more details in
Sec. VI A.

Similarly, the Laughlin ν = 1/5 state can be identified as
the Laughlin state of CF2 at ν∗ = 1/3. It is easy to perform
the PH conjugate of CF2, leading to the anti-Laughlin state
of CFs at ν∗ = 2/3, which corresponds to the FQH state of
electrons at ν = 2/7. This PH conjugation is well defined in
the null space of V̂ 2bdy

1 . Within this null space, the ν = 1/4
CFL state is also PH symmetric to a high level of accuracy,
completely analogous to the CFL state at ν = 1/2 within the
full Hilbert space of a single LL. The PH conjugation of CFq is
very useful in understanding the chirality of different graviton
modes in FQH systems [42].

We will now formally put electrons and composite
fermions on equal footing, using CFq to denote a composite
fermion from the binding of one electron with q (even) fluxes,
and the electrons in a single LL are the special case of CF0. All
these fermions are now well-defined microscopic objects re-
lated to each other by a unitary transformation. Without loss of
generality we focus on the LLL. Microscopically, undressed
CFq only exists within the null space of Eq. (2) or eigenstates
of Hamiltonians of the form Eq. (15), and are noninteracting
fermions with such a Hamiltonian. On the sphere, each CFq is
a spinor of S = q/2 + n� in the vacuum, with only one effec-
tive magnetic flux from the coupling of the cyclotron angular
momentum (associated to different LLs) to the curvature of
the sphere [63]. Here n� � 0 is the CF level index (or the
LL index for q = 0), and this corresponds to the topological
“cyclotron shift” of scfq = 2S + 1. For q = 0 the cyclotron
shift [63] of electrons in the LLL is s̄cf0 = 1, which is related
to the LL index and is generally irrelevant for the FQHE.
For q > 0 the topological shift of s̄cfq,n�

= q + 1 + 2n� is
analogous to the cyclotron shift of the electrons, but the part
of scfq,n�

= s̄cfq,n�
− s̄cf0 = q + 2n� is no longer associated

with different LLs, so they are relevant to the guiding center
topological shift of the FQHE [64]. As a general description.
we start with an arbitrary QH state |ψ〉q in the CFq basis at
the filling factor νt of the top CF level (so 0 < νcfq � 1) and

topological shift st (including the integer QH case with νt = 1
and thus st = 0), so we have the following relationship:

N
cfq
o = ν−1

t Ncfq − st . (28)

Here Ncfq is the number of CFq in the top CF level, and

N
cfq
o the number of single CF orbitals in the top CF level,

with N
cfq

φ = N
cfq
o − scfq,n�

be the number of effective magnetic
fluxes felt by the CFq, where n� is the top CF level index. The

filled CF levels thus contain n�(Ncfq

φ + n� + q − 1) fermions.
The total number of CFq, the same as the electron number, is

given by Ncf0 = Ncfq + n�(Ncfq

φ + n� + q − 1), and thus there

are Ncf0
φ = N

cfq

φ + qNcf0 effective magnetic fluxes felt by CF0,
as each CFq contains q fluxes. This leads to the following
relation:

Ncf0
o = Ncf0

φ =
(

1

n� + νt
+ q

)
Ncf0

+n�(n� + st − 1)

n� + νt
− st − scfq,n�

. (29)

Here Ncf0
φ is the number of single particle orbitals for Ncf0

(i.e., electrons in the LLL), since scf0,0 = 0; however, do note
the physical number of magnetic fluxes is Nφ = Ncf0

φ − s̄cf0 , to
account for the electron cyclotron shift. Thus Eq. (29) gives
the following electron filling and topological shift:

ν =
(

1

n� + νt
+ q

)−1

(30)

s = st + scfq,n�
− n�(n� + st + 1)

n� + νt
(31)

for the FQH phase of Eq. (28).
We emphasise that the topological phase of Eq. (28) is an

IQH of CFq for νt = 1 (the top CF level completely filled,
with all lower CF levels completely filled), and a FQH of
CFq when νt < 1. They are all FQH phase of electrons unless
q = 0, νt = 1. The ground states and quasihole states can be
explicitly expressed as linear combination of electron (or CF0)
monomials following the procedures in Eq. (9). Let such a
typical state be |ψ〉cfq , which we can express as

|ψ〉cfq =
∑

λ

cλ|mλ〉cfq

=
∑

λ

cλd
cfq

λ,λ′ |mλ′ 〉cf0 , (32)

where |mλ〉cfq are the monomials of CFq (note for νt = 1,
|ψ〉cfq itself is a monomial). For well-known FQH states (here
for CFq) such as the Laughlin or the Moore-Read states, etc,
cλ are well known and can be readily computed. On the other
hand, d

cfq

λ,λ′ can be computed from Eq. (9).
The key message here is for any pair of (νt , st ) that char-

acterises a known topological phase of electrons (Abelian or
non-Abelian), we can apply it to Eq. (29) with any even non-
negative integer q (including q = 0, which is for electrons),
and non-negative integer n�. This gives the same topological
phase of CFq. Each pair of (q, n�) corresponds to a particular
FQH phase at electron filling and shift given by Eqs. (30) and
(31). All ground states and the quasihole states of such an
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FQH phase have well-defined model wavefunctions given by
Eq. (32), and they also have exact model Hamiltonians derived
from the known model Hamiltonians for the case of electrons,
or CF0.

For fermions we can always take particle-hole (PH) con-
jugation, as discussed in Sec. IV. When we take the PH
conjugation of CFq within the n�th CF level, we obtain the
new topological phase by taking νt → 1 − νt , st → −st in
Eq. (28) and correspondingly the electron topological in-
dices in Eqs. (30) and (31). Different values of (n�, q, νt , st )
can describe the identical topological phase. An example
of this is that the Laughlin phase at νt = 1/3 of CF2 [i.e.,
(n�, q, νt , st ) = (0, 2, 1/3, 2)] is the same as the IQH phase
of CF4 at νt = 1 [i.e., (n�, q, νt , st ) = (0, 4, 1, 0)], which
is the Laughlin νt = 1/5 phase of CF0 [i.e., electrons, or
(n�, q, νt , st ) = (0, 0, 1/5, 4)].

From this perspective, all Laughlin states and the as-
sociated Jain series of ν = (n� + 1)/(1 + q(n� + 1)) are
“physically equivalent” to the IQHE with νt = 1, as they can
be obtained from Eq. (30) with different values of n� and
q. These are all IQH states of different types of CFq (their
PH conjugates within a single LL are IQH of different types
of PH-CFq), which are all Abelian FQH states and we can
use νt = 1 to represent all of them. Note the electron filling
factor for all of them are smaller than 1/2. It is thus no
coincidence that the next phase in the Read-Rezayi series [65]
is the Moore-Read state at ν = 1/2, which is non-Abelian
and fundamentally different from the νt = 1 family. We thus
propose the principle FQHE series to be those from the Read-
Rezayi series with νp = nr/(nr + 2) with nr = 2, 3, ... and
st = 2. Here nr = 2 corresponds to the Moore-Read state, and
nr = 3 corresponds to the Fibonacci state [66,67], etc. As we
argued here, the nr = 1 case gives the Laughlin state that is
equivalent to the case of νp = 1. The secondary series of FQH
states comes from Eqs. (30) and (31) with the principle νp and
different values of n�, q, as shown in Fig. 6.

It is interesting to see that the distribution of the secondary
filling factors has fractal characteristics at νt � 1/2. Actually
as shown in Fig. 6(a), all FQH states with 1/2 � ν � 1 (in-
cluding the Read-Rezayi series with nr > 1, the PH conjugate
of states with ν < 1/2, as well as other possibly unknown
FQH states) can be mapped to different intervals on the left
semicircle, each interval obtained by different values of q, n�.
The νp = 1 state is mapped to the familiar Jain series, and all
of them are Abelian. The νp = 2/4 Pfaffian state is mapped
to Pfaffians of CFq at different CF levels with ν = (2n� +
1)/(2 + 2n�q + q), all of them are non-Abelian states just
like the well-known Moore-Read state. The same is true for
other non-Abelian Read-Rezayi states, such as the Fibonacci
state at νp = 3/5. There are also other Abelian states in each
of the interval. For example the PH conjugate of the Jain
state at ν = 3/7 is another Abelian state at ν = 4/7. The
corresponding CFq states at ν = (7n� + 4)/(7 + 7n�q + 4q)
are all Abelian and correspond to the same family of quantum
Hall states as the νp = 1 IQH state.

For the entire semicircle on the left with 0 < ν < 1/2, all
these states at electron filling can also be mapped to the CFq

states at the same filling. Using Eqs. (30) and (31), again the
entire left semicircle can be mapped “verbatim” to different
intervals, some of them illustrated in Fig. 6(b). If we zoom

FIG. 6. (a) The principle filling factors of the Read-Rezayi series
(given by νp and only a few are labeled) occupies the right semicircle.
Together with all other possible FQH states at the right semicircle
(not labeled), they can be mapped to different intervals on the left
semicircle. (b) The entire left semicircle can also be mapped to
different intervals within the left semicircle, clearly demonstrating
a fractal structure for the distribution of the states. Due to space
constraint, only a few FQH states of the electron filling factor are
labeled in the figure.

into each interval, we will see replica of the left semicircle in
terms of the distribution of the FQH states. Such an intricate
hierarchical and fractal-like distribution of strongly correlated
topological order is worth further investigation, and it is im-
portant to note that all states discussed here can be classified
into families. States in each family are physically equivalent
to one of the Read-Rezayi states, thus fundamentally speaking
equivalent to one another, even though they can have different
conventional topological indices (i.e., the electron filling fac-
tor and topological shift).

The model Hamiltonians

With Coulomb based interaction in simple experimental
systems, most of the FQH states constructed above will not
be realized. However, all of them are still well-defined topo-
logical phases that can in principle be realized, because we
can construct model Hamiltonians for each one of them,
with dynamical properties (e.g., the incompressibility gap)
identical to those of the principle filling factors, or the Read-
Rezayi series at νp. Such model Hamiltonians can be exactly
constructed in principle, because all FQH states given in Fig. 6

245126-15



BO YANG PHYSICAL REVIEW B 106, 245126 (2022)

are related to the many-body electron wavefunctions of the
well-known Read-Rezayi series via a unitary transformation.

Let the model Hamiltonian describing the interaction be-
tween CFq of a particular FQH phase given by Eq. (28) be

ĤCFq =
∑

k′,n′,α′
λk′,n′,α′Ṽ n′-bdy

k′,α′ . (33)

It is sufficient to illustrate in details the process using a
Read-Rezayi state of CFq, with νt = nr/(nr + 2), st = 2. The
model Hamiltonian between the CFq (not the electrons) is
the (nr + 1)−body pseudopotential ĤCFq = Ṽ (nr+1)−bdy

knr ,β
with

knr = nr (nr + 1)/2 and β labels the degeneracy of such pseu-
dopotentials. This Hamiltonian projects into a cluster of nr +
1 CFq with total relative angular momentum knr between CFq

(not electrons). With knr = nr (nr + 1)/2 the pseudopotential
is unique so we have β = 1, but we will still leave β in
the notation. Our goal is to derive the effective interaction
between electrons that gives the identical energy spectrum as
that of the Read-Rezayi state from Ṽ (nr+1)−bdy

knr ,β
.

Let us first set up the notations. We use |k, n, α〉CFq to
denote a set of orthonormal quantum state containing n num-
bers of CFq, with total relative angular momentum k, and
α = 1, 2, · · · αn,k labels the degeneracy of such states. We
have established from the fermionization scheme that these
states can be mapped to many-body electron states with the
same quantum number within the conformal Hilbert space Hq,
which we can denote as |k, n, α〉e,Hq . For n� = 0, Hq is the
null space of Eq. (2); for n� > 0 it is the null space of the
model Hamiltonians in the form of Eq. (15). These many-body
electron states are well-defined linear combinations of elec-
tron monomials, each containing n electrons, with coefficients
that can be readily obtained. In particular we can have the
following expression:

|k, n, α〉e,Hq =
∑
k′,α′

λ̃k′α′
n,kα|k′, n, α′〉e, (34)

where |k′, n, α′〉e are quantum states of n electrons, with total
relative angular momentum between electrons as k′. The co-
efficients of this basis transformation λk′nα′

knα can be computed
from Eq. (9). For example, it is easy to check that for n = 2,
we have λ̃k′α′

2,kα = δα′
α δk′

k+q.
Let the effective interaction between electrons be given in

the general form as follows:

Ĥe =
∑

k′,n′,α′
λk′,n′,α′V̂ n′-bdy

k′,α′ . (35)

We need to determine all coefficients of λk′,n′,α′ such that

CFq〈k, n, α|Ṽ nr−bdy
knr ,β

|k, n, α〉CFq =e,Hq 〈k, n, α|Ĥe|k, n, α〉e,Hq .

(36)

Both sides of Eq. (36) can be readily computed. The left-hand
side (LHS) is obviously zero for n < nr + 1; for n = nr + 1
it equals to the vector �
nr+1,(k,α) = δk,knr

δα,β , where we treat
(k, α) as the index of the vectors (and later for the matrices).

The RHS is equal to

e,Hq〈k, nr + 1, α|Ĥe|k, nr + 1, α〉e,Hq

=
∑
k′,α′

λk′,nr+1,α′
←→
M (k′,α′ )

nr+1,(k,α), (37)

with the matrix
←→
M (k′,α′ )

nr+1,(k,α) = |λ̃k′α′
nr+1,kα|2. Defining a vec-

tor �λnr+1,(k′,α′ ) = λk′,nr+1,α′ we immediately obtain �λnr+1 =
(
←→
M nr+1)−1 �
nr+1, and thus all values of λk′,nr+1,α′ .

The rest of the coefficients can be obtained inductively.
Assuming all λk′,n′,α′ are known for n′ < n0, we now look at
the case of n = n0. By assumption the following quantities are
known:

Ckn0α = CFq〈k, n0, α|Ṽ nr−bdy
knr ,β

|k, n0, α〉CFq , (38)

Dkn0α =
∑
k′,α′

n0−1∑
n′=nr+1

λk′,n′,α′
←→
M (k′,α′ )

n′,(k,α). (39)

We then have

�λn0 = (
←→
M n0 )−1 �
n0 (40)

with �
n0,(k,α) = Ckn0α − Dkn0α . In fact we can compute all
the values of λk′,n′,α′ with Eqs. (38)–(40), by noting that
Ck,nr+1,α = δα′

α δk′
k+q and Dk,nr+1,α = 0.

Thus Eq. (35) and Eq. (33) are related by a unitary trans-
formation, as it should be, since the electron basis and the CF
basis are also related by a unitary transformation. Therefore, if
we know the electron interaction Hamiltonian in the form of
Eq. (35) (e.g., the Coulomb interaction), we can then derive
the effective, or residual interaction between the CFs [which
is described by Eq. (33)] using the same procedure.

It is important to note that Eq. (35) describes the effective
interaction within a single CF level. The full electron-electron
interaction is thus given by

Ĥmodel,ν,s = ĤCFq,n�
+ Ĥe. (41)

This model Hamiltonian is actually analogous to Eq. (1).
While the first term is also a linear combination of pseudopo-
tentials between electrons, it is very much analogous to the
kinetic energy giving the Landau levels, or the first term of
Eq. (1). For n� = 0, ĤCFq,n�

= Ĥq in Eq. (2); for n� > 0,
ĤCFq,n�

has to be constructed in the same way as Eq. (15). Just
like the kinetic energy giving the LLs, the first term needs to
be the dominant energy scale (or sent to infinity), as the second
term may introduce mixing between different CF levels, just
like the interaction part of the full electron Hamiltonian.

The procedure above can be easily generalized beyond
the Read-Rezayi states of CFq. As long as a particular FQH
phase given by Eq. (28) has a known model Hamiltonian
(as a linear combination of pseudopotentials), we can derive
the effective model electron-electron interaction Hamiltonian
for each of the pseudopotential using the method shown
above. In general, even for very simple interaction between
CFq (e.g., a single pseudopotential), the corresponding model
Hamiltonian between electrons consist of an infinite number
of pseudopotential, although the coefficients of most of them
tend to be very small.
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For the PH conjugates of the CF states within a single
CF level (in contrast to within the LL), the corresponding
CF model Hamiltonian can be simply obtained by taking
the PH conjugate of Eq. (33). For example, if Eq. (33) is a
two-body interaction, then its PH conjugate is the same two-
body interaction plus a constant chemical potential, which
we can readily ignore. As an example, by taking q = 2 and
ĤCFq = Ṽ 2bdy

1 , the ground state is the ν∗ = 1/3 Laughlin state
of CF2, or the ν = 1/5 Laughlin state of electrons. Its PH
conjugate within a single Landau level gives the same model
Hamiltonian ĤCFq , where the exact ground state is the ν∗ =
2/3 state of CF2, or the ν = 2/7 state of electrons. Using
Eqs. (38)–(40), for ν = 1/5 Laughlin state we can derive the
following:

ĤCF,0 = λV̂ 2bdy
1 , (42)

Ĥe = V̂ 2bdy
3 + δHe, (43)

Ĥmodel,1/5,4 = ĤCF,0 + Ĥe. (44)

Here δHe can be explicitly computed, but it contains an infinite
number of pseudopotential terms. We can show that the null
space of δHe is the same as the null space of V̂ 2bdy

3 , and
the simplest pseudopotential in δHe is V̂ 3bdy

9 [68], with the
coefficient ∼0.78.

In principle we need to take λ → ∞, but for the ν = 1/5
ground state and quasihole states this turns out to be not
necessary since the null space of Ĥe is a proper subspace of
the null space of ĤCF,0. We can also take δHe = 0, which
will not affect the ground state and the quasihole states,
though that will affect the gapped excitations, which will no
longer be identical to the gapped excitations of ĤCFq = Ṽ 2bdy

1 .
For the exact mapping of the gapped excitations, we need
to take λ → ∞ and for δHe to be precisely computed and
included in Ĥe.

For its PH conjugate state within the CF level, ν = 2/7,
however, Ĥe will mix the ground state and quasihole states
with higher CF levels because ν > 1/5. This is analogous to
the electron-electron interaction in FQH states mixing differ-
ent LLs. The model Hamiltonian for ν = 2/7 thus requires
λ → ∞ [analogous to the magnetic field going to infinity in
Eq. (1)] and naturally δHe cannot be ignored. It is interesting
to notice that while Ĥe is not PH symmetric within a single
LL (due to the presence of δHe), it is PH symmetric within
a single CF (apart from a constant chemical potential), a
different conformal Hilbert space. This again illustrates the
qualitative similarities and quantitative differences between
the Landau levels and the CF levels.

Just like the model Hamiltonians of FQH should be equiv-
alent in different LLs, the model Hamiltonian we derived
here, i.e., Ĥe, should also be equivalent in different CF lev-
els. For example with n� = 1, the ĤCFq = Ṽ 2bdy

1 Hamiltonian
with q = 2 gives the FQH state at ν = 4/11, and its PH
conjugate within a single CF at ν = 5/13. In both cases, the
electron-electron model Hamiltonian contains δHe. The only
term we need to change is ĤCF,1, which is given by Eq. (15)
that gives the noninteracting CFq in the n� = 1 CF level.
Thus while Ĥmodel describing the electron-electron interaction
always consists of ĤCFq and Ĥe, the former is completely anal-

ogous to the “kinetic energy” that dictates which CF level the
dynamics of the composite fermions live in, while the latter
is the “true” interaction part defining the incompressibility
gap from the CF interaction within a partially filled CF level.
Numerical verification of this tends to be difficult, however,
due to the small system sizes that are computationally acces-
sible. For finite systems, at n� = 1 there are additional small
corrections to δHe. We expect they are not important for the
topological properties of the relevant FQH states, and a more
systematic study is needed to check if those small corrections
vanish in the thermodynamic limit.

VII. SUMMARY AND OUTLOOK

In summary, we have rigorously derived microscopic
model wavefunctions and proper model Hamiltonians (within
a single LL) of a large family of FQH phases, using composite
fermions as well-defined quasiparticles as a generalisation of
electrons. The unitary transformation between electrons and
composite fermions are block diagonal in the particle number
and the symmetry quantum number sectors, and the process
also illustrates the physical importance of the concept of con-
formal Hilbert spaces. Many of the states discussed in this
paper have been studied in the past with the conventional CF
theory, and we argue the model wavefunctions we constructed
are topologically identical, with the systematic construction
of model Hamiltonians that have been actively sought after,
albeit unsuccessfully in the past. The entire scheme we devel-
oped also aims to unify the phenomenological CF approach
with the more rigorous pseudopotential and Jack polynomial
formalism, and in particular exposes subtle links between the
Abelian Jain states and their non-Abelian counterparts at the
same filling factor and topological shifts.

While this paper endeavours to establish an “exact” FQH
to IQH correspondence and thus to extract useful physical
consequences, it is also clear, just from dimensional consid-
eration, that an exact correspondence for any finite system is
impossible. This is because for a fixed electron number Ne

and orbital number No, the Hilbert space of the FQH effect
in a single Landau level is finite dimensional, while that for
the IQH is infinite dimensional. It is thus not possible to have
a fully unitary transformation from the electron basis to any
CF basis.

Nevertheless, all the analysis in the previous sections are
rigorous. In particular, all the attributes listed in Sec. III
are exact statements. The important message here is, while
all FQH states in the electron basis discussed in this paper
can be expressed as product states in the CF basis, not all
product states in the CF basis has a corresponding many-
body wavefunction in the electron basis. This issue has so
far been ignored in this work, because we only focused on
a partially filled top CF level, while all the lower CF levels
are completely filled. These include only the ground states,
and the quasihole/quasielectron excitations not dressed with
neutral excitations. The exact FQH to IQH correspondence
will no longer be valid only when neutral excitations are
present in the system. This include states containing dressed
quasiholes/quasielectrons, i.e., quasiholes or quasielectrons
together with neutral excitations.

245126-17



BO YANG PHYSICAL REVIEW B 106, 245126 (2022)

The missing states for the neutral excitations, or the “CF
excitons”, are well known in the conventional CF theory
[15], when a nontrivial CF wavefunction vanishes after the
LL projection. The dimensional mismatch between the FQH
and IQH Hilbert space is only explicit for finite systems, so
this “neutral excitation anomalies” may not be important in
the thermodynamic limit, although this is an issue that war-
rants further careful studies. Neutral excitations are gapped
excitations, so in most cases they will not affect the topo-
logical properties of the FQH ground states (as well as their
quasiholes). However when we move away from ideal model
Hamiltonians, neutral excitations may become well-structured
low-lying excitations or even gapless, with rich physical con-
sequences [40,42,69].

From a more fundamental level, our work here proposes
CFq as well-defined microscopic elementary particles, each
type responsible for a large family of FQH states. These
include the IQH of the CFq, the FQH of the CFq and their
PH conjugates (both Abelian and non-Abelian), as well as the
fermi liquid of the CFq. We show the distribution of these
FQH states emerge with a fractal structure on the real axis,
with a more general classification of FQH states using the

Read-Rezayi series as the principle topological phases. For
example, all Abelian FQH states (at least those discussed in
this paper) are physically (or at least topologically) equivalent
to the IQHE, even though they may have different topolog-
ical indices (e.g., the filling factors). They are just IQHE in
different conformal Hilbert spaces (the single LL is a special
case) that are isomorphic to each other, with different types of
fermions. This scheme of classification of topological phases
beyond using the conventional topological indices may also
be useful for the proper formulation of effective topologi-
cal field theories with better support from the microscopic
theories.
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[33] C. Tőke and J. K. Jain, Phys. Rev. B 80, 205301 (2009).
[34] N. Read, Phys. Rev. B 79, 045308 (2009).
[35] M. Hermanns, N. Regnault, B. A. Bernevig, and E. Ardonne,

Phys. Rev. B 83, 241302(R) (2011).
[36] S. H. Simon, E. H. Rezayi, N. R. Cooper, and I. Berdnikov,

Phys. Rev. B 75, 075317 (2007).
[37] S. H. Simon, E. H. Rezayi, and N. Regnault, Phys. Rev. B 81,

121301(R) (2010).
[38] B. Kang and J. E. Moore, Phys. Rev. B 95, 245117 (2017).
[39] T. Jolicoeur, P. Mizusaki, and P. Lecheminant, Phys. Rev. B 90,

075116 (2014).
[40] Y. Wang and B. Yang, Phys. Rev. B 105, 035144 (2022).
[41] B. Yang, Phys. Rev. Res. 2, 033362 (2020).
[42] Y. Wang and B. Yang, arXiv:2201.00020.
[43] B. Yang and A. C. Balram, New J. Phys. 23, 013001 (2021).
[44] M. Levin, B. I. Halperin, and B. Rosenow, Phys. Rev. Lett. 99,

236806 (2007).

245126-18

https://doi.org/10.1103/PhysRevLett.127.126406
https://doi.org/10.1103/PhysRevB.79.245304
https://doi.org/10.1103/PhysRevB.103.115102
https://doi.org/10.1103/PhysRevLett.51.605
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevB.94.165303
https://doi.org/10.1103/PhysRevB.96.245142
https://doi.org/10.1103/PhysRevB.47.7312
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevB.75.075318
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevB.40.8079
https://doi.org/10.1103/PhysRevB.88.205312
https://doi.org/10.1103/PhysRevB.106.085136
https://doi.org/10.1103/PhysRevB.44.8395
https://doi.org/10.1103/PhysRevLett.124.196803
https://doi.org/10.1103/PhysRevLett.126.136601
https://doi.org/10.1103/PhysRevB.42.8145
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevB.98.235139
https://doi.org/10.1103/PhysRevLett.50.1395
https://doi.org/10.1016/0920-5632(93)90377-I
https://doi.org/10.1103/RevModPhys.89.025005
https://doi.org/10.1103/PhysRevLett.100.246802
https://doi.org/10.1103/PhysRevLett.108.256807
https://doi.org/10.1103/PhysRevLett.112.026804
https://doi.org/10.1103/PhysRevB.100.241302
https://doi.org/10.1103/PhysRevLett.101.246806
https://doi.org/10.1103/PhysRevB.100.245303
https://doi.org/10.1103/PhysRevB.80.205301
https://doi.org/10.1103/PhysRevB.79.045308
https://doi.org/10.1103/PhysRevB.83.241302
https://doi.org/10.1103/PhysRevB.75.075317
https://doi.org/10.1103/PhysRevB.81.121301
https://doi.org/10.1103/PhysRevB.95.245117
https://doi.org/10.1103/PhysRevB.90.075116
https://doi.org/10.1103/PhysRevB.105.035144
https://doi.org/10.1103/PhysRevResearch.2.033362
http://arxiv.org/abs/arXiv:2201.00020
https://doi.org/10.1088/1367-2630/abd49d
https://doi.org/10.1103/PhysRevLett.99.236806


COMPOSITE FERMION THEORY: A MICROSCOPIC … PHYSICAL REVIEW B 106, 245126 (2022)

[45] S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, Phys. Rev.
Lett. 99, 236807 (2007).

[46] A. C. Balram and J. K. Jain, Phys. Rev. B 93, 235152
(2016).

[47] E. Rezayi and N. Read, Phys. Rev. Lett. 72, 900 (1994).
[48] M. A. Mueed, D. Kamburov, S. Hasdemir, M. Shayegan, L. N.

Pfeiffer, K. W. West, and K. W. Baldwin, Phys. Rev. Lett. 114,
236406 (2015).

[49] M. S. Hossain, M. K. Ma, M. A. Mueed, D. Kamburov, L. N.
Pfeiffer, K. W. West, K. W. Baldwin, R. Winkler, and M.
Shayegan, Phys. Rev. B 100, 041112(R) (2019).

[50] Z. Liu, A. C. Balram, Z. Papić, and A. Gromov, Phys. Rev. Lett.
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Rev. B 95, 115136 (2017).
[68] There are two linearly independent three-body pseudopotentials

with total relative angular momentum 9, the orthogonal V̂ 3bdy
9,1 ,

V̂ 3bdy
9,2 . Here we do not go into the technical details, and choose

the V̂ 3bdy
9,1 in the main text such that the coefficient of V̂ 3bdy

9,2 in
δHe vanishes.

[69] H. Q. Trung and B. Yang, Phys. Rev. Lett. 127, 046402
(2021).

245126-19

https://doi.org/10.1103/PhysRevLett.99.236807
https://doi.org/10.1103/PhysRevB.93.235152
https://doi.org/10.1103/PhysRevLett.72.900
https://doi.org/10.1103/PhysRevLett.114.236406
https://doi.org/10.1103/PhysRevB.100.041112
https://doi.org/10.1103/PhysRevLett.126.076604
https://doi.org/10.1103/PhysRevB.96.235102
https://doi.org/10.1103/PhysRevLett.115.186805
https://doi.org/10.1103/PhysRev.118.1417
https://doi.org/10.1103/PhysRev.119.1153
https://doi.org/10.1103/PhysRevB.105.205147
https://doi.org/10.1088/0953-8984/11/38/308
https://doi.org/10.1103/PhysRevB.64.081302
https://doi.org/10.1103/PhysRevX.5.031027
http://arxiv.org/abs/arXiv:1306.0638
https://doi.org/10.1103/PhysRevX.7.041032
http://arxiv.org/abs/arXiv:cond-mat/9907002
https://doi.org/10.1103/PhysRevB.33.2481
https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1103/PhysRevB.84.085316
https://doi.org/10.1103/PhysRevB.59.8084
https://doi.org/10.1103/PhysRevB.94.075108
https://doi.org/10.1103/PhysRevB.95.115136
https://doi.org/10.1103/PhysRevLett.127.046402

