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Hohenberg-Mermin-Wagner-type theorems and dipole symmetry
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We study the possibility of spontaneous symmetry breaking in systems with both charge and dipole sym-
metries. For d-dimensional systems at a positive temperature, we show that charge symmetry cannot be
spontaneously broken for d � 4, while dipole symmetry cannot be spontaneously broken for d � 2. For T = 0,
we show that charge symmetry cannot be spontaneously broken for d � 2 if the compressibility is finite. We
also show that continuum systems with a dipole symmetry have infinite inertial mass density.
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I. INTRODUCTION

The concepts of spontaneous symmetry breaking and
long-range order play a central role in the theory of phase tran-
sitions. Peierls [1,2] and Landau [3] were the first to realize
that in sufficiently low dimensions thermal fluctuations of the
order parameter can preclude genuine long-range order. The
impossibility of long-range order in one and two dimensions
at positive temperatures has been proved by Hohenberg [4] in
the case of superfluids and superconductors and by Mermin
and Wagner [5] for (anti)ferromagnets. The relevant sym-
metries in these cases are either U (1) or SU (2). Analogous
theorems for one-dimensional systems at zero temperature
were proved by Pitaevskii and Stringari [6]. At T = 0 it is
quantum fluctuations that destroy the order.

The impossibility of symmetry breaking in a particular
system does not guarantee the absence of continuous phase
transitions. A textbook example is the Berezinskii-Kosterlitz-
Thouless phase transition [7–9]. In this case fluctuations of the
order parameter are qualitatively different on the two sides of
the transition, even though symmetry is not broken.

The main purpose of this paper is to generalize the above
results to U (1)-invariant systems which conserve not only the
charge but also the dipole moment. The additional symmetry
possessed by such models is called the dipole symmetry. A
simple noninteracting field theory with a dipole symmetry is
the Lifshitz model which has a single real scalar field φ(t, x)
and an action

S = 1

2

∫
dt dd x(φ̇2 − C(∂2φ)2). (1)

Here C is a positive constant and ∂2 = ∂ j∂ j . This model has
both a charge symmetry φ �→ φ + a and a dipole symmetry
φ �→ φ + b · x, where b is a constant vector. An example of
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a lattice system with a dipole symmetry dubbed the dipolar
Bose-Hubbard model was recently studied by Lake et al. [10].
Its Hamiltonian is given by

H =
∑

i

(
−t

∑
a

[
b†

i
2
bi+abi−a + b†

i−ab†
i+ab2

i

]
− t ′ ∑

a,b,b�=a

[
b†

i b†
i+a+bbi+abi+b + b†

i+bb†
i+abi+a+bbi

]

+ U

2
ni(ni − 1) − μni

⎞
⎠, (2)

where bi are boson creation operators and ni = b†
i bi, i goes

over square lattice sites and a, b over basis vectors. The dipole
symmetries are generated by

∑
j jan j where ja is the a co-

ordinate of the site j. The usual hopping term is forbidden
by the dipole symmetry and particles can only hop in pairs.
Reference [10] shows that within the mean-field approxima-
tion the model has several different phases characterized by
spontaneous breaking of dipole and/or charge symmetries.

Our interest in such models stems from a connection be-
tween dipole symmetry and systems where the kinetic energy
of charged quasiparticles is suppressed relative to the poten-
tial interaction energy, leading to strongly correlated physics.
Whenever a system is effectively described by weakly in-
teracting quasiparticles, suppression of the kinetic energy is
tantamount to the flatness of the relevant band. For systems
with strongly interacting quasiparticles, the concept of a flat
band is problematic. A possible way out is to notice that
an idealized exactly flat band has an additional symmetry of
shifts by a constant momentum, or equivalently a Galilean
boost symmetry. Invariance of the Hamiltonian under boost
can be used as a definition of a “flat band” which does not
rely on the weakness of the interaction. Although in the exper-
imentally realized systems the band is never exactly flat (i.e.,
the commutator of the boost generator and the Hamiltonian

2469-9950/2022/106(24)/245125(8) 245125-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6099-7717
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.245125&domain=pdf&date_stamp=2022-12-16
https://doi.org/10.1103/PhysRevB.106.245125


ANTON KAPUSTIN AND LEV SPODYNEIKO PHYSICAL REVIEW B 106, 245125 (2022)

is never exactly zero), the study of such idealized models is
a good starting point to tackle the theoretical challenges of
strong interactions in these materials.

To explain the connection to the dipole symmetry, consider
a system of particles with mass m and density-density interac-
tions. The generator of a shift in momentum space is given
by

K =
∫

dd x

(
t
p(x)

m
− xρ(x)

)
, (3)

where p(x), ρ(x) are the momentum and particle densities
and we divided the boost generator by m since we want it to
shift momentum instead of velocity. In the limit m → ∞ the
kinetic energy becomes quenched and K starts to commute
with the Hamiltonian, i.e., becomes a true symmetry instead
of being part of the spectrum-generating algebra. In this limit,
the generator (3) becomes the total dipole moment of the
particles.

Dipole moment conservation on top of charge conserva-
tion leads to restricted mobility of charged particles but does
not obstruct the propagation of neutral bound states. Similar
phenomena appear in theories of fractons [11–13] and their
connection to dipole symmetry is known [14–16]. Therefore
models with dipole symmetries and fractonic behavior can
be used as a playground for studying systems with vanishing
kinetic energy. One can hope that their exotic features can also
manifest themselves in more realistic “flat-band” systems.

The issue of spontaneous breaking of dipole symmetry is
related to the question of whether systems that are invariant
under boost symmetry in the above sense can nevertheless
have quasiparticles with a nonzero dispersion. To see that
this might be possible, consider the famous Landau relation
between the bare mass m and the quasiparticle mass m∗ in a
Fermi liquid [17]:

1

m∗ = 1

m
− 2p f

(2π )3

∫
d� f (θ ) cos θ. (4)

This relation follows from Galilean invariance. One can see
that in the limit m → ∞ (and assuming that the system stays
in the Fermi-liquid phase) the effective mass of quasiparticles
can be generated by the interaction and remain finite. Since the
Fermi surface is not invariant under translations in momentum
space, for this mechanism to work the dipole symmetry of the
m = ∞ model must be spontaneously broken.

Within the Lifshitz model, the effects of quantum and
thermal fluctuations on the existence of phases with broken
charge or dipole symmetries have been discussed in [18,19]
and are reviewed in Sec. II. This type of analysis assumes that
the only low-energy degrees of freedom are Goldstone bosons.
However, spontaneous breaking of dipole symmetry (or more
generally any symmetry that has a nontrivial commutator
with translations) does not necessarily lead to a Goldstone
mode [20,21]. For example, some Fermi liquids sponta-
neously break rotational and/or Galilean symmetries but their
low-energy excitation spectrum consists of the particle-hole
continuum without any bosonic collective modes. A further
complication is that the choice of the fields describing the
Goldstone modes is not unique. For example, in the tradi-
tional approach to crystalline solids, one does not introduce
a separate field for the rotational symmetry, even though both

rotational and translational symmetries are broken into a dis-
crete subgroup. But the same low-energy physics can also be
described by a field theory with additional fields which play
the role of the Goldstone bosons for rotations [22,23]. Thus it
is desirable to prove theorems of Hohenberg-Mermin-Wagner
(HMW) type without assuming anything about the low-energy
degrees of freedom.

In Sec. III, we consider a general d-dimensional lattice
system with a finite range Hamiltonian that commutes with
both charge and dipole moment. We show that for T > 0
the dipole symmetry cannot be broken for d � 2, while the
charge symmetry cannot be broken for d � 4. Thus the mere
presence of dipole symmetry allows one to strengthen the
conclusions of the HMW theorem. At T = 0 we show that
the charge symmetry cannot be broken for d � 2 if the charge
compressibility does not diverge. The theorem does not put
any restriction on the dipole symmetry at zero temperature
because the dielectric constant diverges for a general system
with a dipole symmetry. Our results put on firm ground the
analysis of [18,19] based on the Lifshitz model.

In Sec. IV we prove HMW-type theorems for continuum
models with a dipole symmetry. Unlike lattice systems, such
models have a conserved momentum P, and thus one may
also consider a generalized Gibbs ensemble with a nonzero
velocity v. We show that the inertial mass density in contin-
uum models with a dipole symmetry is always infinite. This
is a kind of converse to the statement that dipole symmetry
emerges as the infinite-mass limit of the Galilean symmetry.
Section V contains concluding remarks.

II. THE LIFSHITZ MODEL

The Lifshitz model (1) in d spatial dimensions is the sim-
plest field theory which conserves both charge and its dipole
moment. The charge symmetry is generated by a Hermitian
operator Q satisfying [Q, φ] = −i. The dipole symmetry is
generated by a vector-valued Hermitian operator D satisfying
[D, φ(t, x)] = −ix. Naively, the Lifshitz model describes a
phase where both charge and dipole symmetries are com-
pletely broken, with φ being the order parameter. Indeed, if
〈·〉 denotes averaging over a ground state or a thermal state,
then we have 〈[Q, φ(t, x)]〉 = −i �= 0 and 〈[D, φ(t, x)]〉 =
−ix �= 0. By definition, this means that symmetries generated
by both Q and D are spontaneously broken. But it is well
known that quantum and thermal fluctuations may invalidate
this conclusion by making φ ill-defined. Let us examine this
issue in more detail.

For T = 0 and d > 2 the connected two-point function of
φ is

〈φ(0, x)φ(0, y)〉c ∼ 1

|x − y|d−2
. (5)

This is a well-defined two-point function that satisfies the
cluster decomposition. Thus φ is a well-defined local field that
may serve as an order parameter for both charge and dipole
symmetry breaking. In contrast, for d = 2 the connected two-
point function of φ is not well defined, because its spatial
Fourier transform

〈φ(0)kφ(0)k〉c ∼ 1

k2
(6)
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has a nonintegrable singularity at k = 0.1 Less formally, the
average of φ(0, x) over a large region of diameter L has a
standard deviation that grows like (log L)1/2, indicating that it
cannot serve as an order parameter.

On the other hand, the two-point function of the vector-
valued operator u = ∇φ has an integrable singularity in
momentum space, and the two-point function in coordinate
space is well defined and satisfies the cluster decomposition:

〈u j (0, x)ul (0, y)〉c ∼ (x j − y j )(xl − yl )

|x − y|4 . (7)

Since u commutes with Q, it cannot serve as an order parame-
ter for charge symmetry breaking. Neither are there any other
local fields whose commutator with Q has a nonzero expecta-
tion value. Thus charge symmetry is unbroken in the d = 2
Lifshitz model at zero temperature. But since 〈[Dj, ul ]〉 =
−iδ jl , the dipole symmetry is spontaneously broken.

The situation for d = 1 is similar. The two-point function
of the field φ in momentum space again has a nonintegrable
singularity (6). The standard deviation of the spatial average
of φ grows like

√
L for large L. Since one lacks any order

parameter for the charge symmetry breaking, it remains un-
broken. But the two-point function of the field u = ∂xφ is
constant in momentum space and thus we have

〈u(0, x)u(0, y)〉c ∼ δ(x − y). (8)

This is a well-defined (although somewhat unusual) answer,
and u can serve as an order parameter for the dipole symmetry
breaking. Thus the dipole symmetry in the d = 1 Lifshitz
model is broken at T = 0, as noted in [19].2

For T > 0 the static two-point function of the Lifshitz field
φ in momentum space is

〈φ(0)kφ(0)k〉c ∼ 1

k4
. (9)

For d > 4 it is integrable, in which case the connected thermal
two-point function of φ in coordinate space is well defined.
Since φ is well defined and shifts under charge symmetry, the
charge symmetry (and therefore also the dipole symmetry)
are spontaneously broken for d > 4. For d � 4, the field φ

is not well defined, and there are no other order parameters
for charge symmetry breaking. Thus the charge symmetry is
not broken for d � 4. As for dipole symmetry, for d > 2 it
is spontaneously broken, while for d � 2 it is also unbroken.
Indeed, for d > 2 we can take uj = ∂ jφ as an order parameter,
since its connected thermal two-point function has an inte-
grable singularity ∼1/k2 in momentum space and decays as
1/xd−2 in coordinate space.

1If one cuts off the integral at k = 	IR, one finds a logarithmically
growing two-point function.

2Spontaneous breaking of a continuous symmetry in a one-
dimensional (1D) system might seem surprising, but it does not
contradict any known general theorems. Another example is a system
of nonrelativistic fermions in 1D which spontaneously breaks boost
invariance by forming a Luttinger liquid.

III. LATTICE SYSTEMS

A. Definitions

We will consider a lattice system with discrete translation
symmetry and finite-range interactions. More formally, let 	

be a lattice in Rd with an action of translation group Zd . The
Hilbert space is the product of an infinite number of copies
of a finite-dimensional Hilbert space of a single site. Local
operators are operators which act nontrivially only on a finite
number of sites. We can formally combine all sites in a single
unit cell into a single site and reduce the lattice 	 to Zd

without a loss of generality. If the translational symmetry is
broken to a sublattice symmetry (as in antiferromagnets), we
can formally combine the resulting unit cell to one cell and
again assume that the lattice is Zd .

The Hamiltonian density operator Hn is assumed to be
translationally invariant and finite range. The integer-valued
index n enumerates the lattice Zd sites. Moreover, we assume
that the system has a charge symmetry and an associated
dipole symmetry. Namely, there exist charge density operators
Qn which are finite range, translationally invariant, and satisfy

[Qn, Qm] = 0, (10)∑
n∈Zd

[Qn, Hm] = 0, (11)

∑
n∈Zd

ni[Qn, Hm] = 0, for all i = 1, . . . , d, (12)

where ni is the ith component of the n in Zd . The latter
condition means that the dipole moment is conserved. We
will define the dipole charge density as Di

n = niQn and the
dipole charge as Di = ∑

n∈Zd Di
n. The operators Qn, Hn are

assumed to be local operators supported on balls of diameter
dint centered at n.

We also assume that the state of the system has a clustering
property. More precisely, following [24,25], we assume that
for any two local operators A, B one has

|〈ATn(B)〉 − 〈A〉〈B〉| � CAB

|n|δAB
as |n| → ∞, (13)

where Tn is the translation operator and δAB,CAB are positive
numbers. In reality, we only use the clustering property when
A = B and A is a local operator which is a candidate for the
order parameter. Some sort of clustering is also implicit in
[4,5], since it is assumed there that the Fourier transform of
a two-point correlator is a well-defined integrable function
rather than a distribution.

B. HMW theorem for charge symmetry
at a nonzero temperature

We repeat the argument of [24,25] making only small
adjustments. Suppose the charge symmetry is spontaneously
broken, i.e., there exists a local operator A0 such that

〈[Q, A0]〉 �= 0, (14)

where brackets denote the thermal average. Without a loss
of generality, we may assume that A0 is Hermitian, has zero
average 〈A0〉 = 0, and is localized around the point n = 0.

245125-3



ANTON KAPUSTIN AND LEV SPODYNEIKO PHYSICAL REVIEW B 106, 245125 (2022)

We will consider a spatially averaged version of A0 defined
as

AR = 1

Vol(Bd
R)

∑
|n|�R

Tn(A0), (15)

where Tn is the translation operator, R is some number, and
Vol(Bd

R) is the number of lattice sites in a d-dimensional ball
of radius R. We assume that the full Zd translational symmetry
is preserved and thus

〈[Q, A0]〉 = 〈[Q, A]〉. (16)

By increasing dint if necessary, we may assume that A0 is
supported on a ball of diameter dint with a center at 0. Then
AR is supported on a ball of diameter 2R + dint centered at 0.

Without changing the commutator, we can also replace Q
in Eq. (16) with Q( f ) = ∑

n∈Zd f (n)Qn, where f (n) is any
compactly supported function equal to 1 whenever n belongs
to a ball of radius R + 3

2 dint centered at 0.
We will use the Bogoliubov inequality valid for any

two bounded operators A, B and a thermal (Kubo-Martin-
Schwinger) state at a nonzero temperature T :

|〈[A, B]〉|2 � 1

2T
〈[B, [H, B†]]〉〈A†A + AA†〉. (17)

We will apply it to A = AR and B = Q( f ).

Estimates

We want to estimate 〈[Q( f ), [Q( f ), H]]〉. We can rewrite
the commutators as

[Q( f ), H] =
∑
m,k

f (m)[Qm, Hk]

=
∑
m,k

( f (m) − f (k))[Qm, Hk],

[Q( f ), [Q( f ), H]] =
∑

n,m,k

f (n)( f (m) − f (k)) (18)

× [Qn, [Qm, Hk]]

=
∑

n,m,k

( f (n) − f (k))( f (m) − f (k))

× [Qn, [Qm, Hk]],

where the charge conservation (11) and the ultralocality of the
charge (10) were used. The commutator 〈[Qn, [Qm, Hk]]〉 is
nonzero only if the supports of Hk, Qn, and Qm overlap. The
expectation value can be estimated as

|〈[Qn, [Qm, Hk]]〉| � 4‖Q0‖2‖H0‖, (19)

where the operator norm is defined as ‖A‖ = maxv∈H |Av|
|v| .

The norm of operators is guaranteed to be finite only if
the on-site Hilbert space is finite dimensional. For now, we
will assume this and discuss the infinite-dimensional case in
Sec. III E.

We can expand the function f in the Taylor series around
k with the reminder in the Lagrange form

f (n) = f (k) + [(n − k) · ∇] f (k) + 1
2 [(n − k) · ∇]2 f (ξ ),

(20)

where (n − k) · ∇ is derivative in the direction of the vector
n − k and ξ is a point on the straight interval from k to n.
Due to dipole symmetry linear terms proportional to [(n −
k) · ∇] f (k) and [(m − k) · ∇] f (k) in (18) will be zero and
we can estimate

|〈[Q( f ), [Q( f ), H]]〉| � Cd Rd
f d4

int‖Q0‖2‖H0‖
(

max |∇2 f |)2
,

(21)

where R f is half of the diameter of the support of the function
f and Cd is a constant that depends only on d .

Choosing the function f (r) to be 1 for r � R + 3
2 dint, 0 for

r > 2R and smoothly interpolating between these two values
with the second derivatives of order O( 1

R2 ), we find

〈[Q( f ), [Q( f ), H]]〉 = O(Rd−4). (22)

Using the clustering property and letting δ = δA0A0 , we can
estimate

〈A†
RAR + ARA†

R〉 = 2

Vol
(
Bd

R

)2

∑
|n|�R,|m|�R

〈Tn(A0)Tm(A0)〉

<
2CA0A0

Vol(Bd
R)

∑
|n|<2R

1

|n|δ

=

⎧⎪⎪⎨
⎪⎪⎩

O
(

1
Rδ

)
if δ < d,

O
(

ln R
Rd

)
if δ = d,

O
(

1
Rd

)
if δ > d.

(23)

Combining the two estimates and substituting them into the
Bogoliubov inequality we find

|〈[Q, A0]〉|2 = |〈[Q( f ), AR]〉|2 = O(Rd−4−δ ). (24)

Since R is arbitrary, this means that for d � 4 and any
local A0 we have 〈[Q, A0]〉 = 0. Thus the charge symmetry
cannot be spontaneously broken for d � 4 if the temperature
is nonzero.

C. HMW theorem for the dipole symmetry
at a nonzero temperature

We can use the estimates from the previous section to
constrain dipole symmetry breaking.

Suppose dipole symmetry is spontaneously broken, with a
local order parameter A0:

〈[Di, A0]〉 �= 0. (25)

We will assume that the charge symmetry is not broken.3 This
will allow us to act with a translation operator on the left-hand
side of (25) without affecting the right-hand side. We will
consider a spatially averaged A0 given by (15). We can replace
Di in this equation with Di(g) = ∑

n∈Zd g(n)Di
n, where g(n)

is any compactly supported function equal to 1 whenever n
belongs to a ball of radius R + 3

2 dint centered at 0.
We will use the Bogoliubov inequality (17) with A = AR

and B = Di(g).

3If the charge symmetry is broken, then the dipole symmetry is
broken as well.
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Estimates

We now want to estimate

〈[Di(g), [Di(g), H]]〉 =
∑
n,m

g(n)g(m)〈[Di
n, [Di

m, H]]〉

=
∑
n,m

nig(n)mig(m)〈[Qn, [Qm, H]]〉.

The considerations of the previous section did not use a spe-
cific form of the function f . Therefore, we can use the same
estimate (21) with the function f (n) = nig(n):

|〈[Di(g), [Di(g), H]]〉|
� Cd (R f )d d4

int‖Q0‖2‖H0‖(max |∇2 f |)2. (26)

Since g(r) must be 1 for r � R + 3
2 dint the function f (r)

must be equal to xi for r � R + 3
2 dint. We can smoothly

interpolate it to zero for r > 2R while keeping the second
derivatives bounded by O( 1

R ). Then we get

|〈[Di( f ), [Di( f ), H]]〉| = O(Rd−2). (27)

Using this estimate, the Bogoliubov inequality, and the
estimate (23), we find

|〈[Di, A0]〉|2 = |〈[Di( f ), A]〉|2 = O(Rd−2−δ ). (28)

Since R is arbitrary, the dipole symmetry cannot be sponta-
neously broken in d � 2 at nonzero temperatures.

D. HMW-type theorems at zero temperature

At zero temperatures instead of the Bogoliubov inequality
we use the uncertainty relation [6]

|〈[A, B]〉|2 � 〈A†A + AA†〉〈B†B + BB†〉, (29)

where brackets denote the average over any state and we
assumed that the operators A, B have zero averages. We
will apply it to the case when A = AR − 〈AR〉, B = Q( f ) −
〈Q( f )〉, and the state is the ground state of H . We can upper
bound the right-hand side of this inequality in terms of more
physical quantities as follows. Recall that for any two local
operators B, B′ one defines the structure factor SBB′ (ω) as

SBB′ (ω) =
∫ ∞

−∞
[〈B(t )B′〉 − 〈B〉〈B′〉]eiωt dt . (30)

Since the average is over the ground state, SBB′ (ω) = 0 for
ω < 0. If B′ = B†, then SBB† (ω) is positive and is known as
the spectral density of B.

Another useful quantity is the static susceptibility χBB′

defined as the change in the expectation value of B under an
infinitesimal variation of the Hamiltonian by −εB′:

〈B〉H−εB′ = 〈B〉H + εχBB′ + O(ε2). (31)

Here it is assumed that B, B′ are Hermitian, but one can for-
mally extend χBB′ to general operators by linearity. In linear
response theory, it is shown that χBB′ can be expressed through
SBB′ (ω). At T = 0 the formula looks as follows:

χBB′ =
∫ ∞

0

SBB′ (ω) + SB′B(ω)

2ω

dω

π
. (32)

The static susceptibility is not always well defined because
of a possible nonintegrable singularity at ω = 0. Assuming
it exists for B = B′ = Q( f ) − 〈Q( f )〉 and using the Cauchy-
Schwarz inequality, we get an estimate

〈B†B + BB†〉 = 2〈B(t )B〉
∣∣∣
t=0

=
∫ ∞

0
SBB(ω)

dω

π

�
√∫ ∞

0
ωSBB(ω)

dω

π

∫ ∞

0

SBB(ω)

ω

dω

π

=
√

|〈[B, [H, B]]〉|√χBB. (33)

The quantity χBB depends on the function f and thus
also on R, but with the choice of f described at the end of
Sec. III B 1, it can be upper bounded by a number of order
Rd times an R-independent quantity with a simple thermody-
namic interpretation:

χBB =
∑
n,m

f (n) f (m)χQnQm � Cd Rd
∑

n

χQ0Qn + o(Rd )

= Cd Rd ∂〈Q0〉
∂μ

+ o(Rd ). (34)

Here μ is the chemical potential. The non-negative quantity
∂〈Q0〉/∂μ is the derivative of the charge density with respect
to the chemical potential, also known as charge compressibil-
ity. We assumed here that it is finite.

Combining (22), (23), (29), and (34) we find

|〈[Q, A]〉|2 �
√

∂〈Q0〉
∂μ

× O(Rd−2−δ ). (35)

Therefore if charge compressibility is finite and the ground
state is clustering, charge symmetry cannot be broken for d �
2. Note that in the absence of dipole symmetry one can only
show that the charge symmetry cannot be broken for d � 1.

We cannot use the same method to exclude dipole symme-
try breaking in d = 1. The main issue is that the analog of
susceptibility for the dipole symmetry is

χDi ( f )Di ( f ) =
∑
n,m

nimi f (n) f (m)χQn,Qm . (36)

Even if we assume that χQn,Qm is essentially nonzero only if
n, m are close to each other, the sum behaves as O(Rd+2).
This is not enough to exclude symmetry breaking in d = 1.
In fact, the Lifshitz model shows that dipole symmetry can be
spontaneously broken in d = 1 for T = 0.

E. The dipolar Bose-Hubbard model

The above theorems apply, in particular, to lattice models
of fermions with a dipole symmetry. They cannot be directly
applied to the dipolar Bose-Hubbard model because the on-
site Hilbert space is infinite dimensional, and the operators
Qn, Hn are unbounded. However, after a slight modification,
the proofs work for this model too, if local charge fluctuations
in the relevant equilibrium state are not too wild. Indeed, we
can write

Hn = H (1)
n + H (2)

n , (37)
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where H (1)
n is the dipole hopping term and H (2)

n is a function
of only Qm on the neighboring sites. Then

[Qm, Hk] = [
Qm, H (1)

k

] = εm−kH (1)
k , (38)

where εm−k is ±2 if m = k, ±1 if m, k are nearest neighbors,
and 0 otherwise. Therefore the estimate (19) can be replaced
with

|〈[Qn, [Qm, Hk]]〉| � Cd |〈H0〉|, (39)

where Cd depends only on d . Further, it is easy to see that

|〈H0〉| � C′
d |t |

∣∣〈Q2
n

〉∣∣, (40)

where C′
d is another d-dependent constant. Thus if we as-

sume that fluctuations of the charge density have a finite
standard deviation, we can still bound the double commu-
tator by a (state-dependent) constant. Note also that while
the local operator A0 need not be bounded (e.g., it could
be b0), the clustering property implies that it has a finite
standard deviation. Then we still get the estimates (24), (28),
and (35).

Similar arguments can be used for more general systems
with unbounded Qn and Hn. As long as the fluctuations of the
constituents are not too wild one can bound the expectation
value on the left-hand side of (19).

IV. CONTINUUM THEORIES

A. HMW-type theorems for continuum theories

For continuum systems, the momentum density operator
p j (x) is an obvious candidate for an order parameter for the
dipole symmetry. Indeed, if we choose the dipole charge den-
sity to be d j (x) = x jρ(x), where ρ(x) is the charge density,
we find

[Dj, pk (x)] = iδ jkρ(x). (41)

Thus, as long as the average charge density is not zero, the
dipole symmetry appears to be broken. This statement does
not depend on either temperature of dimensionality or space
and suggests that the theorem of Sec. III C cannot be extended
to continuum models with a dipole symmetry.

In this section using a specific Hamiltonian as an example,
we will show that the arguments of previous sections can be
generalized without essential change to the continuum case.
We discuss how the apparent contradiction is avoided.

Consider a bosonic field ψ with canonical commutation
relations

[ψ (x), ψ†(y)] = δ(x − y), (42)

[ψ (x), ψ (y)] = [ψ†(x), ψ†(y)] = 0, (43)

and the Hamiltonian

H = Hkin + Hpot, (44)

where the kinetic energy is

Hkin =
∫

dd x

[
K1

2
|∂ jψ∂kψ − ψ∂ j∂kψ |2 + K2

2
(∂iψ

†∂ jψ
† − ψ†∂ j∂kψ

†)(∂ jψ∂kψ − ψ∂ j∂kψ )

]
,

and the potential energy depends only on the density ρ = ψ†ψ but is arbitrary otherwise and can include long-range interactions.
This Hamiltonian is invariant under charge and dipole transformations ψ → exp(ia + ib jx j )ψ . Similar Hamiltonians were
studied in [18,26].

The charge conservation equation has the form

ρ̇ = ∂ j∂k j jk, (45)

where we defined

j jk = i
K1

2

(
∂ jψ

†∂kψ
† − ψ†∂ j∂kψ

†
)
ψ2 + i

K2

2
δ jk

(
∂lψ

†∂lψ
† − ψ†∂2ψ†

)
ψ2 + H.c. (46)

The commutator of the charge density with the current is

[ρ(x), j jk (y)] = −iK1∂ j∂kδ(x − y)ψ†2
ψ2(y) − iK2δ jk∂

2δ(x − y)ψ†2
ψ2(y). (47)

Using this commutation relation, we can do manipulations analogous to (18):∫
dd x dd y f (x) f (y)〈[ρ(x), [ρ(y), H]]〉 = i

∫
dd x dd y f (x) f (y)〈[ρ(x), ∂ j∂k j jk (y)]〉

=
∫

dd x dd y (K1∂ j∂k f (x)∂ j∂k f (y) + K2∂
2 f (x)∂2 f (y))〈ψ†2

ψ2(y)〉. (48)

We can again apply the Bogoliubov inequality (17)
to A = AR = 1

VolBd
R

∫
Bd

R
dd x[a(x) − 〈a(x)〉] and B = Dj (g) =∫

dd x x jg(x)ρ(x), where a(x) is order parameter, Bd
R is a d-

dimensional ball of radius R centered at 0, and the function
g(x) is chosen to be 1 inside of this ball and interpo-
lates to 0 outside of |x| > 2R so that second derivatives of

f (x) = x jg(x) are bounded by O( 1
R ). We find

|〈[D, a(0)]〉|2 � 〈[ρ( f ), [H, ρ( f )]]〉〈A†
RAR + ARA†

R〉. (49)

We can use (48) to show that

〈[ρ( f ), [H, ρ( f )]]〉 = O(Rd−2). (50)
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Using the estimate (23), we find

|〈[D, a(0)]〉|2 � O(Rd−2−δ ). (51)

Similarly, one can generalize the arguments for the charge
symmetry at zero or nonzero temperature leading to the same
results as for lattice systems.

There are several ways in which the HMW theorem for the
dipole symmetry and the commutation relation (41) can be
reconciled. Most obviously, the momentum density operator
may fail to satisfy the clustering property. For example, take
the Hamiltonian (44) and choose the potential term to have a
minimum at |ρ| = ρ0. Then we can ignore the fluctuation of
the modulus of ψ and write approximately ψ = ρ0 exp(iφ).
The effective action for φ is

Seff = k

2

∫
dd x dt[φ̇2 − C1(∂2φ)2]. (52)

This is the Lifshitz model discussed in Sec. II. The charge
density operator in this approximation becomes kφ̇. Thus in
a state with a constant charge density we have φ = μt + η,
where μ is the chemical potential and η is the fluctuating field
with zero expectation value. The momentum density operator
is p j = kφ̇∂ jφ. To leading order in η we get pj = kμ∂ jη. As
discussed in Sec. II, the two-point function of ∂ jη grows with
distance if T > 0 and d = 1, 2. Therefore the same is true for
pj provided μ �= 0. Note that if the two-point function of a
local operator grows with distance, fluctuations of its spatial
average increase as the averaging region becomes larger. This
is why it is natural to require an operator serving as an order
parameter to satisfy clustering.

Another possible loophole in the HMW theorem is that
the spatially smeared momentum density operator may fail to
be bounded, and thus the expression 〈A†

RAR + ARA†
R〉 may be

infinite. For this to happen, 〈pj (x)pk (y)〉 must have a nonin-
tegrable singularity at x = y. However, this is a short-distance
issue that can be fixed by replacing the momentum density
operator with a suitably regularized expression.

B. Inertial mass density

In Sec. I we motivated the dipole symmetry by arguing that
it emerges in the limit of infinite particle mass. For a large
class of continuous systems with dipole symmetry, one can be
more precise and prove that they have infinite inertial mass
density.

It is well known that the Bogoliubov inequality can be
strengthened as follows:

|〈[A, B]〉|2 � χAA† 〈[B, [H, B†]]〉. (53)

This is simply the Cauchy-Schwarz inequality for the Hermi-
tian inner product (A,C) = χAC† applied to C = i[H, B]. Let
us apply it to Hermitian operators A = 1

vol Bd
R

∫
Bd

R
p j (x)dd x and

B = Dj (g), as above. Assuming that translational symmetry is
unbroken, we get

〈ρ(0)〉2 � χAA 〈[ρ( f ), [H, ρ( f )]]〉. (54)

Here f (x) = x jg(x) as before. For the model considered in
Sec. IV A, or for any continuum theory with a dipole symme-
try where the commutator of ρ and j jk has the form similar to

(47), we have the estimate (50). Hence

χAA � 〈ρ(0)〉2O(R2−d ). (55)

To relate χAA to inertial mass density, recall that whenever
momentum is conserved, one can define a generalized Gibbs
ensemble by replacing the Hamiltonian H with H − v · P,
where P is the total momentum. The chemical potential for P
is the velocity v. It is natural to define the inertial mass density
as the tensor

mjk = ∂〈p j (0)〉
∂vk

=
∫

χp j (0)pk (x)d
d x. (56)

If mjk is finite, then χAA � mj jO(R−d ), which contradicts the
inequality (55) for any nonzero 〈ρ(0)〉.

V. DISCUSSION

In this paper, we generalized the Hohenberg-Mermin-
Wagner theorem to the dipole symmetry. We showed that for
systems with finite-range interactions and clustering, dipole
symmetry cannot be broken if d = 1, 2 and T > 0. Thus a
system of fermions with a microscopic dipole symmetry can-
not flow to a Fermi liquid or any phase with a pronounced
Fermi surface. Any phase of such a system must be rather
exotic.

We also showed that the mere presence of a dipole symme-
try allows one to strengthen the conclusions of the HMW and
Pitaevskii-Stringari theorems as applied to charge symmetry.
Namely, with the same assumptions, the charge symmetry
cannot be broken if d � 4, T > 0 and for d � 2, T = 0 and
finite compressibility.

For our argument to work it was essential that at least part
of the translational symmetry is preserved. It is an interesting
problem to understand how the disorder affects the results.
For the Ising model, symmetry-breaking disorder pushes the
critical dimension even higher than is required by the HMW
theorem [27]. It is natural to expect similar behavior for sys-
tems with dipole symmetry. The case of symmetry-preserving
disorder is trickier. On large scales, one could expect the
disorder to self-average and the system to effectively become
translationally invariant. Any clarification of these questions
is an interesting open problem.

Systems with a dipole symmetry provide a counterexam-
ple to the widespread belief that spontaneous breaking of
charge symmetry implies superconductivity (i.e., infinite dc
conductivity). Indeed, for any system with a dipole symmetry
the current operator vanishes at zero wave vector and thus
conductivity vanishes at all frequencies. On the other hand,
the example of the d = 3 Lifshitz model at T = 0 shows that
systems with a dipole symmetry can break charge symmetry.

Charge symmetry and continuous translational symmetry
are alike in some respects. For example, HMW-type theorems
for them are essentially the same. Superficially, dipole sym-
metry should be similar to a continuous rotational symmetry:
The dipole moment is an integral of charge density times a
linear function of coordinates, just like the angular momentum
is the integral of momentum density times a linear function of
coordinates. Therefore it might seem surprising that rotational
symmetry can be spontaneously broken in two dimensions for
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T > 0 [28], while dipole symmetry cannot. The difference
arises from the different group structure of the full symmetry
group and the corresponding constraints on the local con-
servation laws. Dipole symmetry requires the charge current
to be a total derivative: j j = −∂k j jk . In contrast, rotational
symmetry does not require the momentum current (i.e., the
stress tensor) to be a total derivative, it only requires it to
be symmetric. Consequently, the bounds resulting from the
Bogoliubov inequality do not preclude the spontaneous break-
ing of rotational symmetry in two dimensions. This difference
is also responsible for the different structure of the effective
action for the Goldstone bosons.

Finally, it would be interesting to consider similar issues
for systems of fermions in a magnetic field projected to

the lowest Landau level. They have an infinite-dimensional
Girvin, MacDonald, and Platzman symmetry [29] which con-
tains a 1D dipole symmetry.
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