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Dynamical mean-field study of a photon-mediated ferroelectric phase transition
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The interplay of light and matter gives rise to intriguing cooperative effects in quantum many-body systems.
This is even true in thermal equilibrium, where the electromagnetic field can hybridize with collective modes
of matter, and virtual photons can induce interactions in the solid. Here, we show how these light-mediated
interactions can be treated using the dynamical mean-field theory formalism. We consider a minimal model of
a two-dimensional material that couples to a surface plasmon polariton mode of a metal-dielectric interface.
Within the mean-field approximation, the system exhibits a ferroelectric phase transition that is unaffected by
the light-matter coupling. Bosonic dynamical mean-field theory provides a more accurate description and reveals
that the photon-mediated interactions enhance the ferroelectric order and stabilize the ferroelectric phase.
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I. INTRODUCTION

The interplay of light and matter can lead to dramatic
changes in the behavior of a system, which provides intriguing
pathways to manipulate complex materials out of equilibrium
[1–3]. Even without external driving the electromagnetic field
can influence the properties of matter, by hybridizing with
electromagnetically active modes in the solid, and through
photon-mediated interactions. In free space, such effects are
usually negligible. In cavity or waveguide quantum elec-
trodynamics, however, ultrastrong coupling of photons to
individual emitters or molecules can be achieved by struc-
turing the electromagnetic field [4], which may even be used
to manipulate chemical reactions [5–7]. An intriguing ques-
tion is therefore whether similar techniques can be used
to manipulate the collective behavior and phase transitions
in extended condensed matter systems [8–13]. Theoretical
proposals along these lines include photon-mediated and
enhanced superconductivity [14–16], photon-induced topo-
logical phases [17,18], or the control of Mott polaritons and
magnetic exchange interactions [19–22], spin liquids [23], and
various forms of ferroelectricity [24–30].

In an extended solid, one would expect that the effect of
light on the thermodynamic properties of matter arises not
from the coupling to a single-cavity mode [31,32], but from
a mode continuum. In a coplanar cavity setting, e.g., interac-
tions within matter are mediated by photons with a continuous
in-plane momentum. Because of the large light velocity, such
a cavity would, however, affect only modes in an extremely
small phase-space volume compared to the Brillouin zone of
the solid; thus, in condensed matter settings, it is often suffi-
cient to consider the direct screened Coulomb interaction and
neglect the effect of the transverse electromagnetic field (pho-
ton field). A promising pathway to overcome this phase-space
constraint includes geometries in which propagating modes

are strongly localized at interfaces, such as surface plasmons
[26], or possibly the polaritons of hyperbolic materials [33].
The nanoscale confinement allows such modes to efficiently
couple to a macroscopic number of degrees of freedom of a
thin layer or a two dimensional material close to the interface.

In this work we investigate within a microscopic model
how the coupling to a surface plasmon mode can affect a
ferroelectric transition in a layered material. Specifically, we
consider a minimal model of a two-dimensional material that
exhibits a paraelectric to ferroelectric phase transition simi-
lar to the case of SrTiO3 [34], with a quantum paraelectric
phase at zero temperature in a certain parameter regime. The
coupling to the surface plasmon mode induces a long-range
interaction in the material, which can be controlled by the dis-
tance of the material from the interface. With the coupling to a
mode continuum, the system constitutes a complex quantum
many-body problem which cannot be solved exactly. Apart
from that, a conventional static mean-field approach, which
often provides a reasonable starting point to get a qualitative
understanding of a phase transition, does not capture the effect
of the transverse field on the transition in the present case: The
mean-field approximation replaces the induced interaction by
a static and uniform self-consistent field; this mean field,
however, vanishes, because the interactions between dipoles
that are induced by the transverse field are zero in the static
limit due to the positive-definite light-matter coupling. This
fact also underlies the no-go theorems which exclude the
condensation of hybrid light-matter modes due to the coupling
to a single-cavity mode [25,31,35,36].

On the phenomenological level, an effect of the electro-
magnetic field on the static thermodynamic properties beyond
the mean-field limit can arise from interactions in the solid:
The transverse photon field can influence electromagnetically
active modes in the solid at frequency ω > 0, which in turn
renormalize the static (ω = 0) response through anharmonic
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FIG. 1. Two-dimensional slice through the setting in the x-z
plane. The system consists of a metal dielectric interface and a
collection of dipoles (orange dots) with dipole moment p arranged
on a square lattice of lattice constant a. The green lines represent the
electric field lines of a SPP mode propagating in the z direction.

interactions between the modes [26]. Moreover, at tempera-
ture T > 0 the total free-energy content of all modes changes
when they hybridize with the electromagnetic field. To estab-
lish a microscopic description of the system beyond static
mean-field theory, we set up a solution within dynamical
mean-field theory (DMFT). DMFT, which becomes exact in
the limit of large coordination number [37], is commonly
used in condensed matter physics, and one of the most versa-
tile techniques for studying systems with strongly correlated
electrons [38]. To study a system with strong light-matter
coupling, we apply the idea of DMFT to the fields that mediate
the interaction, along the lines of an extended DMFT for-
malism [39]. In the present case, where we consider an ionic
solid without itinerant electrons, the formalism then becomes
similar to bosonic DMFT [40–45]. DMFT is an embedding
approach, which maps a lattice model with local interaction to
a self-consistent impurity model. For the light-matter coupled
system, this impurity model is a generalized spin-boson model
with a self-consistently determined continuum of bosonic
modes. Depending on the parameters of the lattice model,
this model can be in the ultrastrong coupling regime; in fact,
although the impurity model is an auxiliary system, it provides
a useful way to quantify whether a single site in the solid
is effectively driven into the single-particle strong coupling
regime. We solve this impurity model numerically using a
recently developed systematic diagrammatic many-body ap-
proach [46,47], which allows to deal with emitters coupled to
a continuum, as needed in nonperturbative waveguide quan-
tum electrodynamics [48].

The remainder of this paper is structured as follows: In
Sec. II, we introduce the total Hamiltonian of the system and
derive the effective action for the material. In Sec. III we
explain the bosonic DMFT formalism, and briefly discuss the
numerical implementation. The results of the calculations are
presented in Sec. IV, and in Sec. V we conclude with a brief
discussion and summary.

II. MODEL

We consider a simple heterostructure consisting of a two-
dimensional material that is placed parallel to a metallic
surface in the y-z plane (see Fig. 1 for a schematic sketch
of the setup). The material consists of a collection of dipoles
arranged on a square lattice. It is embedded in a dielectric
medium of relative permittivity ε, and located at a fixed dis-
tance x0 from the metal-dielectric interface. The metal surface
supports a propagating electromagnetic mode that gives rise

to an evanescent field in both the metallic and the dielec-
tric regions. If the material is close enough to the surface,
it couples to this so-called surface plasmon polariton (SPP)
mode. Due to the strong confinement of the electromagnetic
field to the metal-dielectric interface, the coupling between
light and matter is enhanced as compared to the vacuum case.
Instead, the modes of a coplanar cavity with photon dispersion

ωq =
√

(cq)2 + ω2
0 (momentum q along the plane, fundamen-

tal cavity frequency ω0), which are extended over the full
transverse cavity volume, would have a negligible effect on
the material (see Appendixes).

A. Hamiltonian description

We start from a Hamiltonian description of the system.
With this, the Hamiltonian can be split into four terms

Ĥ = Ĥmat + Ĥfield + ĤEP + ĤPP, (1)

which will be discussed in more detail in the following.
a. Material. The isolated material consists of a collection of

N interacting dipoles, that are arranged on a two-dimensional
square lattice with lattice parameter a. The Hamiltonian is
given by

Ĥmat = Ĥ0 + ĤNN, (2)

where Ĥ0 corresponds to the isolated dipoles, and ĤNN is
a static nearest-neighbor interaction. We approximate the
dipoles as simple two-level systems. Hence, they can be rep-
resented by the Pauli operators σ̂r = (σ̂ 1

r , σ̂ 2
r , σ̂ 3

r )T , where σ̂ 3
r

measures the difference in occupation of the two states at site
r. The noninteracting Hamiltonian reads as

Ĥ0 = �

2

∑
r

σ̂ 3
r , (3)

with a level splitting �, and the interaction reads as

ĤNN = −α

4

∑
〈r,r′〉

σ̂ 1
r σ̂ 1

r′ , (4)

where 〈. . . 〉 indicates the sum over nearest-neighbor pairs, and
the parameter α controls the strength of the direct interac-
tion. Moreover, we associate an in-plane dipole moment p̂r =
p0σ̂

1
r ez to each two-level system. The corresponding transition

matrix element p0 will enter the light-matter coupling below.
The model can be viewed, e.g., as a two-level approxi-

mation for any kind of continuous model, where each site
features one ion moving in an effective double-well potential.
In that case, the two states represent the symmetric and anti-
symmetric lowest-lying energy states for the isolated site. A
hybridization of the corresponding electronic wave functions
gives rise to an asymmetric orbital and, thus, to a nonvanish-
ing average electric dipole moment. For instance, the model
can be considered as a minimal model for an ionic crystal,
where the two states σ z

r = ±1 correspond to two positions
of an ion within the unit cell, and the interaction arises both
from a (partially screened) Coulomb interaction and from the
configurational energy of the lattice distortion.

Below, we choose the parameters such that the model re-
produces the dielectric properties of SrTiO3 (see Sec. IV).
Of course, the model is highly oversimplified with respect
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to a real material. In particular, the connection to SrTiO3 is
on a purely phenomenological level, and there is no direct
correspondence between the parameters of our Hamiltonian
and any microscopic quantities of the material. In particular,
the connection to SrTiO3 is on a purely phenomenological
level, and there is no direct correspondence between the pa-
rameters of our Hamiltonian and any microscopic quantities
of the material. Nevertheless, our model should serve the
purpose to (i), explain the application DMFT to light-matter
coupled systems, and (ii) demonstrate that the present setting
is a promising pathway to engineer the ferroelectric transition.
Possible extensions of the model and the formalism will be
briefly addressed in the Conclusions (Sec. V).

b. SPP mode. For the description of the SPP mode, we
start from the macroscopic theory of Ref. [49] (see also
Ref. [26]), which treats the dielectric and the metal macro-
scopically, i.e., they enter via their dielectric function ε(ω).
Within this macroscopic approach, we determine the classical
mode functions, then quantize the theory, and later integrate
out the quantized modes to obtain the induced interaction
within the two-dimensional (2D) material. In principle, one
could have started from a fully microscopic theory, in which
the electronic degrees of freedom inside the metal are treated
explicitly. However, in the end we are only interested in the
effect of the SPP mode on the two-dimensional material, and
this effect enters through a light-induced interaction. Due to
the linearity of the description outside the 2D material, the
induced interaction which would be obtained by (a) integrat-
ing out both the metal and field with a linear coupling of the
currents in the metal and the field, and (b) the approach taken
here to quantize the classical mode functions as described
above, and then integrating out the modes, are equivalent.

Due to the geometry of the system (in-plane transition
dipole moments) only the transverse magnetic (TM) SPP
mode couples to the material. For this mode, the transverse
electric field can be expanded in the bosonic annihilation
(creation) operators âq (â†

q) as

Ê(r) =
∑

q

√
ωq

2ε0ε(x, ωq)Na3
[uq(x)eiq·ρâq + H.c.], (5)

where q = (qy, qz )T is a two-dimensional wave vector, ρ =
(y, z)T gives the position in the y-z plane, and ωq de-
notes the dispersion relation of the SPP mode. The mode
functions uq(x)eiq·ρ form an orthogonal basis and satisfy
the transversality condition ∇ · uq(r)eiq·ρ = 0. They define
the spatial structure of the mode. A detailed derivation, and
the expressions for uq(x), can be found in Appendix A. Most
importantly, the mode functions decay exponentially like eQmx

and e−Qdx in the metallic and dielectric region, respectively,
with real decay constants that asymptotically approach the
value Qm, Qd ∼ |q| for large |q|. The latter implies that
the distance x0 between the material and interface controls the
range of SPP momenta which couple to the material.

The corresponding free-field Hamiltonian takes the form

Ĥfield =
∑

q

ωqâ†
qâq, (6)

where ωq is the SPP dispersion. In the following, we assume
that the electric permittivity in the metallic region is given by
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FIG. 2. Dispersion relation of the SPP mode for three different
values of the dielectric permittivity εd and a Drude response of
the metal. For small q, the dispersion increases linearly with slope
c/

√
εd (dotted lines). For q → ∞, it approaches the constant value

ωp/
√

1 + εd (dashed lines). The unit of length has been set to the
lattice parameter a = 3.9 Å which is used for the model below.

the simple Drude response

εm(ω) = 1 −
(ωp

ω

)2
, (7)

where ωp denotes the plasma frequency. In this case, the dis-
persion relation ωq starts with a linear slope of c/

√
εd at small

q and approaches a constant value of ωp/
√

1 + εd for q → ∞.
This is displayed in Fig. 2 for three different values of εd. In
our calculations, we set εd = 1 in the dielectric region. With
this, the dispersion relation can be solved analytically for the
frequency and reads as

ωq =

√√√√ω2
p

2
+ q2c2 −

√
ω4

p

4
+ q4c4. (8)

c. Light-matter coupling. The interaction between light and
matter is formulated in the dipolar gauge. This representation
can be obtained from the minimal coupling Hamiltonian by
a multicenter Power-Zienau-Woolley transformation [50] and
gives rise to two additional terms in the Hamiltonian. The
first one describes a linear coupling between the electric dis-
placement field Ê(r) and the polarization p̂r = p0σ̂

1
r ez of the

emitters and reads as

ĤEP =
∑
r,q

√
ωq

2N
[gqeiq·Rr âq + H.c.]σ̂ 1

r , (9)

where the coupling constants are given by

gq = 1√
ε0εda3

uq(x0) · p0ez, (10)

and Rr is the two-dimensional lattice vector of site r, and
thus represents the ρ vector at which the electric field (5) is
evaluated. The second one is a nonlinear term of the form

ĤPP =
∑
r,r′

∑
q

|gq|2
2N

e−iq·(Rr−Rr′ )σ̂ 1
r σ̂ 1

r′ , (11)
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which ensures that the total Hamiltonian is positive definite.
The positive-definite form of the Hamiltonian can be verified
by rewriting the light-matter part and the free-field term as
Ĥfield + ĤEP + ĤPP = ∑

q ωqb̂†
qb̂q with shifted field operators

b̂q = âq + πq, where πq = ∑
r

gq√
ωq2N

eiq·Rr σ̂ 1
r is related to the

polarization field. Note that ĤPP does not depend on the pho-
ton operators but still vanishes if the light-matter coupling is
set to zero.

B. Imaginary-time action

In the next step, we derive an effective description for
the material that only depends on the matter degrees of
freedom. Only the most important points are given in the
main text, leaving details to Appendix B. We switch to an
imaginary-time path-integral formalism, where the model can
be described in terms of an action

S = Smat + SPP + SEP + Sfield, (12)

which has been split into four terms analogous to the total
Hamiltonian (1). Tracing out the photon fields yields an effec-
tive action of the form

Seff = Smat + Sind, (13)

where the effect of the light-matter interaction is contained in
an induced term Sind that is defined by the relation

e−Sind=e−SPP

∫
D[ā, a]e−(SEP+Sfield ), (14)

and takes the form of a retarded dipole-dipole interaction

Sind = −1

2

∫ β

0
dτ dτ ′∑

r,r′
σ 1

r (τ )W ind
r,r′ (τ − τ ′)σ 1

r′ (τ ′). (15)

The Matsubara and k-space representation of the interaction
vertex is given by

W ind
k (iνn) = −|gk|2 + |gk|2 ω2

k

ν2
n + ω2

k

, (16)

where the first term originates from the direct interaction
(11), and the second from integrating out the SPP mode.
Using the replacement iνn → ω + i0, this expression can be
analytically continued to real frequencies. Interestingly, the
interaction vanishes at ω = 0; therefore, the effect of the
light-matter interaction cannot be captured within the static
mean-field approximation (see Sec. IV). It is important to note
that the cancellation of the two terms in two contributions in
Eq. (16) at ω = 0 requires ĤEP and ĤPP to be consistent, so
that the positive definiteness of the Hamiltonian is preserved.
A simple understanding of the cancellation is that for the
positive-definite Hamiltonian a static shift of the polarization
field can be absorbed in a shift of the photon operators, as
explained below Eq. (11), and can therefore not give any
contribution to the action.

III. DYNAMICAL MEAN-FIELD THEORY

In the last decades, DMFT has become a powerful tool
to study the properties of quantum many-body systems. The
main idea of this technique is to map a lattice model to an

effective impurity problem. This is done by focusing on a sin-
gle site of the lattice and incorporating the interaction with all
other sites in the parameters of an effective environment. If the
self-energy is assumed to be local in space, these parameters
can be related to the corresponding lattice quantities by a set
of self-consistent equations [38]. In this section we apply the
DMFT formalism to the system under study. In particular, we
introduce bosonic degrees of freedom and, therefore, follow a
bosonic DMFT approach.

A. Bosonic representation of the model

As shown in Sec. II B, the SPP mode mediates an effec-
tive interaction between the individual emitters. Similar to
the static nearest-neighbor interaction, it couples the dipo-
lar moments on different sites. We therefore start from the
imaginary-time formalism, and represent the effective action
for the matter as Seff = S0 + Sint, where S0 corresponds to the
noninteracting dipoles and Sint is a retarded dipole-dipole in-
teraction that combines the photon-mediated interaction (15)
and the contribution from the direct interaction Hamiltonian
(4):

Sint = −1

2

∫ β

0
dτ dτ ′∑

r,r′
σ 1

r (τ )Wr,r′ (τ − τ ′)σ 1
r′ (τ ′). (17)

The combined interaction vertex reads as

Wk(iνn) = α

2
[cos(ky) + cos(kz )] − |gk|2 ν2

n

ν2
n + ω2

k

, (18)

where the first term is the static nearest-neighbor interaction
(4) in momentum space, and the second term derives from
Eq. (16).

Our goal is to apply bosonic DMFT to study effects be-
yond the mean-field limit. For that purpose, we perform
a Hubbard-Stratonovich transformation, which introduces
bosonic auxiliary fields ϕr (τ ) at each site and define a new
action SHS such that the original action is reproduced if the
auxiliary fields are traced out, i.e.,

e−Seff =
∫

D[ϕ]e−SHS . (19)

Up to an irrelevant constant which will be omitted here and in
the following, the Hubbard-Stratonovich action reads as

SHS = S0 + Sϕϕ + Sϕσ , (20)

with a quadratic term

Sϕϕ = 1

2

∫ β

0
dτ dτ ′∑

r,r′
ϕr (τ )[W −1]r,r′ (τ − τ ′)ϕr′ (τ ′), (21)

and a local linear coupling term

Sϕσ = −
∑

r

∫ β

0
dτ ϕr (τ )σ 1

r (τ ). (22)

B. Impurity action and self-consistent equations

The Hubbard-Stratonovich action essentially defines a
bosonic field theory on the lattice, with an anharmonic self-
interaction that is introduced via the coupling of the field
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ϕr and the spin σr . The local nature of this anharmonic in-
teraction allows to follow a bosonic DMFT approach, and
map the Hubbard-Stratonovic action (20) to a local impurity
problem. The mapping can be achieved using the so-called
cavity method [38,51]: One focuses on a single site r = c,
and integrates out all degrees of freedom related to other sites
of the lattice. Then a cumulant expansion up to second order
is performed (see Appendix D 1), which yields an impurity
action with quadratic and linear terms in the field ϕc(τ ):

Simp
HS = Sc

0 + Simp
ϕϕ + Simp

ϕσ , (23)

Simp
ϕσ = −

∫ β

0
dτ ϕc(τ )

[
σ 1

c (τ ) − h(τ )
]
, (24)

Simp
ϕϕ = 1

2

∫ β

0
dτ dτ ′ϕc(τ )W−1(τ − τ ′)ϕc(τ ′). (25)

Here Sc
0 is the action of a single isolated emitter. As in DMFT

for fermionic systems, the interaction of the impurity with the
rest of the lattice has been incorporated in an effective Weiss
field W . Moreover, there is an additional static field h that
couples to the auxiliary field ϕc(τ ). It accounts for the fact
that ϕc(τ ) is a bosonic field and, therefore, may acquire a finite
expectation value [43].

From the impurity action, one can calculate the local ex-
pectation value 〈ϕc(τ )〉Simp

HS
and the local connected correlation

function

Uc,c(τ ) = 〈T ϕc(τ )ϕc(0)〉con
Simp

HS
. (26)

This defines the self-energy on the impurity via the Dyson
equation

�loc = W−1 − U −1
c,c . (27)

On the other hand, the real-space lattice Green’s function

Ur,r′ (τ ) = 〈T ϕr (τ )ϕr′ (0)〉con
SHS

(28)

is given by the Dyson equation in momentum space

Uk = Wk[1 − �kWk]−1 (29)

with the k-dependent self-energy �k . Within DMFT, the lat-
ter is assumed to be purely local and can be replaced by
the impurity self-energy �loc. Thus, by summing over the
momentum-dependent Green’s function one obtains

Uc,c = 1

N

∑
k

Wk[1 − �locWk]−1 (30)

for the local correlation function. This result can be used to
determine the Weiss field W from Eq. (27). The latter must
be consistent with the one introduced in the impurity model.
Moreover, imposing the condition 〈ϕr (τ )〉SHS = φ for all r, the
external field is given by

h = [
W −1

mf − W−1
0

]
φ, (31)

where

W−1
0 = W−1(iνn=0). (32)

These expressions form a closed set of equations. Further
details on the derivation can be found in Appendix D 2.

C. Impurity model

The impurity action (23) defines a generalized spin boson
model, which couples a two-level system to a continuum of
modes with propagator W . To solve the impurity model, it
is more convenient to integrate out the Hubbard-Stratonovich
fields, leading to the action of a spin with retarded interac-
tions.The new impurity action reads as (see Appendix D 3)

Simp = Sc
0 + Simp

int,1 + Simp
int,2 (33)

with the linear interaction term

Simp
int,1 = b

∫ β

0
dτ σ 1

c (τ ), (34)

and the retarded interaction term

Simp
int,2 = −1

2

∫ β

0
dτ

∫ β

0
dτ ′ σ 1

c (τ )W (τ − τ ′)σ 1
c (τ ′). (35)

For the solution of this model we use the strong coupling
expansion introduced in Refs. [46,47], which is based on a
summation of the skeleton expansion of the partition function
in terms of the retarded propagator. We remark that the present
problem could also be addressed by a standard hybridization
expansion [52], but even within the diagrammatic approach
the perturbation order can be increased to convergence, so that
the results can be considered as numerically exact. With the
connected correlation function

χc,c(τ ) = 〈
T σ 1

c (τ )σ 1
c (0)

〉con

Simp , (36)

the Green’s function for ϕc(τ ) is given by

Uc,c = W + Wχc,cW . (37)

Using Eq. (27), this yields the following expression for the
self-energy:

�loc = [1 + χc,cW]−1χc,c. (38)

Likewise, the external field b = W0h can be written in terms
of 〈σ 1〉 and reads as

b = [W0 − Wm f ]〈σ 1〉, (39)

which closes the self-consistency.

D. Numerical implementation

The self-consistent DMFT equations are solved in an it-
erative procedure. The basic algorithm, which is illustrated
in Fig. 3, consists of two major components. On the one
hand, there is the impurity solver that allows to calcu-
late local expectation values and correlation functions on
the impurity. It is based on a strong coupling expansion
in the imaginary-time domain similar to the one discussed
in Refs. [46,47]. However, there is an additional subtlety
regarding the Weiss field. In general, the latter may con-
tain an instantaneous contribution proportional to δ(τ ) that
corresponds to a frequency-independent part in the Matsub-
ara representation; thus, we write W (τ ) = W ′(τ ) + w0δ(τ ),
where W ′(τ ) does not contain an instantaneous part. How-
ever, since (σ̂ 1

c )2 = I, the part proportional to δ(τ ) only gives
rise to a constant shift of the energy and does not influence the
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FIG. 3. Illustration of the DMFT loop.

values of the correlation functions. Therefore, we can omit the
instantaneous contribution and only use W ′(τ ) as an input.

On the other hand, there is the set of self-consistent equa-
tions that allow to calculate W and b from χc,c and 〈σ 1〉. This
is done in Matsubara space since all quantities are diagonal in
this representation. Therefore, we need to perform a Fourier
transform when passing from the impurity solver to the DMFT
equations and vice versa. Some extra care has to be taken for
the inverse transform from the Matsubara representation to the
imaginary-time domain, to deal with the numerical cutoff in
the frequency summations. We use an analytical estimate for
the high-frequency tail of the Weiss field which is given by

W (iνn) ∼ w0 + w2

(iνn)2
, (40)

where the constants w0 and w2 can be expressed in terms
of the light-matter coupling strength, the parameters of the
material, and the expectation value 〈σ z〉. The corresponding
equations and a detailed derivation are given in Appendix E.
Moreover, we define a function

f (iνn) = w0 + w2

(iνn)2 − δ2
(41)

that shows the same behavior at large iνn, where δ 	 1 is a
small regulator. Then, the difference W (iνn) − f (iνn) decays
at least as 1/ν4

n for large frequencies, such that even the nu-
merical Fourier transform yields a sufficiently smooth result.
Finally, we may add the imaginary-time representation of f ,
which is analytically known. Since the impurity solver only
requires the noninstantaneous part W ′(τ ), we already exclude
the instantaneous part from the analytical Fourier transform of
f , i.e.,

W ′(τ ) = F−1{W (iνn) − f (iνn)} + f ′(τ ), (42)

where f ′(τ ) denotes the analytical inverse Fourier transform
of f (iνn) − w0 and is given by

f ′(τ ) = w2

2δ

cosh[δ(τ − β/2)]

sinh[δβ/2]
. (43)

In summary, the DMFT loop consists of the following
steps:

(1) Start from an initial guess for W ′(τ ) and b, and pass it
to the impurity solver.

(2) Calculate χc,c(τ ), 〈σ 1〉, and 〈σ z〉.
(3) Transform χc,c(τ ) to Matsubara space.
(4) Insert χc,c(iνn) and 〈σ 1〉 in the DMFT equations and

calculate the new Weiss field W (iνn) and the new value of b.
(5) Apply the inverse Fourier transform, with the tail cor-

rection to W (iνn) using 〈σ z〉, to obtain W ′(τ ) as described
above.

(6) Check whether W (τ ′) has converged. If not, pass the
new W ′(τ ) and b to the impurity solver and repeat the proce-
dure starting from step 2.

IV. RESULTS

A. Mean-field approximation

As emphasized in the Introduction, a mean-field solution of
the model cannot capture the effect of the transverse field on
the phase transition. The latter is entirely driven by the static
nearest-neighbor interaction ĤNN within the mean-field ap-
proach. Nevertheless, it is illustrating to discuss the mean-field
solution of the model, as it gives the overall structure of the
phase diagram without coupling to the SPP mode. The deriva-
tion of the mean-field equations is standard and can be found
in Appendix C. In the mean-field approximation, all spatial
and temporal fluctuations are neglected, and we introduce
a uniform time-independent order parameter 〈σ 1〉 ≡ 〈σ 1

r (τ )〉
for all r and τ . For 〈σ 1〉 = 0, the system is in the disordered
paraelectric (PE) state, where the average polarization van-
ishes, while for 〈σ 1〉 > 0, the material undergoes a transition
to the ordered ferroelectric (FE) state with a nonzero electric
dipole moment. The order parameter at inverse temperature β

is determined by the self-consistent equation

〈σ 1〉 =
hmf tanh

(
β

√
(�/2)2 + h2

mf

)
√

(�/2)2 + h2
mf

, (44)

which is simply the expectation value of σ 1 for a two-level
system in a self-consistent field hmf = α〈σ 1〉. The PE solu-
tion 〈σ 1〉 = 0 to Eq. (44) becomes unstable below a critical
temperature, where 〈σ 1〉 may also take a nonvanishing value.
Figure 4(a) shows the order parameter as a function of tem-
perature for three different values of α. It can be seen that
〈σ 1〉 saturates to a constant value at low temperatures and
continuously drops to zero at some critical temperature Tc,
i.e., the system undergoes a second-order phase transition.
The critical temperature as well as the overall strength of the
order parameter increase as α is enhanced. In Fig. 4(c), we
show a phase diagram in the T -α plane. Due to the finite
level splitting � of the emitters, the system exhibits a quantum
paraelectric (QPE) regime for α < �/2, where it remains dis-
ordered down to zero temperature. In the following we will see
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FIG. 4. (a) Order parameter, (b) dielectric constant, and (c) phase
diagram in the mean-field approximation. The unit of energy is the
level splitting �. The solid line in (c) indicates the boundary between
the ferroelectric (blue shaded area) and the paraelectric (red shaded
area) phases. The black dashed line shows the phase boundary T = α

for the classical model, with � → 0. The quantum paraelectric state
at low temperatures is marked by the dark red line. (b) Shows the
temperature-dependent dielectric function ε(T ) for a selected param-
eter α = 0.328 [gray dashed line in (c)] in this regime; ε(T ) saturates
to a constant value for sufficiently low temperature (see main text for
the choice of α).

how these findings change if additional temporal fluctuations
and the coupling to the SPP mode are included within the
DMFT formalism.

B. Model parameters and light-induced interactions

To couple the SPP mode to the system, we have to fix
the model parameters to reasonable values. To quantify the
strength of the light-matter interaction, we introduce the col-
lective coupling

λ = p2
0

εdε0a3
, (45)

with the transition dipole moment p0, and the lattice con-
stant a of the material. For all simulations below, we set
λ = 4024�. This value has been extracted from a fit of the
mean-field result for the dielectric constant to experimen-
tal data for the paradigmatic quantum paraelectric material
SrTiO3 [34], which yields � = 3.3 meV, α = 0.328�, and
λ = 4024� (see Ref. [31]). For reference, the dielectric func-
tion obtained within the mean-field solution, which is given
by ε(T ) = 1 + λ

χat

1−αχat
with the static susceptibility χat =

FIG. 5. Momentum dependence of the light-matter coupling.
(a) |gq|2 at x0 = 5 and 6 for λ = 4024. (b) |gq|2 for the modes
propagating along the z axis and for three different values of x0. The
unit of energy is given by �, and the unit of length has been set to
the lattice parameter a.

2 tanh(�/2T )/� for a single isolated two-level system [31],
is shown in Fig. 4(b). In the following, we will keep � as an
energy unit, fix the value of λ for all simulations, and vary the
direct interaction strength α. The latter controls the transition
temperature without coupling to light; in SrTiO3, this can be
done, e.g., by adding strain. The length scale a will be set
to the lattice constant a = 3.9 Å in SrTiO3 and the plasma
frequency equals ωp = √

2�.
With this, the q-dependent coupling constants can be

rewritten as |gq|2 = λ[uq(x0) · ez]2. In Fig. 5(a), the strength
of the light-matter coupling for x0 = 5 and 6 is displayed as
a function of the two-dimensional vector q. It can be seen
that only a small range of momenta contributes to the inter-
action. Comparing the plot for x0 = 5 and 6 illustrates how
this interaction range can be controlled by the distance of the
material from the interface, due to the exponential decay of the
mode functions. This provides the main pathway to engineer
the ferroelectric transition in the present setting. The decay of
the interactions with distance x0 and with |q| is also seen
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FIG. 6. (a) Inverse susceptibility as a function of temperature for
α = 0.2 at three different values of x0. The black line indicates the
corresponding mean-field result that does not depend on x0. (b) In-
verse susceptibility as a function of the distance x0 for α = 0.2 at
three different temperatures. In both panels, the system is in the PE
regime. Empty and filled symbols correspond to the OCA and TCA
solutions of the DMFT impurity model, respectively (see text).

from the line plots of the coupling strength |gq|2 to modes
propagating along the qz axis for three values of x0 [Fig. 5(b)].

C. Paraelectric regime

In the PE regime, the average polarization of the solid
vanishes. We therefore consider the static linear susceptibility
χ (0) which measures the linear response of the average 〈σ 1〉
to an external field Bext. The susceptibility can be measured
by adding the term Ĥext = −Bext

∑
r σ̂ x

r to the matter Hamil-
tonian (2), keeping it throughout the DMFT self-consistency
[i.e., there is a term Sext = −Bext

∫ β

0 dτ σ 1
c (τ ) in the impurity

action in addition to the self-consistent field (39)]. The suscep-
tibility is calculated by the ratio χ (0) ≈ 〈σ 1〉/Bext, for fields
Bext which are sufficiently small that the response is in the
linear regime.

Figure 6 shows the results for a nearest-neighbor interac-
tion α = 0.2. This is a regime in which mean-field theory
predicts a PE phase down to zero temperature [see Fig. 4(c)].

0.84

0.86

0.88

0.9

0.92

0.94
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x
〉

x0

T = 0.1
T = 0.3

FIG. 7. Order parameter in the FE regime for α = 1.0 as a
function of the distance x0 at two different temperatures. As in
Fig. 6, empty (filled) symbols correspond to data obtained with OCA
(TCA).

In Fig. 6(a), the inverse susceptibility is plotted as a func-
tion of temperature for three different values of x0. Data
points marked with full and empty circles have been ob-
tained for different orders of the diagrammatic impurity solver
[one-crossing approximation (OCA) and two-crossing ap-
proximation (TCA) (see Refs. [46,47] for more details)]. The
two solvers yield consistent results, which show that the re-
sults can be considered as converged. Since the light-matter
interaction is exponentially suppressed with increasing dis-
tance, there is no effect of the SPP mode on the material at
x0 = ∞. One observes a lowering of the susceptibility for
x0 = ∞ with respect to the static mean-field result (dashed
line), which is expected because fluctuations beyond mean
field (without coupling to the cavity) reduce the tendency to-
wards symmetry breaking. However, if the material is moved
closer to the metal surface, the coupling to the SPP mode is en-
hanced, which leads to an increasing effect on the equilibrium
properties of the system. As can be seen in the plot, the static
susceptibility is enhanced (i.e., the inverse static susceptibility
is decreased) due to the light-matter interaction.

Figure 6(b) shows the inverse static susceptibility as a
function of the distance x0 for three different temperatures.
Again, it is clearly visible that the susceptibility, and therefore
the tendency towards ferroelectric ordering, is enhanced as the
material approaches the metallic surface. The overall effect
is most pronounced at low temperatures. Moreover, it can be
seen that the OCA and TCA data start to deviate more strongly
at small distances. This shows that the impurity model, which
describes the single atom of the lattice in an effective medium,
is driven towards strong coupling as the coupling to the SPP is
increased, so that higher orders in the diagrammatic expansion
become more significant.

D. Ferroelectric regime

Below a critical temperature, the solid spontaneously ac-
quires a nonvanishing average electric polarization and enters
a FE state. The average polarization is proportional to the
order parameter 〈σ 1〉. In Fig. 7, we plot the order parameter
for a system with α = 1 as a function of x0 for T = 0.1
and 0.3. For both temperatures, the order parameter 〈σ 1〉
increases as the distance is decreased, i.e., consistent with
the tendency in the PE phase, the coupling to the SPP mode
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FIG. 8. Main panel: phase diagram as a function of α and tem-
perature. Empty (filled) symbols correspond to data obtained with
OCA (TCA). Inset: order parameter (green) and inverse susceptibil-
ity (orange) for x0 = 1.5 at α = 1.4. The orange dashed line shows
a linear fit to the data for the inverse susceptibility, from which the
transition temperature Tc is obtained.

enhances the order in the solid. Moreover, comparing the two
curves shows that the increase is larger for T = 0.3; thus, the
effect becomes stronger if the system is closer to the phase
transition.

E. Phase diagram

Having discussed the effect of the SPP mode on the PE
and FE states, we investigate how the phase diagram is influ-
enced by the light-matter interaction. As it turns out, DMFT
predicts the transition to be first order instead of second order.
A similar behavior has been previously found in an appli-
cation of DMFT to the standard lattice ϕ4 theory [44,45].
Nevertheless, apart from the first-order nature of the phase
transition, DMFT has been shown in this case to provide a
rather accurate description of the transition temperature and
the properties of the system inside the ordered and disordered
phases, compared to lattice quantum Monte Carlo results. In
the present system, there exists a small coexistence region
in which both the normal and the symmetry-broken phases
can be stabilized. We take the divergence of the susceptibility
as a measure for the lower bound of the coexistence region
and the transition temperature Tc. This is illustrated in the
inset of Fig. 8, where we plot the order parameter and the
inverse susceptibility as a function of temperature for x0 = 1.5
at α = 1.4. The order parameter exhibits a jump near T = 1,
which indicates the first-order transition. Close to this point,
the inverse static susceptibility χ (0)−1 crosses zero.

The main panel of Fig. 8 displays the transition temper-
ature Tc for x0 = ∞, i.e., without light-matter coupling, and

for x0 = 1.5. Again, the circles correspond to OCA results,
whereas the dots represent data calculated with TCA. It can
be seen clearly that the phase transition is shifted to higher
temperatures and smaller α due to the coupling to the SPP
mode and, as a consequence, the ferroelectric state is stabi-
lized over a larger range of parameters. This is consistent with
the increase of the susceptibility in the disordered phase, and
the increase of the order parameter in the FE phase.

V. CONCLUSION

To summarize, we have shown that bosonic DMFT is a
useful tool for the investigation of systems with light-matter
coupling. It allows to account for light-induced effects that
cannot be captured by a mean-field approximation due to
the positive-definite structure of the photon-mediated inter-
action. As an example, we have considered a simple model
of a two-dimensional material that features a ferroelectric
phase transition, which is driven by a static nearest-neighbor
dipole-dipole interaction. The material couples to a SPP mode
supported by a metal-dielectric interface via its dipolar mo-
ments. We have seen that the coupling between light and
matter leads to (i) an enhancement of the static electric sus-
ceptibility in the paraelectric regime and (ii) an increase of
the order parameter in the ferroelectric phase. Both effects
are most pronounced near the phase transition, and lead to
a stabilization of the ferroelectric state over a larger range of
parameters. Although the model is not a microscopic model
for STO, its parameters can be chosen in an unbiased way
to reproduce the linear macroscopic response of STO. Hence,
from our results one may at least expect measurable effects
on the phase transition temperature for settings similar to the
ones considered in our work.

Intuitively, this behavior can be best explained from a
macroscopic point of view: In general, the transition to the fer-
roelectric state is indicated by a softening of the corresponding
collective mode at momentum q = 0. The linear mixing of
this soft mode and the q = 0 SPP mode does not shift the
phase transition (see discussion related to no-go theorems).
However, in the quantum paraelectric the soft mode is strongly
renormalized by its anharmonic interaction with collective
dipole fluctuations at all other momenta, which is in essence
the reason for preventing the soft mode from condensation
at the classical mean-field transition temperature. Now, the
vacuum fluctuations of the SPP mode hybridize with these
collective dipole fluctuations at all scales, which can then,
through the anharmonic mixing, affect the q = 0 soft mode
at and near the phase transition. This nonlinear mixing of
nonzero frequency modes (which are affected by the cavity)
and the static response of the material is similar to the phe-
nomenological theory presented in Ref. [26]. The results show
that the coupling of matter to surface plasmons near interfaces
provides a promising pathway to engineer material properties
with electromagnetic fields.

It would be interesting to see how well the DMFT approx-
imation compares to other approaches to solve the present
model. However, the microscopic description of the strongly
correlated light-matter problem is challenging even within
the minimal model studied here: Efficient lattice quantum
Monte Carlo approaches for spin-boson models have been
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developed [53], which may however suffer from a sign prob-
lem if the induced retarded interaction Wr,r′ (τ ) in the lattice
model changes sign as a function of imaginary time. [Note
that the vanishing of the interaction at zero frequency implies
that

∫
dτ Wr,r′ (τ ) = 0.] For one-dimensional systems, on the

other hand, matrix product state (MPS) algorithms would be
a possibility. DMFT is expected to be most appropriate for
high-dimensional systems, but the long-range nature of the
light-induced interaction should be beneficial for the accuracy
even in the case of low-dimensional system. For a comparison
with MPS algorithms, however, the main challenge is the
requirement to take into account a continuum of modes; this
may be addressed in analogy to the MPS treatment of systems
with electron phonon coupling [54,55].

A main advantage of DMFT is that the formalism can be
readily adapted to more complex models, enabling in principle
a realistic description of strongly correlated electron systems.
In particular, this includes itinerant electrons and their inter-
actions with the electromagnetic field, which could be treated
using the extended DMFT formalism [39] or diagrammatic
extensions of DMFT similar to the GW +DMFT formalism
[51,56]. Moreover, in contrast to some methods commonly
used in quantum optics, DMFT does not use the Markov
approximation when eliminating the photon propagator, but
instead works with the fully frequency-dependent interaction
for a continuum of electromagnetic modes. It also includes
both rotating and counter-rotating terms, which becomes par-
ticularly relevant in the regime of strong light-matter coupling.
Finally, it should be remarked that the dielectric environment
provided by the interface or cavity will not only affect the
transverse electromagnetic field, but also the longitudinal field
(direct Coulomb interaction). This will be relevant in partic-
ular for materials where the Coulomb interaction is weakly
screened from the outset, and can therefore be further con-
trolled by the dielectric environment [57]. (In the present
minimal model, we have kept the direct interaction short
ranged since the aim was to study the qualitative effect of
the transverse field.) As the extended DMFT formalism relies
on a fully frequency-dependent interaction, it should allow to
consistently address the possibility of materials engineering
by shaping both transverse and longitudinal fields at interfaces
and in cavities.

ACKNOWLEDGMENTS

K.L. and M.E. were funded by the ERC Starting Grant No.
716648, and by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation), Project-ID No. 429529648,
TRR 306 QuCoLiMa (“Quantum Cooperativity of Light and
Matter”). J.L. is supported by SNSF Grant No. 200021-
196966 and Marie Sklodowska Curie Grant Agreement No.
884104 (PSI-FELLOW-III-3i).

APPENDIX A: QUANTIZATION OF THE SPP MODE

To quantize the SPP mode, we start from a classical de-
scription and solve the macroscopic Maxwell’s equations for
the metal-dielectric interface, closely following Ref. [49]. We
assume that the relative permeability is given by μ = 1 in

both the dielectric and metal regions. Since there are no free
charges and currents, Maxwell’s equations are given by

∇ · D = 0, (A1)

∇ · H = 0, (A2)

∇ × E = −μ0
∂H
∂t

, (A3)

∇ × H = ε0εr
∂E
∂t

. (A4)

Without loss of generality, we first solve the equations for
an SPP mode traveling in the z direction using the ansatz
F = F (x)ei(qz−ωt ) for all fields. Later, we can generalize the
solution and sum all possible directions of propagation. More-
over, we restrict our considerations to the transverse magnetic
(TM) mode with Ey = Hx = Hz = 0. With this, we obtain

iqHy(x) = iωε0ε(x, ω)Ex(x), (A5)

∂xHy(x) = − iωε0ε(x, ω)Ez(x) (A6)

from the x and the z components of Eq. (A4), as well as

iqEx(x) − ∂xEz(x) = μ0iωHy(x) (A7)

using the y component of Eq. (A3). Combining (A5) and (A6)
we get

Ez(x) = − i

q
∂xEx(x). (A8)

Furthermore, we substitute Hy(x) and Ez(x) in Eq. (A7) using
Eqs. (A5) and (A8), which yields

0 = ∂2
x Ex(x) − Q2Ex(x) (A9)

with

Q(x) =
√

q2 −
(ω

c

)2
ε(x, ω). (A10)

Equation (A9) is solved by

Ex(x) =
{

AmeQm,x x < 0
AdeQdx, x > 0

(A11)

where εm and εd refer to the dielectric constant in the metallic
(x < 0) and the dielectric (x > 0) region, respectively.

Using the continuity of the tangential components of E and
H at the interface, we obtain the relation

Am = εd

εm
Ad (A12)

for the field amplitudes. This can be seen from Eq. (A5).
Moreover, together with Eq. (A8), this yields the dispersion
relation

Qm

εm
= −Qd

εd
, (A13)

which can be solved for q and reads as

q = ω

c

√
εmεd

εm + εd
. (A14)

In the following, we assume a frequency-independent dielec-
tric permittivity εd and a simple Drude response for the metal,
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i.e.,

εm(ω) = 1 −
(ωp

ω

)2
, (A15)

where ωp denotes the plasma frequency. Even though, with
this, Eq. (A14) cannot be solved analytically for the frequency,
we may investigate the asymptotic behavior of ω(q). Taylor
expanding 1/εm in powers of ω shows that for small ω this
term vanishes up to second order; therefore, it may be ignored
for ω 	 0 such that ω ≈ qc/

√
εd. On the other hand, for real

valued q (i.e., propagating modes) the argument of the square
root has to be positive. From this, we obtain the condition
ω < ωp/

√
εd + 1. This is exactly where Eq. (A14) diverges;

thus, the frequency saturates at this value as q → ∞. Fig-
ure 2 in the main text shows the dispersion for three different
permittivities εd. The dotted and dashed lines indicate the
asymptotic values for ω 	 1 and ω → ∞, respectively. For
the DMFT calculations, we restrict our considerations to the
simplest case, where εd = 1. With this, the dispersion relation
can even be solved analytically for the frequency and has only
one physical solution, which reads as

ωq =

√√√√ω2
p

2
+ q2c2 −

√
ω4

p

4
+ q4c4. (A16)

To quantize the theory, we define the bosonic photon an-
nihilation (creation) operators â(†)

q . With this the electric field
operator can be expanded as follows:

Ê(r) =
∑

q

√
ωq

2ε0ε(x, ωq)Na3
[uq(x)eiq·ρâq + H.c.], (A17)

where a denotes the lattice constant and N represents the num-
ber of emitters. Here, we have introduced the two-dimensional
vectors ρ = (y, z)T and q = (qy, qz )T = q( sin(ϕ), cos(ϕ))T .
The latter includes all possible TM SPP modes traveling along
the interface (not only those propagating in the z direction),
where ϕ ∈ [0, 2π ) denotes the angle to the z axis and q > 0.
Since (for h̄ = 1) the Hamiltonian of the free electromagnetic
field should be given by

Ĥfield =
∑

q

ωqâ†
qâq, (A18)

the mode functions

uq(x) = Nq

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

eQmx

⎛
⎝ 1

−i(Qm/q) sin(ϕ)
−i(Qm/q) cos(ϕ)

⎞
⎠, x < 0

e−Qdx

⎛
⎝ 1

i(Qd/q) sin(ϕ)
i(Qd/q) cos(ϕ)

⎞
⎠, x > 0

(A19)

must satisfy the condition
∫

V d3r|uq(x)|2 = Na3. Thus, the
normalization factor is given by

Nq = √
a

{
1

2Qm

[
1 +

(
Qm

q

)2
]

+ 1

2Qd

[
1 +

(
Qd

q

)2
]}− 1

2

.

(A20)

Note that this factor would vanish if we had considered
the vacuum case, where the electromagnetic field can be ex-

panded in simple plane waves, i.e., uq(x) ∼ eiqxx. Therefore,
the exponential decay and the resulting confinement of the
SPP mode to the dielectric-metal interface leads to an en-
hancement of the light-matter interaction as compared to free
space.

APPENDIX B: PHOTON-INDUCED INTERACTION

The full imaginary-time action can be split into four parts

S = Smat + SPP + SEP + Sfield. (B1)

In this representation, the photonic degrees of freedom are
represented by bosonic variables aq(τ ) and āq(τ ), such that
the action of the free electromagnetic field reads as

Sfield =
∫ β

0
dτ āq(τ )[∂τ + ωq]aq(τ ) (B2)

and the light-matter coupling term SEP is given by

SEP =
∫ β

0
dτ
∑
r,q

√
ωq

2N
[gqeiq·Rr aq(τ ) + c.c.]σ 1

r (τ ). (B3)

To obtain an effective description for the material, we trace
out the photon fields from the full action. This allows us to
incorporate the effect of the light-matter coupling in a single
induced interaction term Sind that satisfies the relation

e−Sind=e−SPP

∫
D[ā, a]e−(SEP+Sfield ). (B4)

The action is only quadratic in the bosonic fields aq(τ ) and
āq(τ ); therefore, the second factor is just a simple Gaussian
path integral with quadratic extension, which can be solved
analytically. From this, we obtain a retarded dipole-dipole
interaction

Sind = −1

2

∫ β

0
dτ

∫ β

0
dτ ′∑

r,r′
σ 1

r (τ )W ind
r,r′ (τ − τ ′)σ 1

r′ (τ ′),

(B5)
where the interaction vertex reads as

W ind
r,r′ (τ ) = −

∑
q

|gq|2
N

e−iq·(Rr−Rr′ )
[
1 + ωqD0

q(τ )
]
. (B6)

Here, D0
q(τ ) denotes the free photon propagator and is given

by

D0
q(τ ) = −〈aq(τ )āq(0)〉Sfield = − e−τωq

1 − e−βωq
(B7)

or

D0
q(iνm) = 1

iνm − ωq
(B8)

in the Matsubara representation. Since the induced interaction
W ind

r,r′ (iνn) only depends on the distance Rr − Rr′ , we may
perform the lattice Fourier transform

fk =
∑

r

freik·Rr , (B9)

which yields

Wk(iνn) = −
∑

G∈LR

|gk+G|2 ν2
n

ν2
n + ω2

k+G

, (B10)
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where LR denotes the reciprocal lattice. However, as shown
in Fig. 5 in the main text, the strength of the coupling |gq|2
decreases as q increases. In particular, we can assume that
|gk+G|2 → 0 for G 
= 0. With this the result simplifies to

Wk(iνn) = −|gk|2 ν2
n

ν2
n + ω2

k

. (B11)

APPENDIX C: DETAILS ON THE MEAN-FIELD
APPROXIMATION

1. Cancellation of the light-matter interaction terms

In this section we show how the effect of the light-matter
interaction on the static mean-field result is canceled if all
relevant terms are taken into account. We start by decoupling
the dipole-dipole interactions using the substitution σ̂ x

r σ̂ 1
r′ →

〈σ 1〉σ̂ 1
r′ + σ̂ x

r 〈σ 1〉. This means that quantum fluctuations of
the dipolar moments around the mean-field expectation value
are neglected beyond the first order. With this, the nearest-
neighbor interaction can be rewritten as

Ĥmf
NN = α〈σ 1〉

∑
r

σ̂ x
r (C1)

and the quadratic term in the light-matter Hamiltonian
becomes

Ĥmf
PP =

∑
r,r′

∑
q

|gq|2
N

e−iq·(Rr−Rr′ )〈σ 1〉σ̂ 1
r′ . (C2)

Moreover, we perform the replacement

[gqeiq·Rr âq + H.c.]σ̂ 1
r → [gqeiq·Rr 〈âq〉 + c.c.]σ̂ 1

r

+ [gqeiq·Rr âq + H.c.]〈σ 1〉 (C3)

to decouple light and matter, such that the linear coupling term
can be split into two terms

ĤEP → Ĥmf,mat
EP + Ĥmf,field

EP , (C4)

where

Ĥmf,mat
EP =

∑
r,q

√
ωq

2N
[gqeiq·Rr 〈âq〉 + H.c.]σ̂ 1

r (C5)

only depends on the matter operators and the light enters via
expectation values. Similarly,

Ĥmf,field
EP =

∑
r,q

√
ωq

2N
[gqeiq·Rr âq + H.c.]〈σ 1〉 (C6)

only contains photonic operators and expectation values of
matter operators. Likewise, we may separate the photonic and
the matter operators in the total Hamiltonian

Ĥ → Ĥmf
field + Ĥmf

mat (C7)

with

Ĥmf
field = Ĥfield + Ĥmf,field

EP (C8)

and

Ĥmf
mat = Ĥ0 + Ĥmf

nn + Ĥmf
PP + Ĥmf,mat

EP . (C9)

Let us now consider the semiclassical equation of motion for
the photon annihilation operator

〈 ˙̂aq〉 = i
〈[

Ĥmf
field, âq

]〉 = −iωq〈âq〉 − i
∑

r

√
ωq

2N
ḡqe−iq·Rr σ 1.

(C10)
The corresponding expression for the creation operator is
obtained by taking the complex conjugate. For the static so-
lution, the time derivatives vanish, which yields

〈âq〉 = −
∑

r

√
1

2Nωq
ḡqe−iq·Rr σ 1, (C11)

〈â†
q〉 = −

∑
r

√
1

2Nωq
gqeiq·Rr σ 1. (C12)

With this, we can eliminate the expectation values 〈âq〉 and
〈â†

q〉 in Eq. (C5) and obtain

Ĥmat
EP = −

∑
r,r′

∑
q

|gq|2
N

e−iq·(Rr−Rr′ )〈σ 1〉σ̂ 1
r′ = −Ĥmf

PP . (C13)

This expression proves that the linear coupling term between
the electric displacement field and the polarization exactly
cancels the quadratic term Ĥmf

PP . As a result, within the mean-
field approximation, all contributions due to the light-matter
interaction disappear and the system is described by the un-
coupled Hamiltonian

Ĥmf
mat = Ĥ0 + Ĥmf

NN. (C14)

2. Self-consistent mean-field equation

Starting from the mean-field Hamiltonian (C14), we de-
rive a self-consistent equation for the order parameter that
allows to determine critical values for the temperature and
the dipole-dipole interaction. For that purpose, we introduce
an additional external static field f that couples to the total
polarization of the material and define

Ĥmf [ f ] = Ĥmf
mat − f

∑
r

σ̂ 1
r =

∑
r

Ĥmf
r [ f ] (C15)

with the single-site mean-field Hamiltonian

Ĥmf
r [ f ] = �

2
σ̂ z

r − α〈σ 1〉σ̂ 1
r − f σ̂ 1

r . (C16)

The latter can be diagonalized, which yields the eigenvalues

E±[ f ] = ±
√

(�/2)2 + (α〈σ 1〉 − f )2. (C17)

Let us also introduce the partition function

Zr[ f ] = tr
{
e−βĤmf

r [ f ]} = e−βE+[ f ] + e−βE−[ f ]. (C18)

Then, the order parameter can be calculated by taking the
derivative

〈σ 1〉 = 1

β

∂

∂ f
lnZr[ f ]

∣∣∣∣
f =0

. (C19)

From this, we obtain the self-consistent equation

〈σ 1〉 = tanh[β
√

(�/2)2 + (α〈σ 1〉)2]

× α√
(�/2)2 + (α〈σ 1〉)2

〈σ 1〉. (C20)
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It can be solved numerically using a fixed-point iteration. Re-
sults are shown in the main text in Fig. 4. In general, it always
has a trivial solution 〈σ 1〉 = 0; however, this solution is only
stable in the normal paraelectric phase. For the ferroelectric
state 〈σ 1〉 
= 0, such that Eq. (C20) can be rewritten as

1 = tanh[β
√

(�/2)2 + (α〈σ 1〉)2]
α√

(�/2)2 + (α〈σ 1〉)2
.

(C21)

For β → ∞, the right-hand side goes to α√
(�/2)2+(α〈σ 1〉)2

.

Since β = 1/T , this is the zero-temperature limit. Therefore,
the ferroelectric phase only exists if α√

(�/2)2+(α〈σ 1〉)2
� 1. In

particular, this means that it is impossible to undergo a transi-
tion to the ordered phase if α � �/2 even at T = 0. Since,
in this case, the ferroelectric state is not destabilized due
to classical thermal fluctuations but due to the microscopic
splitting of the energy levels, this is the so-called quantum
paraelectric regime.

APPENDIX D: DERIVATION OF THE DMFT EQUATIONS

1. Mapping of the lattice action to an impurity problem

In this section, we map the full lattice model to a local
impurity problem using the cavity method. We start from the
Hubbard-Stratonovich action

SHS = S0 + Sϕϕ + Sϕσ (D1)

with

Sϕϕ = 1

2

∫ β

0
dτ

∫ β

0
dτ ′∑

r,r′
ϕr (τ )[W −1]r,r′ (τ − τ ′)ϕr′ (τ ′)

(D2)
and

Sϕσ = −
∑

r

∫ β

0
dτ ϕr (τ )σ 1

r (τ ) (D3)

that has been derived in the main text in Sec. III A. The action
of the noninteracting material can be rewritten as a sum over
all sites r

S0 =
∑

r

Sr
0, (D4)

where Sr
0 is the action of one isolated emitter. Now we single

out one site c of the lattice, the so-called cavity site, and split
the action into three contributions. The first one contains all
onsite terms

Sc = Sc
0 + Sc

ϕϕ + Sc
ϕσ , (D5)

with

Sc
ϕϕ = 1

2

∫ β

0
dτ

∫ β

0
dτ ′ϕc(τ )[W −1]c,c(τ − τ ′)ϕc(τ ′) (D6)

and

Sc
ϕσ = −

∫ β

0
dτ ϕc(τ )σ 1

c (τ ). (D7)

The second contribution is the action of the system with one
missing emitter, i.e., a cavity, at site c:

S(c) =
∑
r 
=c

Sr
0 + S(c)

ϕϕ + S(c)
ϕσ , (D8)

where

S(c)
ϕϕ = 1

2

∫ β

0
dτ

∫ β

0
dτ ′∑

r 
=c

∑
r′ 
=c

ϕr (τ )[W −1]r,r′ (τ − τ ′)ϕr′ (τ ′)

(D9)
and

S(c)
ϕσ = −

∑
r 
=c

∫ β

0
dτ ϕr (τ )σ 1

r (τ ). (D10)

The third contribution describes the interaction between the
cavity site and the rest of the lattice and reads as

�S =
∑
r 
=c

∫ β

0
dτ ϕr (τ )tr (τ ) (D11)

with

tr (τ ) =
∫ β

0
dτ ′[W −1]r,c(τ − τ ′)ϕc(τ ′). (D12)

In the next step, we integrate out all matter fields {ξr, ξ̄r} and
auxiliary fields {ϕr} with r 
= c, such that the effect of all other
sites on the impurity can be described by an effective action
Shyb, i.e.,∫

D[ϕr 
=c]
∫

D[ξr 
=cξ̄r 
=c]e−SHS

= e−Sc

∫
D[ϕr 
=c]

∫
D[ξr 
=cξ̄r 
=c]e−(S(c)+�S) = e−(Sc+Shyb ).

(D13)

The path integral can be solved formally using a cumulant
expansion in �S. With this

Shyb = −
∞∑

n=1

(−1)n

n!

∑
r1...rn 
=0

∫ β

0
dτ1· · ·

∫ β

0

× dτntrn (τ1) . . . trn (τn)Kr1...rn (τ1 . . . τn), (D14)

where the connected correlation functions Kr1...rn (τ1 . . . τn) are
defined as

Kr1...rn (τ1 . . . τn) = 〈T ϕr1 (τ1) . . . ϕrn (τn)〉con
S(c) . (D15)

The subscript S(c) indicates that the time-ordered expectation
value is evaluated using the action (D9). For our DMFT cal-
culations, we truncate all terms beyond the second order. With
this

Shyb = Shyb
1 + Shyb

2 , (D16)

where the first-order term is given by

Shyb
1 =

∫ β

0
dτ ϕc(τ )h(τ ) (D17)

with

h(τ ) =
∑
r 
=c

∫ β

0
dτ ′[W −1]c,r (τ − τ ′)〈T ϕr (τ ′)〉S(c) , (D18)
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and the second-order term reads as

Shyb
2 = −

∫ β

0
dτ

∫ β

0
dτ ′ϕc(τ )�hyb(τ − τ ′)ϕc(τ ′) (D19)

with the hybridization function

�hyb(τ ) =
∑
r 
=c

∑
r′ 
=c

∫ β

0
dτ1

∫ β

0
dτ2[W −1]c,r

× (τ − τ1)U (c)
r,r′ (τ1 − τ2)[W −1]r′,c(τ2). (D20)

Here, we have introduced the propagator

U (c)
r,r′ (τ ) = 〈T ϕr (τ )ϕr′ (0)〉con

S(c) (D21)

for the auxiliary fields on the cavity lattice. With this, we have
mapped the lattice model to an approximate impurity problem

Simp
HS = Sc

0 + Simp
ϕϕ + Simp

ϕσ (D22)

with the linear coupling term

Simp
ϕσ = Sc

ϕσ + Shyb
1 = −

∫ β

0
dτ ϕc(τ )[σ 1

c (τ ) − h(τ )] (D23)

and the quadratic term

Simp
ϕϕ = Sc

ϕϕ + Shyb
2 = 1

2

∫ β

0
dτ

∫ β

0

× dτ ′ϕc(τ )W−1(τ − τ ′)ϕc(τ ′). (D24)

In the above expression, we have introduced the Weiss field

W−1(τ ) = [W −1]c,c(τ ) − �hyb(τ ), (D25)

which is one of the central quantities of DMFT.

2. Derivation of the self-consistency conditions

In the previous section, we have mapped the lattice model
to a local impurity problem. However, the impurity action
(D22) contains the fields h(τ ) and W (τ ), which cannot be
evaluated analytically. We will thus express these fields in
terms of the corresponding lattice quantities and a local self-
energy.

Let us first define the full propagator

Ur,r′ (τ − τ ′) = 〈T ϕr (τ )ϕr′ (τ ′)〉con
SHS

(D26)

for the auxiliary fields. Introducing the self-energy �k , it is
given by the Dyson equation

U −1
k = W −1

k − �k. (D27)

We may express the propagator for the lattice with the cavity
at site c in terms of the full propagator by removing the
connection between site c and all other lattice points r and
r′, i.e.,

U (c)
r,r′ (iνn) = Ur,r′ (iνn) − Urc(iνn)Ucr′ (iνn)

Ucc(iνn)
. (D28)

Here we have divided the second term by Ucc(iνn) to avoid
double counting.

Inserting the expression above into the formula for the
hybridization function (D20) and transforming to k space

yields

�hyb(iνn) = 1

N

∑
k

E2
k Uk −

(
1
N

∑
k EkUk

)2

1
N

∑
k Uk

(D29)

with

Ek = W −1
k − [W −1]c,c. (D30)

As it is usually done in DMFT, we assume that the self-energy
is purely local, i.e., �k = �loc, and define

F−1 = [W −1]c,c − �loc. (D31)

With this we can rewrite the Dyson equation for the full
propagator as

U −1
k = F−1 + Ek, (D32)

and thus

1

N

∑
k

EkUk = 1

N

∑
k

Ek

F−1 + Ek

= 1

N

∑
k

(
Ek + F−1

F−1 + Ek
− F−1

F−1 + Ek

)

= 1 − F−1 1

N

∑
k

Uk (D33)

and

1

N

∑
k

E2
k Uk = 1

N

∑
k

Ek
Ek

F−1 + Ek

= 1

N

∑
k

Ek

(
1 − F−1

F−1 + Ek

)

= 1

N

∑
k

Ek︸ ︷︷ ︸
=0

−F−1 1

N

∑
k

EkUk

= −F−1 + (F−1)2 1

N

∑
k

Uk . (D34)

Putting everything together we obtain

W−1(iνn) = [W −1]c,c(iνn) − �(iνn)

= [W −1]c,c(iνn) − F−1(iνn) + [Uc,c]−1(iνn)

= [Uc,c]−1(iνn) + �loc(iνn). (D35)

With this, we have found an expression for the Weiss field
that only contains quantities corresponding to the full lattice
without cavity at site c.

In the next step, we relate h(τ ) to the Weiss field. For
that purpose, we consider the derivative δ lnZ

δϕc (τ ) . Calculating the
partition function from the full lattice action SHS yields

δ lnZ
δϕc(τ )

= 〈
σ 1

c (τ )
〉−∑

r

∫ β

0
dτ ′[W −1]cr (τ − τ ′)〈ϕr (τ ′)〉.

(D36)
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On the other hand, evaluating the expression using Simp
HS we

obtain

δ lnZ
δϕc(τ )

= 〈
σ 1

c (τ )
〉− h(τ ) −

∫ β

0
dτ ′ W−1(τ − τ ′)〈ϕc(τ ′)〉.

(D37)
Let us assume that the expectation value 〈ϕr (τ ′)〉 is time
independent and uniform, such that 〈ϕr (τ ′)〉 = φ for all τ ′ and
r. Then, defining

W−1
0 = W−1(iνn = 0) (D38)

and

W −1
mf = W −1

k=0(iνn = 0) (D39)

we finally get

h = [
W −1

mf − W−1
0

]
φ. (D40)

3. Eliminating the auxiliary field from the impurity problem

To obtain an impurity action Simp that only depends on the
matter degrees of freedom, we integrate out the auxiliary field
ϕc from Simp

HS . The path integral∫
D[ϕ0]e−Simp

HS = e−Simp
(D41)

can be solved analytically and yields

Simp = Sc
0 − 1

2

∫ β

0
dτ

∫ β

0
dτ ′[σ 1

c (τ ) − h
]

× W (τ − τ ′)
[
σ 1

c (τ ′) − h
]
. (D42)

This can be cast into a slightly different form

Simp = Sc
0 + Simp

int,1 + Simp
int,2 + const (D43)

with a linear field term

Simp
int,1 = b

∫ β

0
dτ σ 1

c (τ ), (D44)

and the quadratic term

Simp
int,2 = −1

2

∫ β

0
dτ

∫ β

0
dτ ′ σ 1

c (τ )W (τ − τ ′)σ 1
c (τ ′), (D45)

where

b = W0
[
W −1

mf − W−1
0

]
φ. (D46)

To eliminate φ, we take into account that the action satisfies
the condition〈

δSHS

δϕr (τ )

〉
SHS

∣∣∣∣∣
ϕr (τ )=φ

=
∑

r′

∫ β

0
dτ ′[W −1]r,r′ (τ − τ ′)φ

− 〈σ 1
r (τ )〉SHS

∣∣∣∣∣
ϕr (τ )=φ

= 0 (D47)

since φ is a stationary path; therefore,〈
σ 1

r (τ )
〉
SHS

∣∣
ϕr (τ )=φ

= 〈σ 1〉. (D48)

With this, we obtain

φ = Wmf〈σ 1〉, (D49)

and, thus

b = [W0 − Wmf]〈σ 1〉. (D50)

It is not possible to calculate the local propagator Uc,c

directly from the impurity action above. However, we may
relate the local correlation function

χc,c = 〈
T σ 1

c (τ )σ 1
c (τ ′)

〉con
(D51)

to Uc,c. For that purpose, we define the generating functional

G[J] = ln

〈
exp

[∫ β

0
dτ J (τ )ϕc(τ )

]〉
. (D52)

Using the impurity action Simp
HS with the auxiliary fields, we

obtain

δ2G[J]

δJ (τ )δJ (τ ′)

∣∣∣∣
J=0

= Uc,c(τ − τ ′). (D53)

On the other hand, a calculation with Simp yields

δ2G[J]

δJ (τ )δJ (τ ′)

∣∣∣∣
J=0

= W (τ − τ ′) +
∫ β

0
dτ1

∫ β

0
dτ2

× W (τ − τ1)χc,c(τ1 − τ2)W (τ2 − τ ′)
(D54)

and thus

Uc,c = W + Wχc,cW . (D55)

Substituting this into Eq. (D35) we obtain

�loc = (1 + χc,cW )−1χc,c. (D56)

This allows us to calculate all relevant quantities on the impu-
rity directly from the impurity action (D43).

APPENDIX E: TAIL CORRECTION

1. High-frequency behavior of the Weiss field

To estimate the asymptotic behavior of the Weiss field for
iνn → ∞, we consider an expansion of all relevant quanti-
ties in the inverse Matsubara frequency and only keep terms
up to the order iν−2

n . As will be discussed in greater detail in
Appendix E 2, the local dipole-dipole correlation function de-
cays as

χc,c ∼ c2

(iνn)2
. (E1)
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The interaction matrix can be written as

Wk ∼ wk
0 + wk

2

(iνn)2
(E2)

for iνn → ∞. The corresponding parameters will be derived
in Appendix E 3. Moreover, at large Matsubara frequencies
we can make the ansatz

W ∼ w0 + w2

(iνn)2
(E3)

for the Weiss field. Using Eq. (38), we find that the self-energy
decays as

�loc = χc,c − χc,cWχc,c + χc,cWχc,cWχc,c

− · · · ∼ c2

(iνn)2
+ O[(iνn)−4]. (E4)

Inserting this into the Dyson equation yields

Uk = Wk + Wk�locWk + Wk�locWk�locWk

+ · · · ∼ wk
0 + wk

2 + (
wk

0

)2
c2

(iνn)2
+ O[(iνn)−4] (E5)

and, therefore,

Uc,c = 1

N

∑
k

wk
0 +

1
N

∑
k wk

2 + 1
N

∑
k

(
wk

0

)2
c2

(iνn)2
+ O[(iνn)−4]

(E6)
for iνn → ∞. Then, Eq. (27) finally yields

W = Uc,c − Uc,c�locUc,c + Uc,c�locUc,c�locUc,c − · · ·

∼ m(1)
0 + m(1)

2 + [
m(2)

0 − (
m(1)

0

)2]
c2

(iνn)2
+ O[(iνn)−4], (E7)

where we have introduced the notation

m(1)
0 = 1

N

∑
k

wk
0 , (E8)

m(2)
0 = 1

N

∑
k

(
wk

0

)2
, (E9)

m(1)
2 = 1

N

∑
k

wk
2 . (E10)

With this, we can identify the parameters in Eq. (E3) for the
high-frequency tail of the Weiss field as

w0 = m(1)
0 (E11)

and

w2 = m(1)
2 + [

m(2)
0 − (

m(1)
0

)2]
c2. (E12)

2. High-frequency behavior of the local dipole-dipole
correlation function

In the following, we derive the approximate expression for
the local dipole-dipole correlation function at high Matsubara

frequencies given in Eq. (E1), and determine the coefficient
c2. For that purpose, we make use of the spectral representa-
tion. The spectral function is defined as

A(ω) = − 1

π
Im{χc,c(ω)}. (E13)

With this, the local dipole-dipole correlation function in the
Matsubara representation is formally given by

χc,c(iνn) =
∫ β

0
dω A(ω)

[
1

iνn − ω
− 1

iνn + ω

]

=
∫ β

0
dω A(ω)

2ω

(iνn)2

1

1 − (ω/iνn)2

= 1

(iνn)2

∫ β

0
2ω A(ω) + O[(iνn)−4].

(E14)

To obtain the last line, we have made a Taylor expansion in
1/(iνn). At large Matsubara frequencies, we can neglect all
terms beyond the second order and, thus, we find

c2 =
∫ β

0
dω 2ωA(ω). (E15)

On the other hand, the imaginary-time representation of
the local dipole-dipole correlation function can be rewritten
in terms of the spectral function as

χc,c(τ ) =
∫ β

0
dω A(ω)

cosh[ω(τ − β/2)]

sinh[ωβ/2]
. (E16)

Taking the derivative with respect to time yields

∂τχc,c(τ ) =
∫ β

0
dω A(ω)ω

sinh[ω(τ − β/2)]

sinh[ωβ/2]
(E17)

and, thus,

∂τχc,c(τ )

∣∣∣∣
τ=0

= −
∫ β

0
dω ωA(ω). (E18)

Comparing this to Eq. (E15), it can be seen immediately that

c2 = −2∂τχc,c(τ )
∣∣
τ=0. (E19)

In order to calculate the derivative, we recall that

∂τχc,c(τ ) = ∂τ 〈T σ̂ x
c (τ )σ̂ x

c (0)〉 (E20)

and, therefore, for τ > 0

∂τχc,c(τ ) = 〈[
∂τ σ̂

x
c (τ )

]
σ̂ x

c (0)
〉
. (E21)
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In the modified Heisenberg picture, the equation of motion for
the x component of the Pauli operator reads as

∂τ σ̂
x
c (τ ) = [

Ĥ , σ̂ x
c (τ )

] =
∑

r

�

2

[
σ̂ 3

r (τ ), σ̂ x
c (τ )

] = �iσ̂ y
c (τ ).

(E22)
With this,

∂τχc,c(τ )|τ=0 = �i
〈
σ̂ y

c σ̂ x
c

〉 = �
〈
σ̂ z

c

〉
, (E23)

which finally yields

c2 = −2�
〈
σ̂ z

c

〉
. (E24)

3. High-frequency behavior of the dipole-dipole
interaction vertex

In Eq. (E2) we have introduced an approximation for
the interaction matrix at large Matsubara frequencies. The

coefficients wk
0 and wk

2 can be obtained from an expansion
of Wk(iνn) in 1/(iνn). This yields

Wk(iνn) = α

2
[cos(ky) + cos(kz )] − |gk|2 ν2

n

ν2
n + ω2

k

= α

2
[cos(ky) + cos(kz )] − |gk|2 1

1 + (ωk/νn)2

= α

2
[cos(ky) + cos(kz )] − |gk|2

− |gk|2ω2
k

(iνn)2
+ O[(iνn)−4] (E25)

and, thus,

wk
0 = α

2
[cos(ky) + cos(kz )] − |gk|2, (E26)

wk
2 = −|gk|2ω2

k. (E27)
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