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Thermal conductivity and heat diffusion in the two-dimensional Hubbard model
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We study the electronic thermal conductivity κel and the thermal diffusion constant DQ,el in the square lattice
Hubbard model using the finite-temperature Lanczos method. We make use of the Nernst-Einstein relation
for thermal transport and connect the strong nonmonotonous temperature dependence of κel to that of DQ,el

and the electronic specific heat cel. We present also the results for the Heisenberg model on a square lattice
and ladder geometries. We study the effects of doping and consider the doped case also with the dynamical
mean-field theory. We show that κel is below the corresponding Mott-Ioffe-Regel value in almost all calculated
regimes, while the mean free path is typically above or close to lattice spacing. We discuss the opposite effect
of quasiparticle renormalization on charge and heat diffusion constants. We calculate the Lorenz ratio and
show that it differs from the Sommerfeld value. We discuss our results in relation to experiments on cuprates.
Additionally, we calculate the thermal conductivity of overdoped cuprates within the anisotropic marginal Fermi
liquid phenomenological approach.
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I. INTRODUCTION

Thermal conductivity is a powerful probe of correlated
electrons which, e.g., allowed detection of the breakdown of
the Fermi-liquid theory in cuprate superconductor [1], observ-
ing highly mobile excitations in organic spin liquid [2] and
determining the absence of quasiparticles in electronic fluid
of vanadium dioxide [3]. Despite this, thermal conductivity
receives less attention than the charge conductivity, which was
recently measured also in optical lattices [4], and was ex-
plored theoretically with precise numerical simulations both
in the high-temperature bad metal [4–8] and lower tempera-
ture strange metal regime [9].

Both cold atom measurements [4] and theoretical dis-
cussions of transport properties employ the Nernst-Einstein
relation that expresses the conductivity σc = χcDc in terms of
the charge susceptibility χc and the charge diffusion constant
Dc. At high temperatures, the temperature dependence of σc is
dominated by χc [4–6] and one can understand the appearance
of bad-metallicity (conductivity below the Mott-Ioffe-Regel
value [10]) in terms of decreasing χc and saturated, temper-
ature independent Dc. Similarly, one can express the spin
conductivity σs = χsDs (with χs being the uniform spin sus-
ceptibility and Ds being the spin diffusion constant). This was
used in a study of spin transport in cold atoms [11]. The
spin diffusion constant has a nonmonotonic T -dependence
and reaches values below the lower limit of charge diffusion.
This occurs because the velocity is reduced from a value given
by hopping t to a lower one given by the (lower energy)
Heisenberg exchange J [11,12].

One can also discuss the thermal conductivity along the
lines of the corresponding Nernst-Einstein relation κ = cDQ

(with c being the specific heat and DQ the heat diffusion
constant). In contrast to the case of charge conductivity, κ ,

c, and DQ can all be independently measured [13–15]. One
could thus hope for better characterization of the electronic
transport, but κ = κph + κel has both electronic and phononic
contributions and separating them is not straightforward. One
typically resorts to estimating electronic contribution κel via
the Wiedemann-Franz law, which, however is often violated
[3,16–19]. The difficulty to unambiguously identify the two
contributions can be illustrated in the case of the normal state
in cuprates, where one can find quite diverse claims: (i) κel

represents about a half of the total κ [20,21] or (ii) a very
small portion of total κ [14,22] (iii) which contrasts with a
surprisingly large magnonic contribution found in Ref. [23],
and (iv) total κ showing the same in-plane anisotropy as σc,
suggesting it has an electronic origin [13]. Recent studies
discuss the phononic part κph in terms of a Planckian re-
laxation rate [14,24], but they could still be affected by the
uncertainties in the subtraction of the electronic part.

Is the behavior of κel better characterized at least within
theory? Thermal transport was broadly studied in one-
dimensional systems in part due to much larger values of κ

originating in long mean free paths and proximity to inte-
grability [25–28]. Results for dimension d > 1 are however
scarce. The Hubbard model in 2 dimensions was very recently
studied with a determinant quantum Monte Carlo investiga-
tion of the Mott insulator [29] and with a weak coupling
approach [30], but no other results exist. We are unaware
of any calculation of thermal conductivity even for the more
basic 2d Heisenberg model. It is important to have robust
numerical results for κel not only to address the fundamental
questions, e.g., asymptotic behavior of the diffusion constant
and relaxation rates, but also to help interpreting the experi-
ments.

In this work we study the thermal conductivity and the heat
diffusion constant in the square lattice Hubbard model with
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the finite temperature Lanczos method (FTLM). We study
also the Heisenberg model both on square lattice and ladder
geometries. Our FTLM calculations are limited to T � J/2
and thus map out the high-temperature regime of the phase
diagram and are directly relevant for the cold atom experi-
ments [4,11,31,32]. There the density, spin density and energy
density relaxations are affected also by a thermal conduc-
tion either directly or via mixed, e.g., thermoelectric effects
[33]. For materials, the experimental temperatures are usually
lower. To discuss this regime we thus resort to a phenomeno-
logical spin-wave model, qualitative aspects of the dynamical
mean field theory (DMFT) results, and the phenomenological
anisotropic marginal Fermi liquid model (AMFL). The latter
captures various aspects of overdoped cuprates [34,35]. We
discuss our results for the Mott-insulating and doped cases in
relation to experiments on cuprates.

The paper is structured as follows. In Sec. II, we present
models and methods. We show the results for the Mott in-
sulating state with strongly nonmonotonic behavior of κel in
Sec. III, where we also discuss the difference between the
Hubbard and Heisenberg model results. The effect of doping
is presented in Sec. IV and the violation of the Wiedemann-
Franz law is discussed in Sec. V. In Sec. VI, our results are
discussed in relation to experiments on cuprates for undoped
and doped regime. We summarize our findings in Sec. VII.
Appendix A contains technical details of FTLM calcula-
tions. We discuss cluster shape dependence of the results in
Appendix B, frequency dependence of conductivity in Ap-
pendix C, vertex corrections in Appendix D, the quasiparticle
regime in Appendix E and the AMFL phenomenology for
overdoped cuprates in Appendix F.

II. MODEL AND METHOD

We consider the Hubbard model on a square lattice,

H = −t
∑
〈i, j〉,s

c†
i,sc j,s + U

∑
i

ni,↑ni,↓, (1)

where c†
i,s/ci,s create/annihilate an electron with spin s (either

↑ or ↓) at the lattice site i. The hopping amplitude between
the nearest neighbors is t . We further set h̄ = kB = e = 1. We
denote the lattice parameter with a.

We investigate the model with FTLM [36–38] on a cluster
with size N = 4 × 4. To reduce the finite-size effects that
appear at low T , we employ averaging over twisted boundary
conditions and use the grand canonical ensemble. We do not
show results in the low T regime where our estimated uncer-
tainty due to finite size effects and spectra broadening exceeds
20%. We also perform FTLM calculations on the square lat-
tice Heisenberg model with up to 32 sites and additionally on
two-leg and three-leg ladders. For the Hubbard model away
from half filling, we additionally compare our results with
single-site DMFT calculations, obtained with NRG-Ljubljana
[39,40] as the impurity solver.

The electronic thermal conductivity is calculated as

κel = L22

T
− L2

21

T L11
, (2)

where Li j represent corresponding conductivities with L11 =
σn,n = σc, L12 = L21 = σQ,n and L22 = σQ,Q. Within FTLM
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FIG. 1. The electronic thermal conductivity κel, specific heat cel,
and thermal diffusion constant DQ,el for a half-filled (doping p = 0)
Hubbard model with U = 5t , 10t and 20t . The full thick lines are
FTLM results and the squares are DQMC data taken from Ref. [29].
The thin dashed lines in (a) and (c) denoted “spin waves” are the
phenomenological approximation for the spin (Heisenberg) part and
are obtained as explained in the main text, fixing J = 4t2/U = 0.4t .

[36], these are obtained as the frequency ω = 0 value of the
dynamical conductivities related to the current-current cor-
relation functions σA,B(ω) = ImχA,B(ω)/ω while in DMFT
they are calculated with the bubble approximation. The heat
current jQ is given by the energy jE and particle jn currents,
jQ = jE − μ jn. Within the Heisenberg model κel is calculated
as κel = σE,E/T . More details on the calculations are given in
Appendix A.

III. MOTT INSULATOR

We show κel for U = 5t , 10t , and 20t in the half-filled (n =
1, doping p = 1 − n = 0) Mott-insulating case in Fig. 1(a).
The most prominent feature is the nonmonotonic T depen-
dence with a large maximum at high T , e.g., at T ∼ 2t for
U = 10t . This maximum can be understood via the Nernst-
Einstein relation κel = celDQ,el in terms of a maximum in
the electronic specific heat cel.1 This maximum is shown in
Fig. 1(b) and is the high-T maximum in cel (opposed to low-T
maximum in cel at T < t) and originates in the increase of
the entropy from the spin (Heisenberg) value ln(2) towards
a full charge activated value ln(4) via the thermal activation
of mobile doublons and holons [41] across the charge gap �c

[38,42]. It moves to higher T with increasing U [see Figs. 1(a)
and 1(b)]. The maximum in κel at high T is therefore a

1We use the specific heat at fixed density or doping, which is in
contrast with the specific heat at fixed chemical potential calculated
in Refs. [36,38,42].
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FIG. 2. κel, cel, and DQ,el calculated with FTLM and DQMC
compared to Heisenberg model FTLM (N = 32) results. The results
are shown in units of exchange coupling J = 4t2/U . Results are
compared also to the “spin waves” approximation (thin dashed line)
explained in the main text. The shaded area indicates the region of
spin MIR limit violation. DQMC data are taken from Ref. [29].

consequence of the new heat conduction channel via particles,
doublons and holons.

At lower T , e.g., T < 2t for U = 10t , κel decreases faster
with decreasing T than cel [see Figs. 1(a) and 1(b)]. This is
due to strong decrease of the electronic heat diffusion constant
DQ,el [see Fig. 1(c)] and indicates a crossover from particle
dominated to spin (wave) dominated heat transport at lower
T and the accompanying strong decrease of the average ve-
locity v determining the diffusion constant D = vl/2 [12].
The velocity v decreases from the order of v ∼ ta to the
order of v ∼ Ja. Here J = 4t2/U is the exchange coupling
[43] and l is the mean free path. DQ,el is calculated via the
Nernst-Einstein relation DQ,el = κel/cel.

At even lower T ∼ J , cel shows a peak due to spin excita-
tions [36,38,42]. For large U this peak can be well described
with the Heisenberg model as is shown in Fig. 2(b). Our
FTLM Heisenberg results on 32 sites for cel agree well with
the results from Refs. [44,45] and also reasonably with those
from Refs. [46,47], where a peak occurs at a slightly lower T .
Whether this peak in cel manifests as a peak in κel depends on
the strength of the T dependence of DQ,el. If DQ,el increases
strongly with decreasing T , the peak in cel only appears as a
shoulder in κel.

To explore lower T � J behavior, we calculate κel in the
Heisenberg model using FTLM. The results are shown in
Fig. 2 next to the Hubbard model results for U = 10t . The
Heisenberg model κel monotonically increases with decreas-
ing T [Fig. 2(a)]. This increase becomes less steep at lowest
T that reach below the ones corresponding to the low-T peak
in cel. The diffusion constant is shown on Fig. 2(c). It is es-
sentially temperature-independent above T ∼ J , but increases

below it. We studied additional cluster sizes and shapes with
FTLM and report the results in Appendix B. Finite clusters
indicate a peak in κel corresponding to the peak in cel, but the
finite size effects are significant there: with increasing cluster
size κel is still increasing.

The Heisenberg model results reach values significantly
above the DQMC Hubbard model results for T < J . We do
not understand this discrepancy. One could attribute this to the
difficulties associated with analytical continuation in DQMC
but note that the agreement between DQMC and FTLM re-
sults for the Hubbard model at higher T is good (see also
Appendix C). The other option could be the higher order
corrections in t/U expansion of the Hubbard model.

We compare our numerical results also with a phenomeno-
logical model. For this, we take cel from FTLM Heisenberg
model results and approximate the mean free path by the
spin-spin correlation length ξ from renormalization group
calculations [48,49]

l =
√

[Cξ a exp(2πρs/T )/(1 + 1/(2πρs/T ))]2 + a2. (3)

ξ is modified to approach l (T → ∞) → a and obtained with
Cξ = 0.5 and ρs = 0.15J and T in units of J . We approximate
the velocity v with the kinetic magnon approximation2, which
gives v ∼ 0.72Ja at highest T and interpolates to v ∼ 1.4Ja
at low T [12,49,50]. From this, we obtain DQ,el = vl/2 and
κel = celDQ,el and show them in Figs. 1 and 2 with thin dashed
lines denoted “spin waves.” The obtained diffusion constant
(taking l = a) agrees with the known limiting value of the
spin diffusion constant Ds ∼ 0.4Ja2 in the Heisenberg model
at high T [51]. The agreement between the DQMC result and
this spin wave estimate in Fig. 2(a) is poor.

On the other hand, the agreement of the spin wave estimate
with the Heisenberg model result is substantially better. DQ,el

in the Heisenberg model at high T is close to the spin-wave
estimate [see Fig. 2(c)]. At lower T < J , one expects DQ,el to
increase (and diverge with T → 0) due to increased (diverg-
ing) l . It is also expected that the Heisenberg DQ,el is smaller
than the spin wave estimate as observed in Fig. 2(c). Namely,
one expects l � ξ since spin waves are expected to scatter
at the antiferromagnetic domain walls separated effectively
by ξ .

IV. DOPED MOTT INSULATOR

We now consider the effect of doping. We show κel for
several hole dopings p and for U = 10t in Fig. 3(a). With
increasing p the high-T peak at T ∼ 2.5t becomes less pro-
nounced, due to suppressed cel [Fig. 3(b)] and lower release
of entropy via thermal activation of holons and doublons.
In comparison to the Mott insulating case, κel at T � t is
increased due to charge conduction. The increase at low-T for
larger dopings indicates the onset of coherence.

2The average velocity is calculated as the expectation value v =∫ |∇kεk|nkd2k/
∫

nkd2k, where εk = 2J
√

1 − γ 2
k is the magnon dis-

persion, γk = 1
2 (cos(kx ) + cos(ky )), and nk is the Bose function.
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FIG. 3. The temperature dependence of κel (a), cel (b), and DQ,el

(c) for several hole dopings p and for U = 10t as obtained with
FTLM. DMFT results for p = 0.15 are also shown. Characteristic
MIR limits are indicated in (a) and (c) (see text).

A. Mott-Ioffe-Regel limit for κel

Like for the case of charge conductivity σc, we can intro-
duce the MIR value that indicates the minimal conduction
within the Boltzmann estimate by setting l ∼ a. In 2d, it is
given by3

κel,MIR = π2T

3

√
na2

√
2πVu.c.

. (4)

With our units and filling n ∼ 1 one obtains κel,MIR ∼
1.3 Ta2/Vu.c.. This value is indicated in Fig. 3(a) and our κel

is well below it. It has been shown, that violations of the MIR
limit for the charge conductivity [4–6] (and spin conductivity
[12]) originate in strongly suppressed static charge suscepti-
bility (or spin susceptibility), while the diffusion constant and
mean free path still correspond to l � a. Is this the case also
for κel?

In Fig. 3(c), we compare the calculated DQ,el with the
corresponding MIR value DQ,el,MIR = va/2. The expected ve-
locity in the doped case is the quasiparticle velocity, which we
approximate with v ∼ 2ta. This leads to DQ,el,MIR ∼ ta2. For
almost all parameter regimes, we observe DQ,el > DQ,el,MIR

and l � a. At lowest T and half-filling (p = 0), one expects
lower limiting values as the heat conductance is dominated
by spins with lower velocity v ∼ Ja. If one uses the spin-
wave velocity v ∼ 0.72Ja, one obtains the lower bound
DQ,el,MIR,spin ∼ 0.36Ja2, namely, DQ,el,MIR,spin ∼ 0.14ta2 for
U = 10t . This value is indicated in Fig. 3(c) and DQ,el for

3Obtained with similar estimate as the results for a MIR limit for
electrical conductivity in Appendix in Ref. [10]. The same estimate
can be obtained also by using the Wiedemann-Franz law and the MIR
limit for the charge conductivity.
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FIG. 4. Comparison of heat and charge diffusion constants DQ,el

and Dc as obtained by FTLM and DMFT. U = 10t , p = 0.15.

p = 0 is above it and only approaches it with lowering T . This
is also shown in Fig. 2(c) together with the Heisenberg model
results, which saturates closely to the MIR value (indicated by
shading).

On the other hand, the DQMC results at the lowest T
are below the bound and the FTLM results for low doping
(p = 0.05) at the lowest T cross the DQ,el,MIR ∼ ta2 [see
Fig. 3(c)]. Reconciliation of this in terms of a possible decon-
struction κel = κspin + κparticle or with effectively decreased
velocity from the order of v ∼ ta to v ∼ Ja remains a subject
for future work.

Let us also note that as T → 0 the mean free path is
expected to diverge, leading to diverging DQ,el(T → 0) → ∞
within the Hubbard model. Therefore, DQ,el has a nonmono-
tonic T dependence.

To qualitatively explore the behavior at lower T , we per-
formed also DMFT calculations for p = 0.15 and show the
results in Fig. 3. The DMFT results display a divergence
of κel and DQ,el as T → 0. This rapid growth occurs below
T ∼ 0.1t due to low coherence temperature. Remarkably the
upturn appears at T where κel ∼ κel,MIR [see Fig. 3(a)]. Similar
behavior is observed for charge transport [52].

B. Comparison of heat and charge diffusion

For the doped case, it is interesting to compare heat DQ,el

and charge Dc diffusion constants. This is shown in Fig. 4 and
one can see that DQ,el and Dc behave differently. The thermal
diffusion constant depends on temperature more weakly. One
can also see that DQ,el is smaller than Dc for T � 4t . The heat
transport seems less coherent at lower T . Similar trends as
indicated by FTLM results continue to higher T , where at
very high T DQ,el ∼ 1.6ta2 and is larger than Dc ∼ ta2. This
difference is currently not understood.

We also show the DMFT result and find that DQ,el and
Dc differ even at low T . The difference between FTLM and
DMFT result can be attributed to vertex corrections. We dis-
cuss this in more detail in Appendix D, where we also show
the frequency dependent κel(ω) which has a peak at ω ∼ U/2
which is not seen in σc(ω).
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C. Low T metallic regime

The lowest T behavior with diverging κel and DQ,el, can
be described within quasiparticle picture. We start with the
bubble formulas for both κel and σc and with certain ap-
proximations (Appendix E) rewrite them in terms of the
quasiparticle properties. Using Eqs. (E7) and (E8) for κel and
σc with known approximations [38,53]

cel = π2

3

g0(εF)

z
T, (5)

χc = zg0(εF), (6)

one obtains via the Nernst-Einstein relation

DQ,el � z
v2

0,F

−4�′′(0)
, (7)

Dc � z−1
v2

0,F

−4�′′(0)
. (8)

Here g0(εF) is a bare band density of states at Fermi
energy, v0,F is bare Fermi velocity, �′′(0) is imaginary part
of self-energy at ω = 0 and z = 1/(1 − ∂ω�′(ω)|ω=0) is the
quasiparticle renormalization.

DQ,el is decreased from the bare nonrenormalized value
D0 = v2

0,F/[−4�′′(0)] to DQ,el = zD0 with z < 1 while Dc =
D0/z is increased. Therefore in the Fermi liquid regime the
two diffusion constants differ by a factor of z2 and therefore
easily by an order of magnitude. The question on renormaliza-
tion effect for diffusion was posed already in Ref. [54]. Note
that only DQ,el can be expressed in terms of the quasiparti-
cle velocity vqp = zv0,F and life time τqp = [−2z�′′(0)]−1 as
DQ,el = v2

qpτqp/2, but not Dc.
We illustrate these considerations with the DMFT re-

sults4 shown in Fig. 5. Dc agrees better with D0/z than
with D0 and zD0 is closer to DMFT DQ,el = κel/cel than D0.
Some mismatch persists in the latter, originating in our over-
simplification of assuming a constant �′′(ω) ∼ �′′(0) (see
Appendix D). �′′(ω) can have notable ω dependence [e.g.,
�′′(ω) ∝ ω2 in FL] and the factor (− ∂nF

∂ω
)ω2 in Eq. (E5) filters

out finite frequencies. Explicitly, frequencies at around |ω| ∼
3T are mainly included. We therefore compare DMFT DQ,el

also with D̃Q,el = zv2
0,F/[−4�′′(ω = 3T )]5 and find good

agreement. For completeness, Figs. 5(b) and 5(c) also show
that cel and χc are well approximated with renormalized val-
ues given in Eqs. (5) and (6).

V. THE WIEDEMANN-FRANZ LAW

The above discussion of different T dependence of DQ,el

and Dc suggests a possible violation of the Wiedemann-Franz

4Since v0,F is not constant on the Fermi surface for the square lat-
tice, we use its average over the Fermi surface v2

0,F = ∫
d2kv2

0,kδ(εk −
εF)/

∫
d2kδ(εk − εF).

5Since (− ∂nF
∂ω

)ω2 mostly weights positive and negative frequencies
ω ∼ ±3T and in DMFT the �′′(ω) is not particle-hole symmetric
(even in ω), the value of �′′(ω = 3T ) should be understood as
�′′(ω = 3T ) = [�′′(3T ) + �′′(−3T )]/2.

FIG. 5. DMFT results in the low-T Fermi liquid regime com-
pared with simplified expressions (see main text) in terms of a
quasiparticle properties. (a) Comparison for diffusion constants. All
estimates for DQ,el (purple) are divided by 4 for compactness and
clarity. (b) Comparison of cel with Sommerfeld expression with non-
renormalized and renormalized density of states. (c) Comparisons
of DMFT χc with g0(εF) and renormalized value zg0(εF). U = 10t ,
p = 0.15, and z ≈ 0.22.

(WF) law and the deviation of the Lorenz ratio

L = κel

T σc
(9)

from the Sommerfeld value π2/3. In Fig. 6, we show the
calculated Lorenz ratio and observe a clear deviation from the
Sommerfeld value in the whole calculated regime. In addition,
we find a strong T dependence which is also nonmonotonic
for small p.
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U = 10t

2.14
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p = 0.0

0.05
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FIG. 6. The Lorenz ratio vs T for several hole dopings calcu-
lated with FTLM. DMFT result for p = 0.15 is shown. A low-T pure
Fermi liquid result L = 2.14 is also shown [55].
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We now discuss the various violations of the WF law. In
the high-T limit, this violation follows trivially as Li j ∝ 1/T ,
leading to κel ∝ 1/T 2 and σc ∝ 1/T .6 This gives L ∝ 1/T 2

in the high-T limit [6], which is observed also in our results.
The WF law is also violated for zero doping at low T , since
κel has a nonzero spin contribution while σc is exponentially
suppressed. L is therefore expected to exponentially diverge
as T → 0, which is seen in Fig. 6.

In the doped case at intermediate T , L is not well described
by the Sommerfeld value either. One finds a nonmonotonic
T dependence with a maximum. This maximum is most
pronounced for low p ∼ 0.05, where L at higher T is most
similar to the undoped case. It is therefore possible to ascribe
the maximum at T ∼ 2t to the spin contribution. Even in
the Fermi-liquid regime L ∼ 2.14 [55] due to κel taking into
account higher ω scattering rate, while σc is affected more by
a ω ∼ 0 scattering rate. See Fig. 6 and Sec. IV C.

L equals π2/3 only for ω-independent scattering rates (see
Appendix D), which appears, e.g., in the elastic impurity dom-
inated scattering and when vertex correction are negligible.
This is demonstrated in Fig. 13 with the AMFL model results
at low T . The DQMC results for L in the Hubbard model are
discussed in Ref. [56].

It is interesting to note that the DMFT result for L approx-
imately agrees with the FTLM result as seen in Fig. 6 while
the conductivities κel and σc differ even by a factor close to 2
as shown in the Appendix D. This suggest that in the DMFT
missing vertex corrections [7,8] in κel and σc almost cancel
when calculating L.

VI. DISCUSSION OF EXPERIMENTS

The purpose of this section is to discuss our results in
terms of measurements on cuprates. The FTLM results do not
reach sufficiently low temperatures for a direct comparison
but the approximative extrapolations (spin-wave estimate in
the undoped case and the DMFT in the doped case) do. For the
doped case we also present the results of the phenonomeno-
logical anisotropic marginal Fermi liquid model and com-
pare them to the measurements on overdoped cuprates in
Appendix F.

A. Mott-insulating LCO

Figure 7 displays our results next to the measured κel

[23] in La2CuO4 (LCO), the parent Mott-insulating cuprate
compound.7 The measured data represent the magnonic (spin)
contribution to κ as the contribution from phonons was sub-
tracted. A prominent feature in the measured data is the peak
at T ∼ 300 K. It appears due to the saturation of l at low T
(a finite impurity concentration) and decreasing cel → 0 as
T → 0. On the high-temperature side, measured κel drops due
to decreasing l .

Our FTLM data are reliable only at higher T and the results
for the U = 10t Hubbard model still decrease with decreas-

6The same dependencies are obtained by using constant diffusion
constants and dependencies χc ∝ 1/T and cel ∝ 1/T 2.

7For LCO, we used parameters J = 1550 K, lattice constants a0 =
3.8 Å and c0 = 13.2 Å [23] with two CuO planes within c0.
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FIG. 7. Experimental κel for La2CuO4 taken from Ref. [23] plot-
ted next to theoretical estimates.

ing T . The Heisenberg model result at lowest T ∼ 800 K
is κel ∼ 2 W/mK. The measured κel reaches ∼10 W/mK at
T ∼ 400 K. To account for this increase, l has to increase by
a factor of ∼20 (note that cel is already decreasing). Such an
increase is not observed in the DQMC Hubbard model results
(see Fig. 2(a)).

Also instructive is to compare the data with the spin-wave
estimate. Because we do not include the saturation of l at
low T due to imperfections in this estimate, the spin-wave κel

diverges at low T . The growth is moderate around 500 K but
becomes more rapid at lower T due to a rapidly increasing l ,
e.g., l ∼ 50 a at 300 K. Interestingly, the spin-wave result is
still lower than the experimental value at this T .

B. The doped Mott insulator YBCO

In Fig. 8, we compare our κel results with the data for
doped YBa2Cu3O7−y (YBCO) as reported in Ref. [57]. Note
that the measured data are available only at T < 300 K, while
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FIG. 8. Comparison of measured κel for doped cuprate
YBa2Cu3O7−y with Hubbard model results for U=10t. κel are taken
from Ref. [57] and are obtained by subtracting the estimated κph. The
data are for samples with y = 6.68 and 6.93, which correspond to
dopings p = 0.12 and 0.17, respectively. Above Tc the experimental
κel shows weak T dependence and similar magnitude as the DMFT
and FTLM results at much higher T ∼ 3000 K.
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the FTLM results are reliable only at T > 2500 K.8 We plot
also the DMFT result, which agrees with experimental data
surprisingly well.

The key aspect of the data is that the values of κel in FTLM
at 3000 K are quite close to the measured ones at 300 K and
that DMFT indicates a T independent κel. We expect that the
actual κel is higher than the DMFT one. The FTLM result on
κel for doping p = 0.15 shows a rather weak T dependence in
Fig. 8, which is reminiscent of experimental behavior [57,58],
albeit at significantly higher T .

It is worth mentioning that linear-in-T cel and linear-in-T
electrical resistivity due to scattering rate (e.g., D ∝ 1/T in
a bad or strange metal) can lead to T -independent or close to
constant κel, at least for Lorenz ratio with weak T dependence.

We note that the measured data show a strong increase
below Tc. This is a superconducting effect and it has been
suggested that it appears due to the increased coherence of
nonsuperconducting electrons [59]. The low-T increase of
DMFT results is not related to superconductivity, but origi-
nates in the increased coherence and longer l . However, such
increase could be suppressed or restricted to lower T by spin,
charge or order parameter phase fluctuations, which are not in-
cluded in DMFT. These could explain the weak T dependence
measured in the normal state.

Let us note in passing that DQ was measured for sev-
eral cuprates [13,14] to have typical values of 0.02 cm2/s
at high T (∼300–600 K). Taking the estimated lower bound
on electronic thermal diffusion DQ,el,MIR = ta2 ∼ 0.7 cm2/s,
it is evident that the measured DQ is smaller by an order of
magnitude. This is due to the heat transfer being dominated
by phonons, which have orders of magnitude smaller velocity
than electrons.

It is also interesting to note that κel in the Mott insulator
[23] has values around 10 W/mK at 300 K (Fig. 7), which is
an order of magnitude larger than in the low doping metallic
phase [13,20,57], where κ ≈ 1 W/mK (Fig. 8). The magnonic
part of cel (∝ T 2) is smaller than in the doped case [∝ T , see
also lowest T results in Fig. 6(b)] and the spin-wave velocity
(v ∼ Ja) is smaller than the particle velocity (v ∼ ta). This
indicates that quasiparticles have orders of magnitude smaller
l than spin-waves and that their transport is at low doping
significantly less coherent.

This is also in accord with strongly underdoped YBCO
(y = 6.34) being taken in Ref. [57] as a case with smallest
κel. We discuss the experimental Lorenz ratio for YBCO in
Appendix F 2, where we compare it to the AMFL model
results and discuss the relation of its temperature dependence
to the frequency dependence of the scattering rate.

VII. CONCLUSIONS

We studied κel and DQ,el with numerical calculations of
square lattice Hubbard and Heisenberg models and further
with phenomenological models.

8For YBCO we used unit cell parameters a0 = 3.82 Å, b0 =
3.89 Å, and c0 = 11.68 Å from Ref. [70,71] together with t = 0.3 eV
and two CuO planes within c0.

In the Mott-insulating phase, κel is nonmonotonic and has
three features. It has a high-T peak related to a peak in cel

due to charge excitations. cel has another peak at T ∼ 0.6J
and drops at lower T due to the quenching of the spin en-
tropy. This happens at T below that accessible to us in the
numerical calculations of transport. However in our spin-wave
phenomenological estimate the dependence of cel at T ∼ J
does not lead to a peak in κel, only a shoulder, while the situa-
tion in the Hubbard and Heisenberg models remains unsettled.
At even lower T , κel peaks (diverges in a pure model) due
to increased l . The Hubbard model κel and DQ,el approach
the Heisenberg model results with decreasing T . At lower
T < J , the difference between the Heisenberg model results
and DQMC Hubbard results deserves further study.

We introduced a MIR value for thermal conductivity and
found that at higher T , κel is below it, thus violating the naïve
bound. Conversely, the calculated thermal diffusion DQ,el has
values that correspond to l � a (except for smallest dopings
that can be perhaps understood in terms of suppressed ve-
locity). The thermal transport thus behaves analogously to
the charge transport in this respect. The analogy is however
incomplete. We compared the temperature dependences of
DQ,el and Dc and found they behave differently: in the in-
termediate temperature regime DQ,el has a more incoherent
behavior and less temperature dependence than Dc. In the well
defined quasiparticle regime DQ,el and Dc behave differently
upon renormalization and differ by a factor of z2. The renor-
malization in cuprates is typically 1/z = 3 − 4, thus DQ,el and
Dc can differ by an order of magnitude. The discussion of
experimental data in terms of effective velocities v and l and
the discussions of diffusion bounds [13,60] should take these
distinctions and the influence of renormalization properly into
account.

We find that L depends strongly on T and that the WF law
is typically violated with L being either larger or smaller than
the Sommerfeld value π2/3 in several regimes even by a fac-
tor of ∼2. All these deviations bring a clear message: the usual
practice of estimating κel using the WF law is problematic.

The temperatures of our FTLM simulations are well above
the experimental ones, yet it is interesting to note the different
status of the Mott-insulating case where the much larger ex-
perimental thermal conductivity points to a very rapid growth
of l with lowering T . Conversely, in the doped case the mea-
sured κel has similar values as the Hubbard model result at
much higher temperatures, suggesting that κel is only weakly
temperature dependent in between.

We explore lower temperatures within the DMFT approxi-
mation and indeed find such behavior. We also present results
obtained with a phenomenological AMFL model and give pre-
dictions for κel and the Lorenz ratio for the overdoped cuprates
in the temperature regime of experiments (see Appendix F).

For data availability, see Ref. [61].
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APPENDIX A: DETAILS OF THE FTLM CALCULATIONS

The transport coefficients are defined via

jn = −L11∇μ − L12∇T/T, (A1)

jQ = −L21∇μ − L22∇T/T . (A2)

Here L11 = σn,n, L12 = σn,Q = L21, L22 = σQ,Q are con-
ductivities obtained by zero-frequency limit (ω = 0) of the
generalized conductivities at finite frequency ω [62]. These
are calculated via the generalized susceptibility

σA,B(ω) = χ ′′
A,B(ω)

ω
, (A3)

χA,B(ω) = i

NVu.c.

∫ ∞

0
dteiωt 〈[ĴA(t ), ĴB(0)]〉. (A4)

ĴA and ĴB are the current operators, associated with (con-
served) quantities Â and B̂, which can be derived from
polarization

P̂A =
∑

j

x j Â j, ĴA = dP̂A

dt
= i[Ĥ, P̂A]. (A5)

For the single-band Hubbard model, the operators for par-
ticle and heat currents in x direction are given by

Ĵn = − it
∑
j,σ,δ

Rx
δc†

j+δ,σ c j,σ , (A6)

ĴE = − it2

2

∑
j,σ,δ,δ′

Rx
δδ′c†

j+δ+δ′,σ c j,σ

+ itU

2

∑
j,σ,δ

Rx
δc†

j+δ,σ c j,σ (n j+δ,σ̄ + n j,σ̄ ), (A7)

ĴQ = ĴE − μĴn, (A8)

where Rx
δ = x j+δ − x j and Rx

δδ′ = x j+δ+δ′ − x j .
We also consider the 2D Heisenberg model with nearest

neighbor interaction

Ĥ = J
∑
〈i j〉

Ŝi · Ŝ j =
∑

i

Ĥi, Ĥi = JŜi · (Ŝi+1x + Ŝi+1y ),

(A9)
where the sum runs over sites i on the square lattice. The
energy current operator for the Heisenberg model reads

ĴE = −iJ2
∑

i

[
Ôi−1x,i,i+1x + Ôi−1x,i,i+1y + Ôi−1x,i,i−1y

]
,

(A10)

Ôi jl = 1

2

[
Ŝz

i Ŝ±
jl + Ŝz

j Ŝ
±
li + Ŝz

l Ŝ±
i j

]
, (A11)

Ŝ±
jl = Ŝ+

j Ŝ−
l − Ŝ+

l Ŝ−
j . (A12)

The spectra of dynamical quantities on finite clusters con-
sist of δ functions which we broaden using a Gaussian kernel.
Finite size effects at low-T manifest also as a growing con-
tribution of the δ function at ω = 0. We can thus use this
as a criterion to estimate the lowest temperature at which we
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FIG. 9. Heat conductivity, specific heat and heat diffusion con-
stant for different geometries in the Heisenberg model. We consider
two- and three-rung ladders (labeled 16 × 2 and 10 × 3, respec-
tively) with periodic boundary conditions also in the transverse
direction. 2d lattices with 20, 26 and 32 sites are tilted to allow
unfrustrated antiferromagnetic correlations. Where finite-size effects
are significant, we show the data dashed.

can trust our FTLM results and set the maximum acceptable
fraction of the total spectra contained in δ(0) to � 0.5%.

At the particle-hole symmetric point at half filling in the
Hubbard model, L12 vanishes. Thus σn,E = μσn,n and κel =
(σE,E − μ2σn,n)/T with μ = U/2. Where σn,n has a charge
gap and is exponentially suppressed (at temperatures in the
Heisenberg regime), only σE,E contributes to κel.

APPENDIX B: CLUSTER SIZE AND SHAPE DEPENDENCE
FOR THE HEISENBERG MODEL

Here we discuss in more detail the Heisenberg model re-
sults and in particular the possibility of κel having a peak at
T ∼ 0.6J , where cel shows a peak. In Fig. 9, we show κel, cel,
and DQ,el for several cluster sizes and shapes. The results for
κel for square lattices show clear finite size effect at T � 0.6J .
Although the results for κel on square clusters do show a
maximum corresponding to the maximum in cel, the system
size dependence at the maximum is still considerable and thus
we cannot exclude the absence of the maximum in the thermo-
dynamic limit. That is, the mean free path becomes too large
at low T making the finite-size effect too large to discrimi-
nate between a peak or a shoulder in κel. For comparison we
also investigated κel for two-leg and three-leg ladders. These
show a much stronger increase of DQ,el with decreasing T
and therefore much more coherent behavior for T � J . Even
in these long systems, we cannot conclusively determine the
existence of a peak in κel at T where cel has the peak, again due
to finite size effect and long mean free paths. However, due
to the strong increase of the mean free path with decreasing
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FIG. 10. The spectra κel(ω) and σ (ω) at different temperatures
for U = 10 t and at half filling. DQMC results are taken from
Ref. [29].

T , the absence of the peak and appearance of a shoulder is
more likely. The “spin wave” result in Fig. 1 in the main
text supports this scenario. It is also worth mentioning that
the materials with two-leg ladders are one of the best thermal
conductors [27] despite having a spin gap of �s ∼ 0.5J [63].

APPENDIX C: FREQUENCY SPECTRA

The temperature evolution of optical spectra of κel(ω) and
σc(ω) is shown on Fig. 10. One sees a Drude-like peak at
low ω and a Hubbard satellite peak at ω ∼ U with the two
separated by a gap, which is most pronounced in σc(ω) at low
T . σc(ω) clearly exhibits a gap and the weight of the Drude
peak raises as T is increased. In the high-T limit, the weight
of this peak is comparable to the satellite peak. In contrast,
κel(ω) does not show a clear gap or gap edge. In addition, the
satellite peak is significantly smaller than the Drude peak at
elevated T . This decrease in the relative weights of the two
peaks originates in the difference of frequency dependence of
σE,E(ω) and σc(ω).

FTLM results agree well with those from DQMC in par-
ticular at higher T . FTLM has a sharper Drude peak which
deviates from a simple Lorentz shape. Because of this, FTLM
also gives somewhat higher dc values for κel than DQMC.

APPENDIX D: VERTEX CORRECTIONS

Recent investigations [7,8] have tested the approximations
of using a local self-energy and neglecting vertex correc-
tions for calculation of dc charge conductivity σc. It was
realized that the vertex corrections are substantial in the
whole T regime. However, κel was not considered. We show
κel in Fig. 11 as a function of temperature and frequency
as calculated with FTLM and DMFT. DMFT approximates
self-energy with a local quantity and neglects the vertex cor-
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FIG. 11. Comparison of FTLM (solid) and DMFT (dashed lines)
results for charge and heat conductivities as a function of temperature
(a) and frequency (b) for the Hubbard model with U = 10t and
doping p = 0.15. The frequency dependence is shown for the lowest
considered temperature T = t and denoted with a dashed line in (a).

rections. For both, σc and κel, DMFT underestimates the DC
conductivity as is shown in Fig. 11(a), with the difference
∼50% for both σc and κel. From this, one can say that the
vertex corrections are substantial also for κel and that they
have similar magnitude as for σc. Regarding the frequency de-
pendence [see Fig. 11(b)], the inclusion of vertex corrections
makes the low-ω (Drude) peak narrower.

However, both calculations point to the existence of a third
peak in κel(ω) at ω ∼ U/2. Such a peak appears below T ∼
1.7t . We attribute this to the frequency dependence of L12(ω),
which has a zero at ω ∼ U/2. Thus the frequency-dependent
Seebeck coefficient vanishes and heat transport is no longer
suppressed by the term L2

12/(T L11) in Eq. (2). This leads to
the peak in κel(ω ∼ U/2). The appearance of this term can
be traced back to the boundary condition jn = 0 leading to a
buildup of charges on sample edges.

APPENDIX E: DIFFUSION CONSTANT WITH PARTICLE
PROPERTIES IN THE QUASIPARTICLE REGIME

Here we start with the bubble expressions for thermal con-
ductivity κel and charge conductivity σc,

κel = 1

T

∫
dω

(
− ∂nF

∂ω

)
ω2 2π

V

∑
k

v2
0,k,x[A(k, ω)]2, (E1)

σc =
∫

dω

(
− ∂nF

∂ω

)
2π

V

∑
k

v2
0,k,x[A(k, ω)]2, (E2)

and approximately express them in terms of quasiparticle
properties, e.g, velocity, self-energy, density and renormal-
ization. nF is the ω-dependent Fermi function, v0,k,x is the x
component of bare band velocity at k point in the Brillouin
zone, and A(k, ω) is the spectral function.

Using the isotropic property of the square lattice, one can
replace v2

0,k,x → v2
0,k/2. Further, one can use the velocity (or

average velocity) at a certain energy to replace v2
0,k → v2

ε and
if one neglects the k-dependence of the self-energy (so that
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A(k, ω) is only a function of ε = εk − μ and ω), one can write

2π

V

∑
k

v2
0,k

2
[A(k, ω)]2 = π

∫
dεg0(ε)

v2
ε

2
[A(ε, ω)]2. (E3)

Here, the noninteracting density of states g0(ε) =
(2/V )

∑
k δ(εk − μ − ε) is introduced. Assuming that g0(ε)

and v2
ε can be in the low-T regime replaced by their values

at the Fermi energy, namely g0(εF) and v2
0,F, then the integral

over ε can be performed.∫
dε[A(ε, ω)]2 = 1

−2π�′′(ω)
. (E4)

This leads to the following expressions for the conductivities:

κel = 1

T

∫
dω

(
− ∂nF

∂ω

)
ω2g0(εF)

v2
0,F

−4�′′(ω)
, (E5)

σc =
∫

dω

(
− ∂nF

∂ω

)
g0(εF)

v2
0,F

−4�′′(ω)
. (E6)

Here v0,F is the bare Fermi velocity. At low T , the Fermi
function derivative filters out only low ω and we can roughly
approximate the imaginary part of the self-energy with a
constant, �′′(ω) ∼ �′′(0). The integral over ω can then be
performed, which leads to

κel = π2

3
g0(εF)T

v2
0,F

−4�′′(0)
, (E7)

σc = g0(εF)
v2

0,F

−4�′′(0)
. (E8)

This nicely demonstrates that κel and σc are given in terms
of nonrenormalized quantities like the bare band density of
states at Fermi energy g0(εF), bare Fermi velocity v0,F and
bare particle scattering rate � = −2�′′(0). Here �′′(0) is
imaginary part of self-energy at ω = 0.

The equations above also indicate which terms are related
to static thermodynamic properties like cel and χc and which
to the diffusion constants. Note, however, that these expres-
sion do not depend on the renormalization z, while cel and χc

do. See main text for further discussion.
By calculating the Lorenz ratio L [Eq. (9)] from Eqs. (E7)

and (E8), one obtains the Sommerfeld value, L = π2/3. Note
however, that here the ω dependence of �′′(ω) was neglected
and as discussed in the main text, ω dependence of �′′(ω)
effectively changes �′′(0) to �′′(ω = 3T ) in expression for
κel [Eq. (E7)]. This moves L away from π2/3 and therefore
L = π2/3 only for ω-independent scattering rate.

APPENDIX F: ANISOTROPIC MARGINAL FERMI LIQUID
MODEL FOR OVERDOPED CUPRATES

1. Thermal conductivity of Tl2201

It is instructive to estimate also the electronic contri-
bution to κ within the phenomenological approach in the
measured temperature regime. For that we employ the
anisotropic marginal Fermi liquid (AMFL) model [34,35],
which was devised from the angle-dependent magnetore-
sistance experiments [65–67] on overdoped Tl2Ba2CuO6+δ

(Tl2201) and quantitatively describes the elastic impurity
scattering, the isotropic Fermi-liquid-like scattering, and the
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FIG. 12. Comparison of measured total κ for Tl2201 with Tc =
86 K [20,64] with the calculated electronic κel within the AMFL
model [34,35] for Tc = 0, 20, and 40 K on the highly overdoped side.

anisotropic marginal-Fermi-liquid-like scattering. The AMFL
model captures the specific heat, mass renormalization and
ARPES experiments [34], as well as resistivity, optical con-
ductivity, magnetoresistance, and Hall coefficient [35] in
Tl2201. We use the same parameters for the AMFL model
as in Ref. [35] and show results for κel in Fig. 12. The results
are obtained within the bubble approximation [Eq. (E1)] and
are calculated for several dopings on the overdoped side,
indicated by the values of the corresponding superconducting
transition temperature Tc (0, 20, and 40 K). The scattering rate
becomes larger and more linear in T and ω as one reduces
doping towards the optimal doping. Therefore, κel becomes
smaller and also more constant in T (since cel ∝ T and DQ,el

approaches 1/T behavior). The AMFL results also show a
maximum at T ∼ 50 K since DQ,el saturates at the lowest T
due to elastic impurity scattering while cel is decreasing with
decreasing T . This is an example of the low-T peak in κel due
to saturation of l . Note that no superconducting effects are
captured within the AMFL model. The results are compared
to the total κ as measured in Tl2201 [64,68]. Unfortunately,
experimental data are available only close to optimal doping
with Tc = 86 K (where AMFL is less valid) and report only
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FIG. 13. Comparison of several measured data for the Lorenz
ratio L in YBCO (taken from Refs. [16,57]) with theoretical esti-
mates from the AMFL model for overdoped cuprates [34,35] and
with DMFT calculation.
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total κ . It would be interesting to test the AMFL predictions
for κel of Fig. 12 in the highly overdoped regime.

2. The Lorenz ratio in YBCO

In Fig. 13, we show theoretical estimates for the Lorenz
ratio from the AMFL model and the DMFT result. The AMFL
results tend to the Sommerfeld value as T → 0 due to elastic
impurity scattering being dominant at lowest T . On a closer
look, one sees that the AMFL model result for Tc = 0 K
(only Fermi liquid like scattering) approaches Sommerfeld
value quadratically in T while the AMFL result for Tc = 40 K
(with considerable marginal Fermi liquid component in the

scattering) approaches Sommerfeld value more linearly in T .
L therefore holds also information of the ω dependence of the
scattering rate. See also Ref. [69] for further discussion of the
T -dependence of L at low T .

We show in Fig. 13 also the measured data for YBCO with
doping p=0.12 and p=0.17. These are taken from Ref. [57]
and differ from the complementary measured data for Lxy in
YBCO with p=0.19 taken from Ref. [16]. All measured data
deviate from the standard theoretical expectations, which calls
for further investigation.

We note that values of L below the Sommerfeld value can
arise also due to phonon scattering [19] or increased impor-
tance of normal versus umklapp scattering [16].
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[47] M. S. Makivić and H.-Q. Ding, Phys. Rev. B 43, 3562
(1991).

[48] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B
39, 2344 (1989).

[49] J.-K. Kim and M. Troyer, Phys. Rev. Lett. 80, 2705 (1998).
[50] J.-i. Igarashi and T. Nagao, Phys. Rev. B 72, 014403 (2005).
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