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Steady helix states in a resonant XXZ Heisenberg model with Dzyaloshinskii-Moriya interaction
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We systematically investigate possible helix states in the XXZ Heisenberg model with the Dzyaloshinskii-
Moriya (DM) interaction. Exact solutions show that a set of precession helix states can be constructed by
deliberate superposition of degenerate eigenstates of the Hamiltonian under the resonant condition. When a
non-Hermitian balance boundary term is imposed as a quenching action, the quench dynamics shows that a
steady helix state emerges from some easily prepared initial states, including saturated and maximally mixed
ferromagnetic states, according to the analysis of the perturbation method. The corresponding dynamics for near
resonant cases is also investigated numerically, indicating the robustness of the scheme. Our findings highlight
the cooperation of non-Hermiticity and the DM interaction in a quantum spin system, suggesting a way for
preparing a steady helix state in a non-Hermitian quantum spin system.
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I. INTRODUCTION

The quantum Heisenberg model, as a simple model of
interacting spins, takes an important role in physics. It not
only captures the properties of many magnetic materials
but also provides a tractable theoretical example for un-
derstanding fundamental concepts in physics. Although the
one-dimensional Heisenberg chain is an old topic, quantum
dynamics of the system is still an active frontier of research,
especially after the quantum simulator has been realized in
experiments [1–7]. Recently, the discovery of highly excited
many-body eigenstates of the Heisenberg model, referred to as
Bethe phantom states, has received much attention from both
theoretical [8–11] and experimental approaches [12–15].

In this paper, we investigate possible helix states in the
XXZ Heisenberg model under two considerations. One cor-
responds to the introduction of Dzyaloshinskii-Moriya (DM)
interaction. The DM interaction is an antisymmetric exchange
interaction that appears in inversion asymmetric structures
and favors perpendicular alignment of neighboring spins in
a magnetic material [16–18]. In materials with inversion sym-
metry, the frustration interaction [19,20] can also cause a helix
ground state [21–24]. The other is the imposed non-Hermitian
balance boundary condition, which takes the role of the source
and drain of a spin flip. Under a resonant condition on the DM
and anisotropic terms, the modified Heisenberg model obeys
the SU(2) symmetry, and then possesses a set of degenerate
eigenstates. It allows the existence of a spin helix state as an
exact solution obtained by deliberate superposition of these
degenerate eigenstates. We are mainly interested in the dy-
namic preparation of the spin helix state. Based on the analysis
of the perturbation method, it is shown that a steady helix
state emerges from some easily prepared initial states, in-
cluding saturated and maximally mixed ferromagnetic states,
when a non-Hermitian balance boundary is imposed as a
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quenching action. For near resonant cases, the corresponding
dynamics is also investigated numerically, and the results
indicate that the scheme works well at a certain time win-
dow. It relates to an exclusive concept in a non-Hermitian
system, the exceptional point (EP), which has no counterpart
in a Hermitian system. The EP in a non-Hermitian system
occurs when eigenstates coalesce [25–27] and is usually as-
sociated with the non-Hermitian phase transition [28,29]. In a
parity-time (PT )-symmetric non-Hermitian coupled system,
the PT symmetry of eigenstates spontaneously breaks at the
EP [30–35], which determines the exact PT -symmetric phase
and the broken PT -symmetric phase in this system.

We will impose a pair of balance non-Hermitian impurities
[36,37] to the ends of the spin chain as the non-Hermitian
boundary condition. The corresponding dynamics is also
investigated analytically and numerically. The approximate
solutions for the quantum spin chain with finite length provide
valuable insights for the description of the nonequilibrium
dynamics. Our findings highlight the cooperation of non-
Hermiticity and the DM interaction in a quantum spin system,
suggesting a way for preparing a steady helix state in a non-
Hermitian quantum spin system.

The rest of this paper is organized as follows: In Sec. II,
we introduce the model Hamiltonian and the corresponding
SU(2) symmetry. With these preparations, in Sec. III, we
demonstrate that two types of helix states can be constructed
by a set of degenerate eigenstates. Based on these results,
the dynamic generation of a spin helix state is proposed in
Sec. IV by means of three kinds of imposed fields. Section V
concludes this paper.

II. MODEL HAMILTONIAN AND SYMMETRIES

We begin this section by introducing a general Hamilto-
nian:

H = H0 + HI, (1)
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where H0 and HI describe a quantum spin Heisenberg
chain with a DM interaction and an external interaction,
respectively:

H0 = −
N−1∑
j=1

(
Jxsx

js
x
j+1 + Jysy

js
y
j+1 + Jzs

z
js

z
j+1

)

+ i
D

2

N−1∑
j=1

(
s+

j s−
j+1 − s−

j s+
j+1

)
, (2)

HI =
N∑

j=1

B j · s j . (3)

Here, s j = (sx
j, sy

j, sz
j ) is the spin- 1

2 operator, and B j is the
onsite magnetic field inducing Hermitian or non-Hermitian
impurity. In this paper, we only focus on the case with Jx = Jy,
and by taking (Jx )2 + D2 = 1 and � = Jz for the sake of
simplicity, we rewrite H0 in the form [38]:

H0 = −
N−1∑
j=1

[
exp(−ik0)

2
s+

j s−
j+1 + exp(ik0)

2
s−

j s+
j+1

+�sz
js

z
j+1

]
, (4)

Comparing with the XXZ Heisenberg model without a DM
interaction, there are two additional phase factors exp(−ik0)
and exp(ik0), where k0 = arctan(D/Jx ) is a crucial factor for
the helix state arising from D. For arbitrary �, we always have

[sz, H0] = 0, (5)

with sz = ∑N
j=1 sz

j . Importantly, for the resonant case with
� = 1 defining

s+
k0

= (
s−

k0

)† =
N∑

j=1

exp(ik0 j)s+
j , (6)

we have [
s±

k0
, H0

] = 0, (7)

which is not a surprising result since s±
k0

and sz satisfy the Lie
algebra commutation relations:[

s+
k0
, s−

k0

] = 2sz,
[
sz, s±

k0

] = ±s±
k0
. (8)

It seems a little trivial but is helpful for the following process-
ing in the presence of impurity term HI.

III. TWO TYPES OF HELIX STATES

In this section, we will introduce two types of helix states
based on the eigenstates of H0 with � = 1. We start by the
ferromagnetic eigenstate of H0:

|ψ0〉 = |⇓〉 =
N∏

j=1

|↓〉 j, (9)

satisfying the equation H0|ψ0〉 = −(N − 1)/4|ψ0〉, with
sz

j |↓〉 j = − 1
2 |↓〉 j . Based on the symmetry of H0 mentioned

above, a set of eigenstates {|ψn〉, n ∈ [1, N]} can be con-
structed as

|ψn〉 = 1

�n

(
s+

k0

)n|⇓〉, (10)

where the normalization factor �n = (n!)
√

Cn
N . Obviously,

we have |ψN 〉 = exp[ik0(1 + N )N/2]|⇑〉 = exp[ik0(1 +
N )N/2]

∏N
j=1 |↑〉 j . It can be verified that these degenerate

states are ground eigenstates of H0. We introduce a local
vector hl = (hx

l , hy
l , hz

l ) with hα
l = 〈ψ |sα

l |ψ〉 (α = x, y, z) to
characterize the helicity of a given state |ψ〉.

For eigenstates |ψn〉, straightforward derivation of hα
l (n) =

〈ψn|sα
l |ψn〉 show that

hx
l (n) = hy

l (n) = 0, hz
l (n) = n

N
− 1

2
, (11)

which is uniform, indicating that |ψn〉 is not a helix state.
Nevertheless, in the following, we will show that their super-
position can be helix states, and these states can be classified
as two types of helix states: precession and entangled helix
states.

A. Precession helix state

We consider a superposition eigenstate in the form:

|φ(θ )〉 =
∑

n

dn|ψn〉, (12)

where

dn = √
Cn

N (−i)n sinn

(
θ

2

)
cos(N−n)

(
θ

2

)
. (13)

The corresponding helix vector is

hl = 1
2 [sin θ sin (k0l ), sin θ cos (k0l ),− cos θ ], (14)

which indicates that |φ(θ )〉 is a helix state for nonzero sin θ .
Here, θ is an arbitrary angle and determines the profile of the
state. This can be obtained easy when we express it in the
form:

|φ(θ )〉 =
N∏

j=1

[
−i exp(ik0 j) sin

(
θ

2

)
|↑〉 j + cos

(
θ

2

)
|↓〉 j

]
.

(15)

It represents a tensor product of the precession states of all
spins, which is a standard helix state. It is one of the physically
interesting states that has been investigated both in theoretical
and experimental aspects recently [9,11,15]. Obviously, such
helix states are the ground eigenstates of H0 with the condition
� = 1. In the XXZ Heisenberg model without a DM interac-
tion, there also exists a helix state that is the eigenstate of the
Hamiltonian but only for infinite N or for a finite system with
the aid of appropriate boundary conditions [11]. The standard
helix state accords with the result |hl |2 = 1

4 . Plots of hl for
several typical cases are presented in Fig. 1.

In addition, one can express state |φ(θ )〉 in the form
|φ(θ )〉 = R+

θ | ⇓〉, where the operator is

R±
θ =

∑
n

dn

�n

(
s±

k0

)n
, (16)
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FIG. 1. Plots of helix vector from Eq. (12) for several representative values of θ , with parameters k0 = arctan(0.5) and N = 10. For θ = 0
and π , all spins align in the z direction. For θ = π/2 and 3π/2, all spins lie in the xy plane.

satisfying [
R±

θ , H0
] = 0. (17)

We note that

(R+
θ )m|φ(θ )〉 ∝ |φ(θ ′)〉, (18)

with tan(θ ′/2) = (m + 1) tan(θ/2), which indicates that the
action of operator (R+

θ )m is a shift of the angle θ −→ θ ′,
referred to as an angle shift operator.

B. Entangled helix state

In this paper, we are mainly concerned with the standard
helix state; however, it is worth noting that there exists an
entangled helix state in the system. Here is an example for an
entangled helix state. We construct a state, which is just the
superposition of the saturated ferromagnetic state and single-
magnon states:

|ψE〉 = 1√
N2 + N

N∑
j=1

[
exp(ik0 j)s+

j + 1
]|⇓〉. (19)

The corresponding helix vector is

hl = 1

2(N + 1)

[
2 cos(k0l ),−2 sin(k0l ),

2

N
− N − 1

]
, (20)

which indicates that |ψE〉 is a weak helix state for finite N . In
addition, we note that

|hl |2 = 4N2 + (N2 + N − 2)2

4N2(N + 1)2
, (21)

and |hl |2 < 1
4 for finite N . It indicates that |ψE〉 cannot be

written as a tensor product, in the form of |φ(θ )〉. Helix state
|ψE〉 is an entangled state. This example indicates that, if the

coefficients {d ′
n} of superposition

∑
n d ′

n|ψn〉 are deviated from
the set {dn} a little, the quasihelix state is probably entangled.

In comparison with the helix states presented in previous
work [11,15], the existence of the set of states {|ψn〉} are well
understood on the basis of the modified SU(2) symmetry of
H0. In the presence of HI, the SU(2) symmetry is broken,
(N + 1)-fold degeneracy is left, and the set of states {|ψn〉} is
no longer the eigenstates. Nevertheless, certain appropriately
designed external field HI may provide a pathway to hybrid
(N + 1)-fold degenerate states, forming the helix state on
demand. Like the helix state in the XXZ chain, the present
helix states contain the information of H0 and the strength of
DM interaction D.

IV. DYNAMIC GENERATION OF HELIX STATE

In this section, we focus on the preparation of a helix state
through a dynamic way, which is a crucial step in a coherent
experimental protocol. The strategy is to take an easily pre-
pared eigenstate of H0 as the initial state and then add HI. It is
expected that the evolved state will be a helix state at a certain
instant. In the following, we consider three kinds of HI, which
are spatially modulated Hermitian and non-Hermitian fields
and a balanced non-Hermitian boundary, respectively.

A. Hermitian field

We consider the situation that the system is exerted by a
resonant field:

B j = B0(t )[cos(k0 j),− sin(k0 j), 0], (22)

where B0(t ) is an arbitrary function of time but is taken as a
pulse function in our scheme. Here, the word resonance does
not mean in the magnitude or frequency but the matching
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distribution of the field with coupling strength in the spin
chain. We will show that such a spatially modulated pulse
field can drive a simple ferromagnetic state to a precession
helix state.

In general, the time evolution of a given initial state |ψ (0)〉
under a time-dependent Hamiltonian H (t ) can be expressed
as

|ψ (t )〉 = T exp

[
− i

∫ t

0
H (t ′)dt ′

]
|ψ (0)〉, (23)

with T being the time-ordered operator. The merit of a reso-
nant field is the commutative relation:

[H0, HI] = 0, (24)

which ensures the analytical expression:

|ψ (t )〉 = exp

[
it

N − 1

4

]
exp

[
− i

∫ t

0
HI(t )dt

]
|⇓〉

= exp

[
it

N − 1

4

] N∏
j=1

×
{

− i exp(ik0 j) sin

[ ∫ t

0

1

2
B0(t ′)dt ′

]
|↑〉 j

+ cos

[ ∫ t

0

1

2
B0(t ′)dt ′

]
|↓〉 j

}
. (25)

for the initial state |ψ (0)〉 = |⇓〉. Obviously, it is a precession
helix state with the vector:

hl (t ) = 1
2 [sin θ sin(k0l ), sin θ cos(k0l ),− cos θ ], (26)

where θ is a function of time:

θ (t ) =
∫ t

0
B0(t ′)dt ′. (27)

Notably, taking a precession helix state with θ = θ0 in
Eq. (15) as the initial state, the evolved state is still a pre-
cession helix state but with varying θ (t ) = θ0 + ∫ t

0 B0(t ′)dt .
One finds that |ψ (t )〉 is a helix state at every fixed time
point satisfying θ = nπ + π/2, (n ∈ Z ). Specifically, when
we take B0(t ) as a pulse field satisfying B0(t ) = 0 for t > T ,
and

∫ T
0 B0(t )dt = π/2, we have a stable state with maximal

helicity:

hl (t > T ) = 1
2 [sin(k0l ), cos(k0l ), 0]. (28)

As an example, we consider a Gaussian pulse driving field:

B0(t ) =
√

πα

2
exp

[
− α

(
t − T

2

)2]
, (29)

where the internal T is taken sufficiently long as α  T −2 to
meet

∫ T
0 B0(t )dt ≈ π/2. Note that the conclusion is obtained

under the resonant condition � = 1. It is expected that a
similar helix state can still be obtained when � deviates a
little from 1. The computation is performed by using a uni-
form mesh in the time discretization for the time-dependent
Hamiltonian H (t ). We consider the case with initial state
|ψ (0)〉 = |φ(0)〉. We introduce the quantity:

p(t ) = |〈ψ (t )|φ(θ )〉|2, (30)

FIG. 2. Plots of the fidelity defined in Eq. (30) for the time
evolution of initial ferromagnetic state under the Hamiltonian H
with external field in Eq. (29) and different �. The target state is
|φ(π/2)〉, and the parameters are α = 0.5, T = 80, k0 = arctan(0.5),
and N = 10. We find that (i) the fidelity reaches unity after the action
of the pulsed field in the resonant case � = 1, which accords with
our analytical prediction; (ii) when � = 1 ± 0.1, the fidelity reaches
a maximum close to unity; (iii) as � departs from 1, the maximum
decreases but is still >0.8. The time is in units of J−1, where J is the
scale of the Hamiltonian, and we take J = 1.

to characterize the fidelity of the scheme. The plots of p(t ) in
Fig. 2 for several typical cases show that the scheme works
well even for the case with � �= 1. However, the flaw of this
scheme is that the prior knowledge of system parameter k0

and a time-dependent field is required, which motivates us
to consider the non-Hermitian field that is independent of
parameters of the system and time.

B. Non-Hermitian field

Now we turn to an alternative scheme to prepare a helix
state by non-Hermitian HI. It is a crossover scheme for the
case that k0 is unknown. We start with the investigation for an
exactly solvable case, in which the external field is a complex
spatially modulated field:

B j = B0 exp(ik0 j)(1, i, 0), (31)

with which we still have [H0, HI ] = 0. Importantly, we have

HI |ψn〉 = B0

√
(n + 1)(N − n)|ψn+1〉, (32)

with n ∈ [0, N − 1], which ensures the existence of an invari-
ant (N + 1)-D subspace spanned by a set of states {|ψn〉}. The
matrix representation of Hamiltonian H is an (N + 1) × (N +
1) matrix M with nonzero matrix elements:

(M )N+1−n,N−n = B0

√
(n + 1)(N − n), (33)

with n = [0, N − 1], and

(M )N+1−n,N+1−n = −N − 1

4
, (34)
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with n = [0, N]. It is obvious M + (N − 1)/4 is a nilpotent
matrix, i.e., [

M + N − 1

4

]N+1

= 0, (35)

or an (N + 1)-order Jordan block. The dynamics for any states
in this subspace is governed by the time evolution operator:

U (t ) = exp(−iMt ) =
N∑

l=0

1

l!
(−iMt )l . (36)

Then for the initial state |ψ (0)〉 = | ⇓〉, we have the normal-
ized evolved state:

|ψ (t )〉 =
exp

[
it N−1

4

]
√(

1 + B2
0t2

)N

N∏
j=1

[−itB0 exp(ik0 j)|↑〉 j + |↓〉 j],

(37)

which turns to the coalescing state, i.e., |ψ (∞)〉 −→ |⇑〉.
Accordingly, we have

hl (t ) = B0t

1 + B2
0t2

[
sin(k0l ), cos(k0l ),

B2
0t2 − 1

2B0t

]
, (38)

which indicates that |ψ (t )〉 is a helix state at finite time. At
instant t = B−1

0 , it reaches the maximal helicity:

hl
(
B−1

0

) = 1
2 [sin(k0l ), cos(k0l ), 0]. (39)

The above analysis is still true when we take B j =
B0 exp(−ik0 j)(1,−i, 0) and |ψ (0)〉 = | ⇑〉, which corre-
sponds to a time-reversal process.

C. Non-Hermitian boundary

So far, it seems that the introduction of the complex field
does not improve the scheme since it still requires a specific
field distribution. The only difference is that the time evolu-
tion under U (t ) is unidirectional, rather than periodic in the
Hermitian system. However, there is a key fact that the Jordan
block still exists when we take a local complex field at lth site:

B j = B0δ jl (1, i, 0). (40)

In the case of � �= 1, states | ⇓〉 and | ⇑〉 are two degenerate
states of the Hermitian Hamiltonian H0, and we have

H |⇑〉 = − (N − 1)�

4
|⇑〉, H†|⇓〉 = − (N − 1)�

4
|⇓〉, (41)

due to the facts:

HI|⇑〉 = 0, (HI )
†|⇓〉 = 0. (42)

It means that two states |⇓〉 and |⇑〉 are mutually biorthogonal
conjugate and 〈⇓|⇑〉 is the biorthogonal norm of them. Impor-
tantly, the vanishing norm 〈⇓|⇑〉 = 0 indicates that state |⇑〉
(|⇓〉) is the coalescing state of H (H†), or Hamiltonians H and
H† get an EP. From the perspective of dynamics, we have

exp(−iHt )|⇓〉 −→ |⇑〉, exp(−iH†t )|⇑〉 −→ |⇓〉, (43)

for a sufficiently long time t . Although both states |⇓〉 and |⇑〉
are not helix states, exp(−iHt )|⇓〉 and exp(−iH†t )|⇑〉 may

have helicity at finite t from the observation at the end of the
previous subsection, for instance, Eq. (39).

This inspires us to consider a balanced local complex field:

B j = B0[δ1 j (1, i, 0) + δN j (1,−i, 0)], (44)

which acts as a non-Hermitian boundary and may result in a
stable helix state after a relaxation time. The physical intuition
for this setup is simple. One complex field acts as a source of
spin flips, while the other one takes the role of a drain. It is
expected that a stable helix state emerges when the source and
drain are balanced. However, it is hard to get an exact solution
in this case due to the fact [H0, HI ] �= 0. In the following, we
investigate this issue by perturbation method. In the subspace
spanned by the set of degenerate ground states {|ψn〉} of H0,
the matrix representation of Hamiltonian H with � = 1 is an
(N + 1) × (N + 1) matrix H with nonzero matrix elements:

(H)N+1−n,N−n = B0 exp(−ik0)

N

√
(n + 1)(N − n), (45)

(H)N−n,N+1−n = B0 exp(ik0N )

N

√
(n + 1)(N − n), (46)

with n = [0, N − 1], and

(H)N+1−n,N+1−n = −N − 1

4
, (47)

with n = [0, N]. In small B0 limit, the eigenvalues and eigen-
vectors of matrix H are the approximate solutions of the
non-Hermitian Hamiltonian. We note that matrix H is essen-
tially related to the representation of the Hamiltonian H′ of
a fictitious spin S = N/2 particle: H′= λSx, where Sx is its
angular momentum operator, and λ is some complex constant.
Then the normalized approximate eigenstates can be obtained
from states {|ψn〉}:

|ψ̃n〉 = R|ψn〉 =
N∏

j=1

Rj |ψn〉, (48)

by a local transformation on spin at each site:

Rj = 1√
2

[
exp

(
ik0

2 j−N−1
2

)
1

1 − exp
( − ik0

2 j−N−1
2

)]. (49)

The corresponding eigenenergy is complex:

En = −N − 1

4
+ B0 exp

[
ik0

N−1
2

]
N

(2n − N ), (50)

with n = [0, N], and its imaginary part is

Im(En) = B0

N
(2n − N ) sin

[
k0(N − 1)

2

]
. (51)

Unlike a Hermitian system, the imaginary part of the eigenen-
ergy can amplify or reduce the corresponding amplitude of
the eigenstate in the dynamic process. For the given initial
state |ψ (0)〉 = |⇑〉, when the evolution time is long enough,
the final state is the eigenstate of H with the maximum imag-
inary part of eigenenergy. The corresponding approximate
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FIG. 3. Plots of numerical results of time evolution for three types initial states under the Hamiltonian H with non-Hermitian boundary
in Eq. (44). The initial states are (a) ferromagnetic state, (b) pure random state, and (c) mixed state, which are defined in the text. The
corresponding fidelity F (t ) defined in Eq. (60) is presented at several typical instants t . The complete plot of F (t ) is given in Fig. 4. The
parameters are B0 = 0.005, N = 10, and k0 = arctan(0.5). It indicates that the evolved state for initial mixed state converges faster than that
for the other two. The time is in units of J−1, where J is the scale of the Hamiltonian, and we take J = 1.

eigenstate is

|ψ (∞)〉 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N∑

n=0
pn|ψn〉, sin

[ k0(N−1)
2

]
> 0,

N∑
n=0

(−1)n pn|ψn〉, sin
[ k0(N−1)

2

]
< 0,

(52)

where the coefficient is

pn = 2−N/2
√

Cn
N exp

[
− ik0

(N + 1)n

2

]
. (53)

Accordingly, we have the helicity distribution along the
chain:

hl = 1
2 [cos(k0�),− sin(k0�), 0], (54)

for sin[k0(N − 1)/2] > 0, and

hl = 1
2 [− cos(k0�), sin(k0�), 0], (55)

for sin[k0(N − 1)/2] < 0, where � = l − (N + 1)/2 is a
shifted coordinate. Obviously, the above two classes of state
|ψ (∞)〉 are standard helix states with opposite helicity due to
the fact |hl |2 = 0.25. The results in Eqs. (54) and (55) show
the generated final state is a helix state with increasing az-
imuthal angle k0 = arctan(D/Jx ) under the resonant condition
� = 1. As we can see, k0 increases as the strength of the DM
interaction increases.

Numerical simulation is performed to verify our predic-
tions. We compute the time evolution by exact diagonalization
and present the dynamic process of the formation of the helix
state through the time dependence of the helicity distribution
hl . In general, the time evolution of an arbitrary initial state
ρ(0) obeys the equation:

i
∂

∂t
ρ(t ) = Hρ(t ) − ρ(t )H†, (56)
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ferromagnetic state
random pure state
mixed state

ferromagnetic state
random pure state
mixed state

FIG. 4. Plots of F (t ) in Eq. (60) as a function of time for the same
time evolution process as in Fig. 3. We can see that the final states
for three different initial states turn to the target state eventually. The
time is in units of J−1, where J is the scale of the Hamiltonian, and
we take J = 1.

which admits the formal solution:

ρ(t ) = exp(−iHt )ρ(0) exp(iH†t ). (57)

Unlike the Hermitian case, the time evolution of the density
matrix is no longer unitary. To get hl (t ), with the definition:

hα
l = Tr

[
ρ(t )sα

l

]
, (α = x, y, z), (58)

we normalize ρ(t ) by taking [39,40]

ρ(t ) = exp(−iHt )ρ(0) exp(iH†t )

Tr[exp(−iHt )ρ(0) exp(iH†t )]
, (59)

in the following numerical calculation. We introduce the
Uhlmann fidelity [41,42]:

F (t ) =
[

Tr
√√

ρhρ(t )
√

ρh

]2

, (60)

to characterize the degree of similarity between the evolved
state ρ(t ) and the target state:

ρh = |ψ (∞)〉〈ψ (∞)|. (61)

The value of F (t ) after a sufficiently long time can be es-
timated intuitively. In general, an initial mixed state ρ(0)
contains equal-amplitude components in each state of {|ψn〉}.
Then we always have F (∞) ≈ 1.

We focus on three types of initial states: (i) ferromag-
netic state ρ(0) = |⇓〉〈⇓|; (ii) random pure state ρ(0) =
|ψ (0)〉〈ψ (0)|, where

|ψ (0)〉 =
[

2N∑
n=1

(αn)2

]−1/2 2N∑
n=1

αn|n〉. (62)

Here, coefficient αn is taken as a uniform random number
within the interval (−1, 1), and {|n〉} is the complete set of
eigenstates of H0; and (iii) maximally mixed ferromagnetic

FIG. 5. Plots of helix vector of stable final state for different �.
The initial state is |⇓〉, and the parameters are k0 = arctan(0.5), B0 =
0.005, and N = 10.

state:

ρ(0) = 1

N + 1

N∑
n=0

|ψn〉〈ψn|. (63)

The plots of hl and F (t ) in Figs. 3 and 4 show the dy-
namic behaviors of the evolved states of the above three types
of initial states, induced by the non-Hermitian boundary. It
indicates that the evolved states for the initial mixed state
and the ferromagnetic state converge rapidly. Importantly, the
final states for all three different initial states turn to the
target state after a sufficiently long time. The time evolution
of the random pure initial state implies an arbitrary initial
state will evolve into the eigenstate of H with the maxi-
mum imaginary part of eigenvalue after a sufficiently long
time, and the steady final state is a standard helix state. No-
tably, the initial states, as well as the selected non-Hermitian
boundary, do not contain any information of the prequench
Hamiltonian.

Considering the system parameter � has a small deviation
from resonant case with � = 1, the strength of the DM in-
teraction is equivalently changed when other parameters are
fixed. Taking the saturated ferromagnetic state as the initial
state, we investigate how the quench dynamics evolve nu-
merically. The situation of the Hermitian external field is
presented in Fig. 2; the evolved state first approaches the helix
state and then deviates it. For the case of a balanced local
non-Hermitian external field, the plots of the helix vector of
the stable final state for several representative values of �

are shown in Fig. 5. When the deviation of � is small,
the stable final state is still a helix state but is the en-
tangled one because we note that |hl |2 < 1

4 . For a larger
deviation of �, the stable final state is no longer a helix
state.
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V. SUMMARY

In summary, we have studied the possible helix states in
the XXZ Heisenberg model with a DM interaction. Unlike
the previous works on this topic, the existence of the spin
helix state in this paper is the direct result of the resonant DM
interaction. Our findings offer a method for the efficient prepa-
ration of a spin helix state as the ground state of a spin chain
by the quench dynamic process with the aid of non-Hermitian
balanced perturbation. It is expected to be insightful for quan-
tum engineering by a non-Hermitian boundary. There are
two merits to preparing a helix state through the method of
the non-Hermitian field. One is that our method is indepen-
dent of the initial state, i.e., taking an arbitrary state as the
initial state, a steady helix state will be generated after a

sufficiently long time under the driving of the balanced local
non-Hermitian field. The other one is that the external field is
local and is independent of the system parameters. Recently,
the non-Hermitian quantum systems have been realized ex-
perimentally [43–47]. For instance, a non-Hermitian quantum
many-body system has been achieved with ultracold atoms
[47], which implies the feasibility of non-Hermitian methods
in experiments; therefore, it is hopeful that our scheme will be
realized experimentally in the near future.
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