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In recent years, fermionic topological phases of quantum matter has attracted a lot of attention. In a pioneer
work by Gu, Wang, and Wen, the concept of equivalence classes of fermionic local unitary (FLU) transforma-
tions was proposed to systematically understand nonchiral topological phases in 2D fermion systems and an
incomplete classification was obtained. On the other hand, the physical picture of fermion condensation and
its corresponding super pivotal categories give rise to a generic mathematical framework to describe fermionic
topological phases of quantum matter. In particular, it has been pointed out that in certain fermionic topological
phases, there exists the so-called g-type anyon excitations, which have no analogues in bosonic theories. In this
paper, we generalize the Gu, Wang, and Wen construction to include those fermionic topological phases with
g-type anyon excitations. We argue that all nonchiral fermionic topological phases in 241D are characterized
by a set of tensors (N, i s F,{” s F,('/,:"Xogﬁ , n;, d;), which satisfy a set of nonlinear algebraic equations parameterized
by phase factors ™" and E;cjln 4s- Moreover, consistency conditions among algebraic equations give rise
to additional constraints on these phase factors, which allow us to construct a topological invariant partition
for an arbitrary triangulation of 3D spin manifold. Finally, several examples with g-type anyon excitations are
discussed, including the fermionic topological phase from Tambara-Yamagami category for Z,y, which can be

regarded as the Z,y parafermion generalization of Ising fermionic topological phase.

DOI: 10.1103/PhysRevB.106.245120

I. INTRODUCTION

A. The goal of this paper

Since the discovery of fractional quantum Hall effect
(FQHE) [1], it has been realized that these peculiar quantum
matters can be described by a new type of order—topological
order [2]. The topological order of FQHE can be charac-
terized by its precise quantization of the Hall conductance,
fractionalized charge, and fractionalized statistics carried by
elementary excitations [3]. Mathematically, it is well known
that topological order in 2D bosonic systems can be systemat-
ically described and classified by the advanced mathematical
theory—unitary modular tensor category (UMTC) [4]. On
the other hand, it has also been realized that the patterns of
long-range entanglement [5] gives rise to an essential physical
picture to understand various topological phases. In particular,
the equivalence classes of local unitary (LU) transforma-
tions [S5] allows us to construct fixed point wavefunctions
to classify all nonchiral topological phases in 2D bosonic
systems [6,7].

Nevertheless, the UMTC framework can not be applied to
fermion systems directly. Topological phases in interacting
fermion systems are strictly richer than bosonic systems due
to the Fock space structure of fermionic Hilbert space. In
addition to the well known FQHE states, which are known as
chiral topological phases, many new examples of nonchiral
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topological phases are constructed for 2D fermion sys-
tems [8—11]. Interestingly, it has been shown that a fermionic
generalization of Pentagon relation is necessary for under-
standing topological phases in 2D fermion systems. Very
recently, the physical picture of fermion condensation and
its corresponding super pivotal categories [12] give rise to
a generic mathematical framework to derive the fermionic
Pentagon relation [10] and understand the underlying physics
for almost all nonchiral topological phases in 2D fermion
systems. Most surprisingly, it has been pointed out that there
are two distinct types of objects in the resulting super fusion
categories, and the so-called g-type objects have no analogues
in bosonic theories [12]. Nevertheless, it is still unclear how
to understand the algebraic relations generated by fermion
condensation [12—14] from the patterns of long-range entan-
glement for 2D fermion systems.

In this paper, we aim at generalizing the equivalence
classes of fermionic LU (fLU) transformation framework
to construct and classify all nonchiral topological phases,
including those cases with g-type objects in 2D fermion sys-
tems. Then we will try to understand the deep relationship
between fermion condensation picture and the equivalence
classes of fLU transformations. Below we will briefly review
the precise meaning of fermionic topological phases and fLLU
transformations.

B. Gapped quantum liquids

The classification of gapped quantum phases is in general
beyond the Landau symmetry breaking paradigm. For bosonic

©2022 American Physical Society
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systems, we define that two gapped quantum systems belong
to the same equivalence class if they are connected by a
sequence of LU transformations without closing the energy
gap, and the LU transformations are generated by a finite-time
evolution of local Hermitian operators [5,15-17],

D) ~ @) iff |) = Te'/ 4Oy, (1)

where T is the time-ordering operator and H ()=, 0i(7)
is a summation of local Hermitian operators. Under such
a equivalence relation, the trivial phase is connected to the
direct-product state, and other nontrivial phases are long-
range entangled and called topologically ordered phases.

In discrete spacetime, e.g., on a lattice, the LU transfor-
mations can be expressed by a finite depth quantum circuit,
generated by piece-wise local unitary operators U, =
[1; U @), where {U (i)} is a set of unitary operators acting on
nonoverlapping regions. A quantum circuit with depth M is
given by UM =U Wy UM Thus the discrete version

circ pwl™ pwl"*~ pwl *
of the equivalence relation is written as

|®) ~ | @) iff |) = U ®). ©)
More precisely, in this paper we only consider a subset of
gapped quantum phases, namely the gapped quantum liquid
(GQL) [18], which can be defined on arbitrary lattice geome-
try. In addition, we are also allowed to remove or add degree
of freedoms into the systems. Thus, the equivalence classes
should be redefined as the generalized local unitary (gLU)
transformations satisfying UgT U, = P and UgU; = P’, where
P and P’ are two projectors. In particular, the action of P
does not change the state |®). In such a way, some of the
quantum gapped phases cannot be included, e.g., the fracton
topological order [19-21].

C. Fermionic gapped quantum liquids and its classification

In fermionic systems, the underset degrees of freedom are
fermions and the total Hilbert space is Fock space instead of a
simple tensor product of local Hilbert space. Hence we should
redefine the LU transformations as the fermionic LU (fLU)
transformations [10],

|D) ~ | @) iff |&') = Te/ 2 ®| @), 3)

which can also be discretized as the fermionic quantum
circuits, where the local fermionic Hamiltonian Hf(g) =
> Oi(g) is a summation of pseudolocal bosonic operators
Oi(g). Here O;(g) is a product of even number of local
fermionic operators (due to the conservation of fermion par-
ity) and any number of local bosonic operators. It is called
“pseudolocal” as it is local for a fermion system in a sense
that the fLU transformations acting on different local regions,
but are nonlocal due to the global anticommutation relation of
the fermion creation or annihilation operators. Similarly, the
fLU transformations can also be redefined as the generalized
fLU(gfLU) transformations for fermionic GQL (fQGL). Thus,
the fermionic topological orders are classified by the equiva-
lence classes of gfLLU transformations Ug, which are projective
unitary operators. Up to some unitary transformations, U, is a

Hermitian projection operator,
U,=UPU,, P;=P, P]=P,

ulu, =1, UjU,=1. 4)
We will call such a gfLU transformation a primitive gfLU
transformation. A generic gfLU transformation is a product
of several primitive gfLLU transformations, which may contain
several hermitian projectors and unitary transformations, for
example, Ug = UngUng/U3. We note that Ug contains only
even numbers of fermionic operators (i.e., U, is a pseudolocal
bosonic operator). We also regard the inverse of U,, U; ,as a
efLU transformation. An fLU transformation is viewed as a
special case of gfLU transformations. Clearly U gT Ug = P and
ﬁgﬁ; = P’ are two Hermitian projectors.

Similar to bosonic systems, Ug can generate a wavefunc-
tion renormalization, which allows us to connect the same
fGQL state defined on different lattice geometry with different
degrees of freedoms. In this paper, by constructing the most
generic fixed point wavefunctions from U,, we argue that all
nonchiral fermionic topological phases in 2D fermion systems
are characterized by a set of tensors (N, F,”, F,;Z];"X";’S  ni,dy),
which satisfy a set of nonlinear algebraic equations parame-
terized by phase factors Ezm‘aﬁ and E;fln s+ In particular, in
order to to include those fermionic topological phases with
g-type anyon excitations, the tensor F,(’ITXO;’S must be a gfLU
transformation instead of the usual fLU transformation in Gu,
Wang, and Wen’s construction. In such a way, we reveal the
origin of g-type anyon excitations and naturally explain why
they do not have analogues in bosonic theories from quantum
information perspective. Moreover, consistency conditions
among algebraic equations give rise to additional constraints
on these phase factors, which allow us to construct a topologi-
cal invariant partition for an arbitrary triangulation of 3D spin
manifold.

The rest of the paper is organized as follows: In Sec. II,
we construct the most general fixed-point wavefunction for
nonchiral fermionic topological orders in 2D. Then we derive
the conditions for all wavefunction renormalization moves
with the inclusion of g-type strings, i.e., the conditions on
F-move, O-move, Y-move, H-move, and dual F/H-move.
Thus we obtain a set of most general algebraic equations in
Sec. IIK. In Sec. III, we explicit construct the topological
invariant partition function for an arbitrary triangulation of
3D spin manifold. We find that the relations among phase
factors for constructing the partition function can be obtained
from the fermionic Pentagon equation and four projective
unitary conditions for F-move. These relations match with
the results from fermion condensation theory [12], as illus-
trated in Appendix B 5. In Sec. IV, several examples with
g-type strings are studied, including the fermionic topological
phase from Tambara-Yamagami category for Z,y, which can
be regarded as the Z,y parafermion generalization of Ising
fermionic topological phase. Finally, we summarized this pa-
per in Sec. V.

In Appendix A, we review some basic concepts in su-
per pivotal category introduced in Ref. [12]. Appendix B
introduces the explicit steps to do fermion condensation. We
apply the fermion condensation scheme to derive several
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equivalence relations on fixed-point states with g-type strings,
and derive all fermionic F symbols for the four examples
from their corresponding bosonic theory. In Appendix C,
we define a special sequence of moves, whose equivalence
relation gives the phase factor A:Zj e " \which is involved in
the relations among phase factors needed for constructing the
partition function. Appendix D is a proof that all possible 2-3
moves induced by time ordering are consistent with the four
projective unitary conditions as well as the relations among
the corresponding phase factors.

II. WAVEFUNCTION RENORMALIZATION FOR GENERIC
NONCHIRAL TOPOLOGICAL PHASES IN 2D FERMION
SYSTEMS

A. Fixed-point wavefunctions on a graph

Since the wavefunction renormalization may change the
lattice structure, we will consider quantum state defined on
a generic trivalent graph G with a branching structure such
that each vertex has two incoming or one incoming edges.
Similar to the construction of string-net model for bosonic
systems, we assume each edge has N + 1 states, labeled by
i =0, ..., N. Each vertex also has physical states. The string
fusion rules and the local fermion parity are both encoded
in the vertex states o =1,...,N;/ or g =1, ...,]\7,-’;, where
N/ (Nl-’}) is the number of fusion states with two incoming
(outgoing) strings i, j and one outgoing (incoming) string k,

graphically represented as l\?‘k} or /%\r Generally, we

have
N/ =B/ +F/, (5)

where B} is the number of bosonic fusion states, and F;"/ is the
number of fermionic fusion states (a local fermion excitation

.. . i J .
is involved), represented as a solid dot \(k . We introduce

a number s(«) to indicate the vertex states is bosonic or
fermionic: s(«) = 0 if the state « is bosonic and s(a) = 1 if it
is fermionic.

In this paper, we will assume that

T
N/ =N;

.. X «
ij» B;CJZB[JW Fk” :F;‘ja (6)

as required by unitarity. Our fixed-point state is a superposi-

tion of those basis states
‘wﬁx> = Z wﬁx )
all conf. /

In the bosonic string-net models, there is a very strong
assumption that the above graphic states on two graphs are
the same if the two graphs have the same topology. However,
since different vertices and edges are distinct and a generic
graph state does not have such a topological invariance. Sim-
ilar as the construction in Ref. [10], here we will consider
vertex-labeled graphs (v graphs) where each vertex is assigned
an index «. Two v graphs are said to be topologically the same
if one graph can be continuously deformed into the other in
such a way that vertex labelings of the two graphs matches.

B. The structure of fixed-point wavefunctions

Firstly, we need to divide the state on each edge into m-
type and g-type strings. When all strings i, j, k are m-type,
generally B} is not equal to F;/, however, when there is a -
type string involved in the fusion (at least two strings in 7, j, k
are g-type), we must have B = F,” (The physical reason of
such an assumption will be explained below). Thus we can
introduce the function B(x) =1, ..., B;{] to extract the bosonic
fusion state of «,

Bla) = {Z_ [ S ®)

., ifs(a) =17

We note that B(«) is only defined when g-type strings are
involved in i, j, k. Here we introduce the notation - f to denote
the changing of fermion parity without changing the corre-
sponding bosonic state, i.e., B(« - f) = B(«).
Now let us consider the fixed-point wavefunctions on a
i jok

patch wﬁx<\gP/>, where the boundary string states i, j, k, [
I

are fixed, while yellow-shaded ellipse means that the inner
fusion states «, 8 and the inner string state m may vary.
i jok

[More precisely, wﬁx(\;{?/) should be regarded as function
1

@iju,r(a, B, m) where the indices on the other part of the
graph are summarized by I".] All such fixed-point wavefunc-
tions(as functions of «, 8, m) form a linear space called the
support space Vl"k, whose dimension is called the support

dimension D;j k
i jok
For the fixed-point wavefunctions '(/fﬁx<\;n<P/ >, the num-
I

ber of inner states {«, B, m} is N,ij k— Zm N,’;,j Nl’”k . Specially,
if the inner string m is a g-type string, the support space V" k
should mod out the following equivalence relations generated
by string m, in fermion parity-even and odd sectors respec-

tively:
i j ok i j ok
o \,g/ ~
l
i j ok i j k

wﬁx \m<l/ ~ wﬁx

which can be altogether denoted as

i j ok iaj k
Prix \'%z/ ~ Phix mBl. : (11

where f denotes a transparent (local) fermion excitation, and
X f means changing the fermion parity on a fusion state
via attaching a transparent fermion, which does not have to
preserve the original bosonic state in general, i.e., B(a x f)
generally may not be the same as B(«). However, we require
(o x f) x f =« as attaching a pair of transparent fermions
should not affect the fusion state on each vertex. Here the
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equivalence relation ~ is up to a phase. Physically, the first
relation means that a pair of transparent fermions can be
created or annihilated on g-type strings (that is why we must
require BY = sz’ 7 once g-type string is involved in the fusion),
and the second relation means that a local fermion excitation
can slide along g-type strings freely. Thus, we can assign a
number 7; to each string, with n; = 1 for a m-type string and
n; = 2 for a g-type string. Mathematically, the number n; can
be regarded as the dimension of the endomorphism algebra of
string i, as explained in Appendix A. As a result, the support
dimension D;’k is generally equal to or less than the number

of inner states N, k and

. er;lemk
Dt =% "L (12)

U

Similarly, the supf)ort space of the fixed-point wavefunc-
Poj o,k
tions on Wﬁx<\\%§/> should also mod out the following
equivalence relation if n is a g-type string:
i jok i jok
Vi \%n/ ~ Prix \Y?’-"/ ; (13)

i j ok i j ok

/(/)ﬁx \>n/ ~ ¢ﬁx Vq/ 5 (14)
l l
which can be in together denoted as
ij ok ik

Vi %/ ~ Pfix \B\J?n// ; (15)
l [

where similarly the changing of fermion parity x f here does
not have to preserve the original bosonic fusion state. The
support dimension here is

» NinNy{k
D =Z ’n . (16)

C. F-move

The first type of wavefunction renormalization is the F'-
move, which is a gfLU transformation between the two

i jok i gk
fixed-point wavefunctions Yy \:,,(P/ and gy \%n/
! !

(we assume that the two fixed point wavefucntions are the
same for the other parts of the graph).
Apparently, the support dimensions on both sides are equal,

NN
-y

n
m mn n n

ok
NN}

a7

Since the fermion parity-odd sector and the parity-even sector
are independent, this relation can be further split as

BZBmk Frflijk BinB{;k FinFnjk
DR LY L T

m  pij T ij n i 'knn in pJjk
ZBWJlF}mk + Fm]B;ﬂk B ZB;nFnJ + F}mB{,

m nm n nn

19)

In fact, for fermionic systems, the total Hilbert space is
a Fock space, and we need to specify the ordering of the

fermionic states in the fixed point wavefunctions. For ex-
i jok

) ijok
ample, Wﬁx<\%%/) actually means wf(%) where

the fermionic state on vertex § is always created before the
fermionic state on vertex «. An elegant way to count the
ordering of fermionic states is to introduce the Majorana num-
bers 6y, 0g, ..., where o, B, ... denote the vertices carrying the
fusion state o, B, .... The Majorana numbers satisfy

040 = —0g0, forany o # B,

Oy =0u.  (Oy...0p)" = 0p..0,. (20)

Thus, we can define the ordering independent fixed-point
wavefunctions Wy by attaching Majorana numbers on w?;'”,

i ok , i ok
Wiy \g[% = 935Dy \W . Q@D
l - l

ij ok

X,
Similarly, for the patch wﬁx<\?>n/>, we can also define
I

i jk /i j ok
s s(6) X0,
Wiy \%y = 0,000,y \%/ )
l 1

where in wfﬁ’ the fermionic state on vertex § is always
created before the fermionic state on vertex .

On the other hand, since the fermion ordering in
i j ok

i j ok 5 "
[ 1

duced by the branching structure of the graph, below we will
also omit the subscript a8, ... and x4, ... throughout the whole
paper without confusion. However, one should always keep in
mind that W, is the Majorana number valued ordering in-
dependent wavefunction while v is the ordering dependent
fixed-point wavefunctions.

Similar to the Gu, Wang, and Wen construction, we
can introduce a Majorana number valued F-move with-
out specifying the ordering of fermions on vertices of both
patches,

) will be naturally in-

i j ok i j k
I I D DE L T I BEEY
/ nxd /
where
ijmaB __ ps(@)ns(B) ns@) ns(x) grijm.ap
‘Fkln,)(é = 9;"‘ Gé Qé GZ‘ szn,xa ) (24)
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which follows our Majorana number convention in Egs. (21)
and (22). The F-move is nonzero only when all the fu-
sion states are nonvanishing and the fermion parity is
conserved: s(a) + s(8) + s(x) + s(8) = 0 mod 2. Or in other
words,

Fklll:qxofsﬂ =0when N/ < 1or N™ < lor N/¥ <1

orN, < 1,ors(a) 4+ s(B) + s(x)+ s(6) = 1 mod 2. (25)

Here the complex number valued F-symbol is defined ac-
cording to the special fermion ordering scheme discussed
above. The unique advantage of the Majorana number val-
ued F-move is that the anticommuting nature of fermion
creating/annihilation operators is naturally encoded in such a

J

2 : ijm 0/,3’
Fklnxé

ljm Otﬂ)* — {8mm’8aa/8ﬂﬁ/
nxs

kln X6

—ijm

_(8mm’8aa 8}3/3’ + ‘-‘kl Smm’a(axf)a’a(ﬂxf)ﬁ’)»

¢FLU and we do not need to worry about the fermion ordering
problem when considering a sequence of gFLU transforma-
tions.

However, very different from the Gu, Wang, and Wen
construction where F-move is assumed to be unitary, here if
m is q-type, we can only fix the target space up to a certain
superposition of two equivalent states in the one-dimensional

ik i gk
projective space, Wy \gﬁ/ and Wgy Vn/ . Therefore,
i I

depending on whether m is an m-type or g-type string, the
JF-move can be unitary or projective unitary. In particular,
when m is g-type, the projective unitary condition should map
to both of the two equivalent states, and we require

if m is m-type

if m is g-type. (26)

We note that the Majorana numbers cancel out due to relation in Eq. (20), and we can write down the projective unitary
condition for the complex valued F-moves without Majorana numbers. Here ;)" P is a phase factor satisfying (E;{’,’"’aﬁ )=
E;(jlm (xEXN ¢ depends on strings i, j, k, I, m and fusion states «, 8. We should note that B(a x f) and B(8 x f) do not have
to be the same as B(«) and B(8) in general. But the explicit corresponding bosonic fusion state of « x f can be determined by

« and the three strings i, j, k attached to it. Similarly, B(8 x f) can be determined by § and strings m, k, [. If m is g-type, this

projective unitary condition can be viewed as the following projective map:

i

—ijm,af

1 k ( = 3 )*
Skl
5 Vhix W + 5 Vi

—ijm,af3 )

k
=00 1
kl N Zalye
—5 V| Bz + Qwhx

. i //» l\ J x k
If we view both ¥4 and Yy \i?n/ as column
1 1

basis vectors in each support space, the above expression can
also be rewritten in matrix form

kit
P=FMEM, (29)
where P is a projective matrix with the following form:
L &y
_ 2
P = mijm.ap
Sk 1
2 2

(30)

Apparently, it satisfies P> = P.

From Egs. (27) and (28), we see that the phase factor
Ezm’aﬁ is actually the phase difference between the two
equivalent states,

i o ik iJj ok
’(/}ﬁx mB = EZ«]lmﬂBwﬁx \gﬁ% )
l l
if m is g-type. 31

iaxj k i j ok
b — Vfix \g% , 27

Lk i J ok

i(xx oxf
Br | - v W . 28)
l l

According to the F-move (with the aforementioned
fermionic state ordering convention), we have

A i j k
& ijm, (o
oo (1) = e (N
I I

nxo

and

N
ZF;;;”;;‘%/)ﬁx< e ) (33)
[

i
wﬁx (%V)
nxo
Comparing each term with fixed n, x, §, we immediately ob-
tain a relation between the F-moves on two equivalent states,

Fum Sax f)Bxf) _

mijm, otﬂszm apf
kln,xé "‘kl

kinys » T misg-type.  (34)

If we reverse the initial space and target space, we can
obtain the inverse fermionic F-move,

i j ok i jok

. \EBV ~ ST (FImB) g, \,ﬁ/ . (33)
[ [

maof3
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If n is g-type, we can only fix the target space up to certain superposition of the two equivalent states in Eqs. (13) or (14), and
there will be another independent projective unitary condition for F'-move (similarly the Majorana numbers cancel out so that
we can write down the relation for F-move),

- i Spn'Sy 48857 if n is m-type
Z(Ftﬂfwﬂ) Flimap _ { ln xx' 988 B Yp (36)

Ly s e o (B8 8s5r + Bl s0mSiex prxSsxpyw),  if nis g-type,
where B}, ; is another phase factor satisfying (Z;{’m )= :;{’ln (x fy6xf)- 1t depends on strings i, j, k, [, n and fusion states

X, 8. B(x x f) and B(8 x f) do not have to be the same as B(x ) and B(§) respectively in general. If n is g-type, this projective
unitary condition can be viewed as the following projective map:

i j_k —ij i j.k i j_k
(klnx&)

1 x

§wﬁx \%/ + (l/}ﬁx xfn - wﬁx \%/ ) (37)
l [ l

=i ij k i jak i

k
B s 1 x "
A %/ + 5 ¥ \5\;{/ — i \&%{f (38)
I ! z

In terms of matrix form, we have

o
P/ — (F}Uk) Fl”k’ (39)
where the projective matrix takes the form
1 (CH
P=|_7 2, (40)
Skin,ys l
2 2

which also satisfies (P/)2 =P.
The phase factor & kl 5 is actually the phase difference between these two equivalent states,

gk i ik
Viix Sn | = Sk Vix \%n/ , if nis g-type, 41)
/ l
from which we can obtain another relation between the F-moves on two equivalent states,
ijm,ap *_ mif ijmapB\* . .
(Fkln,()( ><f)(6><f)) = “an,Xa(Fkln,xs ) » if nis g-type. (42)

D. Fermionic pentagon equation

Similar to the Gu, Wang, and Wen construction, if we apply the gFLU transformations on a bigger patch of the graph, certain
consistent condition is required. The so-called fermionic pentagon equation is essentially a consistency relation on two paths
connecting two fixed point wavefunctions,

i j ok 1 i j 1 k/l i j k1
ijm,af, 4 ~ ijm,af ritn,px \ h
Wy W ~ N FImeS e | . ~ N Fmes pimx gy, jY<§/
» tny p tny;sky p
i j ok 1
~ ijm,af itn,ox —jkt,nk 9
- Z ‘Fkntmw ]:lps Ky ‘Flsq 5 Viix vy 4 )
tne;hisky;qd ¢ » (43)
i j ok i j k1 i j k1
J J N J ) 5
mkn,Bx mkn,Bx Tijm,ce
Phix | Z Fipgoe Vox | Z Fipg,se Faps,in Vhix Ve ; (44)
P qde P qde;soy p
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which leads to

‘Fijm,aﬂfitn,d/xfjkt,nk' (45)

knt,ny " Ips.ky ¥ lsq,5¢
myk

mkn,By —ijm,ae
Z]:lpqﬁe ‘qus.,w -
€

By eliminating the Majorana numbers and canceling out
the constant phase factors via a proper phase shift of the
F-symbol, we can use a constant phase factor to change ~
into =:

Ipq, 3¢ = qps.¢y kntny ~lps,cy © 1sq,8¢ °

Zkan,ﬂX Fijm,ae — (_l)y(a)s(a) ZFijm,aﬂFizn,xpijkt,nk
€ tyrk

(46)

E. O-move

The second type of wavefunction renormalization is the O-
move, graphically expressed as

Ui () = O *Prpgy <’<D : @7)

We only permit parity-even O-move, i.e.,
07*F = 0 when N/ < 1 or s(a) + s(8) = 1 mod 2. (48)

k

The support space of | ¢ J | should also mod out the

k
following equivalence relation when £ is g-type,

k k
Yiix | i |~ x| i il- (49)

k k

We still use the convention to assign Majorana numbers
from top to bottom and define the fermion ordering indepen-
dent wavefunction as

k k

Ui |1 Y| =030 D [ i C Y7L 50

k k

and rewrite the ordering independent O-move as

Wiy () = O Wy, <" D ’ (51)

where the fermionic O-move is defined as

Oll;jvaﬁ — eé(a)eg(ﬂ)oijwaﬁ' (52)

However, the O-move itself is not a gFLU transformation
k

in general, as in the patch gyl ¢ J |, fermion parity-odd

k
states actually exist when k is g-type, but we only permit
parity-even O-move. Therefore, we should define a three-

vertices O-move as a gFLU transformation, which includes
the following six different cases:

—~ij,aBy P k
Vi ~ Ol gpgn Viix ( % ) ; (53)
—ij,aBy kNAP
wﬁx ~ O2k}pq’A wﬁx ( % ) ) (54)
k
i i| _ Aiiasy il\
Vi P ~ Osppg.n Viix (p & q) ; (55)
PoY g
L q
—~1j,aBy
’(/}ﬁx =~ O4kpq,/\ wﬁx (P/%\k) ) (56)
—~ij,aBy 4
wﬁx = O5k:pq,)\ ll/)ﬁx <k}y\p> ) (57)
P ¥ 4
k ijaty (P
(T i | = O6kpgn Vhix % ; (58)
k

where in all cases the state X is related to y by

7/,
A=
{V x f,

Different from the original O-move, when k is g-type, our
newly defined O-move permits parity-odd sector, i.e., s(«) +
s(B) = 1. In this case, the additional fermion is moved to the
third vertex, as a fermion can slide on a g-type string. This
is the reason why we have A = y x f when s(x) + s(8) =
1 and k is g-type. -

We define the fermionic three-vertex O-move as

if s() +s(8)=0

if s(a) + 5(8) = 1 and k is q-type” O

N UaBY 5(B) ps s A LBy _
Oatpgs. = s V057070, 007 fora=1,2,3,
(60)
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and

Outpry = 03050, P 050,57 fora = 4,5,6.
(61)
Since the O-move is a gFLU transformation, after cancel-

ing out the Majorana numbers, it must satisfy

> Ouiel (Ot ) =1, fora=1,2,3,4,5.6. (62)

ijap

From Eq. (62), depending on whether k is m-type or g-type,
we have the following conditions for O-move:
(1) When k is m-type,

Yo (o) =1, @>

ijap

This is because O is identical to O-move when k is m-type.
(2) When k is g-type, we divide Eq. (62) in parity-even and
odd sectors,

ijaBy 0. ijafy
Zoakpq A ﬂkpq A ) 85(0‘)3(/3)
ijap

l/aﬁy Nuaﬂy
+ Zoakm akp.i ) Sspsprin =1 (64)
ijap

For parity-even sector s(«) = s(8), the three-vertex O-move
justequals to the corresponding O-move. While for parity-odd
sector s(a) = s(B) + 1, the three-vertex O-move differs from
the corresponding O-move by sliding a fermion or creating
two fermions on a g-type string, which can at most cause
a_phase difference (see more detailed computations for all
O-move below). Thus we can replace the three-vertex O-
move by the original O-move, where in the parity-odd sector
the general phase factor difference cancels out, we finally
get

2> 0P (o) = 1. (65)
ijap
Combining Egs. (63) and (65), the original O-move satis-
fies
n Y01 (0L ) =1, )
ijop

We stress that since the parity-odd states actually exist when
k is g-type, there is also a equivalence relation

k k

wﬁx i Jl~ wﬁx i Jl- (67)
k k

Physically, as a fermion can slide freely on a g-type string,
we can move the fermion outside the patch and still apply the
parity-even O-move. Such a scheme may only cause a phase
factor difference, which is exactly achieved by our newly
defined three-vertex O-move.

We define A;{j a5 the phase difference of the two equiv-
alent states,

k

v [ GG | = APPun (). ifkisqype,  (69)
k

from which we have a relation between the O-moves of two
equivalent states,

Oij’(axf)(ﬂxf) — Aij,aﬁoij,aﬂ’ if k is gq-type, (69)

where the phase factor A}’ P generally depends on strings

i, j, k and fusion states o, ,3 The phase factor has the property
(AT yr — AT @B
k = O :

F. Y-move

The third type of wavefunction renormalization is

the Y-move, which is a completeness condition relating
1

Vhix lﬁj to I/Iﬁx< ) Similarly when k is g-type, the

support space of wﬁx<i should mod out the following

equivalence relations:

P K PN
Viix \ﬁ ~ Prix :gc : (70)

i N i J

As the Y-move exists as a completeness condition, we
can always assume that in the above two equivalent states,
the changing of fermion parity never changes the bosonic
fusion states. In this paper, we denote a changing of fermion
parity that may change the bosonic state as x f, and denote
a changing of fermion parity that never changes the bosonic
state as - f. (The definition of -f is enclosed in the definition
of xf.)

When k is m-type, the completeness condition is graphi-
cally expressed as

i J
ZYkLJaﬂwﬁx IXJ ~ iy (’+1+> . (71)
kap

Specially, when k is g-type, it is written as

€9

s iy | 1 | @,
kB(a)B(8) "By’

:%be’ Fm

where the weight coefficient ¥, ’ should count for the pair of
two equivalent states, and the summatlon is over all bosonic
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states of @ and 8. K;{’ P is defined as the phase difference of
the two equivalent states,

N3 i::ii J
wﬁx X‘ - Kz;j’aﬁd]ﬁx . k R

B.

if k is g-type,

(73)

from which we have a relation between the Y -moves of two
equivalent states,

Yi

, o~ e
k@ﬂwﬂz(Aﬂﬁ’ﬂw’ﬁkw¢WW, (74)

\thre Ki{aﬂ is also a phase factor satisfying (Ki{aﬂ)* =
A

ij
k.o f)(Bf)" »
ijo

However, since we have Eq. (74), Y,ff;ﬂ(xk )* can be

rewritten as Y|, yg-py» and Eq. (72) can be still written in
the form of Eq. (71). But we should keep in mind that when
k is g-type, the two equivalents states are always paired in
counting weights in the completeness condition.

Similar to @O-move, we can also define the fermionic V-

move as

e =0 0 Vitp: @)

G. A gauge freedom and a relation between O-move and Y -move

There is a gauge freedom in the bosonic states in the
support space V,”, i.e., we can do the following transformation
on the fixed-point wavefunctions:

i B(a)j ij,B(a) i B(Bj
Uik Y{ = uk,é(,@) Ui X ) (76)
B(B)

where uff is a unitary matrix.

Therefore, since we only permit parity-even O-move, i.e.,
the fermion parity on the two vertices are always the same, we
can make a gauge choice on the O-move such that the basis
choices in the fusion space V;'/ and the splitting space Vl-’j‘- are
always the same, i.e.,

0P = 078, (77)
Under such a gauge, Eq. (69) is written as
O = A*QU® | if k is g-type. (78)
Similarly, we can make the same gauge choice on Y -move,
Yitup = YiiBap: 9)
and Eq. (74) can also be simplified as
Viap=KL) Y, ifkisqtype.  (80)

There is a relation between some ordering-independent O-
moves and a Y-move. We discuss in two cases. Depending on
k is m-type or g-type, we have

(1) If k is m-type,

we have

1)

1= 0/ (82)

where we can choose the constant phase of Yk”a such that ~~ is replaced by =.
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(2) If k is g-type,

0:(205\ 01 Wy (k+> ~ gy | i

sl ) ps(a-f)yrij s(a) ps(ax f) ps(a s(a
+91< f)eﬁ Yk?(a»f)gé )9@ 91< Xf>9l( )OSkij,a

~ij,a(a-f)(a-f)

~ 0;((1) 9;(&) y}ijaOliéi,Oégi(a) 9;(0) Ozi-,a . (k +>

+ 0505y

~ 2053 VI 001 Wi (kD :

ijalaf)ef) .

where O Kije is related to O;;j’“ by:

—~—ij,a(c f)(a f)
3kij,o Yiix | @

We note that when we derive the relation on equivalent states,

we can consider the fixed-point wavefunctions without Ma-

jorana numbers ¥gx. But when we derive relations among

different renormalization moves, we should always consider

fermionic fixed-point wavefunctions Wy, attached with Majo-

rana numbers. o
From Egs. (80) and (84), we have Y’/ O/%=

~ il f)la-f)

Yk"f(w 1030 . Therefore we obtain

1=2v 0/ (85)
where we also choose the convention to eliminate the phase
difference on both side. Replacing the Y-move and O-move
by the equivalence relations in Egs. (78) and (80), we get

~ 1
AU YU = >
k. k,(@-f) 2(A2"a)*0g‘(wf)
where we note that generally « - f is different from o x f, as

generally the bosonic states can be changed in the equivalence
relations of O-move.

(86)

k,(mf)OSkij,a

—ij.a(o-f)(o-f) P O, (kD

(83)

(84)

Combining the two cases that k is m-type or g-type, we
obtain

1

v/ =
ij.o "
nkOk

k.o

87)

In addition, from derivation in Eq. (84), we see that

~ijafy ~ijafy
Olkpq.k and 06,(qu)\ are related,

5 iaBy 5 ijBay
03kpq,)» = Yoipg,a (88)

H. Dual F-move and a relation between O-move and F-move

We can also define a fermionic dual F-move as the follow-
ing local projective unitary transformation:

l il
Jl =ijm,c m,
Piin /2% > Fiinoes Vix /@\k . (89)
J

i Jj k maf i
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where

‘Flgr’:l)(aéﬁ — 95(5)93(X)9s(a)93(/3)Fljm Otﬂ (90)

When 7 is g-type, we define E| kln 4 as the phase difference
of these two equivalent states,

I l
n ~ n
PYfix % = :Zjln,xgwﬁx &\ » if n is g-type,
. . X . . k

i j™k [
Oon

from which we have another relation between the dual F-
moves of two equivalent states,

mijm,af =ij mijmoap - :
Finox pyex sy = S xsFeinxs - if nis g-type. 92)

12

gkl put
Z Fmipt o ar Vhix

p'x o’

~ 0,005 035 03 T 03006500 Ok x5 031 O g,

X mipxa’x

3020 FALET O 018 ( D |

where in the second line the Majorana numbers 9“‘”0“(’)0Y(“)GA(X)Q“X)GS(X)QW")GV(“)

gv(a)g r(x)@ v(u)g s(7)
(2) If p is g-type,

~ § : Jkl,pt . ~ Jkl,pt

- ‘Fmtp X' o 5ﬁplqlﬁx ] ‘szp on\I]ﬁ
p/X/a/

~ FiklyT QS(X)QS(X)Okm X 4 Fiklpr

mip,xa’ x

~ as(u)as(f)es(@)es(X)ijl JHT QS(X)QS(X)O’WTL Xas(a)es(a)oﬂp ]

mip,xo’ X

s(u) ps() ps(ax f) ps(xx f) mikl,ur
+9ﬁﬂ 0 0(}7, QX_' szp (xx f)(axf)7x

~ 298(00gS(X)gS(u)QS(T)FJk’ KT Okm XOJP oy

mip,x

(1)

mip,(xx f)(axf)"x

H]mOt,B

When m is g-type, we define 8/,
of these two equivalent states,

l l
m ~ m
Yiix N = :Z@Zl’aﬁwﬁx /é\k , if mis g-type,

ik i

as the phase difference

93)
from which we have a relation between the dual F-moves of
two equivalent states,

(Fljm (axf)(ﬂxf))

=ijm,af (mijmof
kl,x8 ] (F

" kin.xs )*, if m is g-type.
94
There is a relation between O-move, F-move, and dual F-
move. On one hand, depending on string p is m-type or g-type,
we have
(1) If p is m-type,

~ Jkl,ut
‘szp xa

(1)

(— 1)A(Ot)-f-s(x)QA(M)QA(T)QA(MQA(X)

95)

Jkl,pt
1| T T o) ey Pix

95<X>9e<xxf>9s<axf>9<<a>’ovk’n XOex F)lexf) g

1pji,a ﬁx

gs<x>9s<xxf>9s<axf>95<a> 51’;;“'; ;<<><Xf><axf>9i<a>92a>ng.,u%x (l- D

(96)
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= km,x (xxf)@xf) .

where 01,/

is related to 0’1‘,’"’)( by

—~—km,x(xx f)(axf)

—jk
1pji,a Yiix = B i yaVix

o7
Combining with the case that p is m-type, the general result is given by
= 1, 05030051 62D FIAT OFm X O W ( +> : (98)
On the other hand, depending on string / is m-type or q-type, we have
(1) If I is m-type,
N ikl put
\Ijhx fmlp XQ\I]
~ ee(a)eq(x)es(#)e T)F]kl,;;'r 9° #)ee(u)ojk,ue T)eq(r)Olm T\I] ( *)
mi o’
~ gé(a)gé(x)gé(u)gé(ﬂFJ’CWT O?’CMOlm Wy * )
mip,x o (99)

(2) If [ is g-type,

4 FRex DD g [ W

mip,xo I{L

~ Zikl '’
- Z Fomipixa Viix

TwTE

~ ]:Jkl SHT QS(H)QS(;L)OJ’Y,M

mip,xo’ p'

+J,—_-gkl (u><f)(‘r><f)es(‘r><f)es(u><f 93(#)9 O ;r’;t(:—xf)(l‘xf)#q/hx

mip,xo

mip,xo” p”

QS(a)gs(x)QS(u)gS(T)ijl v (i) gi(u)O{’C:#géf)g;(f)gimﬁqjﬁx <i D

mip,xa Slmi,T

es(a)es(x)e HXf)es(TXf)FJkl (fo)(T><f)eS(TXf)es(ﬂxf)es(;t)es("')o ks (TXf)(“Xf)”esg"')gz(r)oémﬁlpﬁx (i +>

= 28 B G FL O 0L ( D | (100)
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~ jk, . j
where Osfmifzxf)wxf)ﬂ is related to O] ki by
~jk,(TX f) (X f)p o =kl
5lmi, T wﬁx wﬁx - H‘anijuﬂ—w X

(101)
Combining with the case that p is m-type, the general result is given by
~ nlg;(a)gz(x)gz(u)gz(f)pﬁllp*;faojk HOI™T WG <i +> : (102)
Therefore, from Egs. (98) and (102), we have the relation
m, m,t jk, 1
Fotyss = SLESs Ok r ol (0m) T (0] ) !, (103)

l

from which we obtain two relations on phase factors, if we change the fermion parity on u, T through Eqgs. (34), (78), and (94),
and on yx, o through Eqgs. (42), (78), and (92) respectively,

= jki, et [
,Jnkl nT __ Alm rA] /L( ﬁcll p_t) , (104)
= jk k N
Zmp xa =A mxAJPa( fmp )(a) . (105)
We require the dual F-move F,,’”k; o also to be projective unitary,
8186777, if [ is m-type
kL, jkl' ' Ot

Z(Frrjup ;L;) Fnézp )(ltxr = { 1 SinS 8 =Jjkl,ut S S if1i (106)

n—,( 1Opu Orr! (um ) 10(ux ) (rxf)r) 1 £ 18 g-type.

pxa

Replacing Eq. (103) into Eq. (106), and by Eq. (104),

n 2 o |0km,x Ojl’,ot|2
Z = (Fnig?;)*F"]llkpl,;(/tYr Im,T\* f’m,r’ ljk,M * Ak
(o) 0T (07) o

n
pxe

_ 8”/5“#/81—1—/, " - if [ is m-type (107)

i (B8 dee + (A7) (AT ) B S8 ux S ), i Lis g-type.

We see that in the above equation, when [ is g-type, we have
1 ImT\* ( p jkoy* 1

- — = (A7) (AT ————,  when 8;1:8(ux iy Sex e = 1. 108
(Ofm’r)*05/17l’Z,(Ol],k’u)*O;k’M ( i ) ( I ) |0ﬁm’T0-lik'“|2 WoO(uxfwlxfr ( )

Then Eq. (107) can be satisfied by the following ansatz for 0” *:

0% =) [ — 57, 109
k k ninjnszdk k ( )

where D?> = > C’II , and <I>” ** is a general phase factor. And Eq. (107) reduces to the projective unitary condition for F-move in

Eq. (26).
By Eq. (87), the Y-move has the expression
.. - n»n»Dzdk ..
Y = (oi)* [ K 110
i = (@) mdid; (110)
Since we have Egs. (78) and (80), the phase dJ;;j’“ must satisfy
cD;‘{j,(axf) _ A;‘{Jla q,;‘{.i,a’ (111)
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and
(bu Jaf) Azzacpua (112)

where we note that the @ x f in Eq. (111) is determined by the corresponding states in equivalent O-moves. Specially, when the
fermion parity change in equivalent O-moves also does not change the bosonic state, Eqs. (111) and (112) reduce to the same

equation. In this special case, we have A" = A” o
After taking the gauge on O-move in Eq 77, Eq (66) becomes

my 0 (0)) =1. (113)
ijo
Combining with Eq. (109), we find the quantum dimensions satisfy
N{dd,

nin;

= diD*. (114)
ij
From derivations in Eqgs. (97) and (101), we have more relations between different three-vertex 5—m0ves,

~ijapy _ 3ijb
010y = 04y (115)

~ij,afy ~ij,pay
ozjjpjk = osﬁqu‘j ) (116)

The other projective unitary condition for dual F-move is

ZF]kl T ,kz nt )* — {‘SPP"SXX"Sm’v if p is m-type a1

=Jjk . . .
lut e Xa mlp’ xe t((SPP'SXX'SOM’ + ( fmp xa) 81717/8()( xf)x’(s(axf)a’)’ lfp 18 q'type

(

Replacing Eq. (103) into Eq. (117), and by Eq. (105), we = When n is a g-type string, there exist the following equiva-
can similarly reduce it to the projective unitary condition in lence relations:
Eq. (36) with the ansatz in Eq. (109).

i J 4 J
1. H-move and an additional constraint between Vi K ~ iy K ) (124)
dual H-move and F-move k ! k !
We define the fermionic H-move as the following local i j i
projective unitary transformation: o ~ i |7 ] (125)
i j i j k 1 k 1
a . X
~ kim,a3
Wy A =y M e [y ] (118)
k l nxs k ! For convenience, below we will show how to derive the
where dual H-move from the combination of F, Y, and O-moves
gykimep _ gv(a)es(ﬁ)es((s)gy(x) plimap (119) ﬁrst, and tl}g projectivsz .unitarity condition of H -move will
Jln.x8 jln,xs - impose additional conditions on F-symbol. When m is g-type,
Similarly, the fermionic dual H-move is defined as we define ¢ ckimeP 45 the phase difference of these two equiva-
i AL i j lent states,
x
1 kim,a8
W | 2ol | =Y HL W |0y, |, (120) O G
k ! nxo k ! By k B
Pfix " T ,if mis g-type,
where . ; ‘ ;
y kim,af s(B) ps(a) n5(8) ns(x) grkim,ap
Hiinys —9 6,05 0 Hy, "5 - (121) (126)
Again, when m is a g-type string, there exist the following
equivalence relations: where in general the bosonic states B(a x f) and B(8 x f)
; j ; j may not be the same as B(«) and B(8) respectively. Thereby
Dix |~ « 7 (122) we have a relation between the dual H-moves of two equiva-
lent states,
k 1 k 1
i i i i rrk ki ki . .
yJ | J Hjll’TX(ngf)(ﬂ xf) _ é.]Itm aﬂHﬂl;ﬂ;{Sﬂ’ if mis g-type,  (127)
Vrix ~ VPrix ny |- (123)
k l kY l

where é,ktm apf satisfies (é.ktm Otﬂ)* — "'ktm (zxxf)(ﬁxf)
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When n is g-type, we define { iin.ys 3s the phase difference between these two equivalent states,

i ”‘fj Thi N e
Vix | My | = Ctnpo¥ix | "1y | if nis g-type, (128)
AN AN

from which we have another relation between the dual H-moves of two equivalent states,

rykim,ap * ki rykim,a B * . .
(Hjln,(xxf')(sxf)) - jlln,xé(Hjln,xé ) ’ if n is q_type’ (129)

_ ki
where C,zn o satisfies (;lln x5)* = fﬂln,(xxf)(axf)-

There is a relation between the dual H-move and F-move. Depending on string j is m-type or g-type, we have
(1) If j is m-type,

12

kl zmk ad
§ yn() Ing’ B’ Wiix

ndj’ B x

~ kl imk,ad g
- Zy" 5‘7:1713,/55( Yiix
nox

X
~ Z 9§(5 s(&)Ykl eg(a)es(ﬁ)eq(x)e Funk aée B)e O’ml B\I/ n s
nxo a k 1

~ Z 9 ee(a)es(ﬁ)es(x)ykl Fvlzrnkﬁaéoml ﬂ\Il " X
nj,px
nxd k & I (130)

(2) If j is g-type,

1

E kl pimk,od
yn 5‘7:171] ﬁ' \I/ﬁx

k ! no ndj’' B’ x

~ kl imk a5 kl imk,ad
Zyn 6‘7:an ﬁx fix +Zy” 5]:an (BXf>X fix

ndx ndéx

~ Z 95(5)99(5)Ykl Qs(a)g 5)95()()99(5)F1mk a59*(5>9 ﬁ)Oml [3\1, n z

Inj,Bx
ndx k !

5(0) ps(0)y -kl ps s(8) ps s(BX f) primk,ad s(B) ps(BXF) ps A mLBB*f)x X
+> 057050 v 0565 9<X>9 Foiapnbs 05 9<X>95<XX V01 im tex ) Whix knﬁ [
ndx

~ s(B) ps s(0) ns kl pimk,ad ~yml,3 X
~ ZQE gg(a)gé OX(X)Y Flmﬁx O. Wiy s
ndx k !

s(B) ps s(0) ns kl pimk,ad ml,3 Xf
05700 o DY T 5 OF Py
ndéx

X
~ Z 295(/3)95((1)98(5)93(9()}/" (;Flmk 0450711,[3 Wy ",

Inj,Bx

nxo k ! (131)
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where we have

i J i J
~mlB(Bxf)x x —i nl,f, of
> Otjimooxn) Yax | =D Eim ptex Vi =D Eimsa0on 05 T | g
nxo k ! nxo nxs k i
(132)
Combining with the case that § is fermionic and the case j is m-type, the relation is written as
rykimaf -kl ppimk,ad yml ﬂ
Hjln,)(rS _n]Yn rSFlnj Bx 0 (133)

With the ansatz Egs. (109) and (110), we have

~p; nnd,d,
Hi;lzf,rgﬂ — @?[’ﬂ(cbfll*‘s)* M %m nﬂlnmk‘;w. (134)
JHLX nmnndjdk JPX

Similar to F-move, we also require the dual H-move to be projective unitary,

ol ~ S O 088" if m is m-type
ZHklm o ,B klm aﬁ) { BB yp (135)

k . .
nys s B L (S SaarSpp + " S S prarSp pyp)» if m is q-type.

If m is g-type, and in the fermion parity-even sector for example, this projective unitary condition for dual H-move can be viewed
as the following projective map:

i J Tkim,a By % i A2 i J
1 B (¢ ) By B
SV | 2a + JTq/)ﬁx m — x| |2 : (136)
k 1 k 1 k 1
SR AR CA NS R AL & Ny
J o, F p
Td}ﬁx " + §¢ﬁx ” — Pihix ,,, ; (137)
k 1 k 1 k 1
In terms of matrix form, we have
| ({Iam ap)*
51 2 2
P = kim,af ’ (138)
fj/ l
2 2

which also satisfies P> = P. Relation in Eq. (133) induces the following equivalence relation on F-move:
I’_‘I‘ktm (axf)B ><f)0ml B

imk,(ax )8 __ "7 jln,x3 imk,a8 __ ml,B\*Tkim,aB pimk,od . .
Flnj,(ﬂ xfix = ktm af Oml (B ><f) Flﬂj,ﬂx - (A] ) é-][ Fan Bx * if mis q-type, (139)
jln X0

which is the equivalence between two F-moves with the fermion parity on the first two vertical fusion states changed. On the
other hand, the projective unitary condition of dual H move also induce an additional condition for F'-move,

Z F,m/k o 5 lmk mS)* d; dknm { mm’Saa/(Sﬁﬂ’ if mis m-type (140)
nj,p' n - kim,a . .
nx& Inj,B'x Z J:Bx n]l’lkd (Smm,&w (Sﬂﬂr =+ Q ﬁcsmm’S(aXf)Ol’a(ﬂXf)ﬂ ) if mis g-type
where
kim,af ml,B\*~kim,af
Q" = (A7) g (141)

kim,o )* _ kzm,(axf)(ﬁ xf)
= l .

is the combination of two phase factors, and it also satisfies (2,
Inversely, if we sum over the states {m, «, 8}, the dual-H move also satisfies

Z(ﬁ’f’"”’“ﬁ )*ﬁ%im,aﬂ _ {S,m 8y Bsss if n is m-type (142)
st sinxd 7, ((Snn"sxx"s”’ + é‘]m X8 Sun S frx 5(5><f>5’) if nis g-type.

ma B

If m is g-type, and in the fermion parity-even sector for example, this projective unitary condition for dual H-move can be viewed
as the following projective map:

L[ (jkllnxé)* N N
§'¢ﬁx "1s + s« n & — i "1s ) (143)

k l k 1 k
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Chi ' x / 1 i ij i ij
Jln,xd g g
o Y| s | tg¥ec| o ¥, — x| v, | (144)

In terms of matrix form, we have

1 (;/M xé)

- 2 , (145)
len,xﬁ l
2 2

which also satisfies (1'5’)2 = P'. Relation in Eq. (133) again induces the following equivalence relation on F-move:
(ﬁklim’aﬂ NS kas)*
imk,a(§x f)\* __ Jin,(xx )8 f)"n, imk,a8\* __ (N kl \*Tki ko8 :
( Inj,B(x Xf)) - ﬁkzm “ﬂykl * (F}ilr;,ﬁ(:( ) - (A11,5) gjlln,xé(F}lnr;l ﬂlj( ) if nis g-type, (146)
( jlnxs *n,(s- f))

which is the equivalence between two F-moves with the fermion parity on the second two vertical fusion states changed. We
also have another condition for F-move,

Zd_m(Fim"’““/) pimk.ad _ d-dk”n{ S 858555 if  is m-type (147)
map WEpx T B ind ((Snn 18y 5855 + len x80m8x whxSexpw)s  if nis g-type,
where
i s = (A25) T s (148)

. . k _ k
and it qlso satisfies (Qj;”a)*. = Q% (o x 6 f)
Similarly, we can also derive H-move from F, Y, and O-moves,

Hid = mY 5 (F) 0. (149)
When m is g-type, there is also such an equivalence relation,
Hfl';";g‘xf)(ﬁxf) {jk;m aﬂHf;;"XOisﬁ, if m is g-type, (150)
and when 7 is g-type, we have another equivalence relation,
ki s * ki kil s * . .
(Hjler(‘;(if)(Sxf)) = jlln,xa(szer;sﬁ) ., if nis g-type. (151)
From Eqgs. (133) and (149), the phase factor between equivalent dual H-moves g“k"" P is related to the phase factor between
equivalent H-moves g“k'm P py
;]l;(m af Aun aAml B (é‘j]‘([im’aﬂ)*, (152)
which can be proven from Egs. an nd ¢k = { e projectively-unitary conditions of H-moves
hich be p fi Egs. (139), (146), and (149). And ]ln 0= jln x5+ The proj ly- ry condi f H-
are
Zszm’ ct'ﬂ klm txﬂ)* _ {5111"1’60(01/8/3/3’ y if m is m-type (153)
nxs i 11" x Ny (8’”’"/80‘0‘/35,3, + { " aﬁsmm'a(axf)d’(g(ﬁ Xf)ﬂ/)’ if m iS q_type '
) ) S 8+ 48557, if n is m-type
HEimeb \* ppkimeb { " ; e , 154
n%( ') Hins (8 Sy 855+ £hfy 5B Six e Bsxpy),  if mis g-type (159

which will give exactly the same conditions for F-moves Eqgs. (140) and (147).

J. Relations among the phase factors

The four phase factors S;(jlm =f E;(Jl” 5 QI;;'" “f and QL . are not independent. Consistency between the fermionic Pentagon
equation in Eq. (46) and equivalence relatlons in Eqs (34) (42) (139), and (146) give rise to many relations among the phase
factors. We will only show the following two relations here:

ki = —
" = Bt (8 (155)
= sk *
len x6 - ;ltn (Sn( ;m xn) ’ (156)

where strings s, £, and fusion state 7 can be arbitrarily chosen as long as fusion rules are satisfied in the above two equations.
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Now we show how to derive the first relation in Eq. (155). We divide the summation over ¢ in Eq. (46) into two parts: the
summation over ¢ strings that are m-type, and the summation over ¢ strings that are g-type. Then we relabel n and i by n x f
and ¢ x f in the summation that ¢ strings are g-type,

ijmae pmkn,Bx __ s(a)s(8) ijm,ap itn, fx - jkt ,nk
ZF‘IPWW Fll’qﬁé =D Z Fknt,m// Flp.v,/(y F]sq,éqﬁ
€

{m-type t}nric

L s@)s®) ijm,af itn, (0 X L)X g JKt (7% KX )
+(=D > Fiou iox o< Etps,ex jyy Fisq.o6
{g-type t}(nx f)( x f)(k x f)

_ s(a)s(8) ijm,ap pitn, ¥ x o jkt,nk
- (_1) Z Fknt,m// F}ps,l(y Flsq,8¢

{m-type t}nyrx

s(a)s(8) =i * it Yi mjkt i pijmaf pitn, gy ke ne
+ (_1) Z (“knt,m//) Qsl s Fknt,r]t/f F}pS,K]/ F}sq,&b ? (157)

{g-type t}ny«
where we note that for the summation over g-type ¢ strings, we can only change the fermion parity for even number of fusion
states for a single F-move (as the F-move should preserve fermion-parity), and only the state x, which is summed over can
compensate the fermion-parity change in FZ';'J;// Jand Fl{];’az‘ So that here x must also be replaced by « x f. The summation
Z(nx ) fex ) 18 actually equivalent to the summation ZWK (only up to changing the summation order). Comparing Eq. (157)
with Eq.(46), we obtain
ijmaf pitn,x o jkt,ne =ij * it Y mjkt i pijmaf pitn, gy okt ne
Z Fk”’a’l‘/f Flps,/cy F}S‘L‘S‘P > Z (ukm‘,m/f) QSZ s Fknt,r]l/f Flps,/(y F}sq,éqﬁ . (158)
{q-type t}ny« {q-type t}nyr

We see that Eq. (155) is a simple solution to the above equation (up to a relabelling).

Then we derive Eq. (156). When string s is q-type, we relabel ¢ and y by ¢ x f and y x f. And in order to conserve the
fermion-parity for a single F'-move, we also need to replace k by k¥ x f,

ijm,ae mkn,Bx __ 1 \s(@)s(8) ijmaf pitn,y x Jkt n(ex f)
Zqus,(Wf)(y Xf)Flpq,Be =D ZFknt,nw Flﬁs,(f(X.f)(VXf')Esq,B(qﬁX.f) ’ (159)
€ i
=ij *ijmae pmkn,Bx o 1ys(a)s(8) it *(~tj * mijmaf pitn, g x - jkt,ni
Z(“qps,qﬁy) qus,¢y Flpq,ée - ( 1) Z(“lm,l(]/) (qus,/cqﬁ) F}cnt,m// Flps,/cy E.vq,b‘d) . (160)
€ K

We see that Eq. (156) is a simple solution to the above equation (up to a relabelling).
Further, from Eqgs. (141) and (155), we have

K\ ¥ nit, vk — jkt, * Q]

(Ai‘l ) é‘slt v = (c‘ljst ’IKy) c‘kjnt,nx//’ (161)
where strings j, k, and fusion states 7 on right-hand side of the above equation can be chosen arbitrarily as long as fusion rules
are satisfied. Here we can choose the values of A;”aﬁ and §fl’m’a’3 arbitrarily as long as Eq. (161) is satisfied. And there always
exists a gauge such that all A;{j’“ﬁ = 1. In such a gauge, Ejlflim’aﬂ is determined by Z;;i”wk = (E{J’“"’" * EZ’LW.

Also, Eq. (128) reduces to Eq. (73) if string k is identified with i and [ is identified with j, which implies
A xs = Ejjm s (162)
Then from Egs. (148) and (156), we have
N * ki =i = *
(Aﬁfé) éFjlfln.,xé = c‘jtn,ﬁﬂ(:‘lfn,m) ’ (163)

where strings s, t and fusion states n on right-hand side of the above equation can be chosen arbitrarily as long as fusion rules

are satisfied. We note that if in certain example or under certain gauge we always have Ej’m M(Eflkn 4n)" = 1, we can then choose

all 1’\\{;{"““5 = 1 and all §jklin,xa =1.

K. Summary

We collect all conditions and list them below:

N/ =B/ +F/, (164)
Ny N Nj*N*
> =2 (165)
Ny, " ny,
B%ka + Frflijk BinEljk + FinB{;k
R s
" Ny 1 ny,
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Fk’l’;"xogﬂ =0when N’/ < 1or N™ < 1or N/¥ < 1orN" < 1, 0r s(er) + s(B) + s(x) + s(8) = 1 mod 2, (167)
DB +(E) 21 (168)
ij
/ (Smm"socot’(S 7y if m is m-type
SRy = T e s mype. (169
nxd ™ (5mm/8aa'8ﬁl3r + & S 8mm’8(a><f)a’8(ﬂ><f),3’) s if mis q_type
Z(Fijrfl*aﬁ,)*Fijm’aﬁ _ {5]”"’6)()(/855/, - lfn iS m—type (170)
o kin',x'6') Lkin,xs n—”((Snn/SXX/(S(;a/ + Ek’zn,xﬁnn% «pxS@xpe).  if nis q-type
dy i , «  didiny SacOpp if m is m-type
Sk gy = it O e 0 gmp emisqugpe © 17D
1xd n n nkd " (Smm/Baa/Slgﬁ« + = “tkm ﬂa(ull ) Smm’(s(o[x_f)a’a(ﬁX_f')ﬂ’), if mis q—type
dm / djdiny, | Smn Sy Sss s if n is m-type
e B Ey = o\ L o TRy
ma B Aim njnkdﬂ n, (8”" SXX/S‘S‘Y + "‘]tn én (“/m Xr]) 8"”/8()( Xf)X'8(5><f)5')’ lf nis q'type
[In Egs. (171) and (172), strings s, ¢ and fusion state 1 can be arbitrarily chosen as long as fusion rules are satisfied.]
mijmaB\* = m(><f)(/3><f) =i * =
( ;c]l ¢ ) - “kj ) (“;cjln,xé) "‘k]n XXF)EX[)? (173)
ijm,af itn, W x - jkt,nk _1\s(e)s(8) mkn,Bx ijm,o€

D ot Fipoty Flytzy = (~ DO RN R (174)

tnex €

N/dd, d?
L = d,D*,  whereD* =) L. (175)
nin; ; n;

ij

L. Hamiltonian for general 2D nonchiral topological orders

We construct the parent Hamiltonian that realizes the fixed-point wavefunctions satisfying all algebraic conditions listed in
Sec. II K as the gapped ground state. The Hamiltonian is constructed on a 2D lattice, and let us consider a honeycomb lattice for
example. It is a Hamiltonian that contains three terms,

H:-ZQU—ZDI—ZB,,, (176)
v e P

where ZU sums over all vertices, ; sums over all links, and 3 , sums over all plaquettes, as shown in Fig. 1.
The vertex term is defined in the same way as in Ref. [10], which encodes all string fusion rules. Let the Hilbert space on a
patch G be V;. We expand the Hilbert space by adding an auxiliary qubit to each vertex v,

Ve = Vo ® (®vvqubil)v (177)

where Vit is a two dimensional Hilbert space of qubit |/,), I, = 0, 1. Then in the expanded Hilbert space V", QU acts on each
vertex v and the three links connected to v as

i i =
\f‘>®1 ‘\f’>®|f N > 0,1, = s(a), 15

otherwise.

Qu

/

\

FIG. 1. A honeycomb lattice. The vertices are labeled by v, hexagons by p, and links by /.
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We see that 0, is a projector satisfying 0> = Q,. Equivalently, we can express Q, as
A i J i J
QUZZ qjﬁx(%>><qyﬁx(\\?’;>

ijka
where the states of fermionic ground state fixed-point wavefunctions Wgy automatically satisfy N,ij > 0,1, = s(«), and are
assigned with ordered Majorana numbers on vertices.
The link term D; is needed when there are g-type strings involved. D; projects the following states into vacuum if the

corresponding inner strings are g-type,
vl e
Vfix s =0, if mis g-type, (180)
k !

A~ i i .
o (o (42)) -3
k 1
i 4 J
Vi K =0, if nis g-type, (181)
k 1

A~ i x'/ 1

Dl < ’(/)ﬁx < szj ) > - C]]'can,X(s

k 1

- ' af / kim,a3 i a g . .

Dy | |¥sx . — le ek A =0, if mis g-type, (182)
k 1 k 1

where the states if bosonic part ground state fixed-point wavefunction ¥4 contain no Majorana number. Equivalently, we can
express D as
. 1 et Y S
{a-type m}ijklop k 1 k ! k 1
Ng Ve Ve
Wiy n Sx:f + | Wi s Uik s
k 1 k 1 k !
i of J i o J i o J
\I]ﬁx I\m&i + \Ijﬁx w \Ilﬁx P
X i k ! k I

where {q-type m} in the summation means that we only sum over m strings that are g-type. The attached Grassmann numbers
for the first part of the D; operator for example is derived from the equivalence relation in Eq. (126),
i j
By
\I,ﬁx ( m > > :
k 1

i i , , o’ ;
U < “,,,B >> _ (g?lz7rL,aﬁ)*92(ﬁ)9;(a)g(si(aXf)gg(BXf) Uy < ,Ef >> = (Zfl“”’aﬁ)*(—l)s(ﬁ)ﬁgeﬁ
k 1
(184)

; (179)

Tkim,a B\« s
le B) (-1) ([3)9&9@

1/ ~.
DY §(< B ) (21000050,
{a-type n}ijkixs
1

{q-type m}ijklag

oy (1) 040,

] )

(183)

k 1

And it is easy to see that D; as a projector satisfies Dlz =D.
The plaquette term I§p is also defined similarly as in Ref. [10]. It acts on the six vertices «, 8, ¥, A, i, v and six inner links
a,b,c,d,e, f of a hexagon p, and the six outer links i, j, k, [, m, n connected to the hexagon (the outer links are fixed). The

: . aa,bp,cy.dxreun, fv - .
Majorana number valued matrix element Ba’a’, BB ydi e M,’f,v,(l, J, k, 1, m, n)is defined as

0By, dAep, f o _
Bzfla/’b/(ﬁrzycl,y/eﬁé/)\llj’e/#/’f/y/ (Z,]7k,l7m7n) — \Ilﬁx (185)
The matrix B = U;IZ/{,,, where
aa,bB,cy.dreun, fv, . . _ Jit,x8 \* tfb,8y Lyrfc.xh Fen,v'e \* X fe,v'e
(uP)trS,Xﬂ(/’E (l’ J» k’ l’ m, n) - (Hfba,utﬁ) fckr,/cr] Hdls,p(p (fmsd,up ) 02’""3,6 ’ (186)

where the involved F-moves, H-moves, dual H-moves, and O-moves should satisfy the equivalence relations in
Egs. (34), (42), (69), (127), (129), (150), and (151) when certain strings are g-type.

Then we argue that our constructed Hamiltonian in Eq. (176) is a commuting-projector Hamiltonian. First, in Ref. [10], it
has been shown that Qv commutes with f?p. Next, the link term D, automatically commutes with Qv as long as the states that D,
projects onto satisfy all string fusion rules, which is exactly the case. Then the link term D; automatically commutes with B p as
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along as the involved F-moves, H-moves, dual H-moves, and O-moves satisfy their corresponding equivalence relations when

certain strings are q-type, which is also the case.

III. TOPOLOGICAL INVARIANT PARTITION FUNCTION

A. Partition function and spin structure

Based on the above algebraic relations, we can construct the following topological invariant partition function [22] for an

arbitrary triangulation of 3D spin manifold M,

= Y 1Y / IR [T T (@™

ijklmn...afxs... hnk face

where D? = Y. d?/n; is the total quantum dimension and
N, is the total number of vertices for a given triangulation.
We evaluate the Grassmann integral on all interior faces,
where we choose that @ always comes before d6. g,g{;;’ i
the ordering-independent Grassmann valued G-symbol and

Oijmkin = = is the orientation of the tetrahedron,

ijm,aB\t s@)aSB) SO 75X i jm o
(Gmef)™ = 0y 0,7859, " Gomst (188)

ijm,a s s S(B)75(@) (i jm,a
(gk;nxéﬂ) 9 (X)e (5)9 97 (ijln,xf) ° (189)

The G-symbol is actually the dual representation of the orig-

inal F-symbol, as shown in Fig. 2, and G;{’l;”;f is related to
F-symbol via

ijmoap Nphy ijm,apf
kln,x8 — ‘/ dnd,7ll;}<ln.x5 . (190)

Specifically, [T, (—1)*® is the spin structure term. We in-
clude this spin structure term such that the partition function is
invariant under all Pachner moves [22], i.e., retriangulations.
Mathematically, the fermionic partition function can only be
defined on a spin manifold, i.e., a manifold that admits spin
structures. It is known that an oriented manifold M admits
spin structures if and only if its second Stiefel-Whitney class
[w?] € H*(M, Z5) vanishes. We denote the Poincare dual of
®? to be w; in 241D, which is a set of some 1-simplices.
Therefore, the requirement that »? vanishes (being a cobound-
ary) is equivalent to w; being the boundary of some surface
E: 0FE = w,. Different choices of E correspond to different
admitted choices of spin structures 1, where E is the Poincare
dual of the 1-cochain n € C'(M, Z,). In Ref. [22], the spin
structure term is expressed as ]_[ (=)™ where m(i) is a
7., function defined on link i sat1sfy1ng s(a) =m(i) +m(j)+

D n

FIG. 2. The graphical representation of the G-symbol is actually
a dual representation of the F-symbol.

(187)

tetrahedron

(

m(k) (mod 2). And w; are certain links given as

w; = {all 1-simplices} + {(02) in any + tetrahedron (0123)}
+ {(13) in any — tetrahedron (0123)}
= {all 1-simplices} + {(02) in any 2-simplex}

+ {(03) in any 3-simplex]}, (191)

where we have relabelled the vertices A, B, C, D in Fig. 2 by
0,1,2,3, and the two expressions of w; are equivalent as shown
in Ref. [23]. And both expressions are further equivalent to
our spin structure term [[(—1)*®). It is known that all ori-
ented 3D manifolds admit spin structures. The E surfaces for
all eight time ordered 2-3 moves are listed in Ref. [24].

B. 2-3 moves

In 241D, the first type of Pachner move is the 2—3 move.
There are in total eight 2-3 moves that can be induced by a
time ordering. The standard 2-3 move is given by

> [ s (g
€

=" [ a6;ap)" a0, P, a6, b,
tnox

d .. o
x n_i( /lcizrz‘rf;]adJﬂ) (g;;::%) (g/vqu gg) )

ijm,oe ) - (gmkn,ﬂx ) -

qps.y Ipq.de

s(k)

(192)

where the spin structure term is trivial for the standard 2-3
move, i.e., [[;(—1)*@ = 1. After integrating out the Grass-
mann numbers and comparing the rest Grassmann numbers

i

FIG. 3. Graphical representation of the standard 2-3 move for
G-symbol, or the fermionic Pentagon relation for F-symbol.
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on both sides, this equation is reduced to

ijm,ae ~mkn,fx __ s(at)s(8) t ~ijmaf ~itn, W x ~jkt,nk
St = ey dgparie
€

in Fig. 3.

knt,ny “lps,ky ~1sq,8¢°
ik

(193)
|

The other seven 2-3 moves

ijm,af\* ~mkn,Bx __ _1\s(a)s(8) s ijm,ae \* ~itn, ¥y ~jkt,nk
> (Glreny'G = (-1 » - (G ) Gy G

induced by time-ordering are

ZG"’”’X Gkt _ Z (—1)@n® dm (GLimapy* Glimae Gin b
K nlﬂ

Ipg,é¢€ °

Ips.ky ~lsq,8¢ knt .y qps.dy

mafe

knt 0y Ipq,be qps.9y Ips,ky

B spy«

s

qps,¢y lsq,8¢ knt,nyr Ips,ky

lsq,6¢°

Ipg,8e

Z(Gijm,ae)*ijt,nK — (_l)s(a)s(é) Z i_ﬂ(Gijm,aﬁ)*(Gitn,xpx)*Gmkn,ﬁx

¢

Gm n,Bx (Gztn 1//)()* — (_l)v(a)r(é)nj Gljm otﬂGj 1,nK (thm o€
X

nypx "

ijmap ~itn, Yy s(a)s(8) “q ~ijm,ae ~mkn,Bx Jkt,nk\*
z :ka,m/rGlpx,Ky - : :(_1) n_qupS,¢J/Glpq,56 (Glsq.5¢)
v

qedd

y . d. . )
ijm,aB ~jkt.ne __ s(a)s(8) D ~ijm,ae ~mkn,Bx ( ~itn, iy *
Zka,anlsq,Saﬁ =D Zn_qus,rbyGIpq,ée (Glps,w) ’
n

pyex P

Ipq,d€ Ips,ky . knt.ny Y lsq,5¢
Jjang J
knt . nyr

Ips,ky Ipq,8€

qps,9y

)

Isq,8¢

’ | o |
ijm,o€ \¥ ~itn,yx s(a)s k ¢ ~ijm,af\* ~mkn,B Kt iy
2 (Giegy) Gy = 2D (Gl) G (Gragsa)

14

kpén

as shown graphically in Fig. 4. Below we will show how to derive these seven 2-3 moves.

C. The additional relations among projective phase factors

which is exactly the same as Eq. (174), as shown graphically

(194)

(195)

(196)

197)

(198)

(199)

(200)

Since the G-move and F-move are related through Eq. (190), we can rewrite the four projective unitary conditions in
Egs. (26), (36), (140), and (147) in terms of G-move as

Zdndm G B (Gijm,aﬂ)* _ {(Smm,SW,Sﬁﬁ/, ) if m is m-type 201
gm0 RO - (Bt aar S + B S Stax pacdipxpopr) s 1 mis g-type
Zdndm (Gijm,aﬁ )*Gijm,aﬂ — {5"”’5)()(’855” B ifnis m-type (202)
oy nphy, k', x'8 kin, x3 % (87!’1'8XX’855’ + E;c]ln,xéS""’S(X Xf)xra((gxf)gr) , ifnis q-type ’
Zdndm Gim'k,ut/s (Gimk,aé)* o {Smm’aaa'sﬁﬂ’a if mis m-type (203)
- nr . = k N . . b
— Rl Inj,p'x \Minj,Bx an (5mm’5aa/3ﬁﬂ/ + Qj;m aﬁamm’a(ax_}")a’a(ﬁ><f)/3/)’ if m is g-type
Al | ik s’ \* ~imk. SO v 855 if n is m-type
Glm[ o ) Glm(,ot — XX ’ . . . . 204
m%nn - (G, J.Bx ) Inj,Bx t(sm,sm/aaa, + Q{;;Haam,g(xXf)x/g(axf)a,), if n is g-type (204)
[
Consistency between the fermionic Pentagon equation in . A '
Eq. (193) and four projective unitary conditions in Egs. (201)— G;;"jk((/;”: f)))‘? = Q’J‘.;m'aﬁ G;Z’Jkg)‘z, if m is g-type, (207)
(204) (all in terms of G-move) can induce many relations ‘ . ' .
among the phase factors. Here we only focus on the relations (G;Tf:&ig) = Q’;;n X8 (G;’n”jkg)‘? )*, if nis g-type. (208)
that are required to fully construct the fermionic partition 3 - '
function in Eq. (187). In addition to the four phase factors E;{Jlm‘aﬂ , B, 5 Q];;'"’D”S

The above four projective unitary conditions induce the
following four equivalence relations for G-move:

ijm,(axf)Bxf) _ mijmap ~ijm,ap
G = giimebg

Kin. x5 K.y > if m is g-type,  (205)

ijm,af *_ o ijmapy* . .
(len,()( x )8 xf)) = “kin,x8 (len,)(ﬁ ) . ifnis q_typ?’206)

and Q’;;n s We defined above, we need to define a new phase
factor AZ’/ % o construct the topological invariant partition
function, as the following:

Gi.fmq(axf)ﬂ _ Amji,oaSGijm,ozﬂ

Kin,x(8xf) — Sl kinys» 1T [18 q-type, (209)

which corresponds to the changing of fermion parity on two

diagonal fusion states o and 8, and the phase factor AZ’/ hod
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FIG. 4. All possible time ordered 2—-3 move for G-symbol.

can be explicitly constructed through a sequence of F-move and O-moves, as introduced in Appendix C.

To derive the rest seven 2-3 moves induced by time-ordering, i.e., to fully establish the topological invariance of partition

function, the following four relations on phase factors are required (see full details in Appendix D):

Eij — Qm't,w/c Ejkt,nk
knt . nyr sl ls ’
E;/;n,ae — E;’(j;lm,aﬂ(Azl;m,ﬂe)*’
(Elhr)” = (Esgy) Ut
(Qgp,ey)* = Q%),xs( ?l[p,xy)*‘

(210)
211)
212)

(213)

All above relations can be obtained as simple solutions by comparing the fermionic Pentagon equation in Eq. (193) with
the equivalence relations in Eqgs. (205)—(209). Equation (210) and (212) are derived in Sec. I1J. We can obtain the rest of the

relations in Egs. (211) and (213) in a similar manner.

D. 1-4 moves

The second type of Pachner move is the 1-4 move. There are three different 1-4 moves induced by a global time ordering,

y 1 ddsdid) _simap -
ijmoae o 1ys(e)s(8) nCt Okl ijm,aB ~itn, gy ( ~mkn,Bx \* ~jkt,nk
qus,q‘)y =D Dzz Z My T Gknt,wGlps-Ky (Glpqﬁe ) stq,&p’
ntkl By xx$

Gmkn,ﬂx = (- l)s(a)s(,g)iz Z didjdtds Gijm,aﬁ (Gijm,ae )*Gim,wx ijt,r]i(
D2

Ipq,d€ 4 ninnng knt,ny qps,py Ips,ky ~lsq,8¢°
ijts anyoky

Ips,cy qps,¢y ~lpq.de Isq,8¢

Gitn,llfx — (_l)s(a)s(S)LzZ Z dmdjdkdq (Gijm,aﬂ)*GileﬂG Gmkn,ﬂx (ijt,r//c)*.
D .

knt,nyr
n,Ningn
mjkqapneps mltjIkg
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Combining all the 2-3 moves in Egs. (193)—-(200) and all
the 1-4 moves in Egs. (214)—(216), the following relations can
be derived:

dedidy
> S (G Giys =D @17)
ki kM iy
JmaBy
did;d, , ;i
> S (Gt) Gy =D @18)
A. ninjny,
ijnoyd
dididyy iimas: imapns
D G (Ginys) =D, (219)
: i Ny
ilmafs
dididy imass imapne
D Gy Gils) =D (220)
kM Nny
kinBxs

For example, we show how to derive Eq. (217) by comparing
Eq. (193) with Eq. (214). We multiply by (G"™*"£*y* and sum

Ipg,d€
over [, k, n, B, x, é on both sides of Eq. (193),

ijm, ote
Z qus ¢J/

€, lknBxd

mkn,ﬁ)( * ~mkn,Bx
lpq,ée ) Glpq,&e

d
_ s(ot)s(8) t ~ijmaf ~itn, gy ( ~mkn,px Jjkt, i
- (_1) Z tGknt mbGlps Ky (Glpq,ée ) G
v, lknBxs

(221)

We see that the difference between Eqs. (193) and (214) can
be exactly compensated by Eq. (217) up to a relabelling on
indices.

Equations (217)—(220) together with the projective unitary
conditions in Egs. (201)-(204) further imply

ZNkl’jdldj :de2

nin;
ij e

(222)

which is exactly Eq. (175). For example, we show how to
derive Eq. (222) from Egs. (217) and (202) in two cases
below:

(1) If n is m-type, replacing >
1 into Eq. (217), we obtain

A
e ngnjd, ’

dydy ¢ ijm B ijmaB
mof ;;,,,x(len,sz) kin,x8 —

(223)

where ) ,, only counts the number of possible states of x and
can be replaced by Ni*. We find it is exactly Eq. (222) up to a
relabelling on indices. -

(2) If n is q-type, replacing 3, , % p ;(fl':;‘f )* ;{fl’:;‘f =

ni into Eq. (217), it becomes the same equation as above. So
that we can again obtain Eq. (222).

IV. EXAMPLES

In this section, we derive all equivalence relations and F'-
moves for all following examples, as listed in Appendix B 4.

J

z : ijm', 01;3
Fkln X6

nys

Um af\* Smm'aawgﬁﬂ/’
kln L X6 ) -

lsq,6¢ °

%(Smm’saa’gﬂﬂ’ + 8mm’8(a ><f)oz’8(,3 x B )7

We write down the explicit expressions of the phase factors

mijmap  —=ij kim,aff __ H” —~stm,np\x ki
S Skingyse sz = B na (B )*, and Q]ln x5 —

’“]’m an(ﬁnn «n)" in Appendix B5. We note that we did
ij.of

not choose the gauge such that all A" =1 as illus-
trated in Sec. IIJ. But we choose the gauge such that all

H;lzn sn(ﬁzm ) =1, and then. all Kij’“ﬁ = landall Z:j]'(lil,)(fs =
1. We verify that all F-moves in each example exactly satisfy
the corresponding four projective unitary condition, as well as

the fermionic Pentagon equation.

A. Fermionic topological order SO(3)s/¢¥

In the fermionic topological phase SO(3)¢/v, we have two
strings {1, s}, where 1 is the vacuum string, and s is an m-type
string. The quantum dimensions are given by

di=1, dy=1++2. (224)
The fusion rules are given by
Ixs=sx1=s, sxs=1+C!yg, (225)

where we use the notation C5I~ to denote the number of
bosonic and fermionic fusion state for a given fusion space
V4 The fusion rules written as fusion tensors are

Bl' =B =B' =B} =B"=F" =1, (226)
and all other fusion tensors are zero.

Since the fermionic theory SO(3)s/v only contains m-
type strings, and the dimension of endomorphism for m-type
strings n; = 1. We list all F-moves of SO(3)¢/v¥ in Ap-
pendix B 6.

B. Majorana toric code

In the Majorana toric code, we have two string types {1, o},
where 1 is the vacuum string, o is a g-type Majorana string.
The quantum dimensions are given by

di=1, d, =+2. (227)
The fusion rules are given by
Ixo=0x1=Clllo, o xo=C!], (228)

written in fusion tensors as

11 1 1 1 1
B, =B’ =B =B =F°=F’" =F°=1, (229)
and all other fusion tensors are zero.

The four projective unitary conditions for Majorana toric
code are

if m is m-type
e , (230)
if m is g-type
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Z(Fij,tq,a,ﬁ/)*Fijm,aﬂ _ {fnn/SXX/&ss/, . ?fn ?s m-type
~ kin',x’8 kin,xé 5(8""/8)()(,856, + @ﬁ? 5nn’5(xxf)x’5(5xf)5’)a if nis g-type
o _ )1, ifiis m-type )L, ifs(8) =0
where ©; = {i, if iis qtype 4 Te = { ifs(8)=1 " (231)

Zﬂ Fim’k,a/S(Fimk,wS)* _ djdny, {&nm"saa"sﬂﬂ” if m is m-type
por Inj,p'x Inj,Bx njnkdm %(&nm’aaa’gﬁﬁ/ =+ @;;’ (Smm/g(axf)a/(s(ﬁ x_f')ﬁ’)» if mis q-type
Zd—m(Fim’F*“‘sl)*Fi”?k’“‘s _ djdn, {8,1,1/8”«855/, if n is m-type (232)
L IR IIE gy | 5 B8y + S BBy ), i mis q-type

We list all F-moves of Majorana toric code in Appendix B 7b. We have checked numerically that the F-moves satisfy all
above projective unitary conditions.

C. Fermionic topological order %Eﬁ /v

In the fermionic topological phase %Eﬁ /¥, we have two string types {1, x}, where 1 is the vacuum string, and x is a g-type
Majorana string.
The quantum dimensions are given by

di=1, d =1++3. (233)
The fusion rules are given by
Ixx=xx1=Cly, xxx=CU1 4 C>y, (234)
written in fusion tensors as
Bl'=B=B!'=B}"=F"=F"=F“=1, Bf=F"=2, (235)

where all other fusion tensors vanish. We note that nontrivially B{* = 2, i.e., we have two bosonic fusion states if we fuse two x
and again obtain x. We denote the two bosonic fusion states as “1”” and “2” respectively.

By fermion condensation, invoking the F-symbols in the bosonic %Eﬁ theory in a certain gauge in Eqgs. (B66)-(B71) in
Appendix B, the equivalence relations Eq. ( (B12)), (B16), (B18), (B22), and (B25) have the forms

i@ B _ F,(’;T;(”;ﬁ, ) if m is g-type and BJ"™* = 1 (236)

kin, x3 (—O'y)g(/gxf)g(ﬁ)F];l]}Zl)’(agﬂ, if m is g-type and B;”k =2’

T ijm, ﬂ * . . 1

(Fijm,aﬂ )* _ ®ff (F‘kllj:.l;; ) ’ ifnis q_type and B;ﬂ =1 (237)

. ii * . . i ’

kln,(x < f)(8xf) (Gx)B(szf)B(a)(F]:lj,fﬁgﬂ) . ifnis gq-type and B;n -2

i " ﬁ . . _
OB _ {OZJ ab ) if k is g-type and B;’ =1 ' (238)
(—0y)(@x By (0B prsp O P, if kis g-type and By =2

Our notation of Pauli matrices appear whenever a changing of fermion-parity alters the bosonic states in any equivalence
relation. If a Pauli matrix o;, where i = x, y, corresponds to a fusion state «, then the rows represent B(o x f) is 1 or 2, and
columns of o; represent the values of B(a) is 1 or 2. And we use (0;)p(x f)B() t0 represent the entry of o; in row B(a x f) and
column B(«), which is simply a phase factor. For example, the notation (—0o,)p(sx r)(s) in Eq. (236) represents the phase factor

i, ifB(Bx f)=1,B(B)=2
(o)< gy = y —i» ITBBx f)=2,B(B)=1. (239)
0, otherwise

And the notation (0, )gsx s)a(s) in Eq. (237) represents

—_

, ifBéx f)=1,B(§)=2
, if B x f)=2,B() =1. (240)
0, otherwise

—_

(o, )B(E x f)B(8) =
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Taking the gauge choice Eq. (77) on the involved O-move in Eq. (133),

ml, 3
ortexn _ 195
j

Ty grkim,ap
© i Hjinys

Jin, 36 rykim,o
(Gx )B(Ot Xf)B(a)Hjln,x5 ’

Jin.(xxf)(Ex f)

‘ y
(=0y)Besx ) (—0y)Bx ) O]

Iy rykim,ap
Fkim@x B f) _ O (=0y)Bpx By H 1y s

(—0y)B(Bx )B(B) (Ox)B(ax f)B(e)

(ﬁkim,aﬂ )* — ( )*, if nis q-type .

if j is g-type and BTI =1
if j is g-type and B;"l =2’

if mis g-type, By" = 1, B} =1
if mis g-type, B = 1, B} =2
if mis g-type, B =2, B! =1’
ifm is g-type, BY" =2, B7' =2

(241)

(242)

(243)

By Eq. (133), we replace the dual H-move in Eq. (242) by F-move, which will also bring a phase factor from equivalent
O-moves in Eq. (241). We should also note that when two such matrices multiply together, we are not doing matrix multiplication,
but we should multiply by each entry. For example, (—0,)p(sx £)8(8)(—0y)B(8x £)B(8) = (—0x)B(BX /)BB)-

We obtain the four projective unitary conditions for fermionic topological order %Eé YAUR

B B (Smm’ 8aa’3ﬂﬂ” if mis m—type
D RSP (EIEY = 1 3 SuarSpp 4 S S pror Sepx ) if mis g-typeand B/ =1, (244)
nx8 5 B Sae 8 + (=03 VBB 1188 Smm St prar S ) if mis g-type and Bj** =2
B Sy y 855 if n is m-type
D (Fr b Fe? = 3 5 (S8 + O Suni prarSis prs): if n is q-type and B = 1
mafp %(8;111’8)()(’888’ + (0)BEx f)BE)Onn O x )y Osx fys)s il mis g-type and By = 2
~_J1, if i is m-type )L, ifs(8) =0
where © i = {i, if i is g-type and T's = {, ifs()=1" (245)
d'l im'k,o'§ imk, o8\ *
Zn_l;}nj-ﬁ’x (Flnj,ﬂx )
nxd n
5mm’ Saa’aﬂﬂ’ ’ if mis m-type
d d n %(amm’gawsﬁﬂ’ + ®F?5mm’8(ot><f)a’8(ﬂxf)ﬁ’), if m is q-type, B;(m = 1, B;"l =1
iUk . . i
= # 2 By Saar Spp + O 47 (03)B(Bx )BB)Smm Swx 1o 8(px 1)p): if m is g-type, B@m =1, B’}” =2 (246)
Tk Cm %(8mm/8aa’8ﬂﬁ’ + (0)Bax f)B@)Omm S(ax fla' 8B x )8 )» if m is g-type, B}Fm =2, B;”l =
%(Smm'(saa'a,sﬁ’ + (03)BBx £)B(B) (0% )B(ax )B@)Omm Swx prardpx i), if m1is g-type, B{" =2, B’}” =
Z% (Fimlf,aﬁ')*Fim‘k,azS — djdkn” 87‘[}1/8)()(’855’7 ifnis m'type (247)
Ly PP 5 Bun Sy x 855 + Suw Sy prySsxpy),  if mis g-type
We list all F-moves of 1E¢/y in Appendix B8b. We The quantum dimensions are given by
have checked numerically that the F'-moves satisfies all above JIN
projective unitary conditions. di=1, dy =~2N. (249)
The fusion rules are given by
. . . t,
D. Fermionic topological order TYZZN/lﬁN dxhe (C(I—L%J)\ et | la+ bly.
TYtZ”;v /¥y is the Tambara-Yamagami category after con-
densing the fermion vy, with symmetric nondegenerate axo=0xa=C'"s, o xo= Z c'a, (250

bicharacter of type # (1 <t < 2N — 1 and ged(7, 2N) = 1),
Xt(a’ b) — eZnimb/(ZN)’ (248)

and s is the Frobenius-Schur indicator. The fusion category
TYtZ’f; /¥y is a generalization of the Majorana toric code,
i.e., the Majorana toric code is the special case N =1 in
TYS /Y.

TYIZ‘” /Wy has string types Zy U {0}, where o is a g-type
string, Zy = {0, 1, ..., N — 1} are labels of m-type strings.

245120-26

acZy

a+b
N

Fe . =0, ifa+b<N,

Wy, =1 ifa+b>=N,

=B(1r(r :Fal(r — Fazrl — Fl(r(r — 1,

. In fusion tensors,

where we define [a + b]y = (a + b) (mod N), and L“Nihj
means taking the integer part of

251)
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where all other fusion tensors vanish.

We only consider N to be odd here. The four projective
unitary conditions for TYTZ"Z‘N /Wy are

Bmm’ 8aa’8ﬂﬁ’ ’ if mis m-type
S B P(FITPY = 1 5 G SaarSpp + SmmSian parSipx g if m, k are g-type, and / is m-type, (252)
nxs 3 B Saa 8 + (=1 S S pra8pxpypr),  if m, I are q-type, and k is m-type

where we note that in the third case, m, [ are g-type and k is m-type, which means that m, [ are the o string and k € Zy. So that

in the phase factor (—1), k just takes value in Zy.
(Snn’(sxx’(S(S&/ P

ijmaf \* pijmoaf
Z(Fkln’,x/é’) Fkln,x& -

where © ; = {1, if i is m-type

i, ifiisq-type

%((Snn’ax)(’séﬁ’ + (_l)i(snn’(s(x xf)x’a(éxf)é’)v

mofp %(311)1’8)()(’568’ + (_ 1 )l®;f6nn’8(x xf)x’(s(éxf)é’)v

if n is m-type
if n, [ are g-type, and i is m-type
if n, i are g-type, and / is m-type

where similarly in the second case i € Zy, while in the third case [ € Zy.

dy .
2 i (i)
nx

(Smm’aaa’sﬁﬂ’ )

ddgny, i
= K %(8mm’8aa’8ﬂﬂ’ + (_1)+18

nnidp

d imk,ad’ imk,a8
Zn (Fln/ﬁx) Fln/ﬁx -
maf

We list all F-moves of TY7;” /4y in Appendix B9b.

njnkdn

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we obtain a hopefully complete classi-
fication of all 2D nonchiral fermionic topological orders
characterized by a set of tensors (N, ” F,{’IJ,:"X";’S  ng, di),
which satisfy a set of nonlinear algebraic equatlons parameter-
ized by phase factors 8", &, 5 Qk;m P and Q4 ;. By
considering the consistency between the fermlomc Pentagon

equation and the four projective unitary conditions, we get

. - - kim,
more relations for the phase factors u;{ll’n b u;clln o0 j;m ap
ki m]i,aS . .
Q Jin. x50 A/, from which we can define a topological in-

variant partition function for arbitrary 3-manifold with a spin
structure. Finally, we also discussed four examples, which
satisfy all algebraic conditions.

For future study, it would also be very interesting to gener-
alize the construction in Refs. [25] and [26] for 2D nonchiral
fermionic symmetry-enriched topological (fSET) phases, in-
cluding those anomalous 2D fermionic SET states [27-32],
which can only exist on the surface of some 3D fermionic
symmetry-protected (fSPT) phases. We believe that the g-type
strings, or called Majorana-type strings, are very likely to
characterize the anomaly of 3D fSPT phases with Kitaev-
chain decoration [33]. Moreover, it will also be very inter-
esting to understand the generic algebraic structure [34-36]
of fSET phases from equivalence class of symmetric fLU
transformations.

5 B Saa 8 + (= 1) S S prar8(px 1)

1 Ip1m’5(aXf)a’5(B><f)/3’)v

5 (B + (=1 O 8 Sax prarSisx 18)

5 (B Saar 85 + (= 1! O S S pror Sis )
djdknn {5,,,1/3)“('553/ .

%(&m/(sxx’&%’ + (Snn"s(x xf')x’a(ﬁxf)ﬁ’)’

1, ifs(s) =0
and 'y = {*’ ifs(8) =1’ (253)
if m is m-type
if m, k, [ are g-type, and i, j are m-type
if m, j, k are g-type, and i, [ are m-type | (254)
if m, i, [ are g-type, and j, k are m-type
ifm, i, j are g-type, and k, [ are m-type
if n is m-type
niST-LP (255)

if nis g-type
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APPENDIX A: SUPER FUSION CATEGORY

This section is a review on some basic concepts about super
fusion categories [12,37,38]. In the point of view of category
theory, the string types are the simple objects in a super
fusion category, or more precisely, a super pivotal category
S, where the “pivotal” structure is covered by the H-move we
defined in the fermionic string-net model. The super pivotal
category only covers 2D fermionic topological orders that can
be obtained from fermion condensation. We believe that our
approach from fixed-point wavefunction realizes more general
fermionic topological than super pivotal category.

The number n; we introduced in the general fermionic
string-net model is actually the dimension of endomorphism
of the string

n; := dim End(i). (A1)

Explicitly, the string types are further divided into m-type
strings and g-type strings:
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1 J k
ey
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m
l

FIG. 5. The fusion space of fusing three strings i, j, k into /.

(1) A string i is an m-type string if

End(i) = C, (A2)

where End(i) is the endomorphism algebra of string i
(maps from string i to itself), and the dimension of it is
dim(End(i)) = 1. It means that the map from an m-type string
to itself is one dimensional.

(2) A string i is a g-type string if

End(i) = CI,, (A3)

where dim End(i) = 2. The first complex Clifford algebra is
Cl, = {1, y}, where 1 is the parity-even generator and y is
the parity-odd generator.

1. The modified fusion space

In fermionic case, the fusion space Vki /is different from the
super vector space Afg appearing in the fusion rule (while in
bosonic case, Vki*i = A;{j ):

(1) The super vector space Af(j is defined as the space of
fusion coefficients in the string fusion rule

i®j= @A) -k (A4)
k

where the fusion outcome is generally a composite object,
which can be written in the from of multiplying an object with
a super vector space.

(2) The fusion space Vk” is defined as the vector space of
morphisms fromkto i @ j,

Vkij =mor(k > i ® j)

= AY @ mor(k — k) = A} ® End(k), (A5)

and therefore the dimension of the super vector space A;{j is
given by

y . i
i = dim(af) = g

"~ dim End(k)’ (A6)

where N,ij = dim(Vkij ) is the dimension of the fusion space.

2. The modified tensor product
In larger fusion spaces involving more strings, the tensor
product should also be modified. For example, we consider
the fusion space Vl”k in Fig. 5. In bosonic case, we have

m

However, in fermionic case, the two fusion spaces on two
sides are not isomorphic. Explicitly,
Vlijk =mor(!l > i® j®k)
= @AY @ mor(l > mQk)

m

= oAY @ AT ® End(l), (A8)

and
oV ® V" = &(AY ® End(m)) ® (A" ® End(1))

m

= @AY @ AT ® End(m) ® End(l). (A9)

Therefore in fermionic case the fusion space Vlij * should
be decomposed as

Vi = @V @pnagm V)™ = @V ® V™ \End(m), (A10)

where ®gnq(m) 1s the relative tensor product, which is just the
original tensor product modulo out the equivalence relations
induced by End(m).

The support dimension of V,” Kis

it NN
dim(V/*) =) —2 L All
im(V;”) Zm:dim End(m) (AlD)
3. F-move
We define the F-move as
F,ijk : ?Vf" ®kndny V;/* — EYEV,,? ®Endm) V"™, (A12)
where the support dimensions on two sides are equal,
NN N/"NJ*

Ny NN

dim End(m) dim End(n)

m n

4. Quantum dimensions

We define the quantum dimension d; of a string i as the
largest eigenvalue of the fusion matrix 7;, where 7; = (nij :
j,keS8) and n,’;j = dim(A;;j). We define the vector |w) =
>";dili) as the common eigenvector of 7;, such that

Milw) = dj|o), (Al4)

where |i) is the Dirac notation of string type i. Specially, if i
is a g-type string, we have |i)(i|j) = %8,-_,~|i), where |i)(i] is a
projective operator: when it acts on [i), it only maps to half of
the initial state due to the equivalence relations generated by
End(i):

where we consider the simplest strings in parity-even sector
with up to two fermions. For strings with more fermions, we
can also divide all the configurations into two sets, and pair
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one element from each set by the above equivalence relation.
This can be concluded as

o
(ili) = dland(l) (A15)

Remark: The string state i here is not the fixed point wave-
function state as above.

The total quantum dimension is defined as the inner prod-
uct of the common eigenvector,

= (w|w) = Zd2 i)y =

d?
Z— (A16)
dim End(7)

From relation in Eq. (A13), we can derive a general for-
mula for quantum dimensions,

NiNp™
Z dim End(m)dim End(]) )

NmN]k
- Z dim End(n)dim End() @)

NQ{U}"'“ Jjk
%:dim End(m) @ Z"’ M ),
Ml e

Nl 55 ).
" dim End(m) il

Nild,
did; = _ Al7
/ Xm: dim End(m) ( )

APPENDIX B: FERMION CONDENSATION

Anyon condensation is a systematic approach to con-
struct new topological orders from old ones [39-42]. In the
fermionic system, there is an analogous fermion condensa-
tion to obtain fermionic topological orders from a bosonic
one [12-14].

In this Appendix, we will discuss one version of fermion
condensation that produces a super fusion category (discussed
in Appendix A) from a fusion category if there is an object
that is promoted to a fermion in the Drinfeld center of the
fusion category. We will use this scheme to produce several
super fusion categories. We have checked that they all satisfy
the conditions summarized in Sec. Il K, although the solutions
of which are assumed to be more general than super fusion
categories.

1. Fermion Condensation Scheme

The easiest way to understand fermion condensation is
from the string diagram. We assume that there is a special
object y in the fusion category C that is promoted to a fermion
(v, By) [By(x) is the half braiding of y with respect to x] in the
Drinfeld center Z(C) of C. We will denote the fermion string
y by red color in the string diagram.

In the construction of super fusion category from a fusion
category C, we need only the half braiding of y with other
objects. The string diagram for other objects are still planer.
We assume that y in C is lifted to a fermion (y, By) in the
Drinfeld center Z(C). Therefore, a self-twist of y will give
us a minus fermion sign. The braiding of y should satisfy the
naturality condition

for Va, b, c. (B1)

/N XN

It implies that we can move the red y string freely under any
vertex (morphism) of the diagram.

Since y> = y ® y = 1, the fusion of y with the simple ob-
jects in C gives us an involution. Since y is condensed, a and
y® a € C should be identified in the super fusion category
C/y. So the simple objects of C/y consist of the orbits of
this action. We will denote the representative object of the
orbit of a as [a], which can be viewed as an object in C/y. If
y®a = a €C, then [a] is a g-type object in C/y. Otherwise,
[a] is m-type in C/y.

On the other hand, the hom space of C/y is defined to be

Home/y([al, [b]) := Home([al, [b]) ® Home([al, y ® [DD),
(B2)

which is a direct sum of bosonic and fermionic fusion spaces.
On the right-hand side of the equation, [a] is understood as
the representative object of the y-fusion-action orbit in C.
Graphically, the fermionic fusion space (with a black dot on
the vertex) of Homey([a], [b]) in C/y is defined to be the
bosonic fusion space Hom¢ ([a], y ® []) in C as, for example,

(B3)

where the red string y is fused from left to the vertex in
C by convention. The condensed red string of y should be
understood as under all other strings in the diagram. It is
paired up with another red string at the left infinity, such that
the total diagram is fermion even. The examples we consider
in this paper all have trivial Frobenius-Schur indicator for the
fermion string: s, = 1. For simplicity, we assume that the
straight y string from leftmost to a vertex can be regularized
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arbitrarily near the vertex,

b b b
y~| :y/‘ :y\‘- (B4)

So the notion of horizontal red line makes sense in the string
diagram.

In such way, we construct both objects and morphisms of
the super fusion category C/y from the fusion category C.
This procedure is called fermion condensation. Every string
diagram of C/y should be understood as a diagram of C with
black dots replaced by red strings using the rule Eq. (B3). In
particular, the F move of C/y can be derived from the F move
of the fusion category C.

2. F-move in fermion condensation

For the fermion condensation part, we use a notation of
F-move differ from Eq. (23) in our fixed-point wavefunction
approach. In the fermionic theory, the F-move is denoted as

[ J

ijkim,«
< =S ]n,xf\%/' (B5)
l nxd [

While in the bosonic theory before fermion condensation, a
bosonic F-move is denoted in blue color,

i)

) .
B =S ]ggﬂ\%/. (B6)
[ !

So that if we take the notation Ffj “or FIU ¥ itis in general
a matrix.

3. From bosonic to fermionic pentagon equation

In the former section, we have discussed how to obtain a
new category C/y from a fusion category C. We have to show
that the C/y is indeed a super fusion category. In particular,
the new F move should satisfy the super (fermionic) pentagon
equation, which was first proposed in Ref. [10]. Compared to
the bosonic counterpart, there is an additional fermion sign in
the super pentagon equation.

The super pentagon equation is derived by replacing all the
fermionic vertex Hom states (represented by black dots) by
red strings of fermions going into left infinity under all other

strings. For instance, a diagram with four dots is understood
as

= , B7)

where the right-hand diagram is a bosonic one for C. The four
red fermion strings are paired up from top to bottom.

The string diagrams of a fermionic pentagon equation of
C/y can be also expressed as diagrams of C. There are possibly
red fermion strings going from a vertex to the left, if the fusion
space of the super fusion category is fermionic. If we switch
the order (height) of two vertices, which are both fermionic,
there is a fermion sign

(B8)

In general, this fermion sign of the above move is (—1)*@5@)
Now the super pentagon equation of the super fusion category
is in fact a hexagon equation,

(B9)

where the bottom move is the fermion sign move shown in
Eq. (B8). Therefore, we show that the condensed theory /y
satisfies the super pentagon equation Eq. (46), which is first
derived in Ref. [10].

4. Equivalence relations

In doing fermion condensation, we set all transformations
related to adding and removing vertices, e.g., O-move and Y -
move, to be normalized as 1,which will cause no harm as the
number of vertices is invariant for the initial and final state in
any fermion condensation step.

Now we derive the equivalence relations in our fixed-point
wavefunction approach (so that we need to put back the no-
tation V). From our fermion condensation convention, if m
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is g-type, the two equivalent states in Egs. (9) and (10) are
related by

i j k
—(Fzymk)ﬂ¢ﬁx \%/
!
i j ok
*(F‘lymk)ﬁﬂfﬁx \;’W ,
l (B10)
i j ok
wﬁx () *Q;Z)ﬁx Xm/
!
i j ok
= (F/™) s X/
!
i J K
= (F/™") st \W 7
l (B11)

where y denotes for the fermion string in the bosonic theory.
We introduce some of our notations here.
(1) The index in the bottom right corner, e.g., B in

& .
(F/™)p, refers to that the F-move in the uncondensed

bosonic theory acts on the vertex with fusion state 8. So that
any bosonic F'-move in such notation is just a phase factor, as
the inner states are all fixed as long as the state B (including
the two incoming strings and one outgoing string that define
B) is fixed.

(2) Some of the strings are denoted in red color, e.g., string

lin (Flymk

following property:

When it is a trivial string in the fermionic theory, it is a
fermion string in the bosonic theory before fermion condensa-
tion.

This property is important as it may cause difference on the
phase factors in fermion-parity even and odd sectors.

We obtain the relation between the F'-moves on two equiv-
alent states,

). A string is denoted in red color if it satisfies the

ymk ijm,ap .
Fiim@x)Bx)) _ (F, )/BF,;[TXO(‘S ,  parity-even B12)
kin, $ Fymk Fijm,aﬁ . dd :
( I );s kin,xs »  Darity-o

Similarly, if n is g-type, the two equivalent states in
Egs. (13) and (14) are related by

i jk
Vi () = aix &rz/
l
ik
— O ity &(
[
—sz(Fu )él/Jﬁx )
j ok
= 0y (FI™ F{"™ ) st E&/
k
= O (BB st \y
(B13)
ik
Vix () = pix Vn/
l
ik
= Oy (F/"F/"") st \*?n/
l
ik
= O (FVFY™) stbny \%/ ;
! (B14)

where ©y; is the half-braiding phase between the string i and
the fermion string also in the uncondensed bosonic theory.
When i is m-type, the half-braiding is trivial. When i is gq-type,
®y; = =£i, as proved in Appendix B 1, and we can always
choose a gauge ©y; = i. Therefore, we have the expression

1, ifiis m-type

O = {i, if i is g-type (B15)

We obtain the relation between inverse F-moves on two
equivalent states,

ijm,af *
(Fkln Y0 xf))
Oy (FW”F“’”)g( k’l’:lx‘gﬁ)*, parity-even
in iyn * : (B16)
Oy (FY F” ) ( ,g;j’x‘gﬁ) ,  parity-odd
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If k is g-type, The two equivalent O-moves in Eq. (49) are
related by

k
Vix | i j
k
k
= (ﬁ‘]gjj)a'(/)ﬁx ! ]
k
k
= (F!)o(FY) st ! J
k
k
= (FY9)a(FY) gt | i j
k

(B17)

J

i B ! i
/lljﬁx m = wﬁx m
k 1 k

We obtain the relation between O-moves on two equivalent
states,

Oij,(axf)(ﬂXf) =( ﬁgu )a(FY9) Bo;‘{flaﬂ, (B18)

If k is g-type, The two equivalent Y -moves in Eq. (70) are

related by
i &, j i i
wﬁx Kc ) = wﬁx k
i Bf J j j

= '(/)ﬁx

(B19)

For the dual H-move, if m is g-type, the two equivalent
states in Egs. (122) and (123) are related by

)

i J
= O Vsix “
(Sl

i J
= efi(F]g“n)(ﬂ/)ﬁx ( m )
k I

= efl (F,i/zanZ‘y”n)awﬁx ( m
k

(B20)

|

i J
— efz (Ff,/imF]iwn)a(ﬁ;ﬂnl)ﬁd)ﬁx ( “ )
k 1

i J
. ~ B
im iym ml

k !

= O g (FY ™) 0 (F™) gy | 42

i By J b J
wﬁx ™ = T/)ﬁx m
k ! k !

yim piym yml
= efi (F];} Fk,J )(Y(F"/ )ﬂwﬁx

(B21)

J
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We obtain the relation between H-moves on two equivalent states,

~

yim piym yml kim,o .
ki, @x iy _ | O R) (F™) jHyy . parity-even

H* — Lk J ] ) . (B22)
Jin.x3 Oy (Fk”ka'ym)a(Fjrvml)ﬂijl'Z’Xogﬁ, parity-odd
If n is g-type, the two equivalent states in Eqs. (124) and (125) are related by
i j i j
xf
wﬁx n S = wﬁx n
k i k !
i J
X
= wﬁx n S 9
k ! (B23)
i j
Xt
'(/)ﬁx n & = '(/Jﬁx
k i
i j
X
= wﬁx n 6
k ! (B24)
We obtain the relation between inverse H-moves on two equivalent states,
~kil s ﬂ * _ ki, s ﬂ *
Hinnixspasn) = Hjinys ) - (B25)

In the following several subsections of this Appendix B, we will present several examples of super fusion categories by
fermion condensation. They all satisfy the conditions summarized in Sec. II K, although the solutions of which are supposed to

be more general than super fusion categories.

5. Phase factors from fermion condensation

We can obtain explicit forms of the five phase factors in Eqgs. (205)—(209) from fermion condensation,

2" = (F™) (B26)

B = ©ni(FE™), (B27)
Q" = 0n(F"E™), (F™), (B28)
Qs =1, (B29)

A = (F™), (F2), (B30)

where the F-symbols in blue color are the F-symbols in the bosonic theory before fermion condensation. With the above forms
of phase factors, we can check that the relations among phase factors in Egs. (210)—(213) are satisfied.

We note that the expression for each phase factor can differ for fermion-parity even and odd sector. Here we do not distinguish
parity-even and odd sector for simplicity. But we should keep in mind that the phase factor in parity-even and odd sector can be
different, as explicitly shown in Appendix B 4.

The five relations among phase factors are obtained from the following relations for F-move, O-move, H-move, and a special
sequence of moves in Appendix C from fermion condensation:

Fgs DD = () JFgtel s i mis g-type; (B31)
(Firtnoxn) = O (B M) (FGSS)s i nis g-type; (B32)
O DI = (BY) (R7) ;00" if ks qrtype: (B33)
Yaripp = Yeapr 1EKis a-type; (B34)
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I_"I’lt;rjk(/(sa;}g;é — ®fi (Fkyiml;}{iym )oz (F}wnl)ﬁl'_‘l’]irrlr;l’c;;é’ if m is g-type; (B35)
rrimk,a(Bx fON* __ (ryimk,ad\* - : .

(Hlnj’ﬂ(x Xf)) = (Hllr’:},ﬁoj( ). if nis g-type; (B36)

F,;/’:”X(Zsi?)ﬁ = (Fl"") ,;(F,;l” )aFljffX%ﬂ , ifiis g-type, (B37)

where we derive these relations in Appendices B 4 and C.
We take the gauge in Eq. (77) on the relation in Eq. (B33),

O = (RY), (FY), ;00 if kis q-type, (B38)
where we note that the bosonic F-move (F,;Wj )a,o and (F,(’Wj )o,p acts on different vertices, but the two vertices are in the same

space spanned by & and @ x f. In order not to cause confusion, we in addition label the vertices o and B in Eq. (B38). We take
the gauge in Eq. (79) on Eq. (B34),
Yl =Yl if kis g-type. (B39)

Combining Egs. (B35), (B36), (B38), (B39), and a relation among F-move, O-move, and H-move in Eq. (133), we obtain two
more relations between F-moves,

imk,(axf)§ __ yim - iym ymIN* ~imk,a8 - : .
anj,(ﬁxf)x = in(Fk F, )a(F] )ﬁFl’,:’;ﬁ‘;‘(, if m is g-type; (B40)
imk,a(8x f)\* __ imk,8\* - .
(Funj.pieepy) = Fujpy ) if nis q-type. (B41)

Therefore, relations in Egs. (B31), (B32), (B40), (B41), and (B37) exactly give the forms of the five phase factors in
Egs. (B26)—(B30).

6. Fermionic topological order SO(3)¢/v¥ from SO(3)
a. SO(3)¢ anyon model

The full data for the bosonic SO(3)e theory are listed in, for example, Ref. [43]. There are four types of anyons 1, s, §, ¢ in
SO(3)s. Some important fusion rules are s X ¥ =5, ¥ x ¥ = 1,5 x s = 1 4+ s + §, from which we can derive all other fusion
rules. The quantum dimensions of simple anyons are dy =dy = 1,dy =dy =1+ V2. The anyon ¥ is a fermion in the SO(3)¢
modular tensor category. So we can try to condense the anyon  to obtain a super fusion category SO(3)¢/v.

b. Fermionic topological order SO(3)¢ /¥

Since the nontrivial anyons s and § are changed into each other under the fusion of y, s x ¢ =5, they become the same
anyon (which is also denoted as s) after the fermion condensation. So the simple objects of SO(3)s/¢ are 1 and s. The quantum
dimensions of themare dy = landd; =1 + V2.

If we use dashed line and solid line to indicate the anyons 1 and s, the fusion rules of SO(3)g/y are

K \ \/ Y \T/ (B42)

where the last three fusion diagram of SO(3)g/¥ come from the fusionrule s x s = 1 4+ 5 4+ ¥ X s in SO(3)s. Only the last one
is fermionic with a black dot, which should be understood as a red string of v going out of the vertex.
From the F moves of SO(3)¢, we can derive the following (trivial) F moves of SO(3)s/v:

) Flln’ . (B43)
\ B Fll\ —— (B44)
<Y ) Fll;; p o (B45)
/ =F 11/ Fle=1, (B46)
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; _ Flssl , Flssl — 17
\/ — Flsls\\)/{’ Flsls _ 17

The nontrivial F moves of SO(3)¢/v are

e (3 0.
NV

1
V2 Vieve Y e
Vitva 242 0 0 V2
F5%5 = 0 0 -1 _ 1 0
s V2 V2
0 0 —% L 0
2 V2
1 1 0 0 1
142 V2 242

One can check that they all satisfy the super pentagon equation and other conditions summarized in Sec. I1 K.
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7. Majorana toric code from Ising anyon model
a. Ising anyon model
Ising anyon model is one of the simplest non-Abelian anyon models. There are three simple anyons {1, ¥, o} with quantum

dimensions d; =dy = 1,d; = V2. The fusion rules of themare  x ¥ = 1, ¥ x 0 =0 x ¥ = 0,0 x o = 1 + . If we use
dashed, red, and blue lines to represent 1, 1, and o, the trivalent vertices of fusion rules are

The F symbols of the Ising anyon model can be found in, for example, Ref. [4].

b. Majorana toric code model

Now we want to condense the fermion 1 in Ising model to obtain a super fusion category. After the condensation, we have
two simple objects 0 and 1, which come from 1 and o in the Ising model. The quantum dimension of them are dy = 1, d; = /2.
The fusion rules of them are

( \ \/ ( _ 4 \T _ % \/ _ y B56)

with fusion coefficient N, = 1, Nj, = N}, = N}, = 2. The black dot in the diagram means that the fermion is condensed at this
vertex, which can be understood as a fermion string going out of the vertex from the bosonic string diagram. Since we have
fusion rule ¥ x ¢ = o in the Ising model, the nontrivial object 1 in the super fusion category is a g-type one. The fusion rule
o x 0 = 1 4 ¥ in the Ising model becomes the fusion of 1 and 1 into O with one bosonic channel and one fermionic channel in
the super fusion category.

The F moves for the super fusion category can be divided into two kinds according to whether or not the F symbol is of full
rank. The full rank unitary F' moves are

. T
10 0 —i
1 (01 —i 0
F1111 _ Slo1 i ol
oL (B58)

The projective F' moves are

\/7\\\//7\\/\\// _ o \\)/,\\')/{,\\/'){,\\// |
100 —
11014 0
101 _ *
Foo = 21014 0 ]°
100 — (B59)
o o o K o o o~ o T K o *, o T
\ \ \ \ _ F11oo (\ \
10
1 01
100 _ _+
= V210 1)
10

245120-36



TOWARDS A COMPLETE CLASSIFICATION ... PHYSICAL REVIEW B 106, 245120 (2022)

(B60)
5 ’ 0 5 ' 5 5
Flloi L (1 00 —Z>
0 v2\01i 0)° (B61)
., T .. .. T
10
1 01
011 _ L
‘F() - ﬁ 01 )
10 (B62)
1001
10110
010 _ +
= 011 O) ’
1001 (B63)
., -~ - T .. “ ., .. ., T
F0011<1 00 1>.
L v2\0 110 (B64)

Since there are always two independent basis states (with different fermion parities) on both sides of the above equations, all the
above F matrices have rank 2.
One can check that the F' moves satisfy the conditions summarized in Sec. II K.

8. Fermionic topological order (1Eq)/y from 1E,
a. Unitary fusion category %Eﬁ
The unitary fusion category %E6 does not admit a braiding structure. It has three simple objects: 1, x, y. The fusion rules

are givenbyx xx =14+2x4+y,x xy=y xx =x,and y x y = 1. If we represent 1, x, and y by dotted, blue, and red strings
respectively, the fusion configurations can be shown as

The last fusion of x and x to y has two fusion channels. So we use a vertex index o = 1, 2. All the simple objects are self-dual.
The quantum dimensions can be calculated from the fusionrules asd; =d, = 1,d, =1 + V3.
The F matrices in this tensor category are summarized as ("’s are Pauli matrices) [44]

Ff* =1, ifa=lorb=1lorc=1, (B66)
F;,yy _ F;Q,y _ F:vyyx — leyx — Flyxx — F):vxx — lex)r — F;\"xy — 1’ (B67)
EP = Y = 1, (B6S)
F:\jvxx — _O.)" F;()‘X — O.z’ F;(xxy — O'X, (B69)

- N2 - N2
AR, (1 —i)’ W (-i 1)’ (70
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V/3-1 V3-1 V321 rif6 V31 o3 V31 o3 V321 if6
2 2 2 2 2 2
V3-1 -3 V31 6 V31 w3 _ N3 w3z N3 i/
2 2 2 2 2 2
1 1 1, mi/6 1 ,57i/6 Lo,—mi/3 4 : 1 mi/3
F=| Vv 243 _E(em/ - b 2¢ " 2(e ) 567”/ (B71)
* . 1 N 1 L mif3 l(e—ni/S +1) 1 ,57i/6 _l(em'/é —1)
J2(11+J§) «/2(11+\/§) 1 2 2 1 1 2 2 1
i/6 Si/6 —mif3 4 i/3
VB V) = - g —2EP 4D —2¢"
2(11+f3> B 2(11+ﬁ> _%emﬁ _%(e_mﬁ +1i) %esm/é _%(‘f’m/é - D

T T
The bases for F{** (similar for F™) are ordered as \1<_/, \2</ and \_>1/, \>2/ for left

T
and right fusion spaces respectively. The left and right bases for F™* are ) , @ P and
N4 '
\ ; \?/ ) \20‘/ respectively. Note that the last diagram with « and 8 is in fact a vector of four bases

with the usual tensor product order, i.e., (o, 8) = (1, 1), (1,2), (2, 1), (2, 2). One can check that the above F moves satisfy
(bosonic) pentagon equations.
To condense the fermion y, we first have to show that y is indeed lifted to a fermion in the Drinfeld center of the fusion

category %Eﬁ. In fact, by solving the naturality condition in Eq. (B1), we have the following half-braiding of y,

B()=1, B =—-vouv), Byx)=ivyouvy, (B72)

where v, is the basis of morphism in Hom(a x b, ¢), and vb4 is the dual. Graphically, the half-braiding induces the relations [we
use the convention that the y string in 8,(a) is the under-crossing line]

By(y) = X = —%, (B73)

By(x) = X = z>< B74)

The first half-braiding equation implies that (y, 8,) is indeed a fermion in Z (%Eﬁ). We can condense this fermion to obtain a
super fusion category.

b. Fermionic topological order (%Eﬁ) /v

After the fermion condensation, the simple objects are 0 and 1 from the objects 1 and x in the fusion category %Eﬁ. The

quantum dimensions are dy = 1 and d; = 1 + +/3. Using the fusion rules listed in Eq. (B65), we can obtain the fusion rules of
the super fusion category (%E6) /¥ as

We can also derive the fermionic F moves. The trivial vacuum F matrix is

— F(?OO s \ FOOOO =1. (B76)

The projective F moves with two outgoing strings are

poor _ 1 (1001
1 ve\o110) (B77)
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F1010 — l
2

011 _
=

= o O
O~ O
O = O
= O O

(B78)

9

V2

—_ 0 O = \‘
H

0
1
1
0

B79)

1
V2

Fol()l _ l

100
1

110 _
Fy =

(0

00 —z)
14 0)° (B80)

— O O
O = O
O == O

—i (B81)

T T
? 7 Y — F011o \> 7 . , \> , . ’
pro_ L (1 00 —i)
¢ Va\0tli o) (B82)

They all have rank 2. The projective F' moves with three outgoing strings are all 8§ x 8 matrices with rank 4,

</ 7 §/ | </ ’ g/ _ Flo11 PM/, ?#/ 7 P{ ’ % ,
« « « «
o0 0 0

g
Floll _ } 0 0'0 UO 8

o ) o 9 o ’ » 1 T ’ i 9 T 9 f )

101 _
Fi =

o
-0y 0 0 107 (B&4)
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- - - T - - T
1 {1 (% [0
0

g’ 0 0 o"
110 60 0
1o _
Fl - 2 0 0.0 ot 0 )
> 0 0 o* (B85)

T T

1 4 00 00— 1
1 - 00 0 0 —¢ -1
Frer 0 0  —iFyPe® . 00 ¢1-1%¢ 0 0
g _ L[ 0 FpEediEger _e™2100 i1 1@ 0 0
0 2 (U i 7 v 0 2v2 |00 ¢ 1 -14 0 0
Free 0 0  —uFy" 00 =1 1 3 0 0
1 ¢ 00 0 0 —¢ 1
1 - 00 0 0 —¢ —1 (B86)
The most complicated F move is F'!!. Let us first denote
F. F, F,
F=F"=|F1 b, ks (B87)
x,1 X,y X,X

to be one of the F' matrix in the bosonic %Eﬁ category. Fy , and F”M (F..1 and Fx,y) are matrices of size 1 x4 (4x1). F,, is a matrix
of size 4x4. Then the F{''! of the super fusion category (3Eq)/V is

= F \\/\T\/\\/\T\/\%{\%{\%\%{ (B88)

where the F}'!! matrix is of size 20x20 and defined by

111
Fl
» . 1 & 1 &
UO@E’I Ux®(_lFl-y) UO® (ﬁ l,x) UX® (ﬁF‘l,x(G()@O‘X))
o' ®F, 0" ® (=iF,) o' ® (75 F) o ® (50" ® ")
= > ' _— |~ =
o’ ® (ﬁFxl) o ®(— ﬁFx,y) o' ® (3F..) 0" ® (3Fx(0° ®0™))
Naw- 0 : i 7 ; 17 N
o ® (0 ® o) () 0@ ((0°®—0")(— 5F,) o ®(0°®-0M)3F.) 0°®((0°® —0")3F. (0" ®0Y))
(B89)
Fi 0 0 —iF % Fix 0 0 %;—IJ(UU ® o)
0 Fia —ify, 0 0 %F‘H %F‘l_y(oo ®0") 0
0 B —ifyy 0 0 T3 Fx Hha® @) 0
Fu 0 0 —iF,, LZFH 0 0 %I:-M(Uo ® o)
= a2 0 0 L 1F 0 0 3P0 ®0")
0 5 —J5F 0 0 1F LR 0 ®0") 0
0 L0 ® -0 L @0, 0 0 L' @0 100 ®—0)Falo” %) 0
_L(a‘ 0)~ . 0 0 Ji (6% ® 0)F, 1(0° ® —o")F, 0 0 109 ® —o)Fe (00 @ o)
2\ 0 a¥) N xy 2 x.x 3 x
(B90)

One can show that Fl111 has rank 12.
We have checked that the above F matrices satisfy the consistent equations such as the super pentagon equation.
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9. Fermionic topological order from Tambara-Yamagami category for Z,y

a. Unitary fusion category TY""

The fusion category TY’ ”* is the Tambara-Yamagami category [45] for Z,y with symmetric nondegenerate bicharacter of
typer [1 <t <2N -1 and gcd(t 2N) = 1] defined as

Xt(aa b) — eZnitab/(ZN). (Bgl)

The simple objects are labeled by Z,y U {0} where Z,y = {0, 1, --- , 2N — 1} is the cyclic group of order 2N. o is an additional
object. The quantum dimensions of them are d; = 1 (Vi € Zyy) and d, = /2N . The fusion rule for objects in Z,y is simply the
addition modulo 2N: a x b = [a + b],y. The o object can absorb all Z,y objects: a x ¢ = 0 x a = o. The fusion of o with
itselfiso x o0 = ) _ .7 =~ a.If we use red strings and blue string to denote the simple objects in Zyy and o, then the fusion rules

can be represented as
a g
Y ’ Y 7 Y ' (B92)

[a+blan a a a

o>
Q
S}
Q
Q

The nontrivial F matrices for the fusion category TY’Z”;V are related to the bicharacter x, defined in Eq. (B91) as

a b

\</ = Foob \>/ F27% = y,(a,b), (B93)
\</ Uaa\P/ Faaa . Xt(a b) (B94)

K/ = Z(Fg"”)ab\%/ . (F2%%)a = \/;{—Nxt(a, b1, (BYS)
b

where » = =1 is the Frobenius-Schur indicator of anyon o.

b. Fermionic topological order TY%” /¥~ (N odd)

To perform fermion condensation in the category TY; ’2‘ , we have to find a fermion in the Drinfeld center of the category. Let
us try to find the half-braiding of the object N € Z,y. Direct calculations of the naturality condition Eq. (B1) for the half-braiding
of N give the results

a N N a
DN e

o N o N
X
N g N o

Now let us assume that N is an odd integer. Then the object (N, By) in Z(TY'Z”;N) has twist O g,y = Bv(N) = —1 and is a
fermion. Therefore, we can condense the fermion ¢y = N in TY’Z':; .
After the fermion condensation, the object a and [a + N]on in Zoy of TYtZ”;N are identified. So the simple objects in the super

fusion category TY’Z’zv /Yy are0,1,--- N — 1, 0. The fusion rules of them can be represented as
a a
Ylfa+b<N \T/lfa+b>N Y \T/ Y \T/ Y \T/ (B98)
[a+b]n [a+ b]n
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where a, b € Zy are objects from Z,y, and o is the same one in the fusion category. Every vertex of the above fusion rules can
be either bosonic or fermionic.
From the F' matrices of the original fusion category, we can obtain the F matrices of the super fusion category as

) FOOOO Fé)oo -1 (B99)
a b c a b ¢
abc abc _ a MJ
o W = Faforay \Rﬂcm s Flafprgy = (DAL (B100)
[a+b+cn [a+b+cn

If a+ b < N, the F**° -type and F2*-type F moves are

W%vavv

1
Fabo’ _ = u ,
7 2 (0 1 (—1) 0 ) (B101)
a b a b a a b T
Fa'ab
’ ’ a+b
1 0
1 0 1
oab
FO' 5 0 (_1)b
(=1%o (B102)

On the other hand, if a + b > N, the F moves are

Fabo’ _ 1 (0 1
7 2\10 0 (*1)“ ’ (B103)
T T
a a a b a b a a
\</ K/ \</ \g/ _ poa \?/ \P/ ,
a+b—N a+b—N
0 —1)a+bg
1 (_1)a+bi 1
oab
BT = —1)%' 0
0 (=1)% (B104)
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They are all projective F matrices with rank 2. The F4°*-type F move is

a

vavwvvvv

1 0 0
e _ et [0 1 (e o
) 0 (=1 (=1 0 )

(-1 0 0 (=1t (B105)

which also has rank 2. For the F,’?“-type and F;°?-type I moves, we need to compare a and b. If b > a, we have

XX )= (NN Y

1 _1\b+1
Fm:g(lo 0 (-1 z)’

01 (-1)% 0 (B106)
T T
a
V’V’V’V :Fbaag \2/&7\bya ,
b b b b b b
1 0
aco __ 1 0 (71)(1
Fb - 5 0 (_1)a
1 0 (B107)
If b < a, on the other hand, we have
a a T T
NH}S/ ’NH}g/ _ o \P/ \P/ \?/ \?/ |
b b
Fm—3<0 1 (fl)z 0 )
b 2\10 0 (=14 (B108)
T T
a
\</ \</ \</ \<T/ _ s \%/Ha | \T>N/+ba |
b b
0 (=1)*
oo _ L [1 0
BE7=511 o
0 (-1)° (B109)
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Finally, the F' moves of types F,7“” and F?? are

XYY

b
1 0 0 (—1)b+L4
e _ 2a(@0) [0 (<12 (-1 0
2 0 (=1)* (—1)atb4 0 ’
1 0 0 (—1)0+1 (B110)
T
\ﬁ/’\g/7\g/’\g/ _ (7o), \P/ \P/ \P/ \P/
be
1 0 a+b+1
N A 0 1 (- 1)a+b+1 0
(Fa )ab - \/ﬁxt (avb) 0 ( 1) (71)0,2' 0
(-1 0 0 (=1)%
(B111)
We have checked that the above F' matrices satisfy fermionic pentagon equations.
APPENDIX C: EQUIVALENCE RELATION FOR DIAGONAL FUSION STATES
To obtain relation in Eq. (211), we need to consider the following sequence of F'-move and O-moves:
l
n
iX e igm,aB njk,x )in,o mk,8\—1 Jn,x\—1

Wiy ak = g kinxo O77X0,(0,"7) 0 ) ™ Wi ; (CD)

m

!

where the Majorana numbers on the gauged O-move is still assigned from top to bottom, e.g., O = 03 )9;(,’( '0]"*. The
above equation is derived by -

j : Um af .
kln’ X’ﬁ’\IIhX

n X/(;/

~ Thim,ap ijm,a 3
ey, Wi + (= DF 0 (oo Yis

ijm,a in,o ijm, o ~ jk,x(xX f)(dX f) in,o .
~ Filixs ORX O™ Wy < D + (= DFG S 5y @) Otmits O Uax ( D
n,x0

jad nn‘Flgm O‘ﬁojk onn 5lphx < *

~ Nn rijm,aB ik, x yin,o mk,3 Jn,x\—1
= e kinxe O)XO™ (O ) ~HOL" ) ™ gy

(C2)
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where in the second line the factor (n, — 1) means that the term ]—',i;":q&‘i HOXS) only exist when n,, = 2. In the final line we have

in addition a factor - o> as when k is g-type, the inverse O-move (O’ "%)=! can only map to one-half of the state (only one of the
two equivalent states).

From Eq. (C1), we can obtain the relation in Eq. (209) that is needed to derive all 2-3 moves in the fermionic partition
function,

ijm,(axf)f __ Amji,ad pijmap .o .-
szn,x(axf) =A, Fklw(3 , ifiis g-type, (C3)

where the Majorana numbers are removed when considering equivalence relations.

From fermion condensation, if i is g-type, we have the following equivalent relations for fermion parity-even and odd sector
respectively:

= (F")stsn (") (F47 )atbnn : (C4)
= (F"™)stnx = (F"™)5(F47) atben (C5)
When the fermion parity on « and § are changed, the following O-move will also induce a phase factor:
‘ (FY™)s(FY'™)s0m8, parity-even
071,(8 xf) — Jym lym in ; . . (C6)
(F)s(F")50,"°, parity-odd
Therefore, we obtain another equivalence relation for F-move if string i is g-type,
* % ijm,ap .
Fiim@xf)p _ (F™)5(Fti)a kinys + barity-even (CT)
kin,x(8xf) — (i ijma . ]
Hxh (FY™)3(FYi7) o kljn,)(sﬂ’ parity-odd

which corresponds to the fermion parity change on two diagonal fusion states « and §.

APPENDIX D: CHECK THE CONSISTENCY BETWEEN THE 2-3 MOVES AND THE PROJECTIVE UNITARY CONDITIONS
1. Obtain the second 2-3 move

To obtain the second 2—-3 move Eq. (194), we considgr two cases:
(1) Let the string ¢’ be m-type. We multiply by (G"**f y* and sum over m, o, B on both sides of the standard 2-3 move

knt',n' Y’
Eq. (193),
g(a);(ﬁ) ljm,aﬂ * ~ijm,ae ~mkn,Bx __ 1 ijm,af ijm,af ~itn, yx ~jkt,nk
Z ( ) km’.n’\b’) qus,¢y Glpq,és - Z n_(Gknt’,r]’lll ) Gknt ny Glps Ky Glsq S¢° (Dl)
e, maf myric,mof
where
dtdm ijmap \* ~ijm,af s
Zn,n (Gintorr) Gty = S8y Sy, if 1" is m-type. (D2)
map m

We can get Eq. (194) straightforwardly. - -
~ (2) Let the string t’ be g-type. We multiply by %[(G;{"n';q,’j]fgw,)* + (E;(’m, ” w,)*G;{L’f”‘z‘ﬁx ) ] and sum over m, o, B on both
sides of Eq. (193),

s(a)s(8) ijmaf \* ~ijm,oe ~mkn,pBx =ij ijm,af * ~ijm,oe ~mkn,Bx
Z (=1 5[(Gknr’,n’w’) qus,w Glpqyée + ("‘knt’ n'y’ ) (Gknt’,(n’Xle/f’Xf)) Gqﬁ-wﬁyGlmwSE ]
e,maf
dt 1 l" ..
_ jm.af \* ~ijmaf ~itnfx ~jktne * ijm,ap ijm,ap ~itn, Wy x ~jkt,nk
- Z n_[ z [(Gknt’,n’xjf’) Gknt ny Glps Ky Glsq 8¢ + ("‘knt’ 7 I/I’) (Gknt’,(n’xf)(ljf’xf)) Gknt N Glpv Ky leq 8¢] (DS)
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where the second projective unitary condition for G-move in Eq. (202) is applied,

did | iimap N ijmap 1 i . o
Zn,n (Ginsru) Gty = 5 oy Sy + (B ) SurBuiyxp)Sycurxpy)s if 1’ is g-type, (D4)
maf m

where we note that the phase factor here (EZ’;” n’W’)* = (EZ” (r/xf)wa))* = E;{’m e Then

s(a)s(8) “m ijmap \* ~ijm,a€e ~mkn,Bx =ij * ijm,af * ~ijm,ae ~mkn,Bx
Z(_l) EE[(G""’*”'W) qus,d)yGlpq,Se + (“knt,n’rlf’) (Gknl,(n/Xf)(W’Xf)) ququGlpq,Se ]
mafe
L im V' x ikt K —ij * ~itn, (' x f)x ~jkt', (' x fr
= ZE[Glps,Ky Glsq,5¢ + (E‘knl,n’w’) Glps,/q/ Glsq,6¢ ]’ (DS)
K

where the two terms on the left-hand side are actually equal, as well as the two terms on the right-hand side,

ijm.of \* __ (mif *(ijm.ap * itn, ' x ~jktn'c _ (=i * it (WX )X ikt (' % ) x f)
(Gknt,rl/\///) - (“knt,n’lll’) (Gknt,(ﬂ/xf)(s//’xf)) ’ Glps,KV Glsqﬁ(b - (“kntw’l///) GIPSV(KXf)y Glsq,8¢ ’ (D6)
: : : itn, (' x f)x c~ikt.(n'x

where as we require each G-move preserve fermion parity, the term G G

Ips.ky 1sq,8¢
on « and should be written as G;;”s’,(('f;f’;;x G{XIZ;Z) *PUxXT) The first equality in Eq. (D6) is exactly the complex conjugate of the

second equivalence relation on G-move Eq. (206). The second equality in Eq. (D6) is satisfies straightforwardly by the relation
among phase factors in Eq. (210),

actually varies the fermion parity

mij * nit W'\ E (e jkt e\ *
("‘knt,n’l//’) - (Qsl ) (“ls ) ’ (D7)
where G;;”S”‘/I:yx = '(Q;'I’A’ Wy G;;"S’,((fxxf’;z,x, and G/ Skq’g = (2] f’ Ty G{S"q’;g XN We can again check this relation from fermion

condensation: &/, . = 0 (K" F )y, @V = ©u(F )y ("), and B[ = ('), we find Eq. (D7) is satisfied
straightforwardly.

Physically, from the point of view of fixed-point wavefunctions, there is a splitting on the two channels. Suppose that 1 and
Y are two bosonic fusion states. In terms of F'-moves, the splitting of Eq. (D5) is graphically represented as

ij k1 ik
1 0 1t ot A
5%)( ntx = Z 5}712:,:7)(}712%5?;%;( e
K
14
i j ok 1
1 0 9
~ 5 iim.af ., Fnofx )
= 3 (O S s e | NG|
mafe
P (D8)
1. )
5(‘:‘271125,77/1/;/) /wﬁx
i 1
L —ij « pritn, (¥’ X f) ikt (n' < f)(kx f) [0
= Z 5(:‘;37125777/1/)/) F}ZPZ(HXf)’yXFleq,Sg r U}ﬁx ,Ys q
K
p
i J JJ
)
1 ; . .
_ 1= B ’ —
= > (-1 )5(~Z]nt>n’w’)*(Fizﬁéfxfwxf))*Fqlﬁ);'fﬁﬂ’;lq,?e e N
mafle
P (DY)

Therefore, Eq. (DS) again implies

z : (a)s(8) “m ijm,ap\* ~ijm,oe ~mkn,fx __ 2 : itn,  x ~jkt,nk
(_ 1)S o a (Gknt,m//) qus,q‘)y Glpq,ée - Gl[)A‘,K]/ Glsq,5¢ . (DIO)
mafe K
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2. Obtain the third 2-3 move
To obtain the third 2-3 move Eq. (195), we consider two cases:
(1) Let the string m’ be m-type. We multiply by (G, " )* and sum over s, ¢, y on both sides of the second 2-3 move
Eq. (194). We can obtain Eq. (195) by applying

dsdm ijm' o€ \* ~ijm,ae . =
Znsnm (qus,tﬁy ) qus,dnf = S daaBeer, if ' is m-type. (DI

sy

ijmﬂo/e/)* + r:ijm’,ot’e’(Gijm’,(a’xf)(e’xf)

1ps.by Egp Ips.by )*] and sum over s, ¢, ¥ on both

(2) Let the string m’ be g-type. We multiply by %[(G
sides of Eq. (194),

R . o A .
jm' o€ itn,r x ~jkt,nk —ijm' o€ ijm', (&' X f)(€" X fIN* ~itn, x ~jkt,ni
> =>(G ) G A Gl + (G ) GV Gl

y ng 2\ apsdy Ips.cy lsq, Sap qps.¢y Ips.y sq,8¢
spicy
= i (Gl Gt s G e ). o12)
Splitting the two channels, we again geﬂt Eq. (195) by applying
Ziiz Gmee (G ) = %(5,,,,”,5“(1,3“, + B Sata p)Oeter ), if m is getype. (D13)
We obtain Eq.sg%) from Eq. (194) by requiring Eq. (201) and the relation in Eq. (211),
B — G (A’ 1)
as from which we have
(Gl )" = B (Gl Y G G = B Gl Y ey o

We can again check Eq. (D14) from fermion condensation: Eﬁ};"’“’g = (F;")er, E;;];"’“,ﬁ = (Fnymk),g, and A;’;’”’ﬁé/ =
: k
(F" 5 (B ).

€

3. Obtain the rest five 2-3 moves
Similarly, we obtain Eq. (196) from Eq. (195) by requiring Eq. (202) and (E% )= (EZ)S, ¢y’)* QY where

L’:“lps,/(’y’ qls.k'¢’
itn, Y x \*¥ _ (mit * (0 ~itn, Yy * ijmoe \* ~jktne' (i * ~1j ijm,ae * ~jkt (K’ X f)
(Glpsyk/y’) - ("‘IPS»K/V/) (Glps,(/(/x_f)(y/xf)) > (qus,rby’) Glsq,fw - (“qm,w’) QIIZS,K'tﬁ(GIIPS»@Xf)(V/Xf)) Glsqﬁ(tbxf)' (D16)
We obtain Eq. (197) from Eq. (193) by requiring Eq. (201) and E{f””/’(’ = Egﬂynw(ﬂﬁf""“’)* [the same relation as Eq. (D7)],
where
gkt '’k \* =gkt 'k ~jkt, (0 X )< f))* ijmaf ~itn,yx _ m=ij nit , Yx'\* ~ijm,of itn, (Y x f)x
(Glsq,&p ) - s (Glsq,8¢ ) ’ Gknt,n’x/fGlps,K’y - “ktlt,n’W(Qsl ) Gknt,(n’xf)(l//xf)G[ps,(K’xf)y' (D17)
We obtain Eq. (198) from Eq. (193) by requiring Eq. (203) and Q?[”"VK/ = E;{]m W,(E{fl'm(/)* [the same relation as Eq. (D7)],
where
itn, ' x\* __ ynit, Y'x’ ( ~itn, (WX )\ * ijmaf ~jktne’ __ =ij ikt e \* ~ijm,ap Jkt,(nx f)(k"x f)
(Glpx,l(/y) = £ (Glps.(l(’xf)y) v Gl Olsgsp = "‘km,mp’(“ls ) Gint, oyx p)w'x 1) Clsq.56 . (D18)
We obtain Eq. (199) from Eq. (198) by requiring Eq. (204) and (sz;?;jp,e,y,)* = QZ?;,XG’(Q?;AXV’)*’ where
ijm,oe \* __ i * ijma(exf) \* mkn, B x itn, rx \* __ i * ~mkn,B(x % f) itn, r(x X\ *
(qus.¢y) - (Q?ZIIP,E’V’) (qux,q&(y’xf)) ’ Glpq,ﬁe’ (Glps,fcy’) - Z’lr;z,xe’( ?llp.)(y’) Glpq,a(exf) (Gle,K(}/Xf)) . (D19)
. .. tj (=i =i
We obtain Eq. (200) from Eq. (195) by requiring Eq. (204) and (qus’,(/(b/)* = (uqm’(p,y * ug’ps’,(,y, where
gkt \*¥ tj * 0 ~jkt, (" X f)\* ijmoae \* ~itn, Yy (=i * it ijm,oe * ~itn,  x
(Glé‘q,fw’) - (qusw’tl”) (Glé‘qﬁ((b/xf)) ’ (Gqﬁs,c/fy) Glps‘,K’V - (“qm-dfy) Slps,k'y (qusq(dJ’Xf)()/Xf)) GIPSY(K’Xf)(VXf)‘ (D20)
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