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In recent years, fermionic topological phases of quantum matter has attracted a lot of attention. In a pioneer
work by Gu, Wang, and Wen, the concept of equivalence classes of fermionic local unitary (FLU) transforma-
tions was proposed to systematically understand nonchiral topological phases in 2D fermion systems and an
incomplete classification was obtained. On the other hand, the physical picture of fermion condensation and
its corresponding super pivotal categories give rise to a generic mathematical framework to describe fermionic
topological phases of quantum matter. In particular, it has been pointed out that in certain fermionic topological
phases, there exists the so-called q-type anyon excitations, which have no analogues in bosonic theories. In this
paper, we generalize the Gu, Wang, and Wen construction to include those fermionic topological phases with
q-type anyon excitations. We argue that all nonchiral fermionic topological phases in 2+1D are characterized
by a set of tensors (Ni j

k , F i j
k , F i jm,αβ

kln,χδ , ni, di ), which satisfy a set of nonlinear algebraic equations parameterized

by phase factors �
i jm,αβ

kl and �
i j
kln,χδ . Moreover, consistency conditions among algebraic equations give rise

to additional constraints on these phase factors, which allow us to construct a topological invariant partition
for an arbitrary triangulation of 3D spin manifold. Finally, several examples with q-type anyon excitations are
discussed, including the fermionic topological phase from Tambara-Yamagami category for Z2N , which can be
regarded as the Z2N parafermion generalization of Ising fermionic topological phase.

DOI: 10.1103/PhysRevB.106.245120

I. INTRODUCTION

A. The goal of this paper

Since the discovery of fractional quantum Hall effect
(FQHE) [1], it has been realized that these peculiar quantum
matters can be described by a new type of order—topological
order [2]. The topological order of FQHE can be charac-
terized by its precise quantization of the Hall conductance,
fractionalized charge, and fractionalized statistics carried by
elementary excitations [3]. Mathematically, it is well known
that topological order in 2D bosonic systems can be systemat-
ically described and classified by the advanced mathematical
theory—unitary modular tensor category (UMTC) [4]. On
the other hand, it has also been realized that the patterns of
long-range entanglement [5] gives rise to an essential physical
picture to understand various topological phases. In particular,
the equivalence classes of local unitary (LU) transforma-
tions [5] allows us to construct fixed point wavefunctions
to classify all nonchiral topological phases in 2D bosonic
systems [6,7].

Nevertheless, the UMTC framework can not be applied to
fermion systems directly. Topological phases in interacting
fermion systems are strictly richer than bosonic systems due
to the Fock space structure of fermionic Hilbert space. In
addition to the well known FQHE states, which are known as
chiral topological phases, many new examples of nonchiral
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topological phases are constructed for 2D fermion sys-
tems [8–11]. Interestingly, it has been shown that a fermionic
generalization of Pentagon relation is necessary for under-
standing topological phases in 2D fermion systems. Very
recently, the physical picture of fermion condensation and
its corresponding super pivotal categories [12] give rise to
a generic mathematical framework to derive the fermionic
Pentagon relation [10] and understand the underlying physics
for almost all nonchiral topological phases in 2D fermion
systems. Most surprisingly, it has been pointed out that there
are two distinct types of objects in the resulting super fusion
categories, and the so-called q-type objects have no analogues
in bosonic theories [12]. Nevertheless, it is still unclear how
to understand the algebraic relations generated by fermion
condensation [12–14] from the patterns of long-range entan-
glement for 2D fermion systems.

In this paper, we aim at generalizing the equivalence
classes of fermionic LU (fLU) transformation framework
to construct and classify all nonchiral topological phases,
including those cases with q-type objects in 2D fermion sys-
tems. Then we will try to understand the deep relationship
between fermion condensation picture and the equivalence
classes of fLU transformations. Below we will briefly review
the precise meaning of fermionic topological phases and fLU
transformations.

B. Gapped quantum liquids

The classification of gapped quantum phases is in general
beyond the Landau symmetry breaking paradigm. For bosonic
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systems, we define that two gapped quantum systems belong
to the same equivalence class if they are connected by a
sequence of LU transformations without closing the energy
gap, and the LU transformations are generated by a finite-time
evolution of local Hermitian operators [5,15–17],

|�〉 ∼ |�′〉 iff |�′〉 = T ei
∫

dτ H̃ (τ )|�〉, (1)

where T is the time-ordering operator and H̃ (τ ) = ∑
i Oi(τ )

is a summation of local Hermitian operators. Under such
a equivalence relation, the trivial phase is connected to the
direct-product state, and other nontrivial phases are long-
range entangled and called topologically ordered phases.

In discrete spacetime, e.g., on a lattice, the LU transfor-
mations can be expressed by a finite depth quantum circuit,
generated by piece-wise local unitary operators Upwl =∏

i U (i), where {U (i)} is a set of unitary operators acting on
nonoverlapping regions. A quantum circuit with depth M is
given by U M

circ = U (1)
pwlU

(2)
pwl ...U

(M )
pwl . Thus the discrete version

of the equivalence relation is written as

|�〉 ∼ |�′〉 iff |�′〉 = U M
circ|�〉. (2)

More precisely, in this paper we only consider a subset of
gapped quantum phases, namely the gapped quantum liquid
(GQL) [18], which can be defined on arbitrary lattice geome-
try. In addition, we are also allowed to remove or add degree
of freedoms into the systems. Thus, the equivalence classes
should be redefined as the generalized local unitary (gLU)
transformations satisfying U †

g Ug = P and UgU †
g = P′, where

P and P′ are two projectors. In particular, the action of P
does not change the state |�〉. In such a way, some of the
quantum gapped phases cannot be included, e.g., the fracton
topological order [19–21].

C. Fermionic gapped quantum liquids and its classification

In fermionic systems, the underset degrees of freedom are
fermions and the total Hilbert space is Fock space instead of a
simple tensor product of local Hilbert space. Hence we should
redefine the LU transformations as the fermionic LU (fLU)
transformations [10],

|�〉 ∼ |�′〉 iff |�′〉 = T ei
∫

dgH̃f (g)|�〉, (3)

which can also be discretized as the fermionic quantum
circuits, where the local fermionic Hamiltonian H̃f (g) =∑

i Oi(g) is a summation of pseudolocal bosonic operators
Oi(g). Here Oi(g) is a product of even number of local
fermionic operators (due to the conservation of fermion par-
ity) and any number of local bosonic operators. It is called
“pseudolocal” as it is local for a fermion system in a sense
that the fLU transformations acting on different local regions,
but are nonlocal due to the global anticommutation relation of
the fermion creation or annihilation operators. Similarly, the
fLU transformations can also be redefined as the generalized
fLU(gfLU) transformations for fermionic GQL (fQGL). Thus,
the fermionic topological orders are classified by the equiva-
lence classes of gfLU transformations Ũg, which are projective
unitary operators. Up to some unitary transformations, Ũg is a

Hermitian projection operator,

Ũg = U1PgU2, P2
g = Pg, P†

g = Pg,

U †
1 U1 = 1, U †

2 U2 = 1. (4)

We will call such a gfLU transformation a primitive gfLU
transformation. A generic gfLU transformation is a product
of several primitive gfLU transformations, which may contain
several hermitian projectors and unitary transformations, for
example, Ũg = U1PgU2P′

gU3. We note that Ũg contains only
even numbers of fermionic operators (i.e., Ũg is a pseudolocal
bosonic operator). We also regard the inverse of Ũg, Ũ †

g , as a
gfLU transformation. An fLU transformation is viewed as a
special case of gfLU transformations. Clearly Ũ †

g Ũg = P̃ and
ŨgŨ †

g = P̃′ are two Hermitian projectors.
Similar to bosonic systems, Ũg can generate a wavefunc-

tion renormalization, which allows us to connect the same
fGQL state defined on different lattice geometry with different
degrees of freedoms. In this paper, by constructing the most
generic fixed point wavefunctions from Ũg, we argue that all
nonchiral fermionic topological phases in 2D fermion systems
are characterized by a set of tensors (Ni j

k , F i j
k , F i jm,αβ

kln,χδ
, ni, di ),

which satisfy a set of nonlinear algebraic equations parame-
terized by phase factors �

i jm,αβ

kl and �
i j
kln,χδ

. In particular, in
order to to include those fermionic topological phases with
q-type anyon excitations, the tensor F i jm,αβ

kln,χδ
must be a gfLU

transformation instead of the usual fLU transformation in Gu,
Wang, and Wen’s construction. In such a way, we reveal the
origin of q-type anyon excitations and naturally explain why
they do not have analogues in bosonic theories from quantum
information perspective. Moreover, consistency conditions
among algebraic equations give rise to additional constraints
on these phase factors, which allow us to construct a topologi-
cal invariant partition for an arbitrary triangulation of 3D spin
manifold.

The rest of the paper is organized as follows: In Sec. II,
we construct the most general fixed-point wavefunction for
nonchiral fermionic topological orders in 2D. Then we derive
the conditions for all wavefunction renormalization moves
with the inclusion of q-type strings, i.e., the conditions on
F -move, O-move, Y -move, H-move, and dual F/H-move.
Thus we obtain a set of most general algebraic equations in
Sec. II K. In Sec. III, we explicit construct the topological
invariant partition function for an arbitrary triangulation of
3D spin manifold. We find that the relations among phase
factors for constructing the partition function can be obtained
from the fermionic Pentagon equation and four projective
unitary conditions for F -move. These relations match with
the results from fermion condensation theory [12], as illus-
trated in Appendix B 5. In Sec. IV, several examples with
q-type strings are studied, including the fermionic topological
phase from Tambara-Yamagami category for Z2N , which can
be regarded as the Z2N parafermion generalization of Ising
fermionic topological phase. Finally, we summarized this pa-
per in Sec. V.

In Appendix A, we review some basic concepts in su-
per pivotal category introduced in Ref. [12]. Appendix B
introduces the explicit steps to do fermion condensation. We
apply the fermion condensation scheme to derive several
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equivalence relations on fixed-point states with q-type strings,
and derive all fermionic F symbols for the four examples
from their corresponding bosonic theory. In Appendix C,
we define a special sequence of moves, whose equivalence
relation gives the phase factor 	

m ji,αδ

nl , which is involved in
the relations among phase factors needed for constructing the
partition function. Appendix D is a proof that all possible 2–3
moves induced by time ordering are consistent with the four
projective unitary conditions as well as the relations among
the corresponding phase factors.

II. WAVEFUNCTION RENORMALIZATION FOR GENERIC
NONCHIRAL TOPOLOGICAL PHASES IN 2D FERMION

SYSTEMS

A. Fixed-point wavefunctions on a graph

Since the wavefunction renormalization may change the
lattice structure, we will consider quantum state defined on
a generic trivalent graph G with a branching structure such
that each vertex has two incoming or one incoming edges.
Similar to the construction of string-net model for bosonic
systems, we assume each edge has N + 1 states, labeled by
i = 0, ..., N . Each vertex also has physical states. The string
fusion rules and the local fermion parity are both encoded
in the vertex states α = 1, ..., Ni j

k or β = 1, ..., Nk
i j , where

Ni j
k (Nk

i j ) is the number of fusion states with two incoming
(outgoing) strings i, j and one outgoing (incoming) string k,

graphically represented as or Generally, we

have

Ni j
k = Bi j

k + F i j
k , (5)

where Bi j
k is the number of bosonic fusion states, and F i j

k is the
number of fermionic fusion states (a local fermion excitation

is involved), represented as a solid dot We introduce

a number s(α) to indicate the vertex states is bosonic or
fermionic: s(α) = 0 if the state α is bosonic and s(α) = 1 if it
is fermionic.

In this paper, we will assume that

Ni j
k = Nk

i j, Bi j
k = Bk

i j, F i j
k = F k

i j , (6)

as required by unitarity. Our fixed-point state is a superposi-
tion of those basis states

(7)

In the bosonic string-net models, there is a very strong
assumption that the above graphic states on two graphs are
the same if the two graphs have the same topology. However,
since different vertices and edges are distinct and a generic
graph state does not have such a topological invariance. Sim-
ilar as the construction in Ref. [10], here we will consider
vertex-labeled graphs (v graphs) where each vertex is assigned
an index α. Two v graphs are said to be topologically the same
if one graph can be continuously deformed into the other in
such a way that vertex labelings of the two graphs matches.

B. The structure of fixed-point wavefunctions

Firstly, we need to divide the state on each edge into m-
type and q-type strings. When all strings i, j, k are m-type,
generally Bi j

k is not equal to F i j
k , however, when there is a q-

type string involved in the fusion (at least two strings in i, j, k
are q-type), we must have Bi j

k = F i j
k (The physical reason of

such an assumption will be explained below). Thus we can
introduce the function B(α) = 1, ..., Bi j

k to extract the bosonic
fusion state of α,

B(α) =
{
α, if s(α) = 0
α − Bi j

k , if s(α) = 1
. (8)

We note that B(α) is only defined when q-type strings are
involved in i, j, k. Here we introduce the notation · f to denote
the changing of fermion parity without changing the corre-
sponding bosonic state, i.e., B(α · f ) = B(α).

Now let us consider the fixed-point wavefunctions on a

patch ψfix , where the boundary string states i, j, k, l

are fixed, while yellow-shaded ellipse means that the inner
fusion states α, β and the inner string state m may vary.

[More precisely, ψfix should be regarded as function

φi jkl,� (α, β, m) where the indices on the other part of the
graph are summarized by �.] All such fixed-point wavefunc-
tions(as functions of α, β, m) form a linear space called the
support space V i jk

l , whose dimension is called the support
dimension Di jk

l .

For the fixed-point wavefunctions ψfix , the num-

ber of inner states {α, β, m} is Ni jk
l = ∑

m Ni j
m Nmk

l . Specially,
if the inner string m is a q-type string, the support space V i jk

l
should mod out the following equivalence relations generated
by string m, in fermion parity-even and odd sectors respec-
tively:

(9)

(10)

which can be altogether denoted as

(11)

where f denotes a transparent (local) fermion excitation, and
× f means changing the fermion parity on a fusion state
via attaching a transparent fermion, which does not have to
preserve the original bosonic state in general, i.e., B(α × f )
generally may not be the same as B(α). However, we require
(α × f ) × f = α as attaching a pair of transparent fermions
should not affect the fusion state on each vertex. Here the
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equivalence relation ∼ is up to a phase. Physically, the first
relation means that a pair of transparent fermions can be
created or annihilated on q-type strings (that is why we must
require Bi j

k = F i j
k once q-type string is involved in the fusion),

and the second relation means that a local fermion excitation
can slide along q-type strings freely. Thus, we can assign a
number ni to each string, with ni = 1 for a m-type string and
ni = 2 for a q-type string. Mathematically, the number ni can
be regarded as the dimension of the endomorphism algebra of
string i, as explained in Appendix A. As a result, the support
dimension Di jk

l is generally equal to or less than the number
of inner states Ni jk

l , and

Di jk
l =

∑
m

Ni j
m Nmk

l

nm
. (12)

Similarly, the support space of the fixed-point wavefunc-

tions on ψfix should also mod out the following

equivalence relation if n is a q-type string:

(13)

(14)

which can be in together denoted as

(15)

where similarly the changing of fermion parity × f here does
not have to preserve the original bosonic fusion state. The
support dimension here is

Di jk
l =

∑
n

Nin
l N jk

n

nn
. (16)

C. F-move

The first type of wavefunction renormalization is the F -
move, which is a gfLU transformation between the two

fixed-point wavefunctions ψfix and ψfix

(we assume that the two fixed point wavefucntions are the
same for the other parts of the graph).

Apparently, the support dimensions on both sides are equal,

∑
m

Ni j
m Nmk

l

nm
=

∑
n

Nin
l N jk

n

nn
. (17)

Since the fermion parity-odd sector and the parity-even sector
are independent, this relation can be further split as∑

m

Bi j
mBmk

l + F i j
m F mk

l

nm
=

∑
n

Bin
l B jk

n + F in
l F jk

n

nn
, (18)∑

m

Bi j
mF mk

l + F i j
m Bmk

l

nm
=

∑
n

Bin
l F jk

n + F in
l B jk

n

nn
. (19)

In fact, for fermionic systems, the total Hilbert space is
a Fock space, and we need to specify the ordering of the
fermionic states in the fixed point wavefunctions. For ex-

ample, ψfix actually means ψ
αβ,...

fix where

the fermionic state on vertex β is always created before the
fermionic state on vertex α. An elegant way to count the
ordering of fermionic states is to introduce the Majorana num-
bers θα, θβ, ..., where α, β, ... denote the vertices carrying the
fusion state α, β, .... The Majorana numbers satisfy

θ2
α = 1, θαθβ = −θβθα for any α �= β,

θ†
α = θα, (θα...θβ )† = θβ...θα. (20)

Thus, we can define the ordering independent fixed-point

wavefunctions �fix by attaching Majorana numbers on ψ
αβ,...

fix ,

. (21)

Similarly, for the patch ψfix , we can also define

(22)

where in ψ
χδ,...

fix the fermionic state on vertex δ is always
created before the fermionic state on vertex χ .

On the other hand, since the fermion ordering in

ψ
αβ,...

fix and ψ
χδ,...

fix will be naturally in-

duced by the branching structure of the graph, below we will
also omit the subscript αβ, ... and χδ, ... throughout the whole
paper without confusion. However, one should always keep in
mind that �fix is the Majorana number valued ordering in-
dependent wavefunction while ψfix is the ordering dependent
fixed-point wavefunctions.

Similar to the Gu, Wang, and Wen construction, we
can introduce a Majorana number valued F-move with-
out specifying the ordering of fermions on vertices of both
patches,

(23)

where

F i jm,αβ

kln,χδ
= θ s(α)

α θ
s(β )
β θ

s(δ)
δ θ s(χ )

χ F i jm,αβ

kln,χδ
, (24)
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which follows our Majorana number convention in Eqs. (21)
and (22). The F-move is nonzero only when all the fu-
sion states are nonvanishing and the fermion parity is
conserved: s(α) + s(β ) + s(χ ) + s(δ) = 0 mod 2. Or in other
words,

F i jm,αβ

kln,χδ
= 0 when Ni j

m < 1 or Nmk
l < 1 or N jk

n < 1

or Nin
l < 1, or s(α) + s(β ) + s(χ ) + s(δ) = 1 mod 2. (25)

Here the complex number valued F -symbol is defined ac-
cording to the special fermion ordering scheme discussed
above. The unique advantage of the Majorana number val-
ued F-move is that the anticommuting nature of fermion
creating/annihilation operators is naturally encoded in such a

gFLU and we do not need to worry about the fermion ordering
problem when considering a sequence of gFLU transforma-
tions.

However, very different from the Gu, Wang, and Wen
construction where F-move is assumed to be unitary, here if
m is q-type, we can only fix the target space up to a certain
superposition of two equivalent states in the one-dimensional

projective space, �fix and �fix . Therefore,

depending on whether m is an m-type or q-type string, the
F-move can be unitary or projective unitary. In particular,
when m is q-type, the projective unitary condition should map
to both of the two equivalent states, and we require

∑
nχδ

F i jm′,α′β ′
kln,χδ

(
F i jm,αβ

kln,χδ

)∗ =
{
δmm′δαα′δββ ′ , if m is m-type
1

nm
(δmm′δαα′δββ ′ + �

i jm,αβ

kl δmm′δ(α× f )α′δ(β× f )β ′ ), if m is q-type.
(26)

We note that the Majorana numbers cancel out due to relation in Eq. (20), and we can write down the projective unitary
condition for the complex valued F -moves without Majorana numbers. Here �

i jm,αβ

kl is a phase factor satisfying (�i jm,αβ

kl )∗ =
�

i jm,(α× f )(β× f )
kl . It depends on strings i, j, k, l, m and fusion states α, β. We should note that B(α × f ) and B(β × f ) do not have

to be the same as B(α) and B(β ) in general. But the explicit corresponding bosonic fusion state of α × f can be determined by
α and the three strings i, j, k attached to it. Similarly, B(β × f ) can be determined by β and strings m, k, l . If m is q-type, this
projective unitary condition can be viewed as the following projective map:

(27)

(28)

If we view both ψfix and ψfix as column

basis vectors in each support space, the above expression can
also be rewritten in matrix form

P = F i jk
l

(
F i jk

l

)†
, (29)

where P is a projective matrix with the following form:

P =
⎛⎝ 1

2
(�i jm,αβ

kl )∗

2

�
i jm,αβ

kl
2

1
2

⎞⎠. (30)

Apparently, it satisfies P2 = P.
From Eqs. (27) and (28), we see that the phase factor

�
i jm,αβ

kl is actually the phase difference between the two
equivalent states,

if m is q-type. (31)

According to the F -move (with the aforementioned
fermionic state ordering convention), we have

(32)

and

(33)

Comparing each term with fixed n, χ, δ, we immediately ob-
tain a relation between the F -moves on two equivalent states,

F i jm,(α× f )(β× f )
kln,χδ

= �
i jm,αβ

kln F i jm,αβ

kln,χδ
, if m is q-type. (34)

If we reverse the initial space and target space, we can
obtain the inverse fermionic F-move,

(35)
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If n is q-type, we can only fix the target space up to certain superposition of the two equivalent states in Eqs. (13) or (14), and
there will be another independent projective unitary condition for F -move (similarly the Majorana numbers cancel out so that
we can write down the relation for F -move),∑

mαβ

(
F i jm,αβ

kln′,χ ′δ′
)∗

F i jm,αβ

kln,χδ
=

{
δnn′δχχ ′δδδ′ , if n is m-type
1
nn

(
δnn′δχχ ′δδδ′ + �

i j
kln,χδ

δnn′δ(χ× f )χ ′δ(δ× f )δ′
)
, if n is q-type,

(36)

where �
i j
kln,χδ

is another phase factor satisfying (�i j
kln,χδ

)∗ = �
i j
kln,(χ× f )(δ× f ). It depends on strings i, j, k, l, n and fusion states

χ, δ. B(χ × f ) and B(δ × f ) do not have to be the same as B(χ ) and B(δ) respectively in general. If n is q-type, this projective
unitary condition can be viewed as the following projective map:

(37)

(38)

In terms of matrix form, we have

P′ = (
F i jk

l

)†
F i jk

l , (39)

where the projective matrix takes the form

P′ =
⎛⎝ 1

2

(�i j
kln,χδ

)∗

2

�
i j
kln,χδ

2
1
2

⎞⎠, (40)

which also satisfies (P′)2 = P′.
The phase factor �

i j
kln,χδ

is actually the phase difference between these two equivalent states,

if n ,epyt-qsi (41)

from which we can obtain another relation between the F -moves on two equivalent states,(
F i jm,αβ

kln,(χ× f )(δ× f )

)∗ = �
i j
kln,χδ

(
F i jm,αβ

kln,χδ

)∗
, if n is q-type. (42)

D. Fermionic pentagon equation

Similar to the Gu, Wang, and Wen construction, if we apply the gFLU transformations on a bigger patch of the graph, certain
consistent condition is required. The so-called fermionic pentagon equation is essentially a consistency relation on two paths
connecting two fixed point wavefunctions,

(43)

(44)

245120-6



TOWARDS A COMPLETE CLASSIFICATION … PHYSICAL REVIEW B 106, 245120 (2022)

which leads to

∑
ε

Fmkn,βχ

l pq,δε
F i jm,αε

qps,φγ �
∑
tηψκ

F i jm,αβ

knt,ηψ
F itn,ψχ

l ps,κγ
F jkt,ηκ

lsq,δφ
. (45)

By eliminating the Majorana numbers and canceling out
the constant phase factors via a proper phase shift of the
F -symbol, we can use a constant phase factor to change �
into =:∑

ε

F mkn,βχ

l pq,δε
F i jm,αε

qps,φγ = (−1)s(α)s(δ)
∑
tηψκ

F i jm,αβ

knt,ηψ
F itn,ψχ

l ps,κγ
F jkt,ηκ

lsq,δφ
.

(46)

E. O-move

The second type of wavefunction renormalization is the O-
move, graphically expressed as

(47)

We only permit parity-even O-move, i.e.,

Oi j,αβ

k = 0 when Ni j
k < 1 or s(α) + s(β ) = 1 mod 2. (48)

The support space of ψfix should also mod out the

following equivalence relation when k is q-type,

(49)

We still use the convention to assign Majorana numbers
from top to bottom and define the fermion ordering indepen-
dent wavefunction as

(50)

and rewrite the ordering independent O-move as

(51)

where the fermionic O-move is defined as

Oi j,αβ

k = θ s(α)
α θ

s(β )
β Oi j,αβ

k . (52)

However, the O-move itself is not a gFLU transformation

in general, as in the patch ψfix , fermion parity-odd

states actually exist when k is q-type, but we only permit
parity-even O-move. Therefore, we should define a three-
vertices Õ-move as a gFLU transformation, which includes
the following six different cases:

(53)

(54)

(55)

(56)

(57)

(58)

where in all cases the state λ is related to γ by

λ =
{
γ , if s(α) + s(β ) = 0
γ × f , if s(α) + s(β ) = 1 and k is q-type . (59)

Different from the original O-move, when k is q-type, our
newly defined Õ-move permits parity-odd sector, i.e., s(α) +
s(β ) = 1. In this case, the additional fermion is moved to the
third vertex, as a fermion can slide on a q-type string. This
is the reason why we have λ = γ × f when s(α) + s(β ) =
1 and k is q-type.

We define the fermionic three-vertex Õ-move as

Õa
i j,αβγ

kpq,λ = θ s(α)
α θ

s(β )
β θ s(γ )

γ θ s(λ)
γ Õa

i j,αβγ

kpq,λ , for a = 1, 2, 3,

(60)
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and

Õa
i j,γ αβ

kpq,λ = θ s(γ )
γ θ s(α)

α θ
s(β )
β θ s(λ)

γ Õa
i j,γ αβ

kpq,λ , for a = 4, 5, 6.

(61)
Since the Õ-move is a gFLU transformation, after cancel-

ing out the Majorana numbers, it must satisfy∑
i jαβ

Õa
i j,αβγ

kpq,λ

(
Õa

i j,αβγ

kpq,λ

)∗ = 1, for a = 1, 2, 3, 4, 5, 6. (62)

From Eq. (62), depending on whether k is m-type or q-type,
we have the following conditions for O-move:

(1) When k is m-type,∑
i jαβ

Oi j,αβ

k

(
Oi j,αβ

k

)∗ = 1, (63)

This is because Õ is identical to O-move when k is m-type.
(2) When k is q-type, we divide Eq. (62) in parity-even and

odd sectors,∑
i jαβ

Õa
i j,αβγ

kpq,λ

(
Õa

i j,αβγ

kpq,λ

)∗
δs(α)s(β )

+
∑
i jαβ

Õa
i j,αβγ

kpq,λ

(
Õa

i j,αβγ

kpq,λ

)∗
δs(α)(s(β )+1) = 1. (64)

For parity-even sector s(α) = s(β ), the three-vertex Õ-move
just equals to the corresponding O-move. While for parity-odd
sector s(α) = s(β ) + 1, the three-vertex Õ-move differs from
the corresponding O-move by sliding a fermion or creating
two fermions on a q-type string, which can at most cause
a phase difference (see more detailed computations for all
Õ-move below). Thus we can replace the three-vertex Õ-
move by the original O-move, where in the parity-odd sector
the general phase factor difference cancels out, we finally
get

2
∑
i jαβ

Oi j,αβ

k

(
Oi j,αβ

k

)∗ = 1. (65)

Combining Eqs. (63) and (65), the original O-move satis-
fies

nk

∑
i jαβ

Oi j,αβ

k

(
Oi j,αβ

k

)∗ = 1, (66)

We stress that since the parity-odd states actually exist when
k is q-type, there is also a equivalence relation

(67)

Physically, as a fermion can slide freely on a q-type string,
we can move the fermion outside the patch and still apply the
parity-even O-move. Such a scheme may only cause a phase
factor difference, which is exactly achieved by our newly
defined three-vertex Õ-move.

We define �
i j,αβ

k as the phase difference of the two equiv-
alent states,

(68)

from which we have a relation between the O-moves of two
equivalent states,

Oi j,(α× f )(β× f )
k = �

i j,αβ

k Oi j,αβ

k , if k is q-type, (69)

where the phase factor �
i j,αβ

k generally depends on strings
i, j, k and fusion states α, β. The phase factor has the property
(�i j,αβ

k )∗ = �
i j,(α× f )(β× f )
k .

F. Y -move

The third type of wavefunction renormalization is
the Y -move, which is a completeness condition relating

ψfix to ψfix . Similarly when k is q-type, the

support space of ψfix should mod out the following

equivalence relations:

(70)

As the Y -move exists as a completeness condition, we
can always assume that in the above two equivalent states,
the changing of fermion parity never changes the bosonic
fusion states. In this paper, we denote a changing of fermion
parity that may change the bosonic state as × f , and denote
a changing of fermion parity that never changes the bosonic
state as · f . (The definition of · f is enclosed in the definition
of × f .)

When k is m-type, the completeness condition is graphi-
cally expressed as

(71)

Specially, when k is q-type, it is written as

(72)

where the weight coefficient Y i j
k,αβ

should count for the pair of
two equivalent states, and the summation is over all bosonic
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states of α and β. �̃
i j,αβ

k is defined as the phase difference of
the two equivalent states,

(73)

from which we have a relation between the Y -moves of two
equivalent states,

Y i j
k,(α· f )(β· f ) = (

�̃
i j
k,αβ

)∗
Y i j

k,αβ
, if k is q-type, (74)

where �̃
i j
k,αβ

is also a phase factor satisfying (�̃i j
k,αβ

)∗ =
�̃

i j
k,(α· f )(β· f ).

However, since we have Eq. (74), Y i j
k,αβ

(�̃i j,αβ

k )∗ can be

rewritten as Y i j
k,(α· f )(β· f ), and Eq. (72) can be still written in

the form of Eq. (71). But we should keep in mind that when
k is q-type, the two equivalents states are always paired in
counting weights in the completeness condition.

Similar to O-move, we can also define the fermionic Y-
move as

Y i j
k,αβ

= θ
s(β )
β θ s(α)

α Y i j
k,αβ

. (75)

G. A gauge freedom and a relation between O-move and Y -move

There is a gauge freedom in the bosonic states in the
support space V i j

k , i.e., we can do the following transformation
on the fixed-point wavefunctions:

(76)

where ui j
k is a unitary matrix.

Therefore, since we only permit parity-even O-move, i.e.,
the fermion parity on the two vertices are always the same, we
can make a gauge choice on the O-move such that the basis
choices in the fusion space V i j

k and the splitting space V k
i j are

always the same, i.e.,

Oi j,αβ

k = Oi j,α
k δαβ. (77)

Under such a gauge, Eq. (69) is written as

Oi j,(α× f )
k = �

i j,α
k Oi j,α

k , if k is q-type. (78)

Similarly, we can make the same gauge choice on Y -move,

Y i j
k,αβ

= Y i j
k,α

δαβ, (79)

and Eq. (74) can also be simplified as

Y i j
k,(α· f ) = (

�̃
i j
k,α

)∗
Y i j

k,α
, if k is q-type. (80)

There is a relation between some ordering-independent O-
moves and a Y-move. We discuss in two cases. Depending on
k is m-type or q-type, we have

(1) If k is m-type,

(81)

we have

1 = Y i j
k,α

Oi j,α
k , (82)

where we can choose the constant phase of Y i j
k,α

such that � is replaced by =.
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(2) If k is q-type,

(83)

where Õ3
i j,α(α· f )(α· f )
ki j,α is related to Oi j,α

k by:

(84)

We note that when we derive the relation on equivalent states,
we can consider the fixed-point wavefunctions without Ma-
jorana numbers ψfix. But when we derive relations among
different renormalization moves, we should always consider
fermionic fixed-point wavefunctions �fix attached with Majo-
rana numbers.

From Eqs. (80) and (84), we have Y i j
k,α

Oi j,α
k =

Y i j
k,(α· f )Õ3

i j,α(α· f )(α· f )
ki j,α . Therefore we obtain

1 = 2Y i j
k,α

Oi j,α
k . (85)

where we also choose the convention to eliminate the phase
difference on both side. Replacing the Y -move and O-move
by the equivalence relations in Eqs. (78) and (80), we get

�̃
i j
k,α

Y i j
k,(α· f ) = 1

2
(
�

i j,α
k

)∗
Oi j,(α× f )

k

, (86)

where we note that generally α · f is different from α × f , as
generally the bosonic states can be changed in the equivalence
relations of O-move.

Combining the two cases that k is m-type or q-type, we
obtain

Y i j
k,α

= 1

nkOi j,α
k

. (87)

In addition, from derivation in Eq. (84), we see that
Õ1

i j,αβγ

kpq,λ and Õ6
i j,αβγ

kpq,λ are related,

Õ3
i j,αβγ

kpq,λ = Õ6
i j,βαγ

kpq,λ , (88)

H. Dual F-move and a relation between O-move and F-move

We can also define a fermionic dual F-move as the follow-
ing local projective unitary transformation:

(89)
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where

F̃ i jm,αβ

kln,χδ
= θ

s(δ)
δ θ s(χ )

χ θ s(α)
α θ

s(β )
β F̃ i jm,αβ

kln,χδ
. (90)

When n is q-type, we define �
′i j
kln,χδ

as the phase difference
of these two equivalent states,

n

(91)

from which we have another relation between the dual F -
moves of two equivalent states,

F̃ i jm,αβ

kln,(χ× f )(δ× f ) = �̃
i j
kln,χδ

F̃ i jm,αβ

kln,χδ
, if n is q-type. (92)

When m is q-type, we define �̃
i jm,αβ

kln as the phase difference
of these two equivalent states,

m

(93)
from which we have a relation between the dual F -moves of
two equivalent states,(

F̃ i jm,(α× f )(β× f )
kl,χδ

)∗ = �̃
i jm,αβ

kln

(
F̃ i jm,αβ

kln,χδ

)∗
, if m is q-type.

(94)
There is a relation between O-move, F -move, and dual F -
move. On one hand, depending on string p is m-type or q-type,
we have

(1) If p is m-type,

(95)

where in the second line the Majorana numbers θ s(μ)
μ θ s(τ )

τ θ
s(α)
α′ θ

s(χ )
χ ′ θ s(χ )

χ θ
s(χ )
χ ′ θ s(α)

α θ
s(α)
α′ = (−1)s(α)+s(χ )θ s(μ)

μ θ s(τ )
τ θ s(α)

α θ s(χ )
χ =

θ s(α)
α θ s(χ )

χ θ s(μ)
μ θ s(τ )

τ .
(2) If p is q-type,

(96)

245120-11



ZHOU, WANG, AND GU PHYSICAL REVIEW B 106, 245120 (2022)

where Õ1
km,χ (χ× f )(α× f )
p ji,α is related to Okm,χ

p by

(97)

Combining with the case that p is m-type, the general result is given by

(98)

On the other hand, depending on string l is m-type or q-type, we have
(1) If l is m-type,

(99)

(2) If l is q-type,

(100)
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where Õ5
jk,(τ× f )(μ× f )μ
lmi,τ is related to O jk,μ

l by

(101)

Combining with the case that p is m-type, the general result is given by

(102)

Therefore, from Eqs. (98) and (102), we have the relation

F̃ jkl,μτ
mip,χα = np

nl
F jkl,μτ

mip,χαOkm,χ
p O j p,α

i

(
Olm,τ

i

)−1(
O jk,μ

l

)−1
, (103)

from which we obtain two relations on phase factors, if we change the fermion parity on μ, τ through Eqs. (34), (78), and (94),
and on χ, α through Eqs. (42), (78), and (92) respectively,

�̃
jkl,μτ

mi = �lm,τ
i �

jk,μ

l

(
�

jkl,μτ

mi

)∗
, (104)

�̃
jk
mip,χα = �km,χ

p �
j p,α
i

(
�

jk
mip,χα

)∗
. (105)

We require the dual F -move F̃ jkl,μτ

mip,χα also to be projective unitary,

∑
pχα

(
F̃ jkl,μτ

mip,χα

)∗
F̃ jkl ′,μ′τ ′

mip,χα =
{
δll ′δμμ′δττ ′, if l is m-type
1
nl

(
δll ′δμμ′δττ ′ + (

�̃
jkl,μτ

mi

)∗
δll ′δ(μ× f )μ′δ(τ× f )τ ′

)
, if l is q-type.

(106)

Replacing Eq. (103) into Eq. (106), and by Eq. (104),

∑
pχα

(
np

nl

)2(
F jkl,μτ

mip,χα

)∗
F jkl ′,μ′τ ′

mip,χα

∣∣Okm,χ
p O j p,α

i

∣∣2(
Olm,τ

i

)∗
Ol ′m,τ ′

i

(
O jk,μ

l ′
)∗

O jk,μ′
l

=
{
δll ′δμμ′δττ ′ , if l is m-type
1
nl

(
δll ′δμμ′δττ ′ + (

�lm,τ
i

)∗(
�

jk,μ

l

)∗
�

jkl,μτ

mi δll ′δ(μ× f )μ′δ(τ× f )τ ′
)
, if l is q-type.

(107)

We see that in the above equation, when l is q-type, we have

1(
Olm,τ

i

)∗
Ol ′m,τ ′

i

(
O jk,μ

l ′
)∗

O jk,μ′
l

= (
�lm,τ

i

)∗(
�

jk,μ

l

)∗ 1∣∣Olm,τ
i O jk,μ

l

∣∣2 , when δll ′δ(μ× f )μ′δ(τ× f )τ ′ = 1. (108)

Then Eq. (107) can be satisfied by the following ansatz for Oi j,α
k :

Oi j,α
k = �

i j,α
k

√
did j

nin jnkD2dk
δ

i j
k , (109)

where D2 = ∑
i

d2
i

ni
, and �

i j,α
k is a general phase factor. And Eq. (107) reduces to the projective unitary condition for F -move in

Eq. (26).
By Eq. (87), the Y -move has the expression

Y i j
k,α

= (
�

i j,α
k

)∗
√

nin jD2dk

nkdid j
δ

i j
k . (110)

Since we have Eqs. (78) and (80), the phase �
i j,α
k must satisfy

�
i j,(α× f )
k = �

i j,α
k �

i j,α
k , (111)
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and

�
i j,(α· f )
k = �̃

i j,α
k �

i j,α
k , (112)

where we note that the α × f in Eq. (111) is determined by the corresponding states in equivalent O-moves. Specially, when the
fermion parity change in equivalent O-moves also does not change the bosonic state, Eqs. (111) and (112) reduce to the same
equation. In this special case, we have �

i j,α
k = �̃

i j,α
k .

After taking the gauge on O-move in Eq. (77), Eq. (66) becomes

nk

∑
i jα

Oi j,α
k

(
Oi j,α

k

)∗ = 1. (113)

Combining with Eq. (109), we find the quantum dimensions satisfy∑
i j

Ni j
k did j

nin j
= dkD2. (114)

From derivations in Eqs. (97) and (101), we have more relations between different three-vertex Õ-moves,

Õ1
i j,αβγ

kpq,λ = Õ4
i j,βαγ

kpq,λ , (115)

Õ2
i j,αβγ

kpq,λ = Õ5
i j,βαγ

kpq,λ . (116)

The other projective unitary condition for dual F -move is∑
lμτ

F̃ jkl,μτ
mip,χα

(
F̃ jkl,μτ

mip′,χ ′α′
)∗ =

{
δpp′δχχ ′δαα′ , if p is m-type
1
np

(
δpp′δχχ ′δαα′ + (

�̃
jk
mip,χα

)∗
δpp′δ(χ× f )χ ′δ(α× f )α′

)
, if p is q-type

. (117)

Replacing Eq. (103) into Eq. (117), and by Eq. (105), we
can similarly reduce it to the projective unitary condition in
Eq. (36) with the ansatz in Eq. (109).

I. H-move and an additional constraint between
dual H-move and F-move

We define the fermionic H-move as the following local
projective unitary transformation:

(118)

where

Hkim,αβ

jln,χδ
= θ s(α)

α θ
s(β )
β θ

s(δ)
δ θ s(χ )

χ Hkim,αβ

jln,χδ
. (119)

Similarly, the fermionic dual H-move is defined as

(120)

where

H̃kim,αβ

jln,χδ
= θ

s(β )
β θ s(α)

α θ
s(δ)
δ θ s(χ )

χ H̃kim,αβ

jln,χδ
. (121)

Again, when m is a q-type string, there exist the following
equivalence relations:

(122)

(123)

When n is a q-type string, there exist the following equiva-
lence relations:

(124)

(125)

For convenience, below we will show how to derive the
dual H-move from the combination of F , Y , and O-moves
first, and the projective unitarity condition of H-move will
impose additional conditions on F -symbol. When m is q-type,
we define ζ̃

kim,αβ

jl as the phase difference of these two equiva-
lent states,

(126)

where in general the bosonic states B(α × f ) and B(β × f )
may not be the same as B(α) and B(β ) respectively. Thereby
we have a relation between the dual H-moves of two equiva-
lent states,

H̃kim,(α× f )(β× f )
jln,χδ

= ζ̃
kim,αβ

jl H̃ kim,αβ

jln,χδ
, if m is q-type, (127)

where ζ̃
kim,αβ

jl satisfies (̃ζ kim,αβ

jl )∗ = ζ̃
kim,(α× f )(β× f )
jl .
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When n is q-type, we define ζ̃ ki
jln,χδ as the phase difference between these two equivalent states,

(128)

from which we have another relation between the dual H-moves of two equivalent states,(
H̃kim,αβ

jln,(χ× f )(δ× f )

)∗ = ζ̃ ki
jln,χδ

(
H̃kim,αβ

jln,χδ

)∗
, if n is q-type, (129)

where ζ̃ ki
jln,χδ satisfies (̃ζ ki

jln,χδ )∗ = ζ̃ ki
jln,(χ× f )(δ× f ).

There is a relation between the dual H-move and F -move. Depending on string j is m-type or q-type, we have
(1) If j is m-type,

(130)

(2) If j is q-type,

(131)
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where we have

(132)
Combining with the case that β is fermionic and the case j is m-type, the relation is written as

H̃kim,αβ

jln,χδ
= n jY

kl
n,δF imk,αδ

ln j,βχ
Oml,β

j . (133)

With the ansatz Eqs. (109) and (110), we have

H̃kim,αβ

jln,χδ
= �

ml,β
j

(
�kl,δ

n

)∗
√

n jnkdmdn

nmnnd jdk
F imk,αδ

ln j,βχ
. (134)

Similar to F -move, we also require the dual H-move to be projective unitary,∑
nχδ

H̃kim′,α′β ′
jln,χδ

(
H̃kim,αβ

jln,χδ

)∗ =
{
δmm′δαα′δββ ′ , if m is m-type
1

nm

(
δmm′δαα′δββ ′ + ζ̃

kim,αβ

jl δmm′δ(α× f )α′δ(β× f )β ′
)
, if m is q-type.

(135)

If m is q-type, and in the fermion parity-even sector for example, this projective unitary condition for dual H-move can be viewed
as the following projective map:

(136)

(137)

In terms of matrix form, we have

P̃ =
⎛⎝ 1

2

(̃ζ kim,αβ )∗
jl

2

ζ̃
kim,αβ

jl

2
1
2

⎞⎠, (138)

which also satisfies P̃2 = P̃. Relation in Eq. (133) induces the following equivalence relation on F -move:

F imk,(α× f )δ
ln j,(β× f )χ = H̃kim,(α× f )(β× f )

jln,χδ
Oml,β

j

H̃ kim,αβ

jln,χδ
Oml,(β× f )

j

F imk,αδ
ln j,βχ

= (
�

ml,β
j

)∗
ζ̃

kim,αβ

jl F imk,αδ
ln j,βχ

, if m is q-type, (139)

which is the equivalence between two F -moves with the fermion parity on the first two vertical fusion states changed. On the
other hand, the projective unitary condition of dual H move also induce an additional condition for F -move,∑

nχδ

dn

nn
F im′k,α′δ

ln j,β ′χ

(
F imk,αδ

ln j,βχ

)∗ = d jdknm

n jnkdm

{
δmm′δαα′δββ ′ , if m is m-type
1

nm

(
δmm′δαα′δββ ′ + �

kim,αβ

jl δmm′δ(α× f )α′δ(β× f )β ′
)
, if m is q-type

(140)

where

�
kim,αβ

jl := (
�

ml,β
j

)∗
ζ̃

kim,αβ

jl (141)

is the combination of two phase factors, and it also satisfies (�kim,αβ

jl )∗ = �
kim,(α× f )(β× f )
jl .

Inversely, if we sum over the states {m, α, β}, the dual-H move also satisfies∑
mαβ

(
H̃kim,αβ

jln′,χ ′δ′
)∗

H̃kim,αβ

jln,χδ
=

{
δnn′δχχ ′δδδ′ , if n is m-type
1
nn

(
δnn′δχχ ′δδδ′ + ζ̃ ki

jln,χδδnn′δ(χ× f )χ ′δ(δ× f )δ′
)
, if n is q-type.

(142)

If m is q-type, and in the fermion parity-even sector for example, this projective unitary condition for dual H-move can be viewed
as the following projective map:

(143)
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(144)

In terms of matrix form, we have

P̃′ =
⎛⎝ 1

2

(̃ζ ki
jln,χδ )∗

2
ζ̃ ki

jln,χδ

2
1
2

⎞⎠, (145)

which also satisfies (P̃′)2 = P̃′. Relation in Eq. (133) again induces the following equivalence relation on F -move:

(
F imk,α(δ× f )

ln j,β(χ× f )

)∗ =
(
H̃kim,αβ

jln,(χ× f )(δ× f )Y
kl

n,δ

)∗(
H̃kim,αβ

jln,χδ
Y kl

n,(δ· f )

)∗
(
F imk,αδ

ln j,βχ

)∗ = (
�̃kl

n,δ

)∗
ζ̃ ki

jln,χδ

(
F imk,αδ

ln j,βχ

)∗
, if n is q-type, (146)

which is the equivalence between two F -moves with the fermion parity on the second two vertical fusion states changed. We
also have another condition for F -move,∑

mαβ

dm

nm

(
F imk,αδ′

ln′ j,βχ ′
)∗

F imk,αδ
ln j,βχ

= d jdknn

n jnkdn

{
δnn′δχχ ′δδδ′ , if n is m-type
1
nn

(
δnn′δχχ ′δδδ′ + �ki

jln,χδδnn′δ(χ× f )χ ′δ(δ× f )δ′
)
, if n is q-type,

(147)

where

�ki
jln,χδ := (

�̃kl
n,δ

)∗
ζ̃ ki

jln,χδ, (148)

and it also satisfies (�ki
jln,χδ )∗ = �ki

jln,(χ× f )(δ× f ).

Similarly, we can also derive H-move from F , Y , and O-moves,

Hkim,αβ

jln,χδ
= niY

kl
n,δ

(
F kmi,αχ

jnl,βδ

)∗
Okm,α

i . (149)

When m is q-type, there is also such an equivalence relation,

Hkim,(α× f )(β× f )
jln,χδ

= ζ
kim,αβ

jl Hkim,αβ

jln,χδ
, if m is q-type, (150)

and when n is q-type, we have another equivalence relation,(
Hkim,αβ

jln,(χ× f )(δ× f )

)∗ = ζ ki
jln,χδ

(
Hkim,αβ

jln,χδ

)∗
, if n is q-type. (151)

From Eqs. (133) and (149), the phase factor between equivalent dual H-moves ζ
kim,αβ

jl is related to the phase factor between

equivalent H-moves ζ̃
kim,αβ

jl by

ζ
ikm,αβ

l j = �im,α
k �

ml,β
j

(̃
ζ

kim,αβ

jl

)∗
, (152)

which can be proven from Eqs. (139), (146), and (149). And ζ ki
jln,χδ = ζ̃ ki

jln,χδ . The projectively-unitary conditions of H-moves
are ∑

nχδ

Hkim′,α′β ′
jln,χδ

(
Hkim,αβ

jln,χδ

)∗ =
{
δmm′δαα′δββ ′ , if m is m-type
1

nm

(
δmm′δαα′δββ ′ + ζ

kim,αβ

jl δmm′δ(α× f )α′δ(β× f )β ′
)
, if m is q-type

, (153)

∑
mαβ

(
Hkim,αβ

jln′,χ ′δ′
)∗

Hkim,αβ

jln,χδ
=

{
δnn′δχχ ′δδδ′ , if n is m-type
1
nn

(
δnn′δχχ ′δδδ′ + ζ ki

jln,χδδnn′δ(χ× f )χ ′δ(δ× f )δ′
)
, if n is q-type

, (154)

which will give exactly the same conditions for F -moves Eqs. (140) and (147).

J. Relations among the phase factors

The four phase factors �
i jm,αβ

kl , �i j
kln,χδ

, �kim,αβ

jl , and �ki
jln,χδ are not independent. Consistency between the fermionic Pentagon

equation in Eq. (46) and equivalence relations in Eqs. (34), (42), (139), and (146) give rise to many relations among the phase
factors. We will only show the following two relations here:

�
kim,αβ

jl = �is
tkm,ηα

(
�

stm,ηβ

l j

)∗
, (155)

�ki
jln,χδ = �si

jtn,δη

(
�sk

ltn,χη

)∗
, (156)

where strings s, t , and fusion state η can be arbitrarily chosen as long as fusion rules are satisfied in the above two equations.
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Now we show how to derive the first relation in Eq. (155). We divide the summation over t in Eq. (46) into two parts: the
summation over t strings that are m-type, and the summation over t strings that are q-type. Then we relabel η and ψ by η × f
and ψ × f in the summation that t strings are q-type,∑

ε

F i jm,αε

qps,φγ F mkn,βχ

l pq,δε
= (−1)s(α)s(δ)

∑
{m-type t}ηψκ

F i jm,αβ

knt,ηψ
F itn,ψχ

l ps,κγ
F jkt,ηκ

lsq,δφ

+ (−1)s(α)s(δ)
∑

{q-type t}(η× f )(ψ× f )(κ× f )

F i jm,αβ

knt,(η× f )(ψ× f )F
itn,(ψ× f )χ

l ps,(κ× f )γ F jkt,(η× f )(κ× f )
lsq,δφ

= (−1)s(α)s(δ)
∑

{m-type t}ηψκ

F i jm,αβ

knt,ηψ
F itn,ψχ

l ps,κγ
F jkt,ηκ

lsq,δφ

+ (−1)s(α)s(δ)
∑

{q-type t}ηψκ

(
�

i j
knt,ηψ

)∗
�

nit,ψκ

sl �
jkt,ηκ

ls F i jm,αβ

knt,ηψ
F itn,ψχ

l ps,κγ
F jkt,ηκ

lsq,δφ
, (157)

where we note that for the summation over q-type t strings, we can only change the fermion parity for even number of fusion
states for a single F -move (as the F -move should preserve fermion-parity), and only the state κ , which is summed over can
compensate the fermion-parity change in F itn,ψχ

l ps,κγ
and F jkt,ηκ

lsq,δφ
. So that here κ must also be replaced by κ × f . The summation∑

(η× f )(ψ× f )(κ× f ) is actually equivalent to the summation
∑

ηψκ (only up to changing the summation order). Comparing Eq. (157)
with Eq.(46), we obtain∑

{q-type t}ηψκ

F i jm,αβ

knt,ηψ
F itn,ψχ

l ps,κγ
F jkt,ηκ

lsq,δφ
,=

∑
{q-type t}ηψκ

(
�

i j
knt,ηψ

)∗
�

nit,ψκ

sl �
jkt,ηκ

ls F i jm,αβ

knt,ηψ
F itn,ψχ

l ps,κγ
F jkt,ηκ

lsq,δφ
. (158)

We see that Eq. (155) is a simple solution to the above equation (up to a relabelling).
Then we derive Eq. (156). When string s is q-type, we relabel φ and γ by φ × f and γ × f . And in order to conserve the

fermion-parity for a single F -move, we also need to replace κ by κ × f ,∑
ε

F i jm,αε

qps,(φ× f )(γ× f )F
mkn,βχ

l pq,δε
= (−1)s(α)s(δ)

∑
tηψκ

F i jm,αβ

knt,ηψ
F itn,ψχ

l ps,(κ× f )(γ× f )F
jkt,η(κ× f )

lsq,δ(φ× f ) , (159)∑
ε

(
�

i j
qps,φγ

)∗
F i jm,αε

qps,φγ F mkn,βχ

l pq,δε
= (−1)s(α)s(δ)

∑
tηψκ

(
�it

l ps,κγ

)∗(
�

t j
qls,κφ

)∗
F i jm,αβ

knt,ηψ
F itn,ψχ

l ps,κγ
F jkt,ηκ

lsq,δφ
. (160)

We see that Eq. (156) is a simple solution to the above equation (up to a relabelling).
Further, from Eqs. (141) and (155), we have(

�t l,κ
s

)∗
ζ̃

nit,ψκ

sl = (
�

jkt,ηκ

ls y
)∗

�
i j
knt,ηψ

, (161)

where strings j, k, and fusion states η on right-hand side of the above equation can be chosen arbitrarily as long as fusion rules
are satisfied. Here we can choose the values of �

i j,αβ

k and ζ̃
kim,αβ

jl arbitrarily as long as Eq. (161) is satisfied. And there always

exists a gauge such that all �
i j,αβ

k = 1. In such a gauge, ζ̃
kim,αβ

jl is determined by ζ̃
nit,ψκ

sl = (� jkt,ηκ

ls )∗�i j
knt,ηψ

.
Also, Eq. (128) reduces to Eq. (73) if string k is identified with i and l is identified with j, which implies

�̃
i j
n,χδ = ζ̃ ii

j jn,χδ. (162)

Then from Eqs. (148) and (156), we have (
�̃kl

n,δ

)∗
ζ̃ ki

jln,χδ = �si
jtn,δη

(
�sk

ltn,χη

)∗
, (163)

where strings s, t and fusion states η on right-hand side of the above equation can be chosen arbitrarily as long as fusion rules
are satisfied. We note that if in certain example or under certain gauge we always have �si

jtn,δη(�sk
ltn,χη )∗ = 1, we can then choose

all �̃
i j,αβ

k = 1 and all ζ̃ ki
jln,χδ = 1.

K. Summary

We collect all conditions and list them below:

Ni j
k = Bi j

k + F i j
k , (164)

∑
m

Ni j
m Nmk

l

nm
=

∑
n

Nin
l N jk

n

nn
, (165)

∑
m

Bi j
mF mk

l + F i j
m Bmk

l

nm
=

∑
n

Bin
l F jk

n + F in
l B jk

n

nn
, (166)
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F i jm,αβ

kln,χδ
= 0 when Ni j

m < 1 or Nmk
l < 1 or N jk

n < 1 or Nin
l < 1, or s(α) + s(β ) + s(χ ) + s(δ) = 1 mod 2, (167)∑

i j

(
Bi j

k

)2 + (
F i j

k

)2 � 1, (168)

∑
nχδ

F i jm′,α′β ′
kln,χδ

(
F i jm,αβ

kln,χδ

)∗ =
{
δmm′δαα′δββ ′ , if m is m-type
1

nm

(
δmm′δαα′δββ ′ + �

i jm,αβ

kl δmm′δ(α× f )α′δ(β× f )β ′
)
, if m is q-type

, (169)

∑
mαβ

(
F i jm,αβ

kln′,χ ′δ′
)∗

F i jm,αβ

kln,χδ
=

{
δnn′δχχ ′δδδ′ , if n is m-type
1
nn

(
δnn′δχχ ′δδδ′ + �

i j
kln,χδ

δnn′δ(χ× f )χ ′δ(δ× f )δ′
)
, if n is q-type

, (170)

∑
nχδ

dn

nn
F im′k,α′δ

ln j,β ′χ

(
F imk,αδ

ln j,βχ

)∗ = d jdknm

n jnkdm

{
δmm′δαα′δββ ′ , if m is m-type
1

nm

(
δmm′δαα′δββ ′ + �is

tkm,ηα

(
�

stm,ηβ

l j

)∗
δmm′δ(α× f )α′δ(β× f )β ′

)
, if m is q-type

, (171)

∑
mαβ

dm

nm

(
F imk,αδ′

ln′ j,βχ ′
)∗

F imk,αδ
ln j,βχ

= d jdknn

n jnkdn

{
δnn′δχχ ′δδδ′ , if n is m-type
1
nn

(
δnn′δχχ ′δδδ′ + �si

jtn,δη

(
�sk

ltn,χη

)∗
δnn′δ(χ× f )χ ′δ(δ× f )δ′

)
, if n is q-type

. (172)

[In Eqs. (171) and (172), strings s, t and fusion state η can be arbitrarily chosen as long as fusion rules are satisfied.](
�

i jm,αβ

kl

)∗ = �
i jm,(α× f )(β× f )
kl ,

(
�

i j
kln,χδ

)∗ = �
i j
kln,(χ× f )(δ× f ), (173)∑

tηφκ

F i jm,αβ

knt,ηψ
F itn,ψχ

l ps,κγ
F jkt,ηκ

lsq,δφ
= (−1)s(α)s(δ)

∑
ε

F mkn,βχ

l pq,δε
F i jm,αε

qps,φγ , (174)

∑
i j

Ni j
k did j

nin j
= dkD2, where D2 =

∑
i

d2
i

ni
. (175)

L. Hamiltonian for general 2D nonchiral topological orders

We construct the parent Hamiltonian that realizes the fixed-point wavefunctions satisfying all algebraic conditions listed in
Sec. II K as the gapped ground state. The Hamiltonian is constructed on a 2D lattice, and let us consider a honeycomb lattice for
example. It is a Hamiltonian that contains three terms,

Ĥ = −
∑

v

Q̂v −
∑

e

D̂l −
∑

p

B̂p, (176)

where
∑

v sums over all vertices,
∑

l sums over all links, and
∑

p sums over all plaquettes, as shown in Fig. 1.
The vertex term is defined in the same way as in Ref. [10], which encodes all string fusion rules. Let the Hilbert space on a

patch G be VG. We expand the Hilbert space by adding an auxiliary qubit to each vertex v,

V ex
G = VG ⊗ (⊗νVqubit ), (177)

where Vqubit is a two dimensional Hilbert space of qubit |Iv〉, Iv = 0, 1. Then in the expanded Hilbert space V ex
G , Q̂v acts on each

vertex v and the three links connected to v as

(178)

FIG. 1. A honeycomb lattice. The vertices are labeled by v, hexagons by p, and links by l .
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We see that Q̂v is a projector satisfying Q̂2
v = Q̂v . Equivalently, we can express Q̂v as

(179)

where the states of fermionic ground state fixed-point wavefunctions �fix automatically satisfy Ni j
k > 0, Iα = s(α), and are

assigned with ordered Majorana numbers on vertices.
The link term D̂l is needed when there are q-type strings involved. D̂l projects the following states into vacuum if the

corresponding inner strings are q-type,

(180)

(181)

(182)

where the states if bosonic part ground state fixed-point wavefunction ψfix contain no Majorana number. Equivalently, we can
express D̂l as

(183)

where {q-type m} in the summation means that we only sum over m strings that are q-type. The attached Grassmann numbers
for the first part of the D̂l operator for example is derived from the equivalence relation in Eq. (126),

(184)

And it is easy to see that D̂l as a projector satisfies D̂2
l = D̂l .

The plaquette term B̂p is also defined similarly as in Ref. [10]. It acts on the six vertices α, β, γ , λ, μ, ν and six inner links
a, b, c, d, e, f of a hexagon p, and the six outer links i, j, k, l, m, n connected to the hexagon (the outer links are fixed). The
Majorana number valued matrix element Baα,bβ,cγ ,dλ,eμ, f ν

a′α′,b′β ′,c′γ ′,d ′λ′,e′μ′, f ′ν ′ (i, j, k, l, m, n) is defined as

(185)

The matrix B = U†
pIUp, where

(Up)aα,bβ,cγ ,dλ,eμ, f ν
trs,χηϕε (i, j, k, l, m, n) = (

H jit,χδ

f ba,αβ

)∗F t f b,δγ
ckr,κη

H̃r f c,κλ

dls,ρϕ

(
F f en,ν ′ε′

msd,μρ

)∗Õ2
f e,νν ′ε′

nms,ε , (186)

where the involved F -moves, H-moves, dual H-moves, and Õ-moves should satisfy the equivalence relations in
Eqs. (34), (42), (69), (127), (129), (150), and (151) when certain strings are q-type.

Then we argue that our constructed Hamiltonian in Eq. (176) is a commuting-projector Hamiltonian. First, in Ref. [10], it
has been shown that Q̂v commutes with B̂p. Next, the link term D̂l automatically commutes with Q̂v as long as the states that D̂l

projects onto satisfy all string fusion rules, which is exactly the case. Then the link term D̂l automatically commutes with B̂p as
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along as the involved F -moves, H-moves, dual H-moves, and Õ-moves satisfy their corresponding equivalence relations when
certain strings are q-type, which is also the case.

III. TOPOLOGICAL INVARIANT PARTITION FUNCTION

A. Partition function and spin structure

Based on the above algebraic relations, we can construct the following topological invariant partition function [22] for an
arbitrary triangulation of 3D spin manifold M,

Z = 1

D2Nν

∑
i jklmn...αβχδ...

∏
link

di

ni

∫ ∏
face

dθ s(α)
α dθ

s(α)
α

∏
E

(−1)s(α)
∏

tetrahedron

(
G i jm,αβ

kln,χδ

)σi jmkln
, (187)

where D2 = ∑
i d2

i /ni is the total quantum dimension and
Nν is the total number of vertices for a given triangulation.
We evaluate the Grassmann integral on all interior faces,
where we choose that dθ always comes before dθ . G i jm

kln is
the ordering-independent Grassmann valued G-symbol and
σi jmkln = ± is the orientation of the tetrahedron,(

G i jm,αβ

kln,χδ

)+ = θ s(α)
α θ

s(β )
β θ

s(δ)
δ θ

s(χ )
χ Gi jm,αβ

kln,χδ
, (188)(

G i jm,αβ

kln,χδ

)− = θ s(χ )
χ θ

s(δ)
δ θ

s(β )
β θ

s(α)
α

(
Gi jm,αβ

kln,χδ

)∗
. (189)

The G-symbol is actually the dual representation of the orig-
inal F -symbol, as shown in Fig. 2, and Gi jm,αβ

kln,χδ
is related to

F -symbol via

Gi jm,αβ

kln,χδ
=

√
nnnm

dndm
F i jm,αβ

kln,χδ
. (190)

Specifically,
∏

E (−1)s(α) is the spin structure term. We in-
clude this spin structure term such that the partition function is
invariant under all Pachner moves [22], i.e., retriangulations.
Mathematically, the fermionic partition function can only be
defined on a spin manifold, i.e., a manifold that admits spin
structures. It is known that an oriented manifold M admits
spin structures if and only if its second Stiefel-Whitney class
[ω2] ∈ H2(M,Z2) vanishes. We denote the Poincare dual of
ω2 to be ω1 in 2+1D, which is a set of some 1-simplices.
Therefore, the requirement that ω2 vanishes (being a cobound-
ary) is equivalent to ω1 being the boundary of some surface
E : ∂E = ω1. Different choices of E correspond to different
admitted choices of spin structures η, where E is the Poincare
dual of the 1-cochain η ∈ C1(M,Z2). In Ref. [22], the spin
structure term is expressed as

∏
ω1

(−1)m(i), where m(i) is a
Z2 function defined on link i satisfying s(α) = m(i) + m( j) +

FIG. 2. The graphical representation of the G-symbol is actually
a dual representation of the F -symbol.

m(k) (mod 2). And ω1 are certain links given as

ω1 = {all 1-simplices} + {(02) in any + tetrahedron (0123)}
+ {(13) in any − tetrahedron (0123)}

= {all 1-simplices} + {(02) in any 2-simplex}
+ {(03) in any 3-simplex}, (191)

where we have relabelled the vertices A, B,C, D in Fig. 2 by
0,1,2,3, and the two expressions of ω1 are equivalent as shown
in Ref. [23]. And both expressions are further equivalent to
our spin structure term

∏
E (−1)s(α). It is known that all ori-

ented 3D manifolds admit spin structures. The E surfaces for
all eight time ordered 2–3 moves are listed in Ref. [24].

B. 2–3 moves

In 2+1D, the first type of Pachner move is the 2–3 move.
There are in total eight 2–3 moves that can be induced by a
time ordering. The standard 2–3 move is given by

∑
ε

∫
dθ s(ε)

ε dθ
s(ε)
ε

(
G i jm,αε

qps,φγ

)−(
Gmkn,βχ

l pq,δε

)−

=
∑
tηφκ

∫
dθ s(η)

η dθ
s(η)
η dθ

s(φ)
φ dθ

s(φ)
φ dθ s(κ )

κ dθ
s(κ )
κ

× dt

nt

(
G i jm,αβ

knt,ηφ

)−(
G itn,φχ

l ps,κγ

)−(
G jkt,ηκ

lsq,δφ

)−
, (192)

where the spin structure term is trivial for the standard 2–3
move, i.e.,

∏
E (−1)s(α) = 1. After integrating out the Grass-

mann numbers and comparing the rest Grassmann numbers

FIG. 3. Graphical representation of the standard 2–3 move for
G-symbol, or the fermionic Pentagon relation for F -symbol.
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on both sides, this equation is reduced to∑
ε

Gi jm,αε

qps,φγ Gmkn,βχ

l pq,δε
= (−1)s(α)s(δ)

∑
tηψκ

dt

nt
Gi jm,αβ

knt,ηψ
Gitn,ψχ

l ps,κγ
Gjkt,ηκ

lsq,δφ
,

(193)

which is exactly the same as Eq. (174), as shown graphically
in Fig. 3.

The other seven 2–3 moves induced by time-ordering are∑
κ

Gitn,ψχ

l ps,κγ
Gjkt,ηκ

lsq,δφ
=

∑
mαβε

(−1)s(α)s(δ) dm

nm

(
Gi jm,αβ

knt,ηψ

)∗
Gi jm,αε

qps,φγ Gmkn,βχ

l pq,δε
, (194)

∑
β

(
Gi jm,αβ

knt,ηψ

)∗
Gmkn,βχ

l pq,δε
= (−1)s(α)s(δ)

∑
sφγ κ

ds

ns

(
Gi jm,αε

qps,φγ

)∗
Gitn,ψχ

l ps,κγ
Gjkt,ηκ

lsq,δφ
, (195)

∑
φ

(
Gi jm,αε

qps,φγ

)∗
Gjkt,ηκ

lsq,δφ
= (−1)s(α)s(δ)

∑
nψβχ

dn

nn

(
Gi jm,αβ

knt,ηψ

)∗(
Gitn,ψχ

l ps,κγ

)∗
Gmkn,βχ

l pq,δε
, (196)

∑
ψ

Gi jm,αβ

knt,ηψ
Gitn,ψχ

l ps,κγ
=

∑
qεδφ

(−1)s(α)s(δ) dq

nq
Gi jm,αε

qps,φγ Gmkn,βχ

l pq,δε

(
Gjkt,ηκ

lsq,δφ

)∗
, (197)

∑
η

Gi jm,αβ

knt,ηψ
Gjkt,ηκ

lsq,δφ
= (−1)s(α)s(δ)

∑
pγ εχ

dp

np
Gi jm,αε

qps,φγ Gmkn,βχ

l pq,δε

(
Gitn,ψχ

l ps,κγ

)∗
, (198)

∑
χ

Gmkn,βχ

l pq,δε

(
Gitn,ψχ

l ps,κγ

)∗ =
∑
jαηφ

(−1)s(α)s(δ) d j

n j
Gi jm,αβ

knt,ηψ
Gjkt,ηκ

lsq,δφ

(
Gi jm,αε

qps,φγ

)∗
, (199)

∑
γ

(
Gi jm,αε

qps,φγ

)∗
Gitn,ψχ

l ps,κγ
=

∑
kβδη

(−1)s(α)s(δ) dk

nk

(
Gi jm,αβ

knt,ηψ

)∗
Gmkn,βχ

l pq,δε

(
Gjkt,ηκ

lsq,δφ

)∗
, (200)

as shown graphically in Fig. 4. Below we will show how to derive these seven 2–3 moves.

C. The additional relations among projective phase factors

Since the G-move and F -move are related through Eq. (190), we can rewrite the four projective unitary conditions in
Eqs. (26), (36), (140), and (147) in terms of G-move as∑

nχδ

dndm

nnnm
Gi jm′,α′β ′

kln,χδ

(
Gi jm,αβ

kln,χδ

)∗ =
{
δmm′δαα′δββ ′ , if m is m-type
1

nm

(
δmm′δαα′δββ ′ + �

i jm,αβ

kl δmm′δ(α× f )α′δ(β× f )β ′
)
, if m is q-type

, (201)

∑
mαβ

dndm

nnnm

(
Gi jm,αβ

kln′,χ ′δ′
)∗

Gi jm,αβ

kln,χδ
=

{
δnn′δχχ ′δδδ′ , if n is m-type
1
nn

(
δnn′δχχ ′δδδ′ + �

i j
kln,χδ

δnn′δ(χ× f )χ ′δ(δ× f )δ′
)
, if n is q-type

, (202)

∑
nχδ

dndm

nnnm
Gim′k,α′δ

ln j,β ′χ

(
Gimk,αδ

ln j,βχ

)∗ =
{
δmm′δαα′δββ ′ , if m is m-type
1

nm

(
δmm′δαα′δββ ′ + �

kim,αβ

jl δmm′δ(α× f )α′δ(β× f )β ′
)
, if m is q-type

, (203)

∑
mαβ

dndm

nnnm

(
Gimk,αδ′

ln′ j,βχ ′
)∗

Gimk,αδ
ln j,βχ

=
{
δnn′δχχ ′δδδ′ , if n is m-type
1
nn

(
δnn′δχχ ′δδδ′ + �ki

jln,χδδnn′δ(χ× f )χ ′δ(δ× f )δ′
)
, if n is q-type . (204)

Consistency between the fermionic Pentagon equation in
Eq. (193) and four projective unitary conditions in Eqs. (201)–
(204) (all in terms of G-move) can induce many relations
among the phase factors. Here we only focus on the relations
that are required to fully construct the fermionic partition
function in Eq. (187).

The above four projective unitary conditions induce the
following four equivalence relations for G-move:

Gi jm,(α× f )(β× f )
kln,χδ

= �
i jm,αβ

kl Gi jm,αβ

kln,χδ
, if m is q-type, (205)(

Gi jm,αβ

kln,(χ× f )(δ× f )

)∗ = �
i j
kln,χδ

(
Gi jm,αβ

kln,χδ

)∗
, if n is q-type,

(206)

Gimk,(α× f )δ
ln j,(β× f )χ = �

kim,αβ

jl Gimk,αδ
ln j,βχ

, if m is q-type, (207)(
Gimk,α(δ× f )

ln j,β(χ× f )

)∗ = �ki
jln,χδ

(
Gimk,αδ

ln j,βχ

)∗
, if n is q-type. (208)

In addition to the four phase factors �
i jm,αβ

kl , �
i j
kln,χδ

, �
kim,αβ

jl

and �ki
jln,χδ we defined above, we need to define a new phase

factor 	
m ji,αδ

nl to construct the topological invariant partition
function, as the following:

Gi jm,(α× f )β
kln,χ (δ× f ) = 	

m ji,αδ

nl Gi jm,αβ

kln,χδ
, if i is q-type, (209)

which corresponds to the changing of fermion parity on two
diagonal fusion states α and δ, and the phase factor 	

m ji,αδ

nl

245120-22



TOWARDS A COMPLETE CLASSIFICATION … PHYSICAL REVIEW B 106, 245120 (2022)

FIG. 4. All possible time ordered 2–3 move for G-symbol.

can be explicitly constructed through a sequence of F -move and O-moves, as introduced in Appendix C.

To derive the rest seven 2–3 moves induced by time-ordering, i.e., to fully establish the topological invariance of partition
function, the following four relations on phase factors are required (see full details in Appendix D):

�
i j
knt,ηψ

= �
nit,ψκ

sl �
jkt,ηκ

ls , (210)

�i jm,αε
qp = �

i jm,αβ

kn

(
	nkm,βε

qp

)∗
, (211)(

�it
l ps,κγ

)∗ = (
�

i j
qps,φγ

)∗
�

t j
qls,κφ

, (212)(
�mi

sqp,εγ

)∗ = �nm
ql p,χε

(
�ni

sl p,χγ

)∗
. (213)

All above relations can be obtained as simple solutions by comparing the fermionic Pentagon equation in Eq. (193) with
the equivalence relations in Eqs. (205)–(209). Equation (210) and (212) are derived in Sec. II J. We can obtain the rest of the
relations in Eqs. (211) and (213) in a similar manner.

D. 1–4 moves

The second type of Pachner move is the 1–4 move. There are three different 1–4 moves induced by a global time ordering,

Gi jm,αε

qps,φγ = (−1)s(α)s(δ) 1

D2

∑
ntkl

∑
βηψχκδ

dndt dkdl

nnnt nknl
Gi jm,αβ

knt,ηψ
Gitn,ψχ

l ps,κγ

(
Gmkn,βχ

l pq,δε

)∗
Gjkt,ηκ

lsq,δφ
, (214)

Gmkn,βχ

l pq,δε
= (−1)s(α)s(δ) 1

D2

∑
i jts

∑
αηψφκγ

did jdt ds

nin jnt ns
Gi jm,αβ

knt,ηψ

(
Gi jm,αε

qps,φγ

)∗
Gitn,ψχ

l ps,κγ
Gjkt,ηκ

lsq,δφ
, (215)

Gitn,ψχ

l ps,κγ
= (−1)s(α)s(δ) 1

D2

∑
m jkq

∑
αβηεφδ

dmdjdkdq

nmn jnknq

(
Gi jm,αβ

knt,ηψ

)∗
Gi jm,αε

qps,φγ Gmkn,βχ

l pq,δε

(
Gjkt,ηκ

lsq,δφ

)∗
. (216)
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Combining all the 2–3 moves in Eqs. (193)–(200) and all
the 1–4 moves in Eqs. (214)–(216), the following relations can
be derived: ∑

k jmαβχ

dkd jdm

nkn jnm

(
Gi jm,αβ

kln,χδ

)∗
Gi jm,αβ

kln,χδ
= D2, (217)

∑
i jnαχδ

did jdn

nin jnn

(
Gi jm,αβ

kln,χδ

)∗
Gi jm,αβ

kln,χδ
= D2, (218)

∑
ilmαβδ

didldm

ninlnm
Gi jm,αβ

kln,χδ

(
Gi jm,αβ

kln,χδ

)∗ = D2, (219)

∑
klnβχδ

dkdl dn

nknl nn
Gi jm,αβ

kln,χδ

(
Gi jm,αβ

kln,χδ

)∗ = D2. (220)

For example, we show how to derive Eq. (217) by comparing
Eq. (193) with Eq. (214). We multiply by (Gmkn,βχ

l pq,δε
)∗ and sum

over l, k, n, β, χ, δ on both sides of Eq. (193),∑
ε,lknβχδ

Gi jm,αε

qps,φγ

(
Gmkn,βχ

l pq,δε

)∗
Gmkn,βχ

l pq,δε

= (−1)s(α)s(δ)
∑

tηψκ,lknβχδ

dt

nt
Gi jm,αβ

knt,ηψ
Gitn,ψχ

l ps,κγ

(
Gmkn,βχ

l pq,δε

)∗
Gjkt,ηκ

lsq,δφ
.

(221)

We see that the difference between Eqs. (193) and (214) can
be exactly compensated by Eq. (217) up to a relabelling on
indices.

Equations (217)–(220) together with the projective unitary
conditions in Eqs. (201)–(204) further imply∑

i j

Ni j
k did j

nin j
= dkD2, (222)

which is exactly Eq. (175). For example, we show how to
derive Eq. (222) from Eqs. (217) and (202) in two cases
below:

(1) If n is m-type, replacing
∑

mαβ
dmdn
nm

(Gi jm,αβ

kln,χδ
)∗Gi jm,αβ

kln,χδ
=

1 into Eq. (217), we obtain∑
k jχ

dkd j

nkn jdn
= D2, (223)

where
∑

χ only counts the number of possible states of χ and

can be replaced by N jk
n . We find it is exactly Eq. (222) up to a

relabelling on indices.
(2) If n is q-type, replacing

∑
mαβ

dmdn
nmnn

(Gi jm,αβ

kln,χδ
)∗Gi jm,αβ

kln,χδ
=

1
nn

into Eq. (217), it becomes the same equation as above. So
that we can again obtain Eq. (222).

IV. EXAMPLES

In this section, we derive all equivalence relations and F -
moves for all following examples, as listed in Appendix B 4.

We write down the explicit expressions of the phase factors
�

i jm,αβ

kl , �
i j
kln,χδ

, �
kim,αβ

jl = �is
tkm,ηα (�stm,ηβ

l j )∗, and �ki
jln,χδ =

�si
jtn,δη(�sk

ltn,χη )∗ in Appendix B 5. We note that we did

not choose the gauge such that all �
i j,αβ

k = 1 as illus-
trated in Sec. II J. But we choose the gauge such that all

�si
jtn,δη(�sk

ltn,χη )∗ = 1, and then all �̃
i j,αβ

k = 1 and all ζ̃ ki
jln,χδ =

1. We verify that all F -moves in each example exactly satisfy
the corresponding four projective unitary condition, as well as
the fermionic Pentagon equation.

A. Fermionic topological order SO(3)6/ψ

In the fermionic topological phase SO(3)6/ψ , we have two
strings {1, s}, where 1 is the vacuum string, and s is an m-type
string. The quantum dimensions are given by

d1 = 1, ds = 1 +
√

2. (224)

The fusion rules are given by

1 × s = s × 1 = s, s × s = 1 + C1|1s, (225)

where we use the notation CBab
c |F ab

c to denote the number of
bosonic and fermionic fusion state for a given fusion space
V ab

c . The fusion rules written as fusion tensors are

B11
1 = B1s

s = Bs1
s = Bss

1 = Bss
s = F ss

s = 1, (226)

and all other fusion tensors are zero.
Since the fermionic theory SO(3)6/ψ only contains m-

type strings, and the dimension of endomorphism for m-type
strings ni = 1. We list all F -moves of SO(3)6/ψ in Ap-
pendix B 6.

B. Majorana toric code

In the Majorana toric code, we have two string types {1, σ },
where 1 is the vacuum string, σ is a q-type Majorana string.

The quantum dimensions are given by

d1 = 1, dσ =
√

2. (227)

The fusion rules are given by

1 × σ = σ × 1 = C1|1σ, σ × σ = C1|11, (228)

written in fusion tensors as

B11
1 = B1σ

σ = Bσ1
σ = Bσσ

1 = F 1σ
σ = F σ1

σ = F σσ
1 = 1, (229)

and all other fusion tensors are zero.
The four projective unitary conditions for Majorana toric

code are

∑
nχδ

F i jm′,α′β ′
kln,χδ

(
F i jm,αβ

kln,χδ

)∗ =
{
δmm′δαα′δββ ′ , if m is m-type
1
2 (δmm′δαα′δββ ′ + δmm′δ(α× f )α′δ(β× f )β ′ ), if m is q-type

, (230)
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∑
mαβ

(
F i jm,αβ

kln′,χ ′δ′
)∗

F i jm,αβ

kln,χδ
=

{
δnn′δχχ ′δδδ′ , if n is m-type
1
2

(
δnn′δχχ ′δδδ′ + �

�δ

f i δnn′δ(χ× f )χ ′δ(δ× f )δ′
)
, if n is q-type

where � f i =
{

1, if i is m-type
i, if i is q-type and �δ =

{
1, if s(δ) = 0
, if s(δ) = 1 , (231)

∑
nχδ

dn

nn
F im′k,α′δ

ln j,β ′χ

(
F imk,αδ

ln j,βχ

)∗ = d jdknm

n jnkdm

{
δmm′δαα′δββ ′ , if m is m-type
1
2

(
δmm′δαα′δββ ′ + �

�α

f i δmm′δ(α× f )α′δ(β× f )β ′
)
, if m is q-type

∑
mαβ

dm

nm

(
F imk,αδ′

ln′ j,βχ ′
)∗

F imk,αδ
ln j,βχ

= d jdknn

n jnkdn

{
δnn′δχχ ′δδδ′ , if n is m-type
1
2 (δnn′δχχ ′δδδ′ + δnn′δ(χ× f )χ ′δ(δ× f )δ′ ), if n is q-type

. (232)

We list all F -moves of Majorana toric code in Appendix B 7 b. We have checked numerically that the F -moves satisfy all
above projective unitary conditions.

C. Fermionic topological order 1
2 E6/ψ

In the fermionic topological phase 1
2 E6/ψ , we have two string types {1, x}, where 1 is the vacuum string, and x is a q-type

Majorana string.
The quantum dimensions are given by

d1 = 1, dx = 1 +
√

3. (233)

The fusion rules are given by

1 × x = x × 1 = C1|1x, x × x = C1|11 + C2|2x, (234)

written in fusion tensors as

B11
1 = B1x

x = Bx1
x = Bxx

1 = F 1x
x = F x1

x = F xx
1 = 1, Bxx

x = F xx
x = 2, (235)

where all other fusion tensors vanish. We note that nontrivially Bxx
x = 2, i.e., we have two bosonic fusion states if we fuse two x

and again obtain x. We denote the two bosonic fusion states as “1” and “2” respectively.
By fermion condensation, invoking the F -symbols in the bosonic 1

2 E6 theory in a certain gauge in Eqs. (B66)–(B71) in
Appendix B, the equivalence relations Eq. ( (B12)), (B16), (B18), (B22), and (B25) have the forms

F i jm,(α× f )(β× f )
kln,χδ

=
{

F i jm,αβ

kln,χδ
, if m is q-type and Bmk

l = 1

(−σy)B(β× f )B(β )F
i jm,αβ

kln,χδ
, if m is q-type and Bmk

l = 2
, (236)

(
F i jm,αβ

kln,(χ× f )(δ× f )

)∗ =
{

�
�δ

f i

(
F i jm,αβ

kln,χδ

)∗
, if n is q-type and Bin

l = 1

(σx )B(δ× f )B(δ)
(
F i jm,αβ

kln,χδ

)∗
, if n is q-type and Bin

l = 2
, (237)

Oi j,(α× f )(β× f )
k =

{
Oi j,αβ

k , if k is q-type and Bi j
k = 1

(−σy)B(α× f )B(α)(−σy)B(β× f )B(β )O
i j,αβ

k , if k is q-type and Bi j
k = 2

. (238)

Our notation of Pauli matrices appear whenever a changing of fermion-parity alters the bosonic states in any equivalence
relation. If a Pauli matrix σi, where i = x, y, corresponds to a fusion state α, then the rows represent B(α × f ) is 1 or 2, and
columns of σi represent the values of B(α) is 1 or 2. And we use (σi )B(α× f )B(α) to represent the entry of σi in row B(α × f ) and
column B(α), which is simply a phase factor. For example, the notation (−σy)B(β× f )B(β ) in Eq. (236) represents the phase factor

(−σy)B(β× f )B(β ) =
⎧⎨⎩i, if B(β × f ) = 1, B(β ) = 2

−i, if B(β × f ) = 2, B(β ) = 1
0, otherwise

. (239)

And the notation (σx )B(δ× f )B(δ) in Eq. (237) represents

(σx )B(δ× f )B(δ) =
⎧⎨⎩1, if B(δ × f ) = 1, B(δ) = 2

1, if B(δ × f ) = 2, B(δ) = 1
0, otherwise

. (240)
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Taking the gauge choice Eq. (77) on the involved O-move in Eq. (133),

Oml,(β× f )
j =

{
Oml,β

j , if j is q-type and Bml
j = 1

(−σy)B(β× f )B(β )(−σy)B(β× f )B(β )O
ml,β
j , if j is q-type and Bml

j = 2
, (241)

H̃kim,(α× f )(β× f )
jln,χδ

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�

�α

f i H̃ kim,αβ

jln,χδ
, if m is q-type, Bim

k = 1, Bml
j = 1

�
�α

f i (−σy)B(β× f )B(β )H̃
kim,αβ

jln,χδ
, if m is q-type, Bim

k = 1, Bml
j = 2

(σx )B(α× f )B(α)H̃
kim,αβ

jln,χδ
, if m is q-type, Bim

k = 2, Bml
j = 1

(−σy)B(β× f )B(β )(σx )B(α× f )B(α)H̃
kim,αβ

jln,χδ
, ifm is q-type, Bim

k = 2, Bml
j = 2

, (242)

(
H̃kim,αβ

jln,(χ× f )(δ× f )

)∗ = (
H̃kim,αβ

jln,χδ

)∗
, if n is q-type . (243)

By Eq. (133), we replace the dual H-move in Eq. (242) by F -move, which will also bring a phase factor from equivalent
O-moves in Eq. (241). We should also note that when two such matrices multiply together, we are not doing matrix multiplication,
but we should multiply by each entry. For example, (−σy)B(β× f )B(β )(−σy)B(β× f )B(β ) = (−σx )B(β× f )B(β ).

We obtain the four projective unitary conditions for fermionic topological order 1
2 E6/ψ ,

∑
nχδ

F i jm′,α′β ′
kln,χδ

(
F i jm,αβ

kln,χδ

)∗ =
⎧⎨⎩

δmm′δαα′δββ ′ , if m is m-type
1
2 (δmm′δαα′δββ ′ + δmm′δ(α× f )α′δ(β× f )β ′ ), if m is q-type and Bmk

l = 1
1
2 (δmm′δαα′δββ ′ + (−σy)B(β× f )B(β )δmm′δ(α× f )α′δ(β× f )β ′ ), if m is q-type and Bmk

l = 2
, (244)

∑
mαβ

(
F i jm,αβ

kln′,χ ′δ′
)∗

F i jm,αβ

kln,χδ
=

⎧⎪⎨⎪⎩
δnn′δχχ ′δδδ′ , if n is m-type
1
2

(
δnn′δχχ ′δδδ′ + �

�δ

f i δnn′δ(χ× f )χ ′δ(δ× f )δ′
)
, if n is q-type and Bin

l = 1
1
2 (δnn′δχχ ′δδδ′ + (σx )B(δ× f )B(δ)δnn′δ(χ× f )χ ′δ(δ× f )δ′ ), if n is q-type and Bin

l = 2

where � f i =
{

1, if i is m-type
i, if i is q-type and �δ =

{
1, if s(δ) = 0
, if s(δ) = 1 , (245)

∑
nχδ

dn

nn
F im′k,α′δ

ln j,β ′χ

(
F imk,αδ

ln j,βχ

)∗

= d jdknm

n jnkdm

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

δmm′δαα′δββ ′ , if m is m-type
1
2 (δmm′δαα′δββ ′ + �

�α

f i δmm′δ(α× f )α′δ(β× f )β ′ ), if m is q-type, Bim
k = 1, Bml

j = 1
1
2 (δmm′δαα′δββ ′ + �

�α

f i (σy)B(β× f )B(β )δmm′δ(α× f )α′δ(β× f )β ′ ), if m is q-type, Bim
k = 1, Bml

j = 2
1
2 (δmm′δαα′δββ ′ + (σx )B(α× f )B(α)δmm′δ(α× f )α′δ(β× f )β ′ ), if m is q-type, Bim

k = 2, Bml
j = 1

1
2 (δmm′δαα′δββ ′ + (σy)B(β× f )B(β )(σx )B(α× f )B(α)δmm′δ(α× f )α′δ(β× f )β ′ ), if m is q-type, Bim

k = 2, Bml
j = 2

(246)

∑
mαβ

dm

nm

(
F imk,αδ′

ln′ j,βχ ′
)∗

F imk,αδ
ln j,βχ

= d jdknn

n jnkdn

{
δnn′δχχ ′δδδ′ , if n is m-type
1
2 (δnn′δχχ ′δδδ′ + δnn′δ(χ× f )χ ′δ(δ× f )δ′ ), if n is q-type

. (247)

We list all F -moves of 1
2 E6/ψ in Appendix B 8 b. We

have checked numerically that the F -moves satisfies all above
projective unitary conditions.

D. Fermionic topological order TYt,κ
Z2N

/ψN

TYt,κ
Z2N

/ψN is the Tambara-Yamagami category after con-
densing the fermion ψN , with symmetric nondegenerate
bicharacter of type t (1 � t � 2N − 1 and gcd(t, 2N ) = 1),

χt (a, b) = e2π itab/(2N ), (248)

and κ is the Frobenius-Schur indicator. The fusion category
TYt,κ

Z2N
/ψN is a generalization of the Majorana toric code,

i.e., the Majorana toric code is the special case N = 1 in
TYt,κ

Z2N
/ψN .

TYt,κ
Z2N

/ψN has string types ZN ∪ {σ }, where σ is a q-type
string, ZN = {0, 1, . . . , N − 1} are labels of m-type strings.

The quantum dimensions are given by

di = 1, dσ =
√

2N . (249)

The fusion rules are given by

a × b = C(1−� a+b
N 
)|� a+b

N 
[a + b]N ,

a × σ = σ × a = C1|1σ, σ × σ =
∑

a∈ZN

C1|1a, (250)

where we define [a + b]N = (a + b) (mod N), and � a+b
N 


means taking the integer part of a+b
N . In fusion tensors,

Bab
[a+b]N

= 1, F ab
[a+b]N

= 0, if a + b < N,

Bab
[a+b]N

= 0, F ab
[a+b]N

= 1, if a + b � N, (251)

B1σ
σ = Bσ1

σ = Bσσ
1 = F 1σ

σ = F σ1
σ = F σσ

1 = 1,
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where all other fusion tensors vanish. We only consider N to be odd here. The four projective
unitary conditions for TYt,κ

Z2N
/ψN are

∑
nχδ

F i jm′,α′β ′
kln,χδ

(
F i jm,αβ

kln,χδ

)∗ =
⎧⎨⎩

δmm′δαα′δββ ′ , if m is m-type
1
2 (δmm′δαα′δββ ′ + δmm′δ(α× f )α′δ(β× f )β ′ ), if m, k are q-type, and l is m-type
1
2 (δmm′δαα′δββ ′ + (−1)kδmm′δ(α× f )α′δ(β× f )β ′ ), if m, l are q-type, and k is m-type

, (252)

where we note that in the third case, m, l are q-type and k is m-type, which means that m, l are the σ string and k ∈ ZN . So that
in the phase factor (−1)k , k just takes value in ZN .

∑
mαβ

(
F i jm,αβ

kln′,χ ′δ′
)∗

F i jm,αβ

kln,χδ
=

⎧⎪⎨⎪⎩
δnn′δχχ ′δδδ′ , if n is m-type
1
2 (δnn′δχχ ′δδδ′ + (−1)iδnn′δ(χ× f )χ ′δ(δ× f )δ′ ), if n, l are q-type, and i is m-type
1
2

(
δnn′δχχ ′δδδ′ + (−1)l�

�δ

f i δnn′δ(χ× f )χ ′δ(δ× f )δ′
)
, if n, i are q-type, and l is m-type

where � f i =
{

1, if i is m-type
i, if i is q-type and �δ =

{
1, if s(δ) = 0
∗, if s(δ) = 1 , (253)

where similarly in the second case i ∈ ZN , while in the third case l ∈ ZN .∑
nχδ

dn

nn
F im′k,α′δ

ln j,β ′χ

(
F imk,αδ

ln j,βχ

)∗

= d jdknm

n jnkdm

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δmm′δαα′δββ ′ , if m is m-type
1
2 (δmm′δαα′δββ ′ + (−1)iδmm′δ(α× f )α′δ(β× f )β ′ ), if m, k, l are q-type, and i, j are m-type
1
2 (δmm′δαα′δββ ′ + (−1)i+lδmm′δ(α× f )α′δ(β× f )β ′ ), if m, j, k are q-type, and i, l are m-type
1
2

(
δmm′δαα′δββ ′ + (−1)k�

�α

f i δmm′δ(α× f )α′δ(β× f )β ′
)
, if m, i, l are q-type, and j, k are m-type

1
2

(
δmm′δαα′δββ ′ + (−1)k+l�

�α

f i δmm′δ(α× f )α′δ(β× f )β ′
)
, ifm, i, j are q-type, and k, l are m-type

, (254)

∑
mαβ

dm

nm

(
F imk,αδ′

ln′ j,βχ ′
)∗

F imk,αδ
ln j,βχ

= d jdknn

n jnkdn

{
δnn′δχχ ′δδδ′ , if n is m-type
1
2 (δnn′δχχ ′δδδ′ + δnn′δ(χ× f )χ ′δ(δ× f )δ′ ), if n is q-type

. (255)

We list all F -moves of TYt,κ
Z2N

/ψN in Appendix B 9 b.

V. CONCLUSIONS AND DISCUSSIONS

In conclusion, we obtain a hopefully complete classi-
fication of all 2D nonchiral fermionic topological orders
characterized by a set of tensors (Ni j

k , F i j
k , F i jm,αβ

kln,χδ
, ni, di ),

which satisfy a set of nonlinear algebraic equations parameter-
ized by phase factors �

i jm,αβ

kl , �i j
kln,χδ

, �kim,αβ

jl , and �ki
jln,χδ . By

considering the consistency between the fermionic Pentagon
equation and the four projective unitary conditions, we get
more relations for the phase factors �

i jm,αβ

kl , �
i j
kln,χδ

, �
kim,αβ

jl ,

�ki
jln,χδ , 	

m ji,αδ

nl , from which we can define a topological in-
variant partition function for arbitrary 3-manifold with a spin
structure. Finally, we also discussed four examples, which
satisfy all algebraic conditions.

For future study, it would also be very interesting to gener-
alize the construction in Refs. [25] and [26] for 2D nonchiral
fermionic symmetry-enriched topological (fSET) phases, in-
cluding those anomalous 2D fermionic SET states [27–32],
which can only exist on the surface of some 3D fermionic
symmetry-protected (fSPT) phases. We believe that the q-type
strings, or called Majorana-type strings, are very likely to
characterize the anomaly of 3D fSPT phases with Kitaev-
chain decoration [33]. Moreover, it will also be very inter-
esting to understand the generic algebraic structure [34–36]
of fSET phases from equivalence class of symmetric fLU
transformations.
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APPENDIX A: SUPER FUSION CATEGORY

This section is a review on some basic concepts about super
fusion categories [12,37,38]. In the point of view of category
theory, the string types are the simple objects in a super
fusion category, or more precisely, a super pivotal category
S , where the “pivotal” structure is covered by the H-move we
defined in the fermionic string-net model. The super pivotal
category only covers 2D fermionic topological orders that can
be obtained from fermion condensation. We believe that our
approach from fixed-point wavefunction realizes more general
fermionic topological than super pivotal category.

The number ni we introduced in the general fermionic
string-net model is actually the dimension of endomorphism
of the string

ni := dim End(i). (A1)

Explicitly, the string types are further divided into m-type
strings and q-type strings:

245120-27



ZHOU, WANG, AND GU PHYSICAL REVIEW B 106, 245120 (2022)

FIG. 5. The fusion space of fusing three strings i, j, k into l .

(1) A string i is an m-type string if

End(i) ∼= C, (A2)

where End(i) is the endomorphism algebra of string i
(maps from string i to itself), and the dimension of it is
dim(End(i)) = 1. It means that the map from an m-type string
to itself is one dimensional.

(2) A string i is a q-type string if

End(i) ∼= Cl1, (A3)

where dim End(i) = 2. The first complex Clifford algebra is
Cl1 = {1, γ }, where 1 is the parity-even generator and γ is
the parity-odd generator.

1. The modified fusion space

In fermionic case, the fusion space V i j
k is different from the

super vector space 	
i j
k appearing in the fusion rule (while in

bosonic case, V i j
k

∼= 	
i j
k ):

(1) The super vector space 	
i j
k is defined as the space of

fusion coefficients in the string fusion rule

i ⊗ j ∼= ⊕
k
	

i j
k · k, (A4)

where the fusion outcome is generally a composite object,
which can be written in the from of multiplying an object with
a super vector space.

(2) The fusion space V i j
k is defined as the vector space of

morphisms from k to i ⊗ j,

V i j
k := mor(k → i ⊗ j)

∼= 	
i j
k ⊗ mor(k → k) ∼= 	

i j
k ⊗ End(k), (A5)

and therefore the dimension of the super vector space 	
i j
k is

given by

η
i j
k := dim

(
	

i j
k

) = Ni j
k

dim End(k)
, (A6)

where Ni j
k = dim(V i j

k ) is the dimension of the fusion space.

2. The modified tensor product

In larger fusion spaces involving more strings, the tensor
product should also be modified. For example, we consider
the fusion space V i jk

l in Fig. 5. In bosonic case, we have

V i jk
l

∼= ⊕
m

V i j
m ⊗ V mk

l . (A7)

However, in fermionic case, the two fusion spaces on two
sides are not isomorphic. Explicitly,

V i jk
l := mor(l → i ⊗ j ⊗ k)

∼= ⊕
m
	i j

m ⊗ mor(l → m ⊗ k)

∼= ⊕
m
	i j

m ⊗ 	mk
l ⊗ End(l ), (A8)

and

⊕
m

V i j
m ⊗ V mk

l
∼= ⊕

m

(
	i j

m ⊗ End(m)
) ⊗ (

	mk
l ⊗ End(l )

)

∼= ⊕
m
	i j

m ⊗ 	mk
l ⊗ End(m) ⊗ End(l ). (A9)

Therefore in fermionic case the fusion space V i jk
l should

be decomposed as

V i jk
l

∼= ⊕
m

V i j
m ⊗End(m) V mk

l := ⊕
m

V i j
m ⊗ V mk

l \End(m), (A10)

where ⊗End(m) is the relative tensor product, which is just the
original tensor product modulo out the equivalence relations
induced by End(m).

The support dimension of V i jk
l is

dim
(
V i jk

l

) =
∑

m

Ni j
m Nmk

l

dim End(m)
. (A11)

3. F-move

We define the F -move as

F i jk
l : ⊕

n
V in

l ⊗End(n) V jk
n → ⊕

m
V i j

m ⊗End(m) V mk
l , (A12)

where the support dimensions on two sides are equal,

∑
m

Ni j
m Nmk

l

dim End(m)
=

∑
n

Nin
l N jk

n

dim End(n)
. (A13)

4. Quantum dimensions

We define the quantum dimension di of a string i as the
largest eigenvalue of the fusion matrix η̂i, where η̂i = (ηi j

k :
j, k ∈ S ) and η

i j
k = dim(	i j

k ). We define the vector |ω〉 =∑
i di|i〉 as the common eigenvector of η̂i, such that

η̂i|ω〉 = di|ω〉, (A14)

where |i〉 is the Dirac notation of string type i. Specially, if i
is a q-type string, we have |i〉〈i| j〉 = 1

2δi j |i〉, where |i〉〈i| is a
projective operator: when it acts on |i〉, it only maps to half of
the initial state due to the equivalence relations generated by
End(i):

where we consider the simplest strings in parity-even sector
with up to two fermions. For strings with more fermions, we
can also divide all the configurations into two sets, and pair
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one element from each set by the above equivalence relation.
This can be concluded as

〈i|i〉 = 1

dim End(i)
. (A15)

Remark: The string state i here is not the fixed point wave-
function state as above.

The total quantum dimension is defined as the inner prod-
uct of the common eigenvector,

D2 = 〈ω|ω〉 =
∑

i

d2
i 〈i|i〉 =

∑
i

d2
i

dim End(i)
. (A16)

From relation in Eq. (A13), we can derive a general for-
mula for quantum dimensions,

∑
ml

Ni j
m Nmk

l

dim End(m)dim End(l )
|ω〉

=
∑

nl

Nin
l N jk

n

dim End(n)dim End(l )
|ω〉,

∑
ml

Ni j
m ηmk

l

dim End(m)
|ω〉 =

∑
nl

ηin
l η jk

n |ω〉,

∑
m

Ni j
m η̂m

dim End(m)
|ω〉 = η̂îη j |ω〉,

did j =
∑

m

Ni j
m dm

dim End(m)
. (A17)

APPENDIX B: FERMION CONDENSATION

Anyon condensation is a systematic approach to con-
struct new topological orders from old ones [39–42]. In the
fermionic system, there is an analogous fermion condensa-
tion to obtain fermionic topological orders from a bosonic
one [12–14].

In this Appendix, we will discuss one version of fermion
condensation that produces a super fusion category (discussed
in Appendix A) from a fusion category if there is an object
that is promoted to a fermion in the Drinfeld center of the
fusion category. We will use this scheme to produce several
super fusion categories. We have checked that they all satisfy
the conditions summarized in Sec. II K, although the solutions
of which are assumed to be more general than super fusion
categories.

1. Fermion Condensation Scheme

The easiest way to understand fermion condensation is
from the string diagram. We assume that there is a special
object y in the fusion category C that is promoted to a fermion
(y, βy ) [βy(x) is the half braiding of y with respect to x] in the
Drinfeld center Z (C) of C. We will denote the fermion string
y by red color in the string diagram.

In the construction of super fusion category from a fusion
category C, we need only the half braiding of y with other
objects. The string diagram for other objects are still planer.
We assume that y in C is lifted to a fermion (y, βy) in the
Drinfeld center Z (C). Therefore, a self-twist of y will give
us a minus fermion sign. The braiding of y should satisfy the
naturality condition

(B1)

It implies that we can move the red y string freely under any
vertex (morphism) of the diagram.

Since y2 = y ⊗ y = 1, the fusion of y with the simple ob-
jects in C gives us an involution. Since y is condensed, a and
y ⊗ a ∈ C should be identified in the super fusion category
C/y. So the simple objects of C/y consist of the orbits of
this action. We will denote the representative object of the
orbit of a as [a], which can be viewed as an object in C/y. If
y ⊗ a ∼= a ∈ C, then [a] is a q-type object in C/y. Otherwise,
[a] is m-type in C/y.

On the other hand, the hom space of C/y is defined to be

HomC/y([a], [b]) := HomC ([a], [b]) ⊕ HomC ([a], y ⊗ [b]),
(B2)

which is a direct sum of bosonic and fermionic fusion spaces.
On the right-hand side of the equation, [a] is understood as
the representative object of the y-fusion-action orbit in C.
Graphically, the fermionic fusion space (with a black dot on
the vertex) of HomC/y([a], [b]) in C/y is defined to be the
bosonic fusion space HomC ([a], y ⊗ [b]) in C as, for example,

(B3)

where the red string y is fused from left to the vertex in
C by convention. The condensed red string of y should be
understood as under all other strings in the diagram. It is
paired up with another red string at the left infinity, such that
the total diagram is fermion even. The examples we consider
in this paper all have trivial Frobenius-Schur indicator for the
fermion string: κy = 1. For simplicity, we assume that the
straight y string from leftmost to a vertex can be regularized
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arbitrarily near the vertex,

(B4)

So the notion of horizontal red line makes sense in the string
diagram.

In such way, we construct both objects and morphisms of
the super fusion category C/y from the fusion category C.
This procedure is called fermion condensation. Every string
diagram of C/y should be understood as a diagram of C with
black dots replaced by red strings using the rule Eq. (B3). In
particular, the F move of C/y can be derived from the F move
of the fusion category C.

2. F-move in fermion condensation

For the fermion condensation part, we use a notation of
F -move differ from Eq. (23) in our fixed-point wavefunction
approach. In the fermionic theory, the F -move is denoted as

(B5)

While in the bosonic theory before fermion condensation, a
bosonic F -move is denoted in blue color,

(B6)

So that if we take the notation F i jk
l or F i jk

l , it is in general
a matrix.

3. From bosonic to fermionic pentagon equation

In the former section, we have discussed how to obtain a
new category C/y from a fusion category C. We have to show
that the C/y is indeed a super fusion category. In particular,
the new F move should satisfy the super (fermionic) pentagon
equation, which was first proposed in Ref. [10]. Compared to
the bosonic counterpart, there is an additional fermion sign in
the super pentagon equation.

The super pentagon equation is derived by replacing all the
fermionic vertex Hom states (represented by black dots) by
red strings of fermions going into left infinity under all other

strings. For instance, a diagram with four dots is understood
as

(B7)

where the right-hand diagram is a bosonic one for C. The four
red fermion strings are paired up from top to bottom.

The string diagrams of a fermionic pentagon equation of
C/y can be also expressed as diagrams of C. There are possibly
red fermion strings going from a vertex to the left, if the fusion
space of the super fusion category is fermionic. If we switch
the order (height) of two vertices, which are both fermionic,
there is a fermion sign

(B8)

In general, this fermion sign of the above move is (−1)s(α)s(δ).
Now the super pentagon equation of the super fusion category
is in fact a hexagon equation,

(B9)

where the bottom move is the fermion sign move shown in
Eq. (B8). Therefore, we show that the condensed theory /y
satisfies the super pentagon equation Eq. (46), which is first
derived in Ref. [10].

4. Equivalence relations

In doing fermion condensation, we set all transformations
related to adding and removing vertices, e.g., O-move and Y -
move, to be normalized as 1,which will cause no harm as the
number of vertices is invariant for the initial and final state in
any fermion condensation step.

Now we derive the equivalence relations in our fixed-point
wavefunction approach (so that we need to put back the no-
tation ψfix). From our fermion condensation convention, if m
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is q-type, the two equivalent states in Eqs. (9) and (10) are
related by

(B10)

(B11)

where y denotes for the fermion string in the bosonic theory.
We introduce some of our notations here.
(1) The index in the bottom right corner, e.g., β in

(F ymk
l )β, refers to that the F -move in the uncondensed

bosonic theory acts on the vertex with fusion state β. So that
any bosonic F -move in such notation is just a phase factor, as
the inner states are all fixed as long as the state β (including
the two incoming strings and one outgoing string that define
β) is fixed.

(2) Some of the strings are denoted in red color, e.g., string

l in (F ymk
l )β. A string is denoted in red color if it satisfies the

following property:
When it is a trivial string in the fermionic theory, it is a

fermion string in the bosonic theory before fermion condensa-
tion.

This property is important as it may cause difference on the
phase factors in fermion-parity even and odd sectors.

We obtain the relation between the F -moves on two equiv-
alent states,

F i jm,(α× f )(β× f )
kln,χδ

=
⎧⎨⎩(F ymk

l )βF i jm,αβ

kln,χδ
, parity-even(

F ymk
l

)
β

F i jm,αβ

kln,χδ
, parity-odd

. (B12)

Similarly, if n is q-type, the two equivalent states in
Eqs. (13) and (14) are related by

(B13)

(B14)

where � f i is the half-braiding phase between the string i and
the fermion string also in the uncondensed bosonic theory.
When i is m-type, the half-braiding is trivial. When i is q-type,
� f i = ±i, as proved in Appendix B 1, and we can always
choose a gauge � f i = i. Therefore, we have the expression

� f i =
{

1, if i is m-type
i, if i is q-type . (B15)

We obtain the relation between inverse F -moves on two
equivalent states,

(
F i jm,αβ

kln,(χ× f )(δ× f )

)∗

=
⎧⎨⎩� f i (F yin

l F iyn
l )δ

(
F i jm,αβ

kln,χδ

)∗
, parity-even

� f i (F yin
l F iyn

l )δ
(
F i jm,αβ

kln,χδ

)∗
, parity-odd

. (B16)
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If k is q-type, The two equivalent O-moves in Eq. (49) are
related by

(B17)

We obtain the relation between O-moves on two equivalent
states,

Oi j,(α× f )(β× f )
k = Oi j,αβ

k . (B18)

If k is q-type, The two equivalent Y -moves in Eq. (70) are
related by

(B19)

For the dual H-move, if m is q-type, the two equivalent
states in Eqs. (122) and (123) are related by

(B20)

(B21)
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We obtain the relation between H-moves on two equivalent states,

H̃kim,(α× f )(β× f )
jln,χδ

=
{

� f i
(
F yim

k F iym
k

)
α

(
F̃ yml

j

)
β
H̃kim,αβ

jln,χδ
, parity-even

� f i
(
F yim

k F iym
k

)
α

(
F̃ yml

j

)
β
H̃kim,αβ

jln,χδ
, parity-odd

. (B22)

If n is q-type, the two equivalent states in Eqs. (124) and (125) are related by

(B23)

(B24)

We obtain the relation between inverse H-moves on two equivalent states,(
H̃kim,αβ

jln,(χ× f )(δ× f )

)∗ = (
H̃kim,αβ

jln,χδ

)∗
. (B25)

In the following several subsections of this Appendix B, we will present several examples of super fusion categories by
fermion condensation. They all satisfy the conditions summarized in Sec. II K, although the solutions of which are supposed to
be more general than super fusion categories.

5. Phase factors from fermion condensation

We can obtain explicit forms of the five phase factors in Eqs. (205)–(209) from fermion condensation,

�
i jm,αβ

kl = (
F ymk

l

)
β
, (B26)

�
i j
kln,χδ

= � f i
(
F yin

l F iyn
l

)
δ
, (B27)

�
kim,αβ

jl = � f i
(
F yim

k F iym
k

)
α

(
F yml

j

)∗
β
, (B28)

�ki
jln,χδ = 1, (B29)

	
m ji,αδ

nl = (
F yin

l

)∗
δ

(
F yi j

m

)
α
, (B30)

where the F -symbols in blue color are the F -symbols in the bosonic theory before fermion condensation. With the above forms
of phase factors, we can check that the relations among phase factors in Eqs. (210)–(213) are satisfied.

We note that the expression for each phase factor can differ for fermion-parity even and odd sector. Here we do not distinguish
parity-even and odd sector for simplicity. But we should keep in mind that the phase factor in parity-even and odd sector can be
different, as explicitly shown in Appendix B 4.

The five relations among phase factors are obtained from the following relations for F -move, O-move, H-move, and a special
sequence of moves in Appendix C from fermion condensation:

F i jm,(α× f )(β× f )
kln,χδ

= (
F ymk

l

)
β
F i jm,αβ

kln,χδ
, if m is q-type; (B31)(

F i jm,αβ

kln,(χ× f )(δ× f )

)∗ = � f i
(
F yin

l F iyn
l

)
δ

(
F i jm,αβ

kln,χδ

)∗
, if n is q-type; (B32)

Oi j,(α× f )(β× f )
k = (

F̃ yi j
k

)
α

(
F yi j

k

)
β
Oi j,αβ

k , if k is q-type; (B33)

Y i j
k,(α· f )(β· f ) = Y i j

k,αβ
, if k is q-type; (B34)

245120-33



ZHOU, WANG, AND GU PHYSICAL REVIEW B 106, 245120 (2022)

H̃ imk,(α× f )δ
ln j,(β× f )χ = � f i(F

yim
k F iym

k )α
(
F̃ yml

j

)
β
H̃ imk,αδ

ln j,βχ
, if m is q-type; (B35)(

H̃ imk,α(δ× f )
ln j,β(χ× f )

)∗ = (
H̃ imk,αδ

ln j,βχ

)∗
, if n is q-type; (B36)

F i jm,(α× f )β
kln,χ (δ× f ) = (

F yin
l

)∗
δ

(
F yi j

m

)
α
F i jm,αβ

kln,χδ
, if i is q-type, (B37)

where we derive these relations in Appendices B 4 and C.
We take the gauge in Eq. (77) on the relation in Eq. (B33),

Oi j,(α× f )
k = (

F̃ yi j
k

)
α,α

(
F yi j

k

)
α,β

Oi j,α
k , if k is q-type, (B38)

where we note that the bosonic F -move (F̃ yi j
k )α,α and (F yi j

k )α,β acts on different vertices, but the two vertices are in the same
space spanned by α and α × f . In order not to cause confusion, we in addition label the vertices α and β in Eq. (B38). We take
the gauge in Eq. (79) on Eq. (B34),

Y i j
k,(α· f ) = Y i j

k,α
, if k is q-type. (B39)

Combining Eqs. (B35), (B36), (B38), (B39), and a relation among F -move, O-move, and H-move in Eq. (133), we obtain two
more relations between F -moves,

F imk,(α× f )δ
ln j,(β× f )χ = � f i

(
F yim

k F iym
k

)
α

(
F yml

j

)∗
β
F imk,αδ

ln j,βχ
, if m is q-type; (B40)(

F imk,α(δ× f )
ln j,β(χ× f )

)∗ = (
F imk,αδ

ln j,βχ

)∗
, if n is q-type. (B41)

Therefore, relations in Eqs. (B31), (B32), (B40), (B41), and (B37) exactly give the forms of the five phase factors in
Eqs. (B26)–(B30).

6. Fermionic topological order SO(3)6/ψ from SO(3)6

a. SO(3)6 anyon model

The full data for the bosonic SO(3)6 theory are listed in, for example, Ref. [43]. There are four types of anyons 1, s, s̃, ψ in
SO(3)6. Some important fusion rules are s × ψ = s̃, ψ × ψ = 1, s × s = 1 + s + s̃, from which we can derive all other fusion
rules. The quantum dimensions of simple anyons are d1 = dψ = 1, ds = ds̃ = 1 + √

2. The anyon ψ is a fermion in the SO(3)6

modular tensor category. So we can try to condense the anyon ψ to obtain a super fusion category SO(3)6/ψ .

b. Fermionic topological order SO(3)6/ψ

Since the nontrivial anyons s and s̃ are changed into each other under the fusion of y, s × ψ = s̃, they become the same
anyon (which is also denoted as s) after the fermion condensation. So the simple objects of SO(3)6/ψ are 1 and s. The quantum
dimensions of them are d1 = 1 and ds = 1 + √

2.
If we use dashed line and solid line to indicate the anyons 1 and s, the fusion rules of SO(3)6/ψ are

(B42)

where the last three fusion diagram of SO(3)6/ψ come from the fusion rule s × s = 1 + s + ψ × s in SO(3)6. Only the last one
is fermionic with a black dot, which should be understood as a red string of ψ going out of the vertex.

From the F moves of SO(3)6, we can derive the following (trivial) F moves of SO(3)6/ψ :

(B43)

(B44)

(B45)

(B46)
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(B47)

(B48)

(B49)

(B50)

(B51)

(B52)

The nontrivial F moves of SO(3)6/ψ are

(B53)

(B54)

One can check that they all satisfy the super pentagon equation and other conditions summarized in Sec. II K.
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7. Majorana toric code from Ising anyon model

a. Ising anyon model

Ising anyon model is one of the simplest non-Abelian anyon models. There are three simple anyons {1, ψ, σ } with quantum
dimensions d1 = dψ = 1, dσ = √

2. The fusion rules of them are ψ × ψ = 1, ψ × σ = σ × ψ = σ , σ × σ = 1 + ψ . If we use
dashed, red, and blue lines to represent 1, ψ , and σ , the trivalent vertices of fusion rules are

(B55)

The F symbols of the Ising anyon model can be found in, for example, Ref. [4].

b. Majorana toric code model

Now we want to condense the fermion ψ in Ising model to obtain a super fusion category. After the condensation, we have
two simple objects 0 and 1, which come from 1 and σ in the Ising model. The quantum dimension of them are d0 = 1, d1 = √

2.
The fusion rules of them are

(B56)

with fusion coefficient N0
00 = 1, N1

01 = N1
10 = N0

11 = 2. The black dot in the diagram means that the fermion is condensed at this
vertex, which can be understood as a fermion string going out of the vertex from the bosonic string diagram. Since we have
fusion rule ψ × σ = σ in the Ising model, the nontrivial object 1 in the super fusion category is a q-type one. The fusion rule
σ × σ = 1 + ψ in the Ising model becomes the fusion of 1 and 1 into 0 with one bosonic channel and one fermionic channel in
the super fusion category.

The F moves for the super fusion category can be divided into two kinds according to whether or not the F symbol is of full
rank. The full rank unitary F moves are

(B57)

(B58)

The projective F moves are

(B59)
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(B60)

(B61)

(B62)

(B63)

(B64)

Since there are always two independent basis states (with different fermion parities) on both sides of the above equations, all the
above F matrices have rank 2.

One can check that the F moves satisfy the conditions summarized in Sec. II K.

8. Fermionic topological order ( 1
2 E6)/y from 1

2 E6

a. Unitary fusion category 1
2 E6

The unitary fusion category 1
2 E6 does not admit a braiding structure. It has three simple objects: 1, x, y. The fusion rules

are given by x × x = 1 + 2x + y, x × y = y × x = x, and y × y = 1. If we represent 1, x, and y by dotted, blue, and red strings
respectively, the fusion configurations can be shown as

(B65)

The last fusion of x and x to y has two fusion channels. So we use a vertex index α = 1, 2. All the simple objects are self-dual.
The quantum dimensions can be calculated from the fusion rules as d1 = dy = 1, dx = 1 + √

3.
The F matrices in this tensor category are summarized as (σ i’s are Pauli matrices) [44]

F abc
d = 1, if a = 1 or b = 1 or c = 1, (B66)

F yyy
y = F xyy

x = F yyx
x = F xyx

1 = F yxx
1 = F yxx

y = F xxy
1 = F xxy

y = 1, (B67)

F xyx
y = F yxy

x = −1, (B68)

F yxx
x = −σ y, F xyx

x = σ z, F xxy
x = σ x, (B69)

F xxx
1 = e7π i/12

2
√

2

(
1 i
1 −i

)
, F xxx

y = e7π i/12

2
√

2

(
i 1

−i 1

)
, (B70)
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F xxx
x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3−1
2

√
3−1
2

√√
3−1

2 eπ i/6
√√

3−1
2 e2π i/3

√√
3−1

2 e2π i/3
√√

3−1
2 eπ i/6

√
3−1
2

1−√
3

2

√√
3−1

2 eπ i/6
√√

3−1
2 e2π i/3 −

√√
3−1

2 e2π i/3 −
√√

3−1
2 eπ i/6

− 1√
2(1+√

3)
− 1√

2(1+√
3)

− 1
2 (eπ i/6 − 1) 1

2 e5π i/6 1
2 (e−π i/3 + i) 1

2 eπ i/3

− 1√
2(1+√

3)
− 1√

2(1+√
3)

1
2 eπ i/3 1

2 (e−π i/3 + i) 1
2 e5π i/6 − 1

2 (eπ i/6 − 1)

− 1√
2(1+√

3)

1√
2(1+√

3)
− 1

2 (eπ i/6 − 1) 1
2 e5π i/6 − 1

2 (e−π i/3 + i) − 1
2 eπ i/3

1√
2(1+√

3)
− 1√

2(1+√
3)

− 1
2 eπ i/3 − 1

2 (e−π i/3 + i) 1
2 e5π i/6 − 1

2 (eπ i/6 − 1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B71)

The bases for F xxx
1 (similar for F xxx

y ) are ordered as

T

and

T

for left

and right fusion spaces respectively. The left and right bases for F xxx
x are

T

and

T

respectively. Note that the last diagram with α and β is in fact a vector of four bases

with the usual tensor product order, i.e., (α, β ) = (1, 1), (1, 2), (2, 1), (2, 2). One can check that the above F moves satisfy
(bosonic) pentagon equations.

To condense the fermion y, we first have to show that y is indeed lifted to a fermion in the Drinfeld center of the fusion
category 1

2 E6. In fact, by solving the naturality condition in Eq. (B1), we have the following half-braiding of y,

βy(1) = 1, βy(y) = −v
yy
1 ◦ v1

yy, βy(x) = ivxy
x ◦ vx

yx, (B72)

where vc
ab is the basis of morphism in Hom(a × b, c), and vba

c is the dual. Graphically, the half-braiding induces the relations [we
use the convention that the y string in βy(a) is the under-crossing line]

(B73)

(B74)

The first half-braiding equation implies that (y, βy) is indeed a fermion in Z ( 1
2 E6). We can condense this fermion to obtain a

super fusion category.

b. Fermionic topological order ( 1
2 E6)/ψ

After the fermion condensation, the simple objects are 0 and 1 from the objects 1 and x in the fusion category 1
2 E6. The

quantum dimensions are d0 = 1 and d1 = 1 + √
3. Using the fusion rules listed in Eq. (B65), we can obtain the fusion rules of

the super fusion category ( 1
2 E6)/ψ as

(B75)

We can also derive the fermionic F moves. The trivial vacuum F matrix is

(B76)

The projective F moves with two outgoing strings are

(B77)
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(B78)

(B79)

(B80)

(B81)

(B82)

They all have rank 2. The projective F moves with three outgoing strings are all 8×8 matrices with rank 4,

(B83)

(B84)
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(B85)

(B86)

The most complicated F move is F 111
1 . Let us first denote

F̃ := F xxx
x =

⎛⎜⎝F̃1,1 F̃1,y F̃1,x

F̃y,1 F̃y,y F̃y,x

F̃x,1 F̃x,y F̃x,x

⎞⎟⎠ (B87)

to be one of the F matrix in the bosonic 1
2 E6 category. F̃1,x and F̃y,x (F̃x,1 and F̃x,y) are matrices of size 1×4 (4×1). F̃x,x is a matrix

of size 4×4. Then the F 111
1 of the super fusion category ( 1

2 E6)/ψ is

(B88)

where the F 111
1 matrix is of size 20×20 and defined by

F 111
1

=

⎛⎜⎜⎜⎜⎝
σ 0 ⊗ F̃1,1 σ x ⊗ (−iF̃1,y ) σ 0 ⊗ (

1√
2
F̃1,x

)
σ x ⊗ (

1√
2
F̃1,x (σ 0 ⊗ σ x )

)
σ x ⊗ F̃y,1 σ 0 ⊗ (−iF̃y,y ) σ x ⊗ (

1√
2
F̃y,x

)
σ 0 ⊗ (

1√
2
F̃y,x (σ 0 ⊗ σ x )

)
σ 0 ⊗ (

1√
2
F̃x,1

)
σ x ⊗ ( − i√

2
F̃x,y

)
σ 0 ⊗ (

1
2 F̃x,x

)
σ x ⊗ (

1
2 F̃x,x (σ 0 ⊗ σ x )

)
σ x ⊗ (

(σ 0 ⊗ −σ y )
(

1√
2
F̃x,1

))
σ 0 ⊗ (

(σ 0 ⊗ −σ y )
( − i√

2
F̃x,y

))
σ x ⊗ (

(σ 0 ⊗ −σ y ) 1
2 F̃x,x

)
σ 0 ⊗ (

(σ 0 ⊗ −σ y ) 1
2 F̃x,x (σ 0 ⊗ σ x )

)

⎞⎟⎟⎟⎟⎠
(B89)

=

⎛⎜⎜⎜⎜⎜⎜⎝

F̃1,1 0 0 −iF̃1,y
1√
2

F̃1,x 0 0 1√
2

F̃1,x (σ 0 ⊗ σ x )

0 F̃1,1 −iF̃1,y 0 0 1√
2

F̃1,x
1√
2

F̃1,x (σ 0 ⊗ σ x ) 0

0 F̃y,1 −iF̃y,y 0 0 1√
2

F̃y,x
1√
2

F̃y,x (σ 0 ⊗ σ x ) 0

F̃y,1 0 0 −iF̃y,y
1√
2

F̃y,x 0 0 1√
2

F̃y,x (σ 0 ⊗ σ x )
1√
2

F̃x,1 0 0 − i√
2

F̃x,y
1
2 F̃x,x 0 0 1

2 F̃x,x (σ 0 ⊗ σ x )

0 1√
2

F̃x,1 − i√
2

F̃x,y 0 0 1
2 F̃x,x

1
2 F̃x,x (σ 0 ⊗ σ x ) 0

0 1√
2

(σ 0 ⊗ −σ y )F̃x,1
i√
2

(σ 0 ⊗ σ y )F̃x,y 0 0 1
2 (σ 0 ⊗ −σ y )F̃x,x

1
2 (σ 0 ⊗ −σ y )F̃x,x (σ 0 ⊗ σ x ) 0

− 1√
2

(σ y 0
0 σ y

)
F̃x,1 0 0 i√

2
(σ 0 ⊗ σ y )F̃x,y

1
2 (σ 0 ⊗ −σ y )F̃x,x 0 0 1

2 (σ 0 ⊗ −σ y )F̃x,x (σ 0 ⊗ σ x )

⎞⎟⎟⎟⎟⎟⎟⎠.

(B90)

One can show that F 111
1 has rank 12.

We have checked that the above F matrices satisfy the consistent equations such as the super pentagon equation.
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9. Fermionic topological order from Tambara-Yamagami category for Z2N

a. Unitary fusion category TYt,κ
Z2N

The fusion category TYt,κ
Z2N

is the Tambara-Yamagami category [45] for Z2N with symmetric nondegenerate bicharacter of
type t [1 � t � 2N − 1 and gcd(t, 2N ) = 1] defined as

χt (a, b) = e2π itab/(2N ). (B91)

The simple objects are labeled by Z2N ∪ {σ } where Z2N = {0, 1, · · · , 2N − 1} is the cyclic group of order 2N . σ is an additional
object. The quantum dimensions of them are di = 1 (∀i ∈ Z2N ) and dσ = √

2N . The fusion rule for objects in Z2N is simply the
addition modulo 2N : a × b = [a + b]2N . The σ object can absorb all Z2N objects: a × σ = σ × a = σ . The fusion of σ with
itself is σ × σ = ∑

a∈Z2N
a. If we use red strings and blue string to denote the simple objects in Z2N and σ , then the fusion rules

can be represented as

(B92)

The nontrivial F matrices for the fusion category TYt,κ
Z2N

are related to the bicharacter χt defined in Eq. (B91) as

(B93)

(B94)

(B95)

where κ = ±1 is the Frobenius-Schur indicator of anyon σ .

b. Fermionic topological order TYt,κ
Z2N

/ψN (N odd)

To perform fermion condensation in the category TYt,κ
Z2N

, we have to find a fermion in the Drinfeld center of the category. Let
us try to find the half-braiding of the object N ∈ Z2N . Direct calculations of the naturality condition Eq. (B1) for the half-braiding
of N give the results

(B96)

(B97)

Now let us assume that N is an odd integer. Then the object (N, βN ) in Z (TYt,κ
Z2N

) has twist θ(N,βN ) = βN (N ) = −1 and is a
fermion. Therefore, we can condense the fermion ψN = N in TYt,κ

Z2N
.

After the fermion condensation, the object a and [a + N]2N in Z2N of TYt,κ
Z2N

are identified. So the simple objects in the super
fusion category TYt,κ

Z2N
/ψN are 0, 1, · · · , N − 1, σ . The fusion rules of them can be represented as

(B98)
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where a, b ∈ ZN are objects from Z2N , and σ is the same one in the fusion category. Every vertex of the above fusion rules can
be either bosonic or fermionic.

From the F matrices of the original fusion category, we can obtain the F matrices of the super fusion category as

(B99)

(B100)

If a + b < N , the F abσ
σ -type and F σab

σ -type F moves are

(B101)

(B102)

On the other hand, if a + b � N , the F moves are

(B103)

(B104)
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They are all projective F matrices with rank 2. The F aσb
σ -type F move is

(B105)

which also has rank 2. For the F σσa
b -type and F aσσ

b -type F moves, we need to compare a and b. If b � a, we have

(B106)

(B107)

If b < a, on the other hand, we have

(B108)

(B109)
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Finally, the F moves of types F σaσ
b and F σσσ

σ are

(B110)

(B111)

We have checked that the above F matrices satisfy fermionic pentagon equations.

APPENDIX C: EQUIVALENCE RELATION FOR DIAGONAL FUSION STATES

To obtain relation in Eq. (211), we need to consider the following sequence of F -move and O-moves:

(C1)

where the Majorana numbers on the gauged O-move is still assigned from top to bottom, e.g., O jn,χ

k = θ s(χ )
χ θ

s(χ )
χ ′ O jn,χ

k . The
above equation is derived by

(C2)
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where in the second line the factor (nn − 1) means that the term F i jm,αβ

kln,(χ× f )(δ× f ) only exist when nn = 2. In the final line we have

in addition a factor 1
nk

, as when k is q-type, the inverse O-move (O jn,χ

k )−1 can only map to one-half of the state (only one of the
two equivalent states).

From Eq. (C1), we can obtain the relation in Eq. (209) that is needed to derive all 2–3 moves in the fermionic partition
function,

F i jm,(α× f )β
kln,χ (δ× f ) = 	

m ji,αδ

nl F i jm,αβ

kln,χδ
, if i is q-type, (C3)

where the Majorana numbers are removed when considering equivalence relations.
From fermion condensation, if i is q-type, we have the following equivalent relations for fermion parity-even and odd sector

respectively:

(C4)

(C5)

When the fermion parity on α and δ are changed, the following O-move will also induce a phase factor:

Oin,(δ× f )
l =

{
Oin,δ

l , parity-even

Oin,δ
l , parity-odd

. (C6)

Therefore, we obtain another equivalence relation for F -move if string i is q-type,

F i jm,(α× f )β
kln,χ (δ× f ) =

{
F i jm,αβ

kln,χδ
, parity-even

F i jm,αβ

kln,χδ
, parity-odd

, (C7)

which corresponds to the fermion parity change on two diagonal fusion states α and δ.

APPENDIX D: CHECK THE CONSISTENCY BETWEEN THE 2–3 MOVES AND THE PROJECTIVE UNITARY CONDITIONS

1. Obtain the second 2–3 move

To obtain the second 2–3 move Eq. (194), we consider two cases:
(1) Let the string t ′ be m-type. We multiply by (Gi jm,αβ

knt ′,η′ψ ′ )∗ and sum over m, α, β on both sides of the standard 2–3 move
Eq. (193), ∑

ε,mαβ

(−1)s(α)s(δ)
(
Gi jm,αβ

knt ′,η′ψ ′
)∗

Gi jm,αε

qps,φγ Gmkn,βχ

l pq,δε
=

∑
tηψκ,mαβ

dt

nt

(
Gi jm,αβ

knt ′,η′ψ ′
)∗

Gi jm,αβ

knt,ηψ
Gitn,ψχ

l ps,κγ
Gjkt,ηκ

lsq,δφ
, (D1)

where ∑
mαβ

dt dm

nt nm

(
Gi jm,αβ

knt ′,η′ψ ′
)∗

Gi jm,αβ

knt,ηψ
= δtt ′δηη′δψψ ′ , if t ′ is m-type. (D2)

We can get Eq. (194) straightforwardly.
(2) Let the string t ′ be q-type. We multiply by 1

2 [(Gi jm,αβ

knt ′,η′ψ ′ )∗ + (�i j
knt ′,η′ψ ′ )∗Gi jm,αβ

knt ′,(η′× f )(ψ ′× f ) )
∗] and sum over m, α, β on both

sides of Eq. (193),∑
ε,mαβ

(−1)s(α)s(δ) 1

2

[(
Gi jm,αβ

knt ′,η′ψ ′
)∗

Gi jm,αε

qps,φγ Gmkn,βχ

l pq,δε
+ (

�
i j
knt ′,η′ψ ′

)∗(
Gi jm,αβ

knt ′,(η′× f )(ψ ′× f )

)∗
Gi jm,αε

qps,φγ Gmkn,βχ

l pq,δε

]
=

∑
tηψκ,mαβ

dt

nt

1

2

[(
Gi jm,αβ

knt ′,η′ψ ′
)∗

Gi jm,αβ

knt,ηψ
Gitn,ψχ

l ps,κγ
Gjkt,ηκ

lsq,δφ
+ (

�
i j
knt ′,η′ψ ′

)∗(
Gi jm,αβ

knt ′,(η′× f )(ψ ′× f )

)∗
Gi jm,αβ

knt,ηψ
Gitn,ψχ

l ps,κγ
Gjkt,ηκ

lsq,δφ

]
, (D3)
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where the second projective unitary condition for G-move in Eq. (202) is applied,∑
mαβ

dt dm

nt nm

(
Gi jm,αβ

knt ′,η′ψ ′
)∗

Gi jm,αβ

knt,ηψ
= 1

2
(δtt ′δηη′δψψ ′ + (

�
i j
knt,η′ψ ′

)∗
δtt ′δη(η′× f )δψ (ψ ′× f ) ), if t ′ is q-type, (D4)

where we note that the phase factor here (�i j
knt,η′ψ ′ )∗ = (�i j

knt,(η× f )(ψ× f ) )
∗ = �

i j
knt,ηψ

. Then∑
mαβε

(−1)s(α)s(δ) dm

nm

1

2

[(
Gi jm,αβ

knt,η′ψ ′
)∗

Gi jm,αε

qps,φγ Gmkn,βχ

l pq,δε
+ (

�
i j
knt,η′ψ ′

)∗(
Gi jm,αβ

knt,(η′× f )(ψ ′× f )

)∗
Gi jm,αε

qps,φγ Gmkn,βχ

l pq,δε

]
=

∑
κ

1

2

[
Gitn,ψ ′χ

l ps,κγ
Gjkt,η′κ

lsq,δφ
+ (

�
i j
knt,η′ψ ′

)∗
Gitn,(ψ ′× f )χ

l ps,κγ
Gjkt ′,(η′× f )κ

lsq,δφ

]
, (D5)

where the two terms on the left-hand side are actually equal, as well as the two terms on the right-hand side,(
Gi jm,αβ

knt,η′ψ ′
)∗ = (

�
i j
knt,η′ψ ′

)∗(
Gi jm,αβ

knt,(η′× f )(ψ ′× f )

)∗
, Gitn,ψ ′χ

l ps,κγ
Gjkt,η′κ

lsq,δφ
= (

�
i j
knt,η′ψ ′

)∗
Gitn,(ψ ′× f )χ

l ps,(κ× f )γ Gjkt,(η′× f )(κ× f )
lsq,δφ

, (D6)

where as we require each G-move preserve fermion parity, the term Gitn,(ψ ′× f )χ
l ps,κγ

Gjkt,(η′× f )κ
lsq,δφ

actually varies the fermion parity

on κ and should be written as Gitn,(ψ ′× f )χ
l ps,(κ× f )γ Gjkt,(η′× f )(κ× f )

lsq,δφ
. The first equality in Eq. (D6) is exactly the complex conjugate of the

second equivalence relation on G-move Eq. (206). The second equality in Eq. (D6) is satisfies straightforwardly by the relation
among phase factors in Eq. (210), (

�
i j
knt,η′ψ ′

)∗ = (
�

nit,ψ ′κ
sl

)∗(
�

jkt,η′κ
ls

)∗
, (D7)

where Gitn,ψ ′χ
l ps,κγ

= (�nit,ψ ′κ
sl )∗Gitn,(ψ ′× f )χ

l ps,(κ× f )γ , and Gjkt,η′κ
lsq,δφ

= (� jkt,η′κ
ls )∗Gjkt,(η′× f )(κ× f )

lsq,δφ
. We can again check this relation from fermion

condensation: �
i j
knt,η′ψ ′ = � f i(F

yit
n F iyt

n )ψ ′ , �
nit,ψ ′κ
sl = � f i(F

yit
n F iyt

n )ψ ′ (F ytl
s )∗κ , and �

jkt,η′κ
ls = (F ytl

s )κ , we find Eq. (D7) is satisfied
straightforwardly.

Physically, from the point of view of fixed-point wavefunctions, there is a splitting on the two channels. Suppose that η and
ψ are two bosonic fusion states. In terms of F -moves, the splitting of Eq. (D5) is graphically represented as

(D8)

(D9)

Therefore, Eq. (D5) again implies∑
mαβε

(−1)s(α)s(δ) dm

nm

(
Gi jm,αβ

knt,ηψ

)∗
Gi jm,αε

qps,φγ Gmkn,βχ

l pq,δε
=

∑
κ

Gitn,ψχ

l ps,κγ
Gjkt,ηκ

lsq,δφ
. (D10)
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2. Obtain the third 2–3 move

To obtain the third 2–3 move Eq. (195), we consider two cases:
(1) Let the string m′ be m-type. We multiply by (Gi jm′,α′ε′

qps,φγ )∗ and sum over s, φ, γ on both sides of the second 2–3 move
Eq. (194). We can obtain Eq. (195) by applying∑

sφγ

dsdm

nsnm

(
Gi jm′,α′ε′

qps,φγ

)∗
Gi jm,αε

qps,φγ = δmm′δαα′δεε′ , if m′ is m-type. (D11)

(2) Let the string m′ be q-type. We multiply by 1
2 [(Gi jm′,α′ε′

qps,φγ )∗ + �
i jm′,α′ε′
qp (Gi jm′,(α′× f )(ε′× f )

qps,φγ )∗] and sum over s, φ, γ on both
sides of Eq. (194), ∑

sφκγ

ds

ns

1

2

(
Gi jm′,α′ε′

qps,φγ

)∗
Gitn,ψχ

l ps,κγ
Gjkt,ηκ

lsq,δφ
+ �i jm′,α′ε′

qp

(
Gi jm′,(α′× f )(ε′× f )

qps,φγ

)∗
Gitn,ψχ

l ps,κγ
Gjkt,ηκ

lsq,δφ

)
= (−1)s(α)s(δ)

∑
β

1

2

((
Gi jm,α′β

knt,ηψ

)∗
Gmkn,βχ

l pq,δε′ + �i jm′,α′ε′
qp

(
Gi jm,(α′× f )β

knt,ηψ

)∗
Gmkn,βχ

l pq,δ(ε′× f )

)
. (D12)

Splitting the two channels, we again get Eq. (195) by applying∑
sφγ

dsdm

nsnm
Gi jm,αε

qps,φγ

(
Gi jm′,α′ε′

qps,φγ

)∗ = 1

2
(δmm′δαα′δεε′ + �i jm′,α′ε′

qp δmm′δα(α′× f )δε(ε′× f ) ), if m′ is q-type. (D13)

We obtain Eq. (195) from Eq. (194) by requiring Eq. (201) and the relation in Eq. (211),

�i jm,α′ε′
qp = �

i jm,α′β
kn

(
	nkm,βε′

qp

)∗
, (D14)

as from which we have(
Gi jm,α′ε′

qps,φγ

)∗ = �i jm,α′ε′
qp

(
Gi jm,(α′× f )(ε′× f )

qps,φγ

)∗
,

(
Gi jm,α′β

knt,ηψ

)∗
Gmkn,βχ

l pq,δε′ = �i jm,α′ε′
qp

(
Gi jm,(α′× f )(β× f )

knt,ηψ

)∗
Gmkn,(β× f )χ

l pq,δ(ε′× f ) . (D15)

We can again check Eq. (D14) from fermion condensation: �
i jm,α′ε′
qp = (F ymq

p )ε′ , �
i jm,α′β
kn = (F ymk

n )β , and 	nkm,βε′
qp =

(F ymq
p )∗ε′ (F

ymk
n )β .

3. Obtain the rest five 2–3 moves

Similarly, we obtain Eq. (196) from Eq. (195) by requiring Eq. (202) and (�it
l ps,κ ′γ ′ )∗ = (�i j

qps,φγ ′ )∗�t j
qls,κ ′φ , where(

Gitn,ψχ

l ps,κ ′γ ′
)∗ = (

�it
l ps,κ ′γ ′

)∗(
Gitn,ψχ

l ps,(κ ′× f )(γ ′× f )

)∗
,

(
Gi jm,αε

qps,φγ ′
)∗

Gjkt,ηκ ′
lsq,δφ

= (
�

i j
qps,φγ ′

)∗
�

t j
qls,κ ′φ

(
Gi jm,αε

qps,(φ× f )(γ ′× f )

)∗
Gjkt,η(κ ′× f )

lsq,δ(φ× f ) . (D16)

We obtain Eq. (197) from Eq. (193) by requiring Eq. (201) and �
jkt,η′κ ′
ls = �

i j
knt,η′ψ (�nit,ψκ ′

sl )∗ [the same relation as Eq. (D7)],
where (

Gjkt,η′κ ′
lsq,δφ

)∗ = �
jkt,η′κ ′
ls

(
Gjkt,(η′× f )(κ× f )

lsq,δφ

)∗
, Gi jm,αβ

knt,η′ψGitn,ψχ

l ps,κ ′γ = �
i j
knt,η′ψ

(
�

nit,ψκ ′
sl

)∗
Gi jm,αβ

knt,(η′× f )(ψ× f )G
itn,(ψ× f )χ
l ps,(κ ′× f )γ . (D17)

We obtain Eq. (198) from Eq. (193) by requiring Eq. (203) and �
nit,ψ ′κ ′
sl = �

i j
knt,ηψ ′ (�

jkt,ηκ ′
ls )∗ [the same relation as Eq. (D7)],

where (
Gitn,ψ ′χ

l ps,κ ′γ

)∗ = �
nit,ψ ′κ ′
sl

(
Gitn,(ψ ′× f )χ

l ps,(κ ′× f )γ

)∗
, Gi jm,αβ

knt,ηψ ′G
jkt,ηκ ′
lsq,δφ

= �
i j
knt,ηψ ′

(
�

jkt,ηκ ′
ls

)∗
Gi jm,αβ

knt,(η× f )(ψ ′× f )G
jkt,(η× f )(κ ′× f )
lsq,δφ

. (D18)

We obtain Eq. (199) from Eq. (198) by requiring Eq. (204) and (�mi
sqp,ε′γ ′ )∗ = �nm

ql p,χε′ (�ni
sl p,χγ ′ )∗, where(

Gi jm,αε

qps,φγ

)∗ = (
�mi

sqp,ε′γ ′
)∗(

Gi jm,α(ε× f )
qps,φ(γ ′× f )

)∗
, Gmkn,βχ

l pq,δε′
(
Gitn,ψχ

l ps,κγ ′
)∗ = �nm

ql p,χε′
(
�ni

sl p,χγ ′
)∗

Gmkn,β(χ× f )
l pq,δ(ε× f )

(
Gitn,ψ (χ× f )

l ps,κ (γ× f )

)∗
. (D19)

We obtain Eq. (200) from Eq. (195) by requiring Eq. (204) and (�t j
qls,κ ′φ′ )∗ = (�i j

qps,φ′γ )∗�it
l ps,κ ′γ , where(

Gjkt,ηκ ′
lsq,δφ′

)∗ = (
�

t j
qls,κ ′φ′

)∗(
Gjkt,η(κ ′× f )

lsq,δ(φ′× f )

)∗
,

(
Gi jm,αε

qps,φ′γ

)∗
Gitn,ψχ

l ps,κ ′γ = (
�

i j
qps,φ′γ

)∗
�it

l ps,κ ′γ
(
Gi jm,αε

qps,(φ′× f )(γ× f )

)∗
Gitn,ψχ

l ps,(κ ′× f )(γ× f ). (D20)
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