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Disorder effects on triple-point fermions
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The stability of three-dimensional relativistic semimetals to disorder has recently attracted great attention, but
the effect of disorder remains elusive for multifold fermions, that are not present in the framework of quantum
field theory. In this paper, we investigate one type of multifold fermions, so-called triple-point fermions (TPFs),
which have pseudospin-1 degrees of freedom and topological charges ±2. Specifically, we consider the effect
of disorder on a minimal, three-band tight-binding model, which realizes the minimal number of two TPFs. The
numerically obtained, disorder-averaged density of states suggests that, within a finite energy window, the TPFs
are robust up to a critical strength of disorder. In the strong disorder regime, the inter-TPF scattering is the main
mechanism for destroying a single TPF. Moreover, we study the effects of disorder on the distribution of Fermi
arcs and surface Berry curvature. We demonstrate that the Fermi arc retains its sharpness at weak disorder, but
gradually dissolves into the metallic bulk for stronger disorder. In the clean limit, the surface Berry curvature
exhibits a bipolar configuration in the surface Brillouin zone. With increasing disorder, the positive and negative
surface Berry curvatures start to merge at the nearby momenta where the Fermi arcs penetrate into bulk.
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I. INTRODUCTION

Fundamental particles in high-energy physics can emerge
in condensed-matter systems. For example, Majorana
fermions could be realized in topological superconductors [1],
Dirac fermions in graphene [2] and Weyl fermions in topo-
logical semimetals [3]. These aforementioned quasiparticles
are described by two-component spinors. Nonetheless, it has
been shown that with particular crystal symmetries, lattice
systems could host new types of quasiparticles with higher
pseudospins [4,5], which have no high-energy counterparts.
One of these exotic quasiparticles is realized as a low-energy
excitation at a point where three energy bands become
degenerate. The resulting threefold fermion has pseudospin-1
degrees of freedom, and has been dubbed the triple point
fermion (TPF) [4]. TPFs have topological charges of ±2,
the same as that of double Weyl nodes. However, a TPF
has three energy bands, two of which disperse linearly
along any momentum direction, and one of which has a
vanishing velocity at the band crossing point, i.e., it is a
(locally) flat band. In crystals, a stable topological charge
is separated from its partners with opposite charge in the
Brillouin zone since the total charge must vanish as dictated
by the Nielsen-Ninomiya theorem [6,7]. When two nodes
of opposite topological charge are mixed, for instance, by
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internode scattering, their topologically nontrivial properties
are no longer guaranteed and can even disappear altogether.

The past few years have witnessed an enormous interest
to understand the stability of the Weyl nodes against disor-
der [8–19]. The disorder-averaged density of states (DOS)
has been used as an order parameter to characterize the
stability of Weyl nodes. Within self-consistent Born approxi-
mation, it has been shown that there exists a critical disorder
strength that separates the Weyl semimetal and diffusive
metal regimes [14,15]. Meanwhile, numerical simulations
performed using the kernel polynomial method revealed that
the Weyl node is unstable, and the DOS becomes finite in the
presence of disorder due to the rare region effects [13,16,20].
The stability of quadratic Weyl semimetals has also been
investigated. It has been shown that linear Weyl semimetals
are stable against random disorder, but the quadratic ones are
not [12]. Similarly, Sbierski et al. [14] found that double Weyl
nodes are unstable against correlated disorder. Although a
TPF shares the same topological charge with the double Weyl
point ±2, the disorder effects in TPFs are still overlooked. It is
an open question whether richer and more interesting physics
will emerge in the TPFs when disorder and the additional flat
band come into play.

A direct consequence of the topological charges is the
existence of Fermi arcs connecting the surface projections
of oppositely charged nodes. These Fermi arcs are man-
ifestations of the bulk-boundary correspondence of Weyl
semimetals and can be measured by angle-resolved photoe-
mission spectroscopy [3] or in transport experiments [21].
Moreover, the Fermi arcs carry surface Berry curvature (BC)
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and Berry curvature dipole, leading to linear or nonlinear
anomalous Hall conductivity [22,23]. So far, there are only
few works devoted to studying the robustness of the Fermi
arcs of Weyl semimetals [24–26]. Even less is known about
the disorder effects on the Fermi arcs of TPFs.

Due to the additional flat band, the DOS, a commonly used
diagnostic that indicates the stability of Dirac/Weyl nodes
against disorder, cannot solely reveal the disorder effects on
TPFs. Therefore, in addition to the DOS, we study the fate
of Fermi arcs as well as the associated BC-driven phenomena.
This paper is organized as follows. In Sec. II, we introduce the
model Hamiltonian of the triple point fermion. The numerical
results are presented and discussed in the following sections:
Section III shows the results of density of states, and Sec. IV
discusses the stability of Fermi arcs and the interplay between
disorder and the surface Berry curvature. Finally, we conclude
in Sec. V.

II. MODEL HAMILTONIAN

In this paper, we use the minimal lattice model that
contains only a pair of triple point fermions [27]. This Hamil-
tonian, which is constructed as a combination between a
double Weyl semimetal and a flat band at zero energy, reads

Ht (�k) =
⎛
⎝Hq λ

†
+

λ
†
−

λ+ λ− 0

⎞
⎠, (1)

where Hq is the three-dimensional (3D) momentum-space
Hamiltonian for the double Weyl semimetal,

Hq(�k) = [2 − cos(kx ) − cos(ky) − 2 cos(kz )]σz

+2 sin(kx ) sin(ky)σy + 2[cos(kx ) − cos(ky)]σx,

(2)

σ j are Pauli matrices, �k = (kx, ky, kz ) is the momentum vec-
tor, and λ± = λei(φ±π/4)[sin(kx ) ∓ i sin(ky)] are the coupling
terms between the double Weyl semimetal and the flat band.
Hereafter, we set h̄ = 1 and the hopping energy and lattice
constant to 1 for simplicity.

For the double Weyl semimetal Hq, the two bands near
the Weyl nodes (0, 0,±π/2) disperse linearly along kz but
quadratically along kx and ky. By introducing a flat band that
couples to the double Weyl fermions, we obtain a triple point
fermion [27] such that two of the bands disperse linearly in all
momentum directions. The dispersion for λ = 0.5 along kz at
(kx, ky) = (0, 0) is shown in Fig. 1(a). By Fourier transform-
ing to real space, we obtain a tight-binding Hamiltonian which
allows us to explore the effects of disorder.

The band crossings of Ht and Hq have the same topological
charge [28], and the TPFs are protected by the combination of
an anticommuting mirror symmetry about the kx = ky plane
and a C4 rotation symmetry along the kx = ky = 0 axis [27].
This is the minimal model for TPFs with a symmorphic
group [27]. Moreover, Ht and Hq are time-reversal symmetry
broken and can be viewed as a stack of quantum anomalous
Hall insulators along the kz direction. The Chern number

FIG. 1. (a) The energy dispersion for λ = 0.5 along kz at
(kx, ky ) = (0, 0). (b) The Chern number (green solid line) along kz.
The blue dotted (orange dashed dotted) line labeled by “12(3)”de-
notes the contribution to the Chern number obtained from the matrix
element between the valence and the flat (conduction) bands. The
dashed black line is a guide to the eye that shows the quantization of
the total Chern number.

along kz for the nth band is given by

Cn(kz ) = 1

π

∫
dkxdky�

n
z (�k), (3)

where �n
z (�k) is the z component of the Berry curvature for the

nth band,

�n
z (�k) = −Im

∑
n �=m

〈n|vx|m〉〈m|vy|n〉
(En − Em)2

, (4)

where En and |n〉 are eigenenergies and Bloch eigenstates of
the Hamiltonian Ht (�k), respectively, and vi = ∂Ht (�k)/∂ki is
the velocity operator. For Ht , the flat band does not carry a
Chern number, whereas the lowest- and highest-energy bands
carry opposite Chern numbers. For the lowest-energy band
(band 1), there are two contributions to the Chern number.
One is from the velocity matrix elements between bands 1
and 3, denoted by C13 and the other is between bands 1 and 2,
denoted by C12. The Chern number, Eq. (1), of the lowest-
energy band at each kz plane is shown by the green solid
line in Fig. 1(b). It is well quantized between the two nodes.
Both matrix elements 12 and 13 are nonzero for λ = 0.5. In
contrast, when λ = 0, the topological charge is carried only
by the double Weyl node, which is now decoupled from the
flat band, and only the C13 component is nonzero. Therefore,
as the coupling strength λ increases, there is a Berry curvature
transfer between the bands as shown in Appendix A.
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III. DENSITY OF STATES

A 3D relativistic semimetal has the low-energy disper-
sion E = ±v f k, where v f is the slope of the band and

k =
√

k2
x + k2

y + k2
z . In the clean limit, it is straightforward to

show that the DOS is ρclean(E ) = π2

2 k2( dk
dE )−1 = π2

2v3
f
E2. In the

presence of disorder, the disorder-averaged DOS ρ(E ) at zero
energy can serve as an order parameter for the disorder-driven
semimetal-metal transition. For TPFs, bands 1 and 3 disperse
linearly and, thus, the DOS of both bands still scales quadrat-
ically with energy [29]. However, due to the existence of the
flat band, the DOS has an additional zero-energy peak. This is
in stark contrast to the DOS of Weyl and Dirac fermions, and
distinct phenomena arise from the TPFs with disorder.

To calculate the disorder-averaged DOS, we employ the
kernel polynomial method [30] in the PYBINDING [31] pack-
age. Two types of disorder are considered. The first type
is the white noise, which takes into account the scattering
between the two TPFs. We add a random on-site potential
V (�r)I3×3 with I3×3 the 3 × 3 identity matrix, and V (�r) ∈
[−W

2 , W
2 ] drawn independently for each lattice site (indexed

by real-space position vectors �r) from a uniform distribution,
where W is the strength of disorder.

The second type is the correlated disorder,

Hc =
∑

i

∑
j

Wj

(
√

2πξ )3
e−(ri−Rj )2/2ξ 2

I3×3|i〉〈i|, (5)

where ξ is the correlation length, Wj is the random number
given by a uniform distribution in the range ∈ [−W

2 , W
2 ], ri

is the position vector for a lattice site, and Rj is the position
vector of an impurity. It is assumed that the number of impu-
rity is the same as that of the lattice sites. When ξ → 0, the
correlated disorder reduces to the white-noise potential. As
the correlation length ξ becomes larger, the scattering between
two TPFs becomes weaker [14].

Figure 2(a) shows the results for white-noise disorder,
computed for a cubic system consisting of L3 sites with L = 50
and periodic boundary conditions imposed along all three
directions. The zero-energy peak decreases and broadens as
the disorder strength increases. As can be seen, there exists
an energy range for which the DOS remains quadratic up
to W � 3. In contrast, the double Weyl nodes have a linear
DOS at finite energy in the presence of disorder [11,12,14].
Figure 2(b) shows the results for correlated disorder, using
the same geometry. In contrast to white-noise disorder, the
DOS is almost invariant to the disorder strength. This result
suggests that the inter-TPF scattering is the main mechanism
for destroying the single TPF physics.

We note that the TPF and multifold fermions have been
predicted in a family of transition-metal silicides in which the
multifold fermions are separated in energy [32]. Effectively,
there is only one multifold fermion involved in scattering
events. Thus, our results suggest that such a multifold fermion
in this material family should be particularly robust against
disorder.

FIG. 2. The DOS as a function of energy for λ = 0.5 for a cubic
system with a linear size of L = 50 lattice sites. A Gaussian broad-
ening of 0.001 was used when implementing the kernel polynomial
method, and the DOS was averaged over 20 disorder realizations.
(a) DOS for the white-noise disorder. The inset is the zoomed-in
plot showing the quadratic behavior of the DOS. (b) DOS for the
correlated disorder with ξ = 5.

IV. FERMI ARCS

The existence of Fermi arcs is a consequence of the topo-
logical charges associated with the band crossing points.
Several measurable quantities are related to the Fermi arcs
and, thus, the stability of the Fermi arcs against disorder is
an essential question. To study the topological surface states
associated with the TPFs, we impose open boundary condi-
tions along the x direction of the model Hamiltonian, whereas
keeping the system infinite along the other two directions such
that ky,z remain good quantum numbers. Since the central band
is close to E = 0 and hinders the observation of Fermi arcs,
here we focus on the Fermi arc state in a finite-energy range
away from zero. The density of the Fermi arc states (ρa) in the
clean limit is shown in Fig. 3(a). Here ρa is defined as

ρa(x, ky, kz ) =
∑

Ei∈[0.3,0.3+
E )

3∑
o=1

|〈ψi(ky, kz )|x, o〉|2, (6)

where ψi(ky, kz ) is the ith eigenvector with energy
Ei ∈ [0.3, 0.3 + 
E ) at (ky, kz ), x denotes the coordinate of
lattice sites along the finite direction of the slab, and o labels
the pseudospin degrees of freedom. Here 
E was set to be
0.1 to ensure the continuity of the Fermi arcs in the projected
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FIG. 3. (a) Distribution of states in the energy range of 0.3 �
E < 0.4 for λ = 0.5 in the absence of disorder. The black circles
denote two of the furthest momenta away from the TPFs. (b) The
ratios of the bulk and surface density near k′ in a slab geometry. The
number of lattice sites of the slab is 100 along the x direction, and
we have averaged over ten disorder realizations.

Brillouin zone in Fig. 3(a). The value could be smaller if we
use a finer momentum grid. On each surface, there exists a
pair of Fermi arcs connecting to the bulk states of TPFs at
(ky = 0, kz = ±π/2). The number of Fermi arcs is consistent
with the fact that TPFs are monopoles of the Berry curvature
with charge ±2.

To investigate the robustness of the Fermi arcs, we employ
the stacked-layer construction [25] in which the disorder po-
tential is applied only in the x direction (see Appendix B).
This allows us to study the evolution of the Fermi arcs with
disorder and, in turn, to compute the local density near the
momentum k′ = (ky = −π/2, kz = 0), which is one of the
furthest momenta away from the TPFs. We choose this k point
because the surface Fermi arcs at this point can have the least
overlap with the bulk contributions of TPFs. The dispersion
for the slab near k′ is shown in Fig. 4. It is plotted along the
diagonal that runs from k′ − (δk, δk) to k′ + (δk, δk), where
δk = π/5. The flat band shows a finite bandwidth. Thus, in
this range of momentum, the Fermi arcs can only be isolated

FIG. 4. Energy spectrum of the slab. The horizontal black dashed
lines denote E = 0.3 and E = 1.5. There are 100 lattice site along
the x direction. The color on the curve represents surface density.
k′ = (ky = −π/2, kz = 0) and δk = 10 2π

N , N = 100.

from bulk for 0.3 < E < 1.5. The highest-energy states of the
Fermi arcs (megenta curves) eventually merge with bulk states
(cyan curves) when momentum is away from k′.

When the disorder strength increases, the Fermi arcs at k′
gradually penetrate into bulk. We calculate the ratio of the
bulk (ρb) and surface (ρs) density to quantify this disorder-
induced penetration as a function of energy and disorder
strength. The definition of ρb/s is

ρb/s =
∑
ky,kz

∑
i

ρ i
b/s(ky, kz ), (7)

where the first sum is performed over the neighboring k
points near k′, within the range of [k′

y − δk, k′
y + δk] and [k′

z −
δk, k′

z + δk]. Here we choose δk = 10 2π
N , where N = 100 is

the number of k -points along each direction. Furthermore,
i denotes the states within the energy range of E � Ei <

E + 
E , where 
E was set to be 0.1 as for the Fermi arcs
shown in Fig. 3(a). ρ i

b/s(ky, kz ) is defined as

ρ i
b(ky, kz ) =

L−d∑
x=d

3∑
o=1

|〈ψi(ky, kz )|x, o〉|2, (8)

ρ i
s(ky, kz ) = 1 − ρ i

b(ky, kz ), (9)

where L = 100 is the thickness of the slab and d = L/20
is the number of layers that are considered as top/bottom
surfaces. The diagram showing this ratio is given in Fig. 3(b).
In the clean limit, i.e., W = 0, the bulk density vanishes for
0.3 < E < 1.5, the energy range where the Fermi arcs are
isolated from the bulk states. Outside this range, the bulk
states coexist with Fermi arcs near k′. As W becomes larger,
the Fermi arcs gradually penetrate into bulk, and ρb increases.
The Fermi arcs can carry a large surface Berry curvature
�x(�k) [23]. As is well known, in the presence of an external
electric-field �E , the Berry curvature in momentum space adds
the so-called anomalous velocity term in the equations of
motion that describe the propagation of Bloch wave-packets
− e

h̄
�E × ��(�k) [33–35]. Since the anomalous velocity is per-

pendicular to the electric field, it can lead to a variety of
Hall-like effects. We calculate the surface BC for the Fermi
arcs on the top surface of the slab and investigate the effect
of disorder. The Fermi arcs are the states with the largest
weight on the surface, denoted by ψa. Figure 5 shows the
Fermi arcs and the surface BC at E = 0.3 for W = 0, 1, 2, 4.
In the clean limit, we find that BC of each arc is odd in kz,
�x(ky, kz ) = −�x(ky,−kz ). Such a bipolar configuration of
BC is due to the mirror symmetry in the z -direction, i.e.,
H (−kz ) = H (kz ), according to Eqs. (1) and (2). The BCs on
the top (t) and bottom (b) surfaces are related by the inversion
symmetry of the slab �x,t (ky, kz ) = �x,b(−ky,−kz ). Since the
BC is proportional to the matrix element of ∂H

∂kz
, the Berry cur-

vature is odd in kz. Therefore, the surface Hall conductivity,
which is proportional to the sum of the Berry curvature in the
surface BZ, is exactly zero.

Figure 5(b) shows that, for relatively weak disorder
(W = 1), the Fermi arcs retain their sharpness. However, neg-
ative (positive) surface Berry curvature arises near the surface
projection of the positively charged (negatively charged) bulk
node. The mixture of positive and negative surface Berry
curvatures is more obvious as disorder strength increases as
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FIG. 5. Fermi arcs (top panel) and the Berry curvature carried
by the Fermi arcs (lower panel) on the top surface for disorder
(a) W = 0, (b) W = 1, (c) W = 2, and (d) W = 4. For (b)–(d), we
have avraged over 20 disorder realizations. At stronger disorder the
distribution of Fermi arcs is rather sparse. According to Fig. 3(b), the
Fermi arcs have penetrated into bulk at W = 4.

shown in Figs. 5(c) and 5(d). We note that the kz-reflection
symmetry is broken, and, thus, the Berry curvature is no
longer an odd function in kz when the potential disorder has
distribution in the ky and kz directions in the momentum space.

Finally, we remark that even when the Hall conductiv-
ity vanishes in experiments, the intrinsic geometry of the
quantum electron wave functions can still be probed via the
nonlinear Hall effect, a direct measure of the Berry curvature
dipole. In our case the surface BC dipole defined as

Di = −
∫

d2�k �x(�k)[∂ki f0(�k)], (10)

where f0(�k) is the Fermi-Dirac distribution. The above equa-
tion describes the first-order moment of the Berry curvature
over occupied states near the Fermi energy. When the bound-
ary is open along the x direction, the mirror symmetry in
thez direction forces the surface BC dipole to be Dy = 0
and Dz �= 0 (see Appendix C). This results in a transverse
charge current along the y direction in second-order response
to an external electric field along the z direction. By using the
stacked-layer construction, we also numerically find the sur-
face BC dipole could be enhanced with disorder. The interplay
between the disorder and the quantum geometric aspects of
the Fermi-arcs’ electronic structure is experimentally relevant
in all BC-driven phenomena, such as the nonlinear anoma-
lous Nernst effect [36] and the surface contributions to the
orbital magnetic moment [37]. These are certainly interesting
subjects for future investigation.

V. CONCLUSION

We have studied the DOS and Fermi arcs of a disordered
three-band tight-binding model that hosts TPFs. Using the
lattice model, rather than the low-energy model, we are able to
investigate the effect of internode scattering. We found that the
inter-TPF scattering is the main mechanism for destroying the

single TPF physics. Nonetheless, there exists a finite-energy
window in which the Fermi arcs and the surface Berry cur-
vature remain sharp in the weak disorder limit. These results
suggest that the TPFs in the family of transition-metal silicides
are robust against disorder. Furthermore, we show that even
when the Hall conductivity carried by the Fermi arc states is
zero due to mirror symmetry, a finite surface Berry curvature
dipole can still exist, leading to the nonlinear Hall effect.
The disorder effects on the nonlinear responses, such as the
nonlinear anomalous Nernst effect and photocurrent would be
interesting directions for future research.

Lastly, we would like to note that the realization of TPFs
has also been proposed in optical lattices [38]. In ultracold
atomic systems, disorder can be implemented by using laser
speckle patterns [39]. In addition, the spectrum can be probed
using the methods of time-of-flight imaging and Bragg spec-
troscopy [39], and the surface Berry curvature can be mapped
by extending the techniques applied for two-dimensional lat-
tices [40]. Thus, the disorder effects on TPFs discussed in the
paper could be investigated using ultracold atoms in optical
lattices.

ACKNOWLEDGMENTS

H.-C.H. was supported by the National Science and
Technology Council in Taiwan under Grant No. MOST
110-2112-M-004-001. J.-S.Y. was supported by the National
Science and Technology Council, Taiwan (Grant No. MOST
110-2112-M-003-008-MY3) and the National Center for The-
oretical Sciences in Taiwan. I.C.F. acknowledges support
from the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strat-
egy through the Würzburg-Dresden Cluster of Excellence on
Complexity and Topology in Quantum Matter ct.qmat (EXC
2147, Project-ID No. 390858490).

APPENDIX A: BERRY CURVATURE TRANSFER

The accumulated Chern number for the lowest-energy band
(C3D), contributed from each kz layer, is given by [41]

C3D = 1

π

∫ k2

k1

dkzC(kz ), (A1)

where k1,2 are the two TPF nodes. C3D as a function of λ is
shown in Fig. 6.

APPENDIX B: STACKED-LAYER CONSTRUCTION

Here we review the recently introduced stacked-layer con-
struction [25] which is used to study the robustness of the
Fermi arcs against disorder. We consider a slab geometry, infi-
nite along the y and z directions and impose an open boundary
in the x direction. This allows us to study the Fermi arc states
on the (ky, kz ) plane. In the clean limit, the lattice Hamiltonian
reads

H lat (ky, kz ) =
∑

x

[h(ky, kz )|x〉〈x| + U (ky, kz )|x + 1〉〈x| + U †(ky, kz )|x〉〈x + 1|], (B1)
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where

h(ky, kz ) =

⎛
⎜⎝

2 − cos(ky) − 2 cos(kz ) −2 cos(ky) iλe−i(φ+π/4) sin(ky)

−2 cos(ky) −2 + cos(ky) − 2 cos(kz ) −iλe−i(φ−π/4) sin(ky)

−iλei(φ+π/4) sin(ky) iλei(φ−π/4) sin(ky) 0

⎞
⎟⎠, (B2)

U (ky, kz ) =

⎛
⎜⎝

−1/2 1 − sin(ky) iλe−i(φ+π/4)/2

1 + sin(ky) 1/2 iλe−i(φ−π/4)/2

−iλei(φ+π/4)/2 −iλei(φ−π/4)/2 0

⎞
⎟⎠. (B3)

H lat (ky, kz ) is a 3L × 3L matrix whereas L represents the sys-
tem size in the x direction. Therefore, we can directly calculate
the eigenspectrum and corresponding wave function using
exact diagonalization techniques for the lattice Hamiltonian.

To investigate the effect of potential disorder, we add the
following Hamiltonian to Eq. (B1):

H lat
dis (ky, kz ) =

∑
x

V (x, ky, kz )I3×3|x〉〈x|. (B4)

Here the disorder potential V (x, ky, kz ) is drawn indepen-
dently for each lattice site in thex direction from the uniform
distribution [−W/2,W/2]. Note that V (x, ky, kz ) can be also
chosen uniformly or independently in the ky and kz directions
in the momentum space [25].

To extract the Fermi arc states of top and bottom surfaces,
we select the state with the largest weight by

arg max
i

3∑
o=1

∑
x

|〈ψi(ky, kz )|x, o〉|2, (B5)

where ψi is the ith eigenvector at ky, kz, o labels the pseu-
dospin degree of freedom, x = [L − d, L] for the bottom
surface and x = [1, d] for the top surface, where d = 3.

FIG. 6. The accumulated Chern number for the lowest-energy
band given by Eq. (A1). The Berry curvature transfers from the
element between bands 1 and 3 to bands 1 and 2 as the coupling
strength increases.

APPENDIX C: SURFACE BERRY CURVATURE
AND SURFACE BERRY CURVATURE DIPOLE

The Fermi arcs of TPFs carry surface Berry curvature
�x(�k). We have shown the surface BC for the Fermi arcs
on the top surface of the slab in Fig. 5 for E = 0.3 at
W = 0, 1, 2, 4. The Fermi arcs and BC for the bottom surface
is also shown in Fig. 7.

In our case the Fermi arcs also have a nontrivial surface
BC dipole, which can lead to the nonlinear Hall currents in the
second-order response to an external electric field. In the pres-
ence of a driving in-plane electric-field Ek = Re{Ekeiωt }, the
DC and second-harmonic generated currents in the second-
order nonlinear effect are described as j (0)

i = σi jkE∗
j Ek and

j (2ω)
i = σi jkE jEk, respectively. The tensor indices i, j, k span

the two-dimensional (2D) coordinates y, z of a slab geometry
because we impose open boundary conditions along the x
direction of the TPF Hamiltonian. Following previous theo-
retical works [42,43], we know that when the frequency of the
the driving electric field is much smaller than the resonant fre-
quency for optical transitions, the nonlinear Hall-like current
density corresponding to σi j j with i �= j is

�j (0) = e3τ

2h̄2(1 + iωτ )
x̂ × �E∗( �D · �E ), (C1)

�j (2ω) = e3τ

2h̄2(1 + iωτ )
x̂ × �E ( �D · �E ), (C2)

where �D is the 2D surface BC dipole and τ is the relaxation
time.

We now discuss how the symmetries affect the BC dipole
of the surface states considered in this paper. In two dimen-
sions, the BC dipole is a pseudovector, and it has been shown

FIG. 7. The same plots as in Fig. 5 for the bottom surface of
the slab.

245118-6



DISORDER EFFECTS ON TRIPLE-POINT FERMIONS PHYSICAL REVIEW B 106, 245118 (2022)

FIG. 8. The surface Berry curvature dipole Dz on the top/bottom
surface as a function of disorder strength W . Here we consider the
Fermi energy at E = 0.3, the thickness L = 20, and average Dz over
400 disorder realizations.

that the highest symmetry of a 2D crystal that allows for a
finite Di is a single mirror line [43]. When the boundary is
open along the x -direction of the model Hamiltonian, the
slab has only one mirror symmetry in the z direction, i.e.,

H (−kz ) = H (kz ). Since this mirror symmetry enforces that
�x(ky, kz ) = −�x(ky,−kz ) in the surface Brillouin zone, it is
evident that Dy = 0 whereas Dz �= 0. By using the stacked-
layer construction, we numerically compute the surface BC
dipole, setting the Fermi energy to E = 0.3 and the thickness
L = 20 as shown in Fig. 8. Our result shows the the surface
BC dipole has a nonmonotonic dependence on disorder.

The surface BC dipole can be understood as fol-
lows. Equation (10) can be rewritten as Di = ∫

d2�kδ(E −
E f ) ∂E

∂ki
�x(�k) [44], where ∂E

∂ki
is the group velocity along the

i direction, and �x(�k) is the BC. Turning on the disorder
potential not only effectively varies the chemical potential
and bands, but also induces hybridization between the surface
states with the bulk states, which changes the localization of
the wave function along the direction orthogonal to the surface
and, thus, changes the value of the Berry curvature. At the
Fermi energy E = 0.3, the band dispersion of the surface state
does not show a drastic change as a function of disorder. Thus,
the major sign change in the BC dipole comes from Berry
curvature but not the group velocity. In Fig. 5, it is evident that
as disorder increases, the BC with opposite sign against that of
the clean limit (W = 0) grows substantially from two nodes.
Thus, the BC dipole can change sign for a certain value of W .
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triple-component fermions: Lattice model, Fermi arcs, and
anomalous transport, Phys. Rev. B 100, 235201 (2019).

[29] O. Pal, B. Dey, and T. K. Ghosh, Berry curvature induced
anisotropic magnetotransport in a quadratic triple-component
fermionic system, J. Phys.: Condens. Matter 34, 155702
(2022).

[30] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, The kernel
polynomial method, Rev. Mod. Phys. 78, 275 (2006).
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