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Charge excitations across a superconductor-insulator transition

Xiaodong Jin ,1 Yuhai Liu,1 Rubem Mondaini ,1,* and Marcos Rigol 2,†

1Beijing Computational Science Research Center, Beijing 100084, China
2Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

(Received 26 August 2022; revised 2 December 2022; accepted 2 December 2022; published 13 December 2022)

We study the superconductor-insulator transition (SIT) in the ground state of the attractive honeycomb
Hubbard model in the presence of a staggered potential (a mass term), using a combination of unbiased
computational methods, namely, exact diagonalization and quantum Monte Carlo simulations. We probe the
nature of the lowest-energy charge excitations across the SIT and show that they are bosonic, as inferred (and
shown in the strongly interacting regime) in a previous study of the same model in the square lattice. Increasing
the strength of the staggered potential leads to a crossover in which bosonic low-energy excitations give way to
fermionic ones within the insulating phase. We also show that the SIT belongs to the 3d-XY universality class,
like in its square lattice counterpart. The robustness of our results in these two lattice geometries supports the
expectation that our findings are universal for SITs in clean systems.
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I. INTRODUCTION

The theory of conventional superconductors describes the
emergence of pairing among repulsive charges by means of
a Fermi surface instability in a metal (or Fermi liquid) [1].
It leads to an effective attractive interaction whose hallmark is
the formation of a gap for one-particle excitations, while zero-
momentum pair excitations are gapless [2]. Yet, various cases
are known to evade this paradigm, where the parent state does
not have a well-defined Fermi surface, such as in the case of
insulators. This superconductor-insulator transition (SIT) has
been experimentally investigated in various low-dimensional
systems, either via disorder tuning [3–6], introducing mag-
netic fields [7–9], or introducing changes in the carrier density
[10–12]. The development of analog quantum simulators,
comprising ultracold atoms trapped in optical lattices [13–15],
has opened a door to controllably study such SIT transitions
in exquisitely clean strongly correlated systems.

Motivated by understanding the nature of SITs in clean
strongly correlated systems, as well as their possible exper-
imental exploration in experiments with ultracold fermionic
atoms, in a previous work [16] two of us (R.M. and M.R., in
collaboration with P. Nikolić) studied the SIT in the attractive
Hubbard model in the presence of a staggered potential in
the square lattice geometry. We showed that in the insulating
phase in the strongly interacting regime, the lowest-energy
charge excitations can be bosonic or fermionic, depending on
the parameters chosen. We also showed that, for all the Hamil-
tonian parameters that could be studied using quantum Monte
Carlo simulations, the SIT belongs to 3d-XY universality
class. We concluded from those results that the lowest-energy
charge excitations are bosonic in both the superconducting
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and insulating phases across the SIT, as argued using field-
theory arguments in the weak-coupling limit [17,18]. Such
a bosoniclike insulator is akin to a pseudogap phase, where
preformation of pairs occurs but such pairs are not phase
correlated to exhibit superconductivity [16]. Lowest-energy
bosonic charge excitations across an SIT were later argued
to also occur in a model of two coupled triangular lattices
[19,20].

Here we study the SIT in the ground state of the attrac-
tive Hubbard model in the presence of a staggered potential
in the honeycomb lattice geometry. Our main goal is to di-
rectly probe the nature of the lowest-energy charge excitations
across the SIT, which we find to be bosonic, and study their
crossover to being fermionic upon increasing the strength
of the staggered potential in the insulating phase. For this,
we compute the one-particle (fermionic) and two-particle
(bosonic) gaps, which are more precise probes of the nature of
the lowest energy excitations than the probes used in Ref. [16].
We also study the universality class of the SIT, which we find
to be 3d-XY as in the square lattice case [16]. Our second
goal, which together with potential experimental realizations
motivated us to study the honeycomb lattice geometry, is to
show that our conclusions are robust independently of the
lattice geometry (Ref. [16] focused on the square-lattice ge-
ometry) and likely to be universal for SITs in clean systems.
The fermionic model considered in this paper, except for the
next-nearest-neighbor terms, was studied experimentally with
ultracold atoms [21]. To properly account for the effects of
quantum fluctuations and strong correlations in our model, we
use two unbiased computational techniques, exact diagonal-
ization and quantum Monte Carlo simulations.

The presentation is organized as follows. In Sec. II, we
introduce the attractive Hubbard model in the presence of
a staggered potential in the honeycomb lattice geometry,
present its phase diagram, and discuss limiting regimes that
can be solved analytically. We also briefly introduce the
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unbiased computational techniques used to study this model.
In Sec. III, we discuss how the phase diagram of the model
is obtained using exact diagonalization and quantum Monte
Carlo simulations. This is where we show that the SIT belongs
to 3d-XY universality class. Section IV is devoted to study-
ing the one-particle (fermionic) and two-particle (bosonic)
charge excitations across the SIT and how the nature of the
lowest-energy one changes from bosonic to fermionic upon
increasing the strength of the staggered potential in the insu-
lating phase. Our results are summarized in Sec. V.

II. MODEL AND METHODS

Our model of interest is the SU(2) honeycomb Hubbard
model in the presence of a staggered potential [21],

Ĥ = −t
∑
〈i j〉,σ

ĉ†
iσ ĉ jσ − t ′ ∑

〈〈i j〉〉,σ
ĉ†

iσ ĉ jσ + U
∑

i

(
n̂i↑ − 1

2

)

×
(

n̂i↓ − 1

2

)
+ �

∑
i,σ

(−1)si n̂iσ , (1)

where ĉ†
iσ (ĉiσ ) are the fermionic creation (annihilation) oper-

ators at site i, with (pseudo)spin σ =↑,↓, and n̂iσ = ĉ†
iσ ĉiσ

is the corresponding (pseudo)spin site-occupation operator.
The nearest-neighbor, 〈i j〉, and next-nearest neighbor (NNN),
〈〈i j〉〉, hopping parameters are denoted by t and t ′, respec-
tively; the strength of the on-site attractive interaction by
U < 0, and the strength of the staggered potential by � [si

is either 0 or 1 depending on the sublattice to which i be-
longs, see Fig. 1(a)]. In what follows, we focus on an average
filling of one electron per site N ≡ N↑ + N↓ = V , with N↑ ≡∑

i〈n̂i↑〉 = N↓ ≡ ∑
i〈n̂i↓〉, and V = 2L2 being the number of

lattice sites [L is the number of unit cells in each direction,
see Fig. 1(a)]. We set t = 1 as the energy scale, but write t
whenever it is helpful in equations.

Compared to the model studied experimentally in
Ref. [21], Eq. (1) contains only an extra set of terms, namely,
the NNN hoppings, which describe hoppings between sites
that belong to the same sublattice. As will become apparent
below, those terms introduce nontrivial changes to the solely
nearest-neighbors model, and they can be introduced in exper-
iments via a modulated shaking of the optical lattice [22].

To understand the interplay of the different terms in Eq. (1),
it is useful to analyze several of its limiting regimes. First,
let us discuss the noninteracting (U = 0) limit, in which the
Hamiltonian is diagonalizable in k space, resulting in the
following two bands:

Ek = −t ′ f (k) ±
√

�2 + t2[3 + f (k)], (2)

with f (k) = 2 cos(
√

3ky) + 4 cos( 3
2 kx ) cos(

√
3

2 ky). The first
question one can ask is how large � needs to be for the ground
state at half filling to transition between the semimetal ground
state for � = 0 to the band insulator for � 	 t . The answer
to that question depends on the NNN hopping amplitude t ′.
For t ′ = 0, the Dirac cones of the upper and lower bands,
touching at the high-symmetry points K and K′ of the first
Brillouin zone, split, generating a direct gap (= 2�) for any
nonzero value of �. After including a nonzero t ′, the direct
gap is still obtained so long as t ′ � t ′

c = t/3 [see Fig. 1(b)].
As t ′ increases crossing t ′

c, the minimum of the upper band

FIG. 1. (a) Schematic representation of the terms in Eq. (1) in a
honeycomb lattice with V = 2L2 sites for L = 3. (b), (c) Band struc-
ture in the noninteracting (U = 0) limit (left), and the corresponding
density of states (right), for a strength of the staggered potential
� = 0.2. (b) Results for t ′ = 0.2, for which the ground state is a
band insulator. (c) Results for t ′ = 0.5, for which the ground state is
a metal. t = 1 sets the energy scale.

moves from the K, K′ points to the � point. For t ′ > t ′
c, the

gap becomes indirect (K, K′ ↔ �) and the amplitude of the
staggered potential �c needed to turn the system into a band-
insulator becomes nonvanishing [see Fig. 1(c)]. Specifically,
�c = 9t ′2−t2

2t ′ , as depicted by the dashed-dotted line in the
U = 0 plane in Fig. 2.

A second important limit that can be promptly understood
is the t ′ = 0 case for U �= 0. In this regime, see Ref. [16]
for a similar discussion in the context of the square lattice,
a particle-hole transformation on only one of the components
of the (pseudo)spin, say, the ↓-component, ĉi,↓ ↔ (−1)si ĉ†

i,↓
(si is either 0 or 1, depending on the sublattice to which i
belongs), maps the original attractive Hubbard model onto the
repulsive Hubbard model in the presence of a staggered Zee-
man field, i.e., �

∑
i(−1)si (n̂i↑ + n̂i↓) ↔ �

∑
i(−1)si (n̂i↑ −

n̂i↓). Since a nonzero staggered field (� �= 0) in the repulsive
Hubbard model in the honeycomb lattice explicitly breaks
SU(2) symmetry, the antiferromagnetic Mott insulator for
Uc � 3.8 [23–28] becomes an Sz antiferromagnet. Recalling
the mapping between magnetic and charge/pair degrees of
freedom in the repulsive and attractive Hubbard models under
the particle-hole transformation [29],

2Ŝz
i = n̂i↑ − n̂i↓ ↔ n̂i↑ + n̂i↓ = n̂i,

Ŝ+
i = ĉ†

i↑ĉi↓ ↔ ĉ†
i↑ĉ†

i↓ = �̂
†
i , (3)

Ŝ−
i = ĉ†

i↓ĉi↑ ↔ ĉi↓ĉi↑ = �̂i,
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FIG. 2. (a) Phase diagram of Hamiltonian Eq. (1) obtained via
exact diagonalization in an 18-site lattice; similar results for a smaller
lattice are reported in Appendix A. The dashed line in the U/t = 0
plane shows the boundary between the metallic and band-insulating
phases obtained analytically. For nonzero U , the surface formed
by connecting the points (which report �c) delimits the insulating
(� > �c) and superconducting (� < �c) phases. (b) The phase
diagram obtained from PQMC calculations in larger lattices, using
a scaling ansatz for results obtained in lattices with L = 6, 9, 12, and
15. In both panels, the onset of the supersolid regime (or an SU(2)
antiferromagnetic Mott insulator in the repulsive language [29]) at
t ′ = 0 is marked by a star.

one finds that any nonvanishing value of the staggered poten-
tial � in the attractive Hubbard model breaks the supersolid
state at |U | > |Uc|, leading to an insulating ground state with
a different 〈n̂i〉 in the two sublattices that make the bipartite
honeycomb lattice. An important point to keep in mind is that
this difference in the site occupations in the sublattices results
from having the staggered potential. It is not the result of a
spontaneous symmetry-breaking process, i.e., the insulating
ground state is a Mott insulator that does not break symmetries
of the model. For |U | < |Uc|, as for U = 0 and |U | > |Uc|, we

expect that any nonvanishing value of the staggered potential
� leads to an insulating ground state.

For t ′ > t ′
c and � = 0, we mentioned before that the

ground state at U = 0 is a metal. This means that adding
attractive on-site interactions U < 0 results in a supercon-
ducting state. Hence, in the regime with t ′ > t ′

c and U < 0, a
nonzero value �c of the staggered potential is needed to drive
the SIT. In the absence of unbiased analytical techniques to
tackle this regime for arbitrary values of U , �, and t ′, we carry
out numerical calculations to obtain the phase diagram of
Hamiltonian Eq. (1) as characterized by the surface �c(U, t ′).
A compilation of the results obtained using Krylov-based
exact diagonalization [30,31] in a lattice with V = 2L2 = 18
sites is shown in Fig. 2(a). This lattice, which has L = 3 and
is depicted in Fig. 1(a), contains the Brillouin zone corner
as a valid momentum point, i.e., it captures the effects of
low-energy excitations about the high-symmetry K points.
This makes it optimal to determine the phase diagram within
the lattice sizes that we can study using exact diagonalization
[32]. Qualitatively similar results were obtained on a 16-site
lattice; see Appendix A.

Much larger lattices can be studied by means of projec-
tive quantum Monte Carlo (PQMC) simulations. Within this
approach, the ground state |�0〉 is obtained projecting a trial
wave function |�T 〉 via |�0〉 = lim�→∞ e−�Ĥ |�T 〉, where �

is a projector parameter. This approach works provided that
the overlap between the trial-wave function and the ground
state of Hamiltonian Eq. (1) is nonzero, 〈�0|�T 〉 �= 0, and
that |�0〉 is nondegenerate [33]. The expectation values of
operators Ô in the ground state can then be written as

〈Ô〉 = 〈�0|Ô|�0〉
〈�0|�0〉 = lim

�→∞
〈�T |e−�Ĥ Ôe−�Ĥ |�T 〉

〈�T |e−2�Ĥ |�T 〉 . (4)

For our simulations, we considered two trial wave functions,
the half-filled Fermi sea of the noninteracting part of the
Hamiltonian and a Hartree-Fock solution. We found the latter
to converge more quickly with increasing � so all results re-
ported are obtained with that trial wave function for �t = 40,
which is sufficiently large for the convergence of the expecta-
tion values of all observables studied here. Since our PQMC
calculations are carried out within the canonical ensemble for
N↑ = N↓, they do not suffer from the sign problem [33–36].
The phase diagram �c(U, t ′) extracted from the PQMC sim-
ulations of lattices with up to L = 15 is reported in Fig. 2(b).
It is similar to the one obtained using exact diagonalization in
small lattices.

In the next section, we discuss in detail how the phase
diagrams reported in Fig. 2 are obtained using exact diago-
nalization and PQMC simulations.

III. PHASE DIAGRAM CALCULATIONS

Before explaining in detail how we locate the phase tran-
sition using exact diagonalization and PQMC simulations and
how we probe its universality class, let us briefly comment
on the overall structure of the phase diagrams in Fig. 2.
Increasing attractive interactions results in smaller Cooper
pairs: In the limit |U | → ∞ they fit in a site, becoming
hardcore bosons [37]. Consequently, the magnitude of the
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staggered potential needed to transition between the super-
fluid and insulating ground states decreases as the increasingly
local fermionic pairs at stronger interactions become pinned
at the −� sites in the lattice. On the other hand, the NNN
hopping terms act to counteract the pinning promoted by the
staggered potential, so increasing the magnitude of t ′ results
in the need for a stronger staggered potential to induce the
superfluid-insulator transition. Notably, the phase diagram
also indicates that the transition at nonvanishing interactions
is smoothly connected to the noninteracting metal-band insu-
lator one, marked by the dash-dotted lines at U = 0 in both
panels of Fig. 2. We also note that, for values of t ′ > t/3, the
noninteracting regime at � = 0 no longer corresponds to a
semimetal but rather to a metal with a finite density of states at
the Fermi level. Hence, as mentioned before, the inclusion of
attractive interactions results in pairing and superconductivity.

A. SIT in exact diagonalization calculations

In our exact diagonalization calculations, to identify the
critical value �c, for any given value of U and t ′, we use the
fidelity susceptibility [38–41],

g� = 2

V

1 − |〈�0(U, t ′,�)|�0(U, t ′,� + δ�)〉|
(δ�)2

, (5)

for which one needs to compute the fidelity of ground-state
wave functions for slightly different Hamiltonian parameters;
we modify the staggered potential by δ� = 10−3 in our cal-
culations. Continuous phase transitions can be identified by
large peaks that appear as a critical point is crossed [16,42–
44].

In Fig. 3, we show results for g� vs � for different values
of U , when t ′ = 0.4 [Fig. 3(a)], t ′ = 0.6 [Fig. 3(b)], and
t ′ = 0.8 [Fig. 3(c)]. For t ′ = 0.4 in Fig. 3(a), one can see
that the curves for different values of U exhibit sharp peaks
(notice the logarithmic scale in the y axis) in g� at � = 0
and nonzero values of �. The � = 0 peaks signal changes
in the superconducting state resulting from introducing the
staggered potential. [With increasing t ′, see Figs. 3(b) and
3(c), those peaks can be seen to move to nonzero values of
�.] The peaks at nonzero values of � in Fig. 3(a) signal the
SIT, �c. As advanced, for t ′ fixed, increasing |U | results in
a decrease of �c. Figures 3(b) and 3(c) show that increasing
t ′, at any given value of U , results in an increase of �c. The
compilation of such peak locations in the space of parameters
(U, t ′) leads to the phase diagram in Fig. 2(a).

The insets in Fig. 3 show that at �c the occupation of
the sites with chemical potential −�, in short, the −� sites,
exhibits a rapid increase after which it nearly saturates to the
maximal possible value 〈n̂i〉 = 2. The derivatives of the site
occupations, as well as of the double occupancy

Di = 〈n̂i↑n̂i↓〉, (6)

and the kinetic energy per site

K = − 1

V

∑
i j,σ

ti j〈ĉ†
iσ ĉ jσ 〉, (7)

with respect to � was used to track the SIT in a related model
[16], and can be measured in ultracold gases experiments [21].
It was recently shown that studying the dynamics of local

FIG. 3. Fidelity susceptibility computed using exact diagonaliza-
tion in the 18-site cluster shown in Fig. 1(a) for different values of U
when (a) t ′ = 0.4, (b) t ′ = 0.6, and (c) t ′ = 0.8. Insets: Correspond-
ing occupation of the −� sites.

quantities after quantum quenches also allows one to locate
quantum phase transitions [45].

In Figs. 4(a) and 4(c), we show exact diagonalization
results for ∂D/∂� vs � in the two sublattices for t ′/t =
0.6, when U/t = −4 [Fig. 4(a)] and U/t = −6 [Fig. 4(c)].
The corresponding evolutions of the double occupancies are
shown in the insets. The vertical dashed lines depict �c as
identified using the fidelity susceptibility. They coincide with
the values of � at which ∂D/∂� exhibit local extrema. In
Figs. 4(b) and 4(d), we show results for ∂D/∂� vs � obtained
using PQMC in much larger lattices for the same parameters
as in Figs. 4(a) and 4(c), respectively. The vertical dashed lines
depict �c, identified using PQMC (as explained in Sec. III B).
In those larger system sizes, ∂D/∂� exhibits a kink at �c,
after which it decreases rapidly. A more prominent kink, also
signaling �c, is seen in the derivative of the kinetic energy,
see Appendix B. Comparing the results obtained using PQMC
and exact diagonalization, one notices that the values of �c

are different, and that the differences decrease with increas-
ing |U |. This is expected as the exact diagonalization results
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FIG. 4. Numerical derivative of the double occupancy with re-
spect to � for (a), (b) U = −4 and (c), (d) U = −6; the insets
display the double occupancy before differentiation. Empty (filled)
symbols denote the double occupancy in the +�-sites [−�-sites].
(a), (c) Results obtained using exact diagonalization in a lattice
with L = 3. (b), (d) Results obtained using PQMC in a lattice with
L = 15. The vertical dashed lines depict �c as identified using exact
diagonalization [(a), (c)] and PQMC [(b), (d)]. All these results were
obtained for t ′ = 0.6.

are affected by finite-size effects, and finite-size effects are
stronger in the weakly interacting regime in which the pair
sizes are larger.

In the context of ultracold fermionic atoms experiments,
we note that double occupancy was originally used to identify
the Mott insulating regime [46]. It is currently used, together
with other local observables, to experimentally characterize
fermionic systems with single-site resolution [47–49].

B. SIT in PQMC calculations

The critical points in our PQMC simulations are identified
using the scaling of the pair structure factor

Ps = 1

V

∑
i, j

〈�̂i�̂
†
j〉, (8)

where �̂i ≡ ĉi↑ĉi↓ (�̂†
i = ĉ†

i↓ĉ†
i↑) is the pair annihilation

(creation) operator at site i. Long-range order in the super-
conducting phase means that Ps is extensive in V , but the way
such behavior is approached when decreasing the staggered
potential from the insulating phase is controlled by the critical
exponents.

In Ref. [16], a scaling ansatz for Ps was discussed for
a similar model in the square lattice. Next, we summarize
the arguments presented there. To start, we note that, in the
strongly interacting (large-|U |) regime, second-order pertur-
bation theory shows that our model effectively becomes a
model of repulsive hardcore bosons in the presence of a
staggered potential [37,50,51]. The creation and annihilation
operators of hardcore bosons are related to the annihilation
and creation of pairs, respectively, b̂i = �̂

†
i and b̂†

i = �̂i. In
the absence of NNN hoppings and interactions, such a hard-
core boson model was studied in Refs. [52,53] in square and

FIG. 5. Scaled pair structure factor versus � for fixed t ′ = 0.6
and two values of U , (a) U = −4 and (b) −6. The upper right insets
display the corresponding scaling collapse following the ansatz (9),
with �c = 0.637(1) and 0.420(1) for U = −4 and −6, respectively.
The lower inset in (b) depicts the |U | dependence of the cost function
used to quantify the quality of data collapse; see text.

cubic lattices. The transition between the superfluid and the
Mott-insulating state, driven by the staggered potential, was
shown to belong to the (d + 1)-XY universality class, which
is the same universality class of the superfluid–Mott-insulator
transition in the Bose-Hubbard model at fixed integer site
occupancy [54].

The previously mentioned operator mapping brings a di-
rect analogy: The s-wave pair structure factor translates into
the zero-momentum occupancy for hardcore bosons in the
effective model, nk=0 = (1/V )

∑
i, j〈b̂†

i b̂ j〉, which is known
to diverge when approaching the transition from the normal
side as nk=0 ∼ ξ 1−η [55,56], where ξ is the correlation length
and η = 0.0381(2) [57] the anomalous scaling dimension.
In a finite system, this relation implies that the condensate
fraction f0 ≡ nk=0/Npairs (with Npairs = V/2 = L2) vanishes at
the critical point as f0 ∼ L−(1+η) [55,56]. A scaling ansatz
thus naturally follows as f0L1+η = g(|� − �c|L1/ν ), with ν =
0.6717(1) (see Ref. [57]) the critical exponent related to the
divergence of the correlation length at � → �c. Translating
it to the original fermionic model, we get

(
Ps

Npairs

)
L1+η = g(|� − �c|L1/ν ). (9)

In Fig. 5, we show the scaled pair structure factor for
two on-site attractive interaction strength values at t ′ = 0.6.
Crossings of the curves for different system sizes can be seen
to occur at specific values of � that depend on U ; these cross-
ings allow us to identify �c using our PQMC calculations.
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The results in Fig. 5 show that the strength of the staggered
potential needed to induce the SIT decreases with increasing
the strength of the on-site attractive interactions. The upper
right insets in Figs. 5(a) and 5(b) display the scaling collapse
according to the ansatz Eq. (9).

The analysis in Fig. 5 confirms that the SIT in our model
belongs to the 3d-XY universality class even if one is not
in a regime that can be described using an effective hard-
core boson Hamiltonian. Using the cost function C(�c,ν,η) =
(
∑

j |y j+1 − y j |)/(max{y j} − min{y j}) − 1 [58,59], where y j

are the values of (Ps/Npairs )L1+η ordered according to their
corresponding (� − �c)L1/ν’s, allows us to quantify the qual-
ity of the scaling collapse. We show results for this cost
function in the lower inset in Fig. 5(b). They reveal that, for
the system sizes considered, the collapse improves with in-
creasing |U |. This is expected to be the result of a reduction of
the finite-size effects as the size of the Copper pairs decreases.
A compilation of the values of �c obtained via the crossing
of the scaled pair structure factor in the space of parameters
(U, t ′) gives rise to the phase diagram in Fig. 2(b).

IV. CHARGE EXCITATIONS

The 3d-XY universality class of the transition advances
that the lowest energy charge excitations across the transition
are bosonic [16]. With increasing � in the insulating phase,
the lowest-energy charge excitations must cross over from
bosonic to fermionic (at � = ∞ they are fermionic for any
finite U ).

In this section, we study the nature of the lowest-energy
charge excitations across the SIT and their behavior with
increasing � in the insulating phase. For this, we compute
the one-particle (m = 1, fermionic) and two-particle (m = 2,
bosonic) gaps [60,61],

δ(m) = E0(N + m) + E0(N − m) − 2E0(N ), (10)

where E0(x) is the ground-state energy with x fermions. For
m = 2, we always add/remove one fermion with (pseudo)spin
↑ and one with (pseudo)spin ↓, namely, a pair. Hence, in what
follows, we call the m = 2 gap the pair gap.

The one-particle and pair gaps in Eq. (10) can be
straightforwardly computed using exact diagonalization.
Similarly, since for m = 2 we have that N↑ = N↓ so there
is no sign problem, the pair gap in Eq. (10) can also
be computed using PQMC simulations in much larger
system sizes. PQMC runs into the sign problem for
m = 1 in Eq. (10) because N↑ �= N↓. Hence, we follow
a different approach to compute the one-particle gap.
We probe the decay of the appropriate time-displaced
correlation function [24]. Specifically, the one-particle gap
is extracted using the imaginary-time τ displaced Green’s
functions G+(k, τ ) = 〈ĉk,σ (τ )ĉ†

k,σ (0)〉 and G−(k, τ ) =
〈ĉ†

k,σ (τ )ĉk,σ (0)〉, with ĉ†
k,σ (τ ) ≡ eτ Ĥ c†

k,σ (0)e−τ Ĥ , which
describe the particle and hole excitations with respect to
the Fermi energy, respectively. At large τ ’s, they decay as
G±(k, τ ) ∝ e−τδ

(1)
± (k). By comparing the two branches over

different momenta k, the one-particle gap is obtained as
δ(1) = mink[δ(1)

+ (k)] + mink[δ(1)
− (k)] (see Appendix C for

further details about this analysis).

FIG. 6. (a)–(c) The one-particle and pair gap dependence on the
staggered potential strength � in both PQMC calculations for L = 6,
9, and 12 (main panels) and ED calculations for L = 3 (insets). We
show results for t ′ = 0.6, and (a) U = −4, (b) U = −6, and (c) U =
−8. In all panels, the vertical dashed lines depict the SIT location as
obtained using the corresponding computational technique, while the
vertical dotted lines show the value of � at the crossing of the gaps.

Focusing on t ′ = 0.6, Figs. 6(a)–6(c) display the one-
particle and pair gaps (m = 1 and 2) obtained using PQMC
in lattices with L = 6, 9, and 12 (main panels) and using
exact diagonalization in a lattice with L = 3 (insets). The
PQMC and exact diagonalization results are qualitatively
similar. The pair gap vanishes in the superconducting phase.
It then becomes nonzero, with a magnitude that increases with
increasing � once the SIT (marked by the dashed line) is
crossed. On the other hand, the one-particle gap is nonvan-
ishing in both the superconducting and insulating phases and
exhibits a minimum at the SIT. Hence, as advanced, the pair
gap is smaller than the one-particle gap in both the supercon-
ducting and insulating phases across the SIT. With increasing
�, those gaps cross in the insulating phase at a value of �
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FIG. 7. Phase diagram in the (U, �) plane for t ′ = 0.6 obtained
via PQMC (main panel) and exact diagonalization in a lattice with
L = 3 (inset). The lower curve depicts the location of the SIT; be-
tween the superconducting phase (SC) and the insulating phase with
lowest-energy charge excitations that are bosonic (BI). The upper
curve depicts the crossover location in the insulating phase between
the regime in which the lowest-energy charge excitation is bosonic
(BI) and fermionic (FI).

that, deep in the strongly interacting regime, increases with
increasing |U |. The PQMC results for different system sizes
show that finite-size effects are small in the gaps computed for
those system sizes, and even more so as |U | and � increase.
This suggests that our PQMC estimation of the crossing points
does not suffer from significant finite-size effects.

Compiling results like those depicted in Fig. 6 allows us
to obtain exact diagonalization (inset in Fig. 7) and PQMC
(main panel in Fig. 7) phase diagrams in the (U,�) plane for
t ′ = 0.6. They highlight that, with increasing |U |, there is an
increase in the extension of the region in which the lowest-
energy charge excitation in the insulating phase is bosonic.
The observed weak nonmonotonicity of the crossover curve
as the interaction strength decreases reflects the bosonic char-
acter of the lowest-energy charge excitations close to the SIT.

V. SUMMARY

We used unbiased numerical calculations to study the SIT
in the ground state of the attractive honeycomb Hubbard
model in the presence of a staggered potential. We directly
showed that the lowest-energy charge excitations are bosonic
across the transition and cross over to fermionic in the insu-
lating phase. The former is consistent with the finding that
the SIT in this model belongs to the 3d-XY universality class.
The results obtained in the honeycomb lattice are qualitatively
similar to those in the square lattice [16], suggesting that our
findings are universal for SITs in clean systems. For example,
we expect similar results for the attractive Hubbard model in
the triangular lattice if one adds a positive (negative) local po-
tential to one site in each triangle when the filling is n = 4/3
(n = 2/3).

Given that, in the absence of nearest-neighbor hoppings,
the Hamiltonian considered here has already been simulated
in optical lattice experiments [21], we expect that our findings
can readily be tested in such experiments. An interesting open

question for both theory and experiments is what happens in
three dimensions, in which the critical temperature that trig-
gers the onset of superconductivity is nonzero at half filling
[62,63]. Exploring the interplay between the temperature and
the parameters considered here in two dimensions may help
improve our understanding of the role of the preformation of
pairs in the finite-temperature realm.

ACKNOWLEDGMENTS

Y.L. was supported by the China Postdoctoral Sci-
ence Foundation under Grants No. 2019M660432 and No.
2020T130046 as well as the National Natural Science Foun-
dation of China (NSFC) under Grants No. 11947232. R.M.
acknowledges support from NSFC Grants No. U1930402,
No. 12111530010, No. 11974039, and No. 12222401; M.R.
acknowledges support from the National Science Foundation
Grant No. 2012145. The computations were performed on the
Tianhe-2JK at the Beijing Computational Science Research
Center.

APPENDIX A: PHASE DIAGRAM IN A 16-SITES LATTICE

In Fig. 8, we show the phase diagram obtained as ex-
plained in Sec. III A using the fidelity susceptibility but in a
lattice with 16 sites. This lattice geometry was referred to as
cluster 16B in Ref. [64], and does not feature the K and K ′
high symmetry points of the Brillouin zone. Nonetheless, the
resulting phase diagram closely follows the one reported in
Fig. 2(a), which was obtained in the commensurate 18-site
lattice depicted in Fig. 1.

APPENDIX B: KINETIC ENERGY IN PQMC

In Fig. 4, we showed that the double occupancy D (re-
solved in each sublattice) can be used as a proxy to locate the
SIT in experiments. Other local quantities, such as the kinetic
energy, can equally be used to locate the SIT in experiments.
Figure 9 shows the variation of the kinetic energy per site
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FIG. 8. Phase diagram of the SIT transition as obtained using
exact diagonalization in a 16-site lattice (lattice 16B in Ref. [64]).
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FIG. 9. Numerical derivative of the kinetic energy per site K with
respect to � in a lattice with L = 15, for t ′ = 0.6, when (a) U =
−4 and (b) U = −6. Insets: K before differentiation. Vertical dashed
lines mark the SIT location, �c, obtained using the scaling analysis
of the pair structure factor.

K with increasing the strength � of the staggered potential,
for two values of U , as obtained using PQMC simulations in
a lattice with L = 15. A prominent kink is observed in the
derivative of K at �c.

APPENDIX C: SINGLE-PARTICLE GAP IN PQMC

In Sec. IV, we explained the procedure used to extract the
one-particle gap based on the exponential decay of the one-
particle Green’s functions at long imaginary-times. In Fig. 10,
we show G±(k, τ ) for staggered potentials � < �c, � � �c,
and � > �c for each value of U for the k points that give
the smallest gap δ±(k) after fitting G±(k, τ ) to an exponen-

FIG. 10. Dependence of the imaginary-time displaced Green’s
functions related to particle (upper row) and hole (bottom panels)
excitations at t ′ = 0.6 and increasing interaction strengths, U =
−4, −6, and −8. For each interaction strength, we plot G±(k, τ )
for values � < �c, � � �c, and � > �c for the momentum k
corresponding to the smallest gap. In the superconducting regime,
we observe a direct gap at the closest k point to the center of the
Brillouin zone �′ ≡ (0, 2

√
3π/9) for this system size, while at the

transition point the direct gap resides at � = (0, 0). An indirect gap
ensues within the insulating regime (see text). These results were
obtained in a lattice with L = 6.

tial form at large τ ’s. Irrespective of the interaction strength,
an overall trend can be seen in which a direct one-particle
gap within the superconducting regime or at the transition
point is replaced by an indirect gap, K, K ′ ↔ �, within the
insulating phase. As pointed out in the main text, in the non-
interacting regime such an indirect gap is also observed for
values of � > �c between precisely the same high-symmetry
points.
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