
PHYSICAL REVIEW B 106, 245116 (2022)

Emergent antiferromagnetism in Y-shaped Kekulé graphene
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Antiferromagnetic (AFM) transitions of birefringent Dirac fermions created by a Y-shaped Kekulé distortion
in graphene are investigated by mean-field theory and determinant quantum Monte Carlo simulations. We show
that the quantum critical point can be continuously tuned by the bond-modulation strength, and the universality
of the quantum criticality remains in the Gross-Neveu-Heisenberg class. The critical interaction scales with the
geometric average of the two velocities of the birefringent Dirac cones, and decreases monotonically between
the uniform and completely depleted limits. Since the AFM critical interaction can be tuned to very small
values, antiferromagnetism may emerge automatically, realizing the long-sought magnetism in graphene. These
results enrich our understanding of the semimetal-AFM transitions in Dirac-fermion systems, and open a route
to achieve magnetism in graphene.
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I. INTRODUCTION

Graphene features linear dispersions near the Fermi en-
ergy [1,2], which is described by a massless Dirac equation.
The electrons therein are thus called Dirac fermions, which
have been the origin of various exotic properties [3–5]. While
theoretical studies have suggested abundant topological or
ordered phases in graphene, as generated by various kinds of
mechanisms [6–12], their experimental observations are lack-
ing due to the overall weak correlation effects in graphene.

Achieving magnetism in graphene is actively pursued
in the hope of its spintronic applications. Although pris-
tine graphene has a nonmagnetic ground state, magnetic
orders have been observed at the zigzag edges, defects,
and hydrogen-terminated vacancies [13–22]. The emergent
magnetism is generally related to the associated localized
states [23], for which the correlation effect is greatly en-
hanced, resulting in magnetic ordering at much weaker
interactions [24–26]. From this physical mechanism, it is clear
that the above magnetisms are restricted to specific regions of
graphene, e.g., edges or defects. Inducing a robust long-range
magnetic order in the bulk of graphene remains a challenge.

In this paper, we propose that the Y-shaped Kekulé dis-
tortion can induce a global antiferromagnetic (AFM) order
in graphene. Our paper is motivated by recent experiments
which successfully realized such distortion in graphene grown
on Cu(111) with regular surface copper vacancies [27] and
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on transition-metal dichalcogenide substrates [28]. We show
that the Y-shaped bond texture modifies the Fermi velocities
of two pairs of low-energy bands differently, creating bire-
fringent Dirac fermions. AFM transitions of such fermions
are investigated by two complementary methods: mean-field
theory and large-scale determinant quantum Monte Carlo
(DQMC) simulations. Both methods predict a semimetal
(SM)-AFM transition and find that the critical interaction is
proportional to the geometric average of the two velocities of
birefringent Dirac fermions. The DQMC simulations quanti-
tatively determine the critical values using finite-size scaling.
In addition, it is found that the quantum criticality remains
in the Gross-Neveu-Heisenberg universality class. Our results
show that the Y-shaped distortion enables an additional degree
of control of Dirac fermions, and provides a way to tune the
quantum critical point. Importantly, we reveal that when the
distortion strength is large enough, the critical interaction may
be well below the actual value of U/t in graphene [29,30],
generating global AFM long-range order. Considering the
recent progress in engineering the Y-shaped Kekulé distor-
tion [27,28], our result provides a feasible approach to realize
magnetic graphene in experiment.

II. MODEL

Our paper is based on the Hubbard model defined on a
honeycomb lattice with a Y-shaped Kekulé distortion,

H = −
∑
〈i j〉σ

ti j (c
†
iσ c jσ + H.c.) + U

∑
i

ni↑ni↓, (1)
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FIG. 1. (a) Honeycomb lattice with a Y-shaped bond modulation.
Black and white dots label the two sublattices, and black and red lines
distinguish different bond strengths. The different sites in the unit
cell are marked by a set of integers (1 − 6). (b) The energy spectrum
along the high-symmetry directions of the Brillouin zone at �0/t =
0 and −0.4. Inset of (b) is the first Brillouin zone with the high-
symmetry points labeled.

where c†
iσ and ciσ are the creation and annihilation operators,

respectively, at site i with spin σ = ↑,↓; 〈i j〉 denotes nearest
neighbors; niσ = c†

iσ ciσ is the number operator of electrons;
and U is the on-site repulsion. Due to the Y-shaped modula-
tion, the hopping amplitudes are modified as ti j = (1 + 2�0)t
or (1 − �0)t , depending on the position and direction of the
bond [see Fig. 1(a)], where �0 ∈ [−0.5, 1]. The modifications
are defined in such a way to keep the total bandwidth more or
less unchanged. The pristine honeycomb lattice is restored at
�0 = 0. In the limit �0 = −0.5, the fifth site in each unit cell
is completely isolated from the lattice [see Fig. 1(a)], gener-
ating a 1/6-depleted honeycomb lattice. This is similar to the
Lieb lattice (also known as 1/4-depleted square lattice) [31].
�0 > 0 interchanges the strong and weak bonds as in the
�0 < 0 case, and the lattice is completely broken into isolated
four-site stars at �0 = 1.

Under the Y-shaped distortion, the lattice has a six-site unit
cell [see Fig. 1(a)]. Let’s first neglect the interaction term
in Eq. (1), then the electronic band structure contains six
dispersive bands, as shown in Fig. 1(b). By a Brillouin zone
(BZ) folding process, the bands of the �0 = 0 case in such a
plot can be obtained from the pristine graphene band structure,
where the two inequivalent Dirac points at the corners of the
BZ are folded to the � point and the Dirac cones will coincide.
For �0 �= 0, although the linear dispersions remain near the
Dirac points, the Dirac cone degeneracy is lifted, generating
birefringent Dirac fermions with two different Fermi veloci-
ties, as in Fig. 1(b). By projecting the full Hamiltonian to the
low-energy space at �, an effective Hamiltonian can be de-
duced (see Appendix A). The energy spectrum contains four
branches with E = ± 3

2 (1 − �0)tk and E = ± 3
2α(1 − �0)tk,

with α = 1+2�0√
1+2�2

0

. The two Fermi velocities are, respectively,

given by (see also Fig. 7 in Appendix A)

v1 = 3
2 (1 − �0)t, v2 = 3

2α(1 − �0)t . (2)

It is noted that v2 becomes zero in two limits: �0 = −0.5
or 1, generating two or four flat bands at the Fermi energy.
When �0 approaches the above two limits, the low-energy
bands will be flattened, and the corresponding states tend

to localize on the sites connected by the weakened bonds.
Then, the correlation effect in the low-energy bands will be
enhanced, and we expect that the AFM critical interaction will
be significantly reduced. This expectation will be explored by
two theoretical approaches, as we demonstrate below.

III. MEAN-FIELD THEORY APPROACH

Within the mean-field approximation, the interacting term
Uni↑ni↓ is decoupled in the density channel as [32–34]
ni↑ni↓ ≈ ni↑〈ni↓〉 + 〈ni↑〉ni↓ − 〈ni↑〉〈ni↓〉. To incorporate the
possible AFM order, the averages of the operators are written
as

〈ni↑(↓)〉 = 1
2 ± ρi, for i ∈ {1, 3, 5}, (3)

and

〈ni↑(↓)〉 = 1
2 ∓ ρi, for i ∈ {2, 4, 6}, (4)

with ρi being the order parameters, where i labels the six sites
in a unit cell. We consider equal number of spin-up and spin-
down electrons, such that the following restriction applies
on the six order parameters: ρ1 + ρ3 + ρ5 = ρ2 + ρ4 + ρ6,
which means only five of them are independent.

In the momentum space, the mean-field Hamiltonian is
then

HMF =
∑
kσ

ψ
†
kσ
Hσ (k)ψkσ + E0, (5)

with

Hσ (k) =
(

hσ
11 h12(k)

h†
12(k) hσ

22

)
, (6)

where ψkσ = (c1,kσ , · · · , c6,kσ )T is a six-element basis, hσ
11 =

∓diag(ρ1, ρ3, ρ5), hσ
22 = ±diag(ρ2, ρ4, ρ6), and the constant

E0 = NU/4 + NU
∑6

i=1 ρ2
i /6 with N the total number of

sites. The order parameters ρi in the ground state can be
calculated by minimizing the total energy from the mean field
Hamiltonian.

Although the order parameters ρi are generally different
within the unit cell due to the inhomogeneous bond textures,
their curves as a function of U have the same features. Hence,
we use their arithmetic mean, ρ = 1

6

∑6
i=1 ρi, to characterize

the AFM transition. Figure 2(a) shows ρ as a function of U
for various values of �0 at zero temperature. The values of
ρ keep almost zero at weak interactions, and the system is
in the semimetal phase. After passing a critical interaction
Uc, ρ becomes finite, and increases rapidly with U , suggest-
ing the AFM order develops in the system. As the absolute
value of �0 increases, the curves move leftward, indicat-
ing that the critical interaction decreases monotonically with
increasing �0.

Since the curves of ρ are continuous, it is not straight-
forward to determine Uc. Here, we use the critical slowing
down at the phase transition to determine Uc. Specifically, the
self-consistent process becomes the slowest at the transition
point, which is reflected in the maximum cycling time nc to get
convergent self-consistent results. We checked that the critical
value at �0 = 0 obtained by this method is in good agreement
with the previous study [35]. Our result is shown in Fig. 3.
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FIG. 2. (a) The mean-field order parameter and the cycling time
nc to get convergent solution in the self-consistent process as a
function of U for various values of �0. The sharp peak in the nc curve
can steadily determine the transition point. (b) The AFM structure
factor obtained by DQMC as a function of U on a lattice with the
size L = 6.

One finds that the critical interaction of the semimetal-AFM
transition decreases monotonically from Uc/t = 2.23 at �0 =
0 to Uc/t = 0 at �0 = −0.5. Similarly, Uc also decreases
monotonically with �0 for �0 > 0 (see Appendix C).

IV. DQMC APPROACH

In the DQMC approach, Eq. (1) at finite interactions
is solved numerically, where one decouples the on-site
interaction term through the introduction of an auxiliary
Hubbard-Stratonovich field, which is then integrated out
stochastically [36–39]. The only errors are those associated
with the statistical sampling, the finite spatial lattice size,
and the inverse temperature discretization. These errors can
be well controlled in the sense that they can be systemati-
cally reduced as needed and further eliminated by appropriate
extrapolations. At half filling, the simulation is free of the
sign problem, due to the presence of particle-hole symme-
try [40–43]. Thus we can access low enough temperatures,
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FIG. 3. The phase diagram in the (�0,Uc ) plane. The dashed
line represents the mean-field boundary, which underestimates the
critical interaction. The DQMC critical values can be well fitted
using the ansatz Uc = a0

√
ν1ν2, implying the critical interaction is

proportional to the geometric average of the two velocities of the
Dirac cones.
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FIG. 4. The spin correlations along the high-symmetry paths [see
inset of (a) and (c)]. The origin is placed on the (a) first, (b) second,
and (c) fifth sites of the unit cell at (0, 0), which are representatives
of the different ones in the unit cell. Here the anisotropic parameter
is �0/t = −0.3. (d) The spin-spin correlations as a function of �0

for the largest distance on a L = 20 lattice in the large-U limit.

necessary to determine the ground-state properties on finite-
size lattices. In our calculation, we use the inverse temperature
β = 20 and its discretization �τ = 0.1. The lattice has totally
N = 6 × L × L sites, with L up to 8.

Applying DQMC to our problem, the AFM order is char-
acterized by the staggered structure factor [44] with

Sz
AFM = 1

N

∑
i, j

sgn(i, j)
〈
Sz

i Sz
j

〉
, (7)

where sgn(i, j) = +(−) when i, j belong to the same (oppo-
site) sublattice. Since the Hubbard model in Eq. (1) preserves
the spin SU(2) symmetry, the spin-spin correlations of the
three spin components are identical, and we only consider
the z component here. A related physical quantity of inter-
est here is the sublattice magnetization, which is given by
ms = √

Sz
AFM/N .

Figure 2(b) shows calculated m2
s as a function of U on a

L = 6 lattice for various negative values of �0. At �0 = 0,
it is known that AFM order exists when U exceeds Uc =
3.86 [45–51]. In the �0 = −0.5 limit, the geometry corre-
sponds to the 1/6-depleted honeycomb lattice, where AFM
order is expected to exist for all U > 0 due to the existence
of flat band. The behavior of m2

s versus U is qualitatively
similar for different values of �0: m2

s increases continuously
with U , thus the semimetal-AFM transition is of second-order
nature. In addition, as �0 increases, the curves shift to the
weak-interaction side, which results from the decrease of the
critical interaction Uc as the absolute value of �0 increases.
These confirm the observation from the mean field approach.

To gain additional insight into the behavior of AFM
order, it is useful to examine the equal-time real space
spin-spin correlation function c(r) = 〈(nj+r↑ − n j+r↓)(n j↑ −
n j↓)〉. Figure 4 shows c(r) for �0 = −0.3 at U/t = 2, 4 on a
L = 6 lattice. The origin is placed on the first site of the unit
cell at (0, 0), and r runs along a triangular path [see Fig. 4(a)].
Since U/t = 2 is below the critical interaction (Uc/t =
2.85, see the following finite-size scaling), the values of the
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TABLE I. The ratio between Uc and the averaged velocity in
the literature. α = √

VBZ/(2πNDirac) in Refs. [48,52] with VBZ =
8π2

3
√

3
(2π 2) and NDirac = 2, which compensates the difference among

the models in the linear part of the density of states. � in Ref. [52]
is the pairing amplitude in the square-lattice Hubbard model with a
d-wave pairing.

Honeycomb π -flux d-wave SC [52]

Uc/
√

v1v2 � 2.54[50] �2.42[50] Uc/
√

αv̄ � 2.15 (� = 1)
Uc/

√
αv0

F � 2.33[48] �2.21[48] Uc/
√

αv̄ � 2.19 (� = 0.5)

correlation at large distance are almost zero. On the other
hand, the correlation length becomes comparable to the sys-
tem size for the case of U/t = 4. c(r) has a robust persistence
at large distance, and its sign is consistent with AFM order.
This behavior is consistent with the fact that U/t = 4 is above
the critical point, and there exists AFM order in the system.
The sites in the lattice can be classified into three categories
according to the number of the weakened bonds connected.
c(r) varies among the different kinds of pairs of sites, which is
most pronounced in the large-U limit. As shown in Fig. 4(d), it
increases with the total number of weakened bonds connected
to the two sites in each pair, exhibiting an interesting behavior:
The less the site is connected to the lattice, the stronger it is
correlated to other sites.

The behavior of Sz
AFM indicates that AFM order may de-

velop at a decreased critical interaction in the presence of
Y-shaped bond modulation in going from the pristine hon-
eycomb lattice to the limiting cases of �0 = −0.5, 1. We
then use finite-size scaling to analyze quantitatively the po-
sition of the critical point in the thermodynamic limit. The
square of the order parameter is given by Sz

AFM/N in the
1/L → 0 limit. These extrapolated values are shown in the
phase diagram Fig. 3. As a function of �0, the critical in-
teraction strength continuously decreases from Uc/t = 3.869
to zero. In addition, we use the ansatz Uc = a0

√
v1v2 to fit

the boundary and find that the critical values are well fitted
with a0 = 2.51. This verifies the conjecture that the critical
interaction is proportional to the geometric average of the two
velocities of birefringent Dirac fermions. We list the ratios
reported in the existing studies in Table I, which is consistent
with the value (a0 = 2.51) obtained here. Although the values
are different due to the distinct high-energy band structures
in various models, the differences are within 20%, implying
the property of the low-energy Dirac dispersion dominates the
critical interaction.

This relation has been proposed in previous studies on
the uniform honeycomb-lattice and π -flux Hubbard mod-
els, [48,50], which is possible because the above two models
have different velocities. In addition, this relation is con-
firmed in Ref. [52], where the Hubbard model with a d-wave
pairing field allows the continuous tuning of the velocities.
Here, the birefringent setup also allows a continuous tuning
of the velocities, thus providing further understanding of the
relationship between the critical interaction and the Dirac
velocities. It is also noted that when the value of �0 is large
enough, the critical interaction can be well below the actual U
value in graphene, resulting in the emergence of AFM order.
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FIG. 5. (a) Extrapolation of the structure factor Sz
AFM/N near the

transition point. The solid lines are least-squares fits to the polyno-
mial form of 1/L. The value in the thermodynamic limit becomes
finite at some interaction between U/t = 2.8 and 2.9, thus the crit-
ical interaction is estimated to be Uc/t = 2.85 ± 0.05. (b) The data
collapse using the critical exponents of the Gross-Neveu-Heisenberg
universality class and the critical interaction determined in (a). Here
the anisotropic parameter is �0/t = −0.3.

We also perform a finite-size scaling analysis based on the
usual scaling formula [47],

Sz
AFM = L2−2β/νF [L1/ν (U − Uc)], (8)

where β is the order parameter exponent and ν is the cor-
relation length exponent. The semimetal-AFM transition is
expected to belong to the Gross-Neveu-Heisenberg univer-
sality class [53–56]. The previous DQMC studies reported
ν = 1.02 and β = 0.76 [48]. Together with the critical inter-
action determined by the finite-size scaling above, we scale
Sz

AFM at different lattice sizes according to the above formula.
As shown in Fig. 5(b), the data collapse is pretty good, thus
confirming the universality class of the phase transition here
is unchanged by the Y-shaped Kekulé distortion.

In addition, we have further checked the single-particle gap
by extracting the spectral function and the density of states
from the imaginary-time Green’s function using analytic con-
tinuation (see Appendix B). It shows that the AFM transition
is always accompanied by a charge-gap opening, indicating
that the system becomes a AFM Mott insulator above Uc.

V. DISCUSSION

We have applied the mean-field theory and DQMC simula-
tions to study the Hubbard model on a honeycomb lattice with
a Y-shaped distortion. Both approaches reveal that AFM order
develops above a critical interaction, and the critical inter-
action decreases monotonically with the distortion parameter
and scales with the geometric average of the two velocities
of the birefringent Dirac fermions. We find that the quantum
criticality of the continuous AFM transition is unchanged by
the distortion and still belongs to the Gross-Neveu-Heisenberg
universality class.

The fact that the Y-shaped Kekulé distortion can continu-
ously tune the quantum critical point is of great significance
in graphene research and applications. When the critical point
is put below the actual value of U in graphene [29,30], the
long-sought bulk magnetism in graphene can be realized. Re-
cent experiments [27,28] have demonstrated the realization of
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Y-shaped distortion in graphene. For graphene on Cu(111),
the distortion is likely due to regular copper vacancies which
lead to a vertical shift of the central carbon atom of each
Y-shaped texture [27]. Our result indicates that when the
shift is large enough, AFM order should be spontaneously
generated in the graphene layer. Thus, our results not only
deepen our understanding of the semimetal-AFM transitions
in Dirac fermion systems, but also provide a feasible approach
to induce magnetism in graphene.
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APPENDIX A: THE BAND STRUCTURES
AT VARIOUS VALUES OF �0

In momentum space, the U = 0 Hamiltonian is given by

H0(k) =
(

0 h12(k)
h†

12(k) 0

)
, (A1)

where

h12(k) = −
⎛
⎝ �− �−eik·a1 �−

�− �− �−eik·(a2−a1 )

�+eik·a2 �+ �+

⎞
⎠, (A2)

with �− = 1 − �0, �+ = 1 + 2�0, and the lattice constants
a1 = 3(

√
3/2,−1/2), a2 = 3(

√
3/2, 1/2). The whole spec-

trum has six dispersive bands, which can be obtained by
directly diagonalizing the Hamiltonian in Eq. (1). The max-
imum value of the eigenenergy is at the � point, which is

6t
√

2�2
0 + 1. Although the bandwidth varies with �0, the way

to parametrize the strong and weak bonds used in the main
text minimizes the variation of the bandwidth as �0 changes.
Another advantage of this kind of choice is that the bandwidth
is independent of the sign of �0.

When �0 varies from 0 to −0.5, the bandwidth of the
two bands near the Fermi energy decreases continuously and
becomes vanished at �0/t = −0.5 (see Fig. 6). The evolution
of the bandwidth is similar in changing �0 from 0 to 1. The
difference is that the band-flatting process involves the four
bands near the Fermi energy here.

1. The flat-band states at �0/t = −0.5

We have �+ = 0 at �0/t = −0.5, when the Hamil-
tonian in Eq. (1) can be solved analytically. Generally
there are two zero-energy states at each momentum. As
has been stated in the main text, one of them is totally
localized on the fifth site, which is completely isolated
from the lattice. The wave function of the other one
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FIG. 6. The band structures at (a) �0/t = 0.1, (b) �0/t = 0.4,
(c) �0/t = 0.8, (d) �0/t = −0.1, (e) �0/t = −0.2, (f) �0/t =
−0.4. The dotted lines in each figure represent the band structure of
graphene, i.e., the �0/t = 0 case, which are plotted for the purpose
of comparison.

is ψ0(k) = λ[0, 0, 0, f1(k), f2(k), 1]T , where f1(k) = (1 −
eik·a2 )/(eik·a1 − 1), f2(k) = [1 − eik·(a2−a1 )]/(eik·a1 − 1), and
λ = 1/

√
1 + | f1(k)|2 + | f2(k)|2. Hence this flat-band state

distributes only on the second, fourth, and sixth sites of the
unit cell, each of which is connected by one red bond.

In real space, the above zero-energy states associated with
the connected lattice can be constructed within each triple
hexagon centered at the isolated site (see Fig. 8). Each such
state only distributes on the six sites connected by two bonds.
The weights among the sites are equal, and the phases of the
wave function alternate between 1,−1 along the edge of the
triple hexagon.

2. The flat-band states at �0/t = 1

At �0/t = 1, the lattice is decoupled into isolated sites and
four-pointed stars. Four of the six eigenvalues at each k are
zero-energy states. Two of them are completely localized on
the isolated sites, and the other two are within the four-pointed
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1.5
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rm

i V
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FIG. 7. The Fermi velocities ν1, ν2 and their geometric average√
ν1ν2 as a function of �0.
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FIG. 8. The wave function of one of the flat-band states at
�0/t = −0.5. Each such state is localized within the triple hexagon,
and only distributes on the six sites connected by two bonds. The
weights among the above sites are equal, and the phases of the
wave function alternate between 1, −1 along the edge of the triple
hexagon.

stars, for which the Hamiltonian writes as

H = −t+

⎛
⎜⎜⎝

0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

⎞
⎟⎟⎠. (A3)

Its eigenvalues are ±√
3t+, 0, 0. Two linearly independent

eigenstates for the zero-energy states can be constructed as:
ψ1 = 1√

2
[0, 1,−1, 0]T , ψ2 = 1√

2
[0, 1, 0,−1]T . The distribu-

tions of the above wave functions are only on the surrounding
three sites, each of which is only connected by one bond.

3. Deducing of the low-energy effective Hamiltonian

At k = (0, 0), the eigenvectors corresponding to the four
zero-energy states of the Dirac points forms the projection
matrix:

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1√
2

−1−2�0√
−6+12�2

0

0 0 1√
2

−1−2�0√
−6+12�2

0

0 0 0
√

2(1−�0 )√
3+6�0

− 1√
2

− 1√
6

0 0

0
√

2
3 0 0

1√
2

− 1√
6

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

Then the effective low-energy Hamiltonian is obtained by

Heff (k) = PTH0(k)P, (A5)

which is

Heff (k) =
(

0 f (k)
f †(k) 0

)
, (A6)

f (k) = −3I

2
(1 − �0)t

(
ky αkx

−kx αky

)
, (A7)
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(b)
Δ0/t = −0.4

FIG. 9. The density of states N (ω) at various values of U :
(a) �0/t = 0 and (b) �0/t = −0.4.

where the anisotropic factor is α = 1+2�0√
1+2�2

0

.

APPENDIX B: THE SINGLE-PARTICLE EXCITATION

To investigate the single-particle gap, we use analytic con-
tinuation to extract the spectral function from the imaginary-
time-dependent Green’s function G(τ, k) = 〈ck(τ )c†

k(0)〉:

G(τ, k) = 1

π

∫ ∞

−∞
dω

e−τω

1 + e−βω
A(k, ω). (B1)

Then the density of states, N (ω), can be directly calculated:

N (ω) =
∫

dkA(k, ω). (B2)

N (ω) shown in Fig. 9 characterizes a metal-insulator tran-
sition driven by the Hubbard interaction U . The density of
states is finite at ω = 0 for small U . When U is large enough,

M Γ K M
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−3

E
/t

(a)

U/t = 2

M Γ K M

(b)

U/t = 4
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0.75

1.00

1.25

M Γ K M

3

2
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−3

E
/t

(c)

M Γ K M

(d)

0.0

0.2

0.4

0.6

0.8

Δ0/t = 0

Δ0/t = −0.4

FIG. 10. The single-particle spectral function: (a) �0/t = 0,
U/t = 2; (b) �0/t = 0, U/t = 4; (c) �0/t = −0.4, U/t = 2;
(d) �0/t = −0.4, U/t = 4. Here the lattice size is L = 6 and the
inverse temperature is β = 20.
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FIG. 11. (a) The mean-field order parameter and the cycling time
nc to get convergent solution in the self-consistent process as a
function of U for various values of positive �0. The sharp peak in
the nc curve can steadily determine the transition point. (b) The AFM
structure factor obtained by DQMC as a function of U on a lattice
with the size L = 6.

it is zero in a finite region near ω = 0, which corresponds to
the size of a charge gap. Compared to the �0 = 0 case, the
gap opening occurs at smaller U for �0 = −0.4. The critical
interactions estimated qualitatively are consistent with those
determined from the AFM transition. This implies the AFM
transition is accompanied by a charge-gap opening, suggest-
ing the system is a AFM Mott insulator above the critical
point.

The spectral function A(k, ω) counts single-particle exci-
tations at a given momentum and energy, thus allows us to
locate the point in the Brillouin zone where the single-particle
gap is minimum. As shown in Fig. 10, the gap is minimum at
the � point, thus its opening occurs at the Dirac points.

APPENDIX C: THE SPIN CORRELATIONS

Figure 11(b) shows the AFM structure factor as a function
of U for various values of positive �0. For small �0, Sz

AFM/N
increases continuously with U , implying the existence of a
continuous SM-AFM transition. In addition, as �0 increases,
the curves shift to the weak-interaction side, thus the critical
interaction Uc should decrease as �0 increases. The above
behavior is consistent with the phase diagram of the main text.
The case of �0/t = 0.5 is special, where Sz

AFM/N has a clear
drop at sufficient large U . It should result from the collapse
of the AFM order at strong U for large �0, where an AFM to
Y-dimer transition occurs.

Figure 12 plots the spin-spin correlation function between
different kinds of pairs of sites as a function of �0. The
largest distance between the two sites in each kind of pair
is considered, which can represent the long-range spin cor-
relation. Figure 12(a) shows c(r) in the region �0 < 0. The
first, second, and fifth sites in each unit cell are connected
by zero, one, and three weakened bonds, respectively. The
values of the spin correlations have the following relation:
c5−5(r) > c2−2(r) > c1−1(r). For c(r) between the sites with
different indexes, the relation of the corresponding values is
c2−5(r) > c1−5(r) > c1−2(r). Hence, when the absolute value
of �0 is small, the value of c(r) increases with the total
number of weakened bonds connected to the two sites in each
pair, which remains valid when all the values in Fig. 12(a)
are compared. This suggests the spin correlation between two
sites can be strengthened by locally weakening the bonds

−0.5 −0.4 −0.3 −0.2 −0.1 0.0
Δ0/t

0.00

0.05

0.10

c(
r)

(a)
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2-2
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1-5

2-5

0.0 0.2 0.4 0.6 0.8
Δ0/t

0.00
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0.06

(b)

1

2
3

4

5
6

FIG. 12. The spin-spin correlations as a function of �0 between
the sites with the same and different indexes of the unit cells in the
regions: (a) �0 < 0; (b) �0 > 0. Here r takes the largest distance in
a L = 6 lattice, and the strength of the interaction is U/t = 6.

connecting them. As �0 increases, the values of the spin
correlations without the fifth index involved continuously in-
creases and tends to constants in the �0/t = −0.5 limit. The
sequence of the values keeps as c2−2(r) > c2−1(r) > c1−1(r).
In contrast, the spin correlations involving the fifth site begin
to decrease quickly from �0/t ∼ −0.3, and becomes zero at
�0/t = −0.5, which is expected since the fifth site is com-
pletely depleted from the lattice in this limit. As demonstrated
in Fig. 12(b), the case with �0 > 0 is similar, except that
all values begin to drop at �0/t ∼ 0.5 and become zero at
�0/t ∼ 0.7. Here the vanishment of the spin correlations at
extremely large �0 is due to the occurrence of an AFM to
Y-dimer transition.

In the large-U limit, the double occupancy is completely
eliminated, and the Hubbard model in Eq. (1) maps onto the
following Heisenberg model [57]:

H =
∑
〈i j〉

Ji jSi · S j, (C1)

where the exchange coupling is Ji j = 4t2
i j

U . Corresponding
to the Y-shaped modulations of the hopping amplitudes,
the value of Ji j takes J1 = 4(1 − �0)2/U or J2 = 4(1 +
2�0)2/U . We set J1 = 1 for �0 < 0 (J2 = 1 for �0 > 0)
as the energy scale, thus J2 = (1 + 2�0)2/(1 − �0)2 (J1 =
(1 − �0)2/(1 + 2�0)2), which decreases monotonically as
�0 changes from 0 to −0.5(1).
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0.00
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FIG. 13. The spin-spin correlations as a function of positive �0

for the largest distance on a L = 20 lattice in the large-U limit.
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Similar to the plot in Fig. 4(d) of the main text, we here plot
the spin-spin correlations at the largest distance on a L = 20
lattice as a function of positive �0 in the large-U limit in
Fig. 13. Now the first, second, and fifth sites in each unit
cell are connected by there, one, and zero weakened bonds,
respectively. The values of the spin correlations have the
following relation: c1−1(r) > c1−2(r) > c2−2(r) > c5−1(r) >

c2−5(r) > c5−5(r). Hence, the statement that the value of c(r)
increases with the total number of weakened bonds connected
to the two sites in each pair remains valid. Different from
the case of �0 < 0, the value of c(r) begins to be zero at
�0/t = 0.5, where an AFM to Y-dimer transition occurs.
Near the critical point, c(r) decreases rapidly, implying the
AFM order collapses quickly with increasing �0 here.
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121, 157602 (2018).
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