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Spin-orbit coupling and Kondo resonance in the Co adatom on the Cu(100) surface:
DFT plus exact diagonalization study
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We report density functional theory plus exact diagonalization of the multiorbital Anderson impurity model
calculations for the Co adatom on the top of a Cu(001) surface. For the Co atom d-shell occupation nd ≈ 8,
a singlet many-body ground state and Kondo resonance are found, when the spin-orbit coupling is included
in the calculations. The differential conductance is evaluated in good agreement with the scanning tunneling
microscopy measurements. The results illustrate the essential role which the spin-orbit coupling is playing in the
formation of a Kondo singlet for the multiorbital impurity in low dimensions.
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I. INTRODUCTION

Electronic nanometer-scaled devices require the atomistic
control of their behavior governed by electron correlation
effects. One of the most famous correlation phenomena is the
Kondo effect originating from screening of a local magnetic
moment by a Fermi sea of conduction electrons, and resulting
in the formation of a singlet ground state [1]. Historically,
Kondo screening was detected as a resistance increase below
a characteristic Kondo temperature TK in dilute magnetic al-
loys [2]. Recent advances in scanning tunneling microscopy
(STM) allowed the observation of the Kondo phenomenon on
the atomic scale, for atoms and molecules at the surfaces [3,4].
In these experiments, an enhanced conductance near the Fermi
level (EF ) is found due to the formation of a sharp Abrikosov-
Suhl-Kondo [5–7] resonance in the electronic density of states
(DOS).

One of the most experimentally and theoretically studied
cases of the Kondo effect is that of a Co adatom on a metallic
Cu substrate [3,8–10]. The experimental STM spectra display
sharp peaks at zero bias, or so-called “zero-bias” anomalies,
similar to the Fano resonance [11] found in atomic physics,
which are associated with Kondo resonance. A theoretical de-
scription of the Kondo screening in multiorbital d manifolds
is difficult since the whole d shell is likely to play a role. Very
recently, a theoretical electronic structure of a Co atom on the
top of Cu(100) was considered [10] using the numerically ex-
act continuous-time quantum Monte Carlo (CTQMC) method
[12] to solve the multiorbital single impurity Anderson model
[13] (SIAM) together with the density functional theory [14]
as implemented in the W2DYNAMICS package [15,16]. How-
ever, the spin-orbit coupling (SOC) was neglected. The peak
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in the DOS at EF was obtained in these calculations, and was
interpreted as a signature of Kondo resonance.

An alternative interpretation was proposed [17] which is
based on the spin-polarized time-dependent DFT in conjunc-
tion with many-body perturbation theory. These authors claim
that the “zero-bias” anomalies are not necessarily related to
Kondo resonance, and are connected to the interplay between
inelastic spin excitations and magnetic anisotropy. Thus a
controversy exists concerning the details of the physical pro-
cesses underlying the Kondo screening in Co@Cu(100). In
this paper, we revisit the Co@Cu(100) case making use of the
combination of DFT with the exact diagonalization of multior-
bital SIAM (DFT+ED) including SOC. We demonstrate that
SOC plays a crucial role in the formation of a singlet ground
state (GS) and Kondo resonance.

II. METHODOLOGY: DFT+EXACT DIAGONALIZATION

The exact diagonalization (ED) method is based on a nu-
merical solution of the multiorbital Anderson impurity model
(AIM) [13]. The continuum of the bath states is discretized.
The five d-orbital AIM with a full spherically symmetric
Coulomb interaction, a crystal field (CF), and SOC is written
as

H =
∑
kmσ

εkmb†
kmσ

bkmσ +
∑
mσ

εd d†
mσ dmσ

+
∑

mm′σσ ′
(ξ l · s + �CF)σ σ ′

mm′ d†
mσ dm′σ ′

+
∑
kmσ

(Vkmd†
mσ bkmσ + H.c.)

+ 1

2

∑
mm′m′′m′′′σσ ′

Umm′m′′m′′′d†
mσ d†

m′σ ′dm′′′σ ′dm′′σ . (1)
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The impurity-level position εd which yields the desired 〈nd〉,
and the bath energies εkm are measured from the chemical
potential μ, that was set to zero. The SOC ξ parameter spec-
ifies the strength of the spin-orbit coupling, whereas the �CF

matrix describes the CF acting on the impurity. The hybridiza-
tion Vmk parameters describe the coupling of the substrate to
the impurity orbitals. These parameters are determined from
DFT calculations, and their particular choice will be described
below.

The last term in Eq. (1) represents the Coulomb interac-
tion. The Slater integrals F0 = 4.00 eV, F2 = 7.75 eV, and
F4 = 4.85 eV are used for the Coulomb interaction [9,10].
They correspond to the values for the Coulomb U = 4 eV
and exchange J = 0.9 eV for Co which are in the ballpark
of commonly accepted U and J for transitional 3d metals.

The DFT calculations were performed on a supercell of
four Cu(100) layers, and the Co adatom followed by four
empty Cu layers modeling the vacuum. Figure 1(a) shows
the ball model of the Co@[4Cu8] supercell employed for the
adsorbate atop of Cu. The structure relaxation was performed
employing the VASP method [18] together with the generalized
gradient approximation (GGA) to spin-polarized DFT without
SOC. The adatom-substrate distance as well as the atomic
positions within two Cu(100) layers underneath were allowed
to relax. The relaxed distance between the Co adatom in a
fourfold hollow position and the first Cu substrate layer of
2.91 a.u. is in good agreement with the previously reported
value of 2.87 a.u. [10].

In order to obtain the bath parameters in the AIM Hamilto-
nian Eq. (1), we make use of the recipes of the dynamical
mean-field theory (DMFT) [19,20], and employ the DFT
[local density approximation (LDA)] local Green’s function
G0(z),

[G0(z)]γ1γ2 = 1

VBZ

∫
BZ

d3k[z + EF − HDFT(k)]−1
γ1γ2

, (2)

calculated with the help of the full-potential linearized aug-
mented plane-wave method (FLAPW) [21,22], in order to
define the parameters for Eq. (1). Here, the energy z is counted
from the Fermi energy EF , and the index γ ≡ lmσ marks the
d orbitals in the muffin-tin (MT) sphere of the Co adatom.
Note that the non-spin-polarized LDA is used to extract the
hybridization function �(z). The orbitally resolved density of
states (DOS) together with the hybridization function Im �

are shown in Figs. 1(b) and 1(c). They are compatible with the
results of Ref. [23]. Further details of constructing the discrete
bath model are given in Appendix A.

The SOC parameter ξ = 0.079 eV is taken from LDA
calculations in a standard way,

ξ =
∫ RMT

0
drr

1

2(Mc)2

dV (r)

dr
[ul (r)]2,

making use of the radial solutions ul of the Kohn-Sham-
Dirac scalar-relativistic equations [24], the relativistic mass
M = m + (El − V (r))/2c2 at an appropriate energy El , and
the radial derivative of the spherically symmetric part of the
LDA potential.

III. RESULTS AND DISCUSSION

The total number of electrons N , and the d-shell occupa-
tion are controlled by the εd parameter. It has a meaning of the
chemical potential μ = −εd in Eq. (1). In DMFT it is quite
common to use μ = Vdc, the spherically symmetric double
counting which has a meaning of the mean-field Coulomb
energy of the d shell, and to use standard [around mean-field
(AMF)] Vdc = (U/2 nd + 2l

2(2l+1) (U − J )nd ) [25] form, or the
fully localized limit (FLL) Vdc = (U − J )/2 (nd − 1) [26].
Since the precise definition of nd depends on the choice of
localized basis, we adopt the strategy of Ref. [9], and consider
a value of μ as a parameter.

A. Co in bulk Cu

At first, we consider the Co impurity in bulk Cu making
use of the CoCu15 supercell model. DFT+ED calcula-
tions for different values of μ in comparison with previous
DFT+CTQMC results [9] are described in detail in Ref. [27].
Here, we adjust the value of μ in order to have the Co atom
d-shell occupation nd ≈ 8. This valence of Co in bulk Co
follows from DFT calculations [9,27].

Without SOC we found that the value of μ = 27.4 corre-
sponds to nd ≈ 8 occupation. The GS solution without SOC
(see Table I) is the |�〉N=30 singlet, and the excited triplet
is ≈0.4 eV higher in the energy. Note that each eigenstate
|�〉N of Eq. (1) corresponds to an integer N occupation (d
shell+bath) since N̂ commutes with Hamiltonian Eq. (1). For
each |�〉, the probabilities of finding the atomic eigenstates
|n〉 with integer occupation dn, Pn = 〈n|�〉〈�|n〉, and the d-
shell occupation nd = ∑

n Pnndn .
The corresponding density of d states (DOS) [1],

A(ε) = − 1

πZ
Im

∑
γ ,α,β

〈�α|cγ |�β〉〈�β |c†
γ |�α〉

ε + iδ + Eα − Eβ

× [e−βEβ + e−βEα ], (3)

where α, β run over the eigenstates of Hamiltonian Eq. (1),
and γ ≡ {m, σ } marks the single-particle spin orbital, is
shown in Fig. 2(a), with the peak in DOS very near EF .

The expectation values of the total 〈�|Jz|�〉, orbital
〈�|Lz|�〉, and spin 〈�|Sz|�〉 3d-shell projected angular mo-
menta for the |�〉N=30 singlet GS and the excited triplet are
shown in Table I. They correspond to a solution of the Kondo
model for localized S = 1

2 antiferromagnetically coupled to a
single band of conduction electrons [28]. Together with the
Kondo peak in DOS [cf. Fig. 2(a)] our DFT+ED solution
corresponds to the Kondo singlet state.

When SOC is included, and the spin is not a good quantum
number, there are minor changes in the character for μ = 27.5
(nd ≈ 8), the GS solution |�〉N=30: GS is a singlet, and the
excited triplet consists of effective |J = 1, Jz = −1, 0, 1〉 de-
generate states which are ≈0.5 eV higher in energy. The DOS
has a peak in DOS very near EF . It is seen that weak 3d-shell
SOC plays no essential role for the Co impurity in the Cu
host. These calculations show that our DFT+ED approach is
capable of reproducing the Kondo singlet for Co in bulk Cu for
nd = 8, in agreement with the conclusions of DFT+CTQMC
[9]. Also, in agreement with the commonly accepted point of
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FIG. 1. (a) The ball model (top view) for a Co@[4Cu8] supercell. The specific choice of Cartesian reference frame is show. With this choice,
the local Green’s function without SOC becomes diagonal in the basis of cubic harmonics m = {xz, yz, xy, x2 − y2, 3z2 − r2}. (b) Orbitally
resolved DOS. (c) Orbitally resolved hybridization Im � for a Co adatom on Cu(001).

view [29], we show that the presence of SOC does not lead to
an essential modification of a Kondo model.

B. Co on Cu(001)

Now we turn to a salient aspect of our investigation, the
Co adatom on a Cu(001) surface. Considering a value of μ
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TABLE I. The total number of particles (d shell+bath) N , the
expectation values 〈�|Jz|�〉, 〈�|Lz|�〉, and 〈�|Sz|�〉 of 3d-shell
projected angular momenta, nonzero probabilities Pdn to find the
atomic eigenstates |n〉 with integer occupation dn for GS, and low-
energy excitation energies for different values of μ.

Without SOC

Energy (eV) Jz Lz Sz Pd7 Pd8 Pd9

μ = 27.4 eV, nd = 8.05
N=30 −148.5822 0. 0. 0. 0.20 0.51 0.26

−148.1014 0.53 0 0.53 0.22 0.55 0.20
−148.1014 0 0 0 0.22 0.55 0.20
−148.1014 −0.53 0 −0.53 0.22 0.55 0.20

With SOC
Energy (eV) Jz Lz Sz Pd7 Pd8 Pd9

μ = 27.5 eV, nd = 7.99
N=30 −149.4028 0. 0. 0. 0.19 0.51 0.27

−148.9296 0.94 0.49 0.45 0.21 0.55 0.21
−148.9296 0. 0. 0. 0.21 0.55 0.21
−148.9296 −0.94 −0.49 −0.45 0.21 0.55 0.21

as a parameter, we analyze the ground state (GS) of Eq. (1)
with and without SOC for different values of μ. Making use
of grand-canonical averages at low temperature kBT = β−1 =
(1/500) eV (20 K) we calculate the expectation values of
the total number of electrons (d shell+bath) 〈N〉, the charge

fluctuation (〈N2〉 − 〈N〉2)
1
2 near the GS, and the expectation

values of spin (S), orbital (L), and total spin-orbital (J) 3d-
shell moments, and show them in Table II together with the
d-shell occupation nd for the GS, and the corresponding Pn

probabilities, with and without SOC.
For the values of μ = 26 and 27 eV, the GS is the eigen-

state |�〉N=26, and is a combination of d7 (Pd7 ≈ 0.3) and d8

(Pd8 ≈ 0.6). These states have a noninteger nd occupation due
to the hybridization of the atomic d states with the substrate.

Nevertheless, (〈N2〉 − 〈N〉2)
1
2 ≈ 0, pointing to the absence of

charge fluctuations. The S values lie between S = 3/2 (the
atomic d7, 4F ), and S = 1 (the atomic d8, 3F ), while L is
close to the atomic L = 3. The expectation values of the z-axis

FIG. 2. (a) DOS for Co in bulk Cu without SOC for μ = 27.4 eV,
and (b) with SOC for μ = 27.5 eV.

projections of the total 〈�|Jz|�〉, orbital 〈�|Lz|�〉, and spin
〈�|Sz|�〉3d-shell angular momenta for GS and low-energy
excitation energies for μ = 27.0 eV are shown in Table III. It
is seen that without SOC the GS can be interpreted as an S =
1-like triplet. For μ = 28 eV, the GS is the eigenstate |�〉N=27,
and the contributions of d7 (Pd7 ≈ 0.1) and d8 (Pd8 ≈ 0.5) are

TABLE II. The chemical potential μ (eV), the occupation 〈N〉, fluctuation (〈N2〉 − 〈N〉2)
1
2 , nd occupation, nonzero probabilities Pdn to

find the atomic eigenstates |n〉 with integer occupation dn, and spin, orbital, and total moments of the impurity d shell for different values of
μ. Grand-canonical averages are at low temperature kBT = β−1 = (1/500) eV.

Without SOC

μ (eV) 〈N〉 (〈N2〉 − 〈N〉2)
1
2 nd Pd6 Pd7 Pd8 Pd9 S L J

26 26.00 0.00 7.57 0.05 0.34 0.56 0.03 1.10 3.07 3.40
27 26.00 0.01 7.74 0.03 0.27 0.62 0.08 1.03 3.01 3.32
27.4 26.55 0.50 7.93 0.02 0.21 0.58 0.18 0.94 2.87 3.15
28 27.00 0.00 8.17 0.01 0.14 0.51 0.33 0.82 2.68 2.91

With SOC

μ (eV) 〈N〉 (〈N2〉 − 〈N〉2)
1
2 nd Pd6 Pd7 Pd8 Pd9 S L J

26 26.00 0.00 7.58 0.05 0.34 0.57 0.04 1.09 3.07 3.89
27 26.00 0.00 7.75 0.03 0.26 0.62 0.08 1.03 3.01 3.82
27.6 26.38 0.48 7.96 0.02 0.20 0.58 0.19 0.93 2.86 3.51
28 27.00 0.00 8.17 0.01 0.14 0.51 0.33 0.82 2.68 3.16
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TABLE III. The total number of particles (d shell+bath) N , the
expectation values 〈�|Jz|�〉, 〈�|Lz|�〉, and 〈�|Sz|�〉 of 3d-shell
projected angular momenta, nonzero probabilities Pdn to find the
atomic eigenstates |n〉 with integer occupation dn for GS, and low-
energy excitation energies for different values of μ.

Without SOC
Energy (eV) Jz Lz Sz Pd7 Pd8 Pd9

μ = 27.0 eV
N = 26 −142.2319 0.0 0.0 0.0 0.27 0.62 0.08

−142.2319 0.90 0.0 0.90 0.27 0.62 0.08
−142.2319 −0.90 0.0 −0.90 0.27 0.62 0.08

μ = 27.4 eV
N = 26 −145.3478 0.00 0.0 0.00 0.23 0.61 0.13

−145.3478 0.81 0.0 0.81 0.23 0.61 0.13
−145.3478 −0.81 0.0 −0.81 0.23 0.61 0.13

N = 27 −145.3490 0.57 0.0 0.57 0.19 0.55 0.23
−145.3490 −0.57 0.0 −0.57 0.19 0.55 0.23

μ = 28.0 eV
N = 27 −150.1992 0.53 0.0 0.53 0.14 0.51 0.33

−150.1992 −0.53 0.0 −0.53 0.14 0.51 0.33
With SOC

Energy (eV) Jz Lz Sz Pd7 Pd8 Pd9

μ = 27.0 eV
N = 26 −142.3054 0.00 0.0 0.00 0.26 0.62 0.08

−142.3009 1.48 0.91 0.57 0.26 0.62 0.08
−142.3009 −1.48 −0.91 −0.57 0.26 0.62 0.08

μ = 27.6 eV
N = 26 −146.9950 0.00 0.0 0.00 0.21 0.61 0.16

−146.9912 1.10 0.70 0.40 0.21 0.61 0.16
−146.9912 −1.10 −0.70 −0.40 0.21 0.61 0.16

N=27 −146.9931 1.43 0.95 0.48 0.18 0.54 0.26
−146.9931 −1.43 −0.95 −0.48 0.18 0.54 0.26

μ = 28.0 eV
N=27 −150.2373 1.37 0.91 0.45 0.14 0.51 0.33

−150.2373 −1.37 −0.91 −0.45 0.14 0.51 0.33

reduced while d9, 2D (Pd9 ≈ 0.3) are increased. Again, there
are no charge fluctuations near the GS. This GS looks similar
to the S = 1/2 doublet (see Table III).

When the SOC is included, for values of μ = 26 and 27 eV,
the eigenstate |�〉N=26 is split into the lowest-energy singlet
plus excited doublet (see Table III). These states approxi-
mately correspond to |J = 1, Jz〉 eigenstates of the effective
Hamiltonian [30],

ĤMA = DĴ2
z + E

(
Ĵ2

x − Ĵ2
y

)
, (4)

with the uniaxial magnetic anisotropy D ≈ 4.5 meV, and E =
0. For μ = 28 eV, the GS remains a |�〉N=27 doublet.

The corresponding densities of d states (DOS) for the val-
ues of μ = 26, 27, and 28 eV are shown in Fig. 5, Appendix B.
There are similarities in the DOS with and without SOC: no
peak in DOS in a close vicinity of EF . For these values of
μ and without SOC there are no singlet GSs, and no Kondo
resonances in the DOS. In the presence of SOC, even their
GSs become singlets for μ = 26 and 27 eV, and no Kondo
peaks are formed. For μ = 28 eV the GS solution remains a
doublet without Kondo resonance in the DOS.

FIG. 3. (a) DOS for the Co@Cu(001) for μ = 27.4 eV without
SOC and (b) for μ = 27.6 eV with SOC.

Since the change in the GS with a variation of μ between
27 and 28 eV is observed, we further adjust the values of μ in
order to keep the same nd ≈ 8 without and with the SOC. In
the case of μ = 27.4 eV and without SOC, we obtain a non-

integer 〈N〉 = 26.55, nonzero (〈N2〉 − 〈N〉2)
1
2 ≈ 0.5 charge

fluctuations, and nd = 7.93. This solution is formally close
to the “d8” state but is actually a combination of d7 (Pd7 ≈
0.21), d8 (Pd8 ≈ 0.58), and d9 (Pd9 ≈ 0.18) atomic states (see
Table II).

There is a peak near EF in the DOS shown in Fig. 3(a).
Note that a similar peak in DOS was obtained in CTQMC cal-
culations [10] without SOC with the same choice of Coulomb
U and exchange J , and nd = 8 very close to our calculations.
In Ref. [10] it is interpreted as a spectral signature of the
Kondo effect. As follows from Eq. (3), the presence of such
a peak signals the (quasi)degeneracy of the eigenvalues EN ,
and EN±1. These are the |�〉N=27 doublet and |�〉N=26 triplet
states which differ in energy by 1.2 meV (see Table III), with
the doublet GS |�〉N=27. Since there is no singlet GS, the DOS
peak at EF is not a Kondo resonance, and signals the presence
of valence fluctuations [30]. Moreover, the doublet GS can
be interpreted as a signature of an underscreened Kondo state
[10,23].
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FIG. 4. Differential conductance G calculated making use of
Eq. (6).

When the SOC is included, and with μ = 27.6 eV, there
is a noninteger 〈N〉 = 26.38, with nonzero charge fluctuations

(〈N2〉 − 〈N〉2)
1
2 ≈ 0.5, and nd = 7.96 (see Table II). Again,

the DOS has a peak at EF which is shown in Fig. 3(b). In
this case, the (quasi)degeneracy occurs between the singlet
|�〉N=26 state being 1.9 meV lower in energy than the |�〉N=27

doublet (see Table III). The DOS peak at EF due to the
|�〉N=26-to-|�〉N=27 transition can be interpreted as a Kondo
resonance.

For the singlet GS we can use the renormalized perturba-
tion theory [13] in order to estimate the Kondo temperature,

TK = −π

4
Z Im[�(EF )], (5)

where an average quasiparticle weight per orbital Z is evalu-
ated from

Z−1 ≈ Tr{[Î − d Re[�(ε)]/dε(EF )]A(EF )}
Tr[A(EF )]

,

following Ref. [31], and A(EF ) is the DOS matrix from
Eq. (3). We obtain Z = 0.097, and the corresponding TK =
0.019 eV (≈220 K). It exceeds the experimental estimate
TK = 88 K [3] of the Kondo scale. Indeed, Eq. (5) serves as
an order of magnitude estimate of TK .

Scanning tunneling spectroscopy measures the differen-
tial conductance G(V ) through the adatom, and allows us to
probe the DOS. A comparison between the experimental and
theoretical G(V ) is the most direct way to distinguish be-
tween different theoretical approximations and to identify the
most appropriate theoretical approach. Experimentally G(V )
of Co@Cu(100) was studied in Ref. [3]. The observed steplike
behavior was interpreted in terms of interference between
two tunneling channels: (i) tunneling to the d-DOS shown in
Fig. 3, and (ii) tunneling into the conduction electrons of the
Cu substrate modified by the presence of the Co adatom. At
low bias, the differential conductance is then expressed [32]
in the basis of cubic harmonics as

G(ω) ∼
∑

m

(1 + �m{(1 − qm
2) Im[Gm(ω)]

+ 2qm Re[Gm(ω)]}), (6)

where Gm(≡ Gmm) is a Green’s function of the Hamiltonian
Eq. (1), �m ≡ − Im[�m(EF )] is a hybridization between the
d-level m and the substrate shown in Fig. 1(c), and qm is
a Fano parameter. For the strongly localized Co adatom d
orbitals [33],

qm ≈ − Re[G0,m(EF )]/ Im[G0,m(EF )].

The calculated G(V ) is shown in Fig. 4 in fair quantitative
agreement with the experimental data [3]. Note that our re-
sults seem to agree with the experiments better than those of
Ref. [17]. Contrary to the proposal of Ref. [17], attempting to
explain the zero-bias anomaly in Co@Cu(100) as the results
of inelastic spin excitations, our theory demonstrates that they
can be better explained from the point of view of the “Kondo”
physics.

IV. SUMMARY

Many-body calculations within the multiorbital SIAM for
an Co adatom on a Cu(100) surface are performed. DFT
calculations were used to define the input for the discrete
bath model of 40 bath orbitals, and with SOC included. We
found that the peak in the DOS at EF can occur for the
Co atom d-shell occupation nd ≈ 8, and is connected to the
quasidegenerate ground state of the SIAM. Without SOC,
the lowest-energy state is an effective S = 1/2-like doublet,
and next to it there is an effective S = 1-like triplet, so
the resonance in the DOS(EF ) does not represent a Kondo
resonance. When SOC is included, the triplet states are
split as |J = 1, Jz〉 eigenstates in the presence of magnetic
anisotropy ĤMA = DĴ2

z , so that the |J = 1, Jz = 0〉 singlet
becomes a ground state. The corresponding DOS(EF ) peak
corresponds to Kondo resonance. This solution is verified
by comparison with an experimentally observed zero-bias
anomaly in the differential conductance. Our calculations
illustrate the essential role which the SOC, and the cor-
responding uniaxial magnetic anisotropy, is playing in the
formation of a Kondo singlet in multiorbital low-dimensional
systems.
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APPENDIX A: FITTING THE BATH HYBRIDIZATION

With the specific choice of Cartesian reference frame (see
Fig. 1), the local Green’s function G0(z) becomes diagonal in
the basis of cubic harmonics m = {xz, yz, xy, x2 − y2, 3z2 −
r2}. Moreover, it is convenient to use an imaginary energy
axis over the Matsubara frequencies iωn. The corresponding
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TABLE IV. Values of the d-shell �CF (eV), the bath energies εk
m

(eV), and hybridization parameters V k
m (eV) evaluated from LDA.

m xz yz xy x2 − y2 3z2 − r2

�CF −0.043 −0.043 0.117 0.053 −0.082
εk=1,m −2.16 −2.16 −1.99 −2.01 −2.57
Vk=1,m 0.85 0.85 0.65 0.65 0.72
εk=2,m −0.08 −0.08 0.001 −0.02 −0.05
Vk=2,m 0.18 0.18 0.08 0.10 0.13
εk=3,m 0.51 0.51 1.45 0.53 0.43
Vk=3,m 0.36 0.36 0.55 0.34 0.32
εk=4,m 7.56 7.56 7.80 8.16 7.72
Vk=4,m 2.08 2.08 2.12 1.78 1.70

noninteracting Green’s function of Eq. (1) will then become

G0,m(iωn) = 1

iωn − εm − �m(iω)
,

with the hybridization function

�m(iωn) = iωn − εm − G−1
0,m(iωn). (A1)

Thus, the hybridization function Eq. (A1) can be evaluated
making use of the local Green’s function G0(z). The discrete
bath model is built by finding bath energies and amplitudes
which reproduce the continuous hybridization function as
closely as possible,

�̃m(iωn) =
K∑

k=1

V 2
km

iωn − εkm
. (A2)

The fitting is done by minimizing the residual function,

fm({εkm,Vkm}) =
Nω∑

n=1

1

ω
γ
n
|�̃m(iωn) − �m(iωn)|2, (A3)

using the limited-memory, bounded Broyden-Fletcher-
Goldfarb-Shanno method [34,35], with the parameters εkm

and Vkm as variables. The factor 1
ω

γ
n

with γ = 0.5 is used to

FIG. 5. DOS for the Co@Cu(001) with and without SOC as a
function of (a) μ = 26 eV, (b) 27 eV, and (c) 28 eV.

attenuate the significance of the higher frequencies. The fitted
bath parameters are shown in Table IV. These parameters are
used to build the AIM Hamiltonian Eq. (1).

APPENDIX B: DOS AS A FUNCTION OF μ FOR CO
ON CU(001)

The Co atom d-states projected DOS for the values of μ =
26 eV, 27 eV, 28 eV are shown in Fig. 5.
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