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Spin-orbital liquids and insulator-metal transitions on the pyrochlore lattice
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The two orbital Hubbard model, with the electrons additionally coupled to a complex magnetic background,
arises in the pyrochlore molybdates. The background involves local moments Hund’s coupled to the electrons,
driving double exchange ferromagnetism, and antiferromagnetic (AF) tendency arising from competing superex-
change. The key scales include the Hubbard repulsion and the superexchange, both of which can be tuned in
these materials. They control the phase transition from a ferromagnetic metal to a spin-glass metal and then
to a spin-glass (Mott) insulator. We provide a comprehensive description of the ground state of this model
using an unrestricted Hartree-Fock scheme implemented via a simulated annealing procedure and establish
the metal-insulator transition line for varying Hubbard interaction and superexchange. The electrons see an
effective disorder, due to orbital frustration, already in the ferromagnetic phase. The disorder is further enhanced
by antiferromagnetic coupling and the resulting magnetic disorder. As a result, increasing AF coupling shifts
the metal-insulator transition to lower Hubbard interaction and gives it an additional “Anderson” character.
We provide detailed results on the magnetic and orbital correlations, the density of states, and the optical
conductivity.
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I. INTRODUCTION

The most commonly studied Mott problem [1] involves
the single band Hubbard model on a bipartite lattice [2]. In
such a model, typically, nesting features drive a transition [3]
to an antiferromagnetic insulating state at arbitrarily weak
interaction—masking the “Mott” effect. One can certainly
study frustrated lattices [4], which suppress magnetic order,
and there is much work on the triangular lattice Hubbard
model [5–9]. This is both an important model problem [10]
and also a starting point for the layered organics [11–15].
Other frustrated lattices include the Kagome [16–22] in two
dimensions (2D) and the fcc and pyrochlore lattices [23–26]
in three dimensions (3D). These are all harder problems than
the square (or cubic) lattice since there is no longer any obvi-
ous magnetic order to simplify the correlated problem. These
lattices, overall, provide an interesting variation from the bi-
partite case because (i) the metal-insulator transition could
occur in the background of short-range magnetic correlation,
and (ii) the deep Mott insulating state itself could be a spin
liquid [27].

It would be vital to have experimental realizations to test
out the predictions of the frustrated Mott studies. While there
is a significant effort in analyzing the quasi-2D κ-BEDT
organics [11–15] in terms of the triangular lattice, 3D real-
izations of “Hubbard physics” on a frustrated structure are
rare. Materials like the manganites [28] do involve strong
correlation effects (and much else) but are on a bipartite
structure—with relatively simple magnetic order. The discov-
ery of the rare-earth (R) based pyrochlores, the molybdates
[29–33] R2Mo2O7, and the iridates [34–37] R2Ir2O7, provided

a breakthrough. Both these families show a metal-insulator
transition as the rare-earth radius rR is reduced [32–35]. There
are, however, key differences between these two families: (i)
in terms of degrees of freedom and couplings, with respect to
the Hubbard model, and (ii) the magnetic state that emerges.

Being 4d and 5d systems, respectively, both molybdates
and iridates involve multiple bands. In the molybdate case this
can be reduced to one itinerant electron in two degenerate or-
bitals. These electrons have an interorbital Hubbard repulsion
and are also Hund’s coupled to a S = 1/2 local moment at
each Mo site [38]. For the iridates one can motivate the use of
an effective single band model which involve strong spin-orbit
coupling in addition to the Hubbard interaction [25,39]. While
both families show a Mott transition, for the molybdates this
happens in a somewhat spin disordered background, with
no long-range order in the insulating state [23,29,30], while
the iridates generally show a transition from a paramagnetic
metal to an “all-in-all-out” magnetic insulator [40–42]. The
frustration in the pyrochlore lattice plays a role in both these
materials, but one clearly requires more than the simple Hub-
bard model to approach the phenomena.

This paper is focused on a detailed study of the model ap-
propriate to the molybdates R2Mo2O7. These exhibit ground
states that vary from a ferromagnetic metal (FM-M) to a spin-
glass metal (SG-M) and then a spin-glass insulator (SG-I) as
the rare earth radius is reduced [43,44]. Materials with R = Nd
and Sm are metallic, R = Tb, Dy, Ho, Er, and Y are insulating,
and R = Gd is on the verge of the insulator-metal transition
(IMT) [44,45]. The highest ferromagnetic Tc is ∼100 K in
Nd, while the spin-glass transition temperature TSG is typically
∼20 K [31,46,47]. The unusual features in transport include
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very large residual resistivity, ∼10 m� cm close to the metal-
insulator transition [45], prominent anomalous Hall effect
in metallic samples [48–52], e.g., Nd2Mo2O7, and magnetic
field driven metallization in the weakly insulating samples
[53], e.g., Gd2Mo2O7. Furthermore, it has been shown that
the local structural distortion plays an important role in the
stabilization of the ferromagnetic or spin-glass phases [54]. A
more recent study of Mn doping of Gd and Ho molybdates
in the form R2(Mo1−xMnx )2O7 demonstrate the strengthening
of the spin-glass behavior in both systems upon doping [54].
On the other hand, Ca doping of Nd molybdate in the form
(R1−xCax )2Mo2O7 with x � 0.15 displays a robust canted
ferromagnetic state. The stability of the canting angle of the
Mo magnetic moments with respect to the doping is a key
puzzle in the topological Hall effect observed in this material
[55,56].

We will discuss the model for the molybdates in detail
later, to motivate our study it suffices to mention that the
active degrees of freedom include one electron per Mo in
a twofold degenerate orbital, Hund’s coupled to a S = 1/2
moment on the same ion. The electrons have on-site Hub-
bard repulsion (U ) between them while the local moments
have a nearest neighbor antiferromagnetic (AF) coupling JAF.
The Hund’s coupling drives double exchange (DE) ferro-
magnetism, opposed by AF superexchange, while Hubbard
repulsion promotes a Mott insulating state. Reducing rR re-
duces the hopping—weakening DE and also enhancing the
effect of Hubbard repulsion, while increasing pressure is sup-
posed to (mainly) affect [33] the antiferromagnetic coupling.

There are several major questions left unresolved by ex-
isting works: (1) At ambient pressure the metal-insulator
and magnetic “transition” are simultaneous, is that true with
increasing pressure (changing JAF) as well? (2) Is there a
“universal” quantity that dictates the metal-insulator transition
(MIT) trajectory over a large pressure window? (3) What is the
fate of the coupled spin-orbital state for changing pressure and
rare earth radius? (4) What is the low energy spectral behavior
in the vicinity of the MIT as the pressure is varied? (5) What
is the quasiparticle character close to the Mott transition?
(6) Can we obtain realistic thermal scales for the magnetic
transitions?

We employ a real space approach, equivalent to unre-
stricted Hartree-Fock at zero temperature, that uses a static
auxiliary orbital field to handle the Hubbard interaction. We
solve the resulting “electron–local moment–orbital moment”
problem via Monte Carlo based simulated annealing on the
pyrochlore lattice. Within the limits of our method we address
(1)–(4) of the questions posed above, and (5) and (6) else-
where. Our main results are the following.

(i) Phase boundaries: The proximity of the magnetic tran-
sition and MIT in the ambient pressure molybdates is a
coincidence—at weak AF coupling the metal and insulator are
both ferromagnetic, while at strong AF coupling they are both
spin disordered.

(ii) Physics behind the MIT: The shift in the critical inter-
action for the MIT, with applied pressure, can be understood
in terms of the kinetic energy suppression driven by growing
spin and orbital disorder.

(iii) Coupled spin-orbital state: The magnetic state is a
spin ferromagnet (S-F) or a spin liquid (S-L), the orbital state

is similarly an orbital ferromagnet (O-F) or an orbital liquid
(O-L). We find that the low JAF state is mainly S-F–O-F while
the large JAF state is S-L–O-L.

(iv) Spectral behavior near the MIT: The Uc changes
with changing JAF, so we use a normalized frequency scale
ω/Uc(JAF) to compare spectral features. At the MIT the larger
JAF systems have more low energy spectral weight than the
weak JAF case. Surprisingly, the gap edge states at large JAF

are strongly localized, leading to an optical gap that is larger
than the density of states gap, revealing the growing Anderson
character of the transition with increasing JAF.

The remainder of this paper is structured as follows. In
Sec. II we discuss the static auxiliary field based Monte Carlo
method in connection with the full fledged determinant quan-
tum Monte Carlo and the unrestricted Hartree-Fock methods.
This is followed by a discussion of our results in Sec. III,
comprising of the ground state phase diagram, the detailed
magnetic and orbital structure factors in the different phases,
and the density of states and transport properties across the
metal-insulator transition. We propose an effective spin only
model for the fermionic system under consideration in Sec. IV
and discuss the MIT in the light of this effective model. We
conclude in Sec. V with pointers for experiments.

II. MODEL AND METHOD

A. Model

The R2Mo2O7 structure consists of two interpenetrating
pyrochlore lattices, one formed by Mo cations and the other
by R. Model Hamiltonian studies ignore the orbitals on R and
oxygen, focusing instead on the orbitals on Mo. The Mo atom
has octahedral oxygen coordination, the resulting crystal field
splits the fivefold degenerate Mo 4d states into doubly de-
generate eg and triply degenerate t2g manifolds, and a trigonal
distortion splits the t2g further into a nondegenerate a1g and
a doubly degenerate e′

g. The hopping between Mo orbitals
at different sites is mediated by the intervening oxygen. The
Mo cation is nominally tetravalent and has two electrons on
average. The deeper a1g state behaves like a local moment,
and the single electron in the two e′

g orbitals is the “itinerant”
degree of freedom [38]. The eg state remains unoccupied.

There are additional small scales, related to bond dis-
tortions, etc., that are responsible for the spin freezing
phenomena [57,58]. We ignore them for the time being. Also,
the moments on R can be relevant when studying effects like
spin chirality induced anomalous Hall effect [48–52]. We do
not include these moments in our model.

We study the following model [59], in the parameter
regimes described below:

H =
∑

〈i j〉,αβ,σ

tαβ
i j c†

iασ c jβσ − JH

∑
i,α

Si · c†
iασ �σσσ ′ciασ ′

+ JAF

∑
〈i j〉

Si · S j +
σ,σ ′∑

i,αβα′β ′
U α′β ′

αβ c†
iασ c†

iβσ ′ciβσ ′ciασ .

The first term is the kinetic energy, involving nearest neighbor
intra- and interorbital e′

g hopping. The second term is the
Hund’s coupling between the a1g local moment Si and the
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e′
g electrons, JAF is the AF superexchange coupling between

local moments at neighboring sites on the pyrochlore lattice,
and the U represent on-site e′

g Coulomb matrix elements.
To simplify the computational problem we treat the local-

ized spins Si as classical unit vectors, absorbing the size S in
the magnetic couplings. We will comment on the limitations
of this approximation later. Also, to reduce the size of the
Hilbert space we assume that JH/t � 1, where t is the typical
hopping scale, so that only the locally “spin aligned” fermion
state is retained. In this local basis the hopping matrix ele-
ments are dictated by the orientation of the Si on neighboring
sites. This leads to the simpler model:

H =
∑

〈i j〉,αβ

t̃αβ
i j c̃†

iα c̃ jβ + JAF

∑
〈i j〉

Si · S j + U
α �=β∑

i

niαniβ,

where the fermions are now “spinless.” and U > 0 is
the interorbital Hubbard repulsion. The effective hop-
ping is determined by the orientation of the local-
ized spins Si = (sin θi cos φi, sin θi sin φi, cos θi ), as tαβ

i j =
[cos θi

2 cos θ j

2 + sin θi
2 sin θ j

2 e−i(φi−φ j )]tαβ , with t11 = t22 = t
and t12 = t21 = t ′. We set t ′ = 1.5t as is appropriate for these
kinds of orbitals [38].

The first two terms represent fermions in a classical spin
background and the resulting magnetic phase competition has
been studied on a pyrochlore [60]. While these results are
interesting, they miss out on the large correlation scale U that
drives the Mott transition. One option is to treat the model
within dynamical mean field theory (DMFT) [61], but then
the spatial character crucial to the pyrochlore lattice is lost.

The current paper is focused on the ground state but we
discuss our general strategy for solving the finite temperature
problem below. This will describe the simulated annealing
scheme for arriving at the ground state.

B. Method

We handle the problem in real space as follows: (i)
We use a Hubbard-Stratonovich (HS) [62–64] decomposi-
tion that decouples Uniαniβ in terms of an auxiliary orbital
variable �i(τ ), coupling to the electronic orbital moment
Oi = ∑

μν c†
iμ �σμνciν , and a scalar field �i(τ ) coupling to the

electronic density ni at each site. The Matsubara frequency
versions of these fields are �i,n and �i,n, where �n = 2πnT
is a bosonic frequency. (ii) An exact treatment of the resulting
functional integral, see below, requires determinant quantum
Monte Carlo (DQMC)—computing a fermion determinant
D(�i,n,�i,n, Si ) iteratively as the “weight factor” for auxil-
iary field configurations. Fermion Green’s functions would be
computed on the equilibrium {�,�, S} backgrounds.

The DQMC implementation, which we will approximate,
takes the following route. The partition function is written as a
functional integral over Grassmann fields ψiα (τ ) and ψ̄iα (τ ):

Z =
∫

DψDψ̄DSe− ∫ β

0 dτL(τ ),

L(τ ) =
∑

〈i j〉,αβ

{
ψ̄iα

[
(∂τ − μ)δi jδαβ + t̃αβ

i j

]
ψ jβ

}

+U
∑

i,α �=β

ψ̄iαψiαψ̄iβψiβ + JAF

∑
〈i j〉

Si · S j .

The quartic term is “decoupled” exactly via a Hubbard-
Stratonovich transformation

eU ψ̄iαψiαψ̄iβψiβ =
∫

d�id�i

4π2U
e(i�ini−�i .Oi+ �2

i
U + �2

i
U ),

where �i(τ ) and �i(τ ) are two auxiliary fields: �i(τ ) cou-
pling to charge density ni = niα + niβ , and �i(τ ) coupling to
the orbital variable Oi = ∑

μν ψ̄iμ �σμνψiν . This leads to

Z =
∫

DψDψ̄DS
∏

i

d�id�i

4π2U
e− ∫ β

0 dτL(τ ),

L(τ ) = L0(τ ) + Lint(τ ) + Lcl(τ ),

L0(τ ) =
∑

〈i j〉,αβ

{
ψ̄iα

[
(∂τ − μ)δi jδαβ + t̃αβ

i j

]
ψ jν

}
,

Lint(τ ) =
αβ∑
i

{
i�iψ̄iαψiβδαβ − �i.ψ̄iα �σiψiβ

}
,

Lcl(τ ) =
∑

i

{
�2

i

U
+ �2

i

U

}
+ JAF

∑
〈i j〉

Si · S j .

Since the fermions are now quadratic the
∫
D�.. integrals can

be formally performed to generate the effective action for the
background fields:

Z ∼
∫

D�D�DSe−Seff{�,�,S},

Seff = log Det[G−1{�,�, S}] +
∫ β

0
dτLcl(τ ).

In the expression above, G is the electron Green’s function in
a {�,�, S} background.

Now the options. (1) Determinant quantum Monte Carlo
would proceed by using Seff as the “weight” for the back-
ground configurations, and compute electron properties on
these after equilibriation. (2) Mean field theory would assume
the fields to be time independent, replace them by their mean
values, and minimize the free energy. (3) A static path approx-
imation to Z again assumes the fields to be time independent,
but samples over spatial fluctuations.

We adopt method (3), which is computationally simpler
than DQMC but much more sophisticated than MFT at finite
temperature. So we (i) neglect the imaginary time dependence
of �i and �i, i.e., retain only the zero Matsubara frequency
modes of these fields, and (ii) replace �i by its saddle point
value 〈�i〉 = (U/2)〈ni〉 = U/2, since the important low en-
ergy fluctuations arise from the �i. The electron is now subject
to static background fields so the partition function can be
written as a trace over an effective “Hamiltonian,” rather than
require an effective “action.” Specifically,

Heff{�i, Si} = − 1

β
log Tre−βHel + HAF + 1

U

∑
i

�2
i ,

Hel =
αβ∑
i j

t̃αβ
i j c†

iαc jβ − μ̃
∑

i

ni −
∑

i

�i · Oi,
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with μ̃ = μ − U/2 and HAF the Heisenberg term. For conve-
nience we redefine �i → U

2 �i, so that the �i is dimensionless.
This leads to the effective electronic Hamiltonian used in the
text:

Hel =
αβ∑
i j

t̃αβ
i j c†

iαc jβ − μ̃
∑

i

ni − U

2

∑
i

�i · Oi.

The localized spin and orbital moment configurations follow
the distribution

P{Si,�i} ∝ Trcc† e−βHeff .

This overall approach has been used in the nuclear many-body
problem [65,66], superconductivity [67–70], etc., and by us in
other studies of the Mott problem before [71,72].

There are regimes where some analytic progress can be
made, as we discuss later, but our results are based on a
Monte Carlo solution of the model above—generating the
equilibrium configuration for the {Si,�i} through iterative
diagonalization of Heff. We start with high temperature ∼0.5t ,
higher than any transition temperature in the problem, and
reduce it to T = 0.001t to access the ground state properties.
To access large system sizes within reasonable time we use a
cluster algorithm [73] for estimating the update cost. Results
in this paper are for a 6 × 6 × 6 pyrochlore lattice of ∼800
atoms.

A couple of comments on the T → 0 limit of our method
which reduces to unrestricted Hartree-Fock in the magnetic
channel. Traditionally, Hartree-Fock calculations impose a
certain pattern on the order parameter and minimize with
respect to the amplitude. On a frustrated geometry it is not
clear on what pattern to impose so we vary with respect to the
full set {Si,�i}. The resulting state turns out to be disordered
but correlated, and leads to a nontrivial electronic spectrum.

C. Observables

From the equilibrium configurations obtained at the end
of annealing we calculate the following averaged quantities
(angular brackets represent thermal average over MC config-
urations): (i) Magnetic and orbital structure factors are

Smag(q) = 1

N2

∑
i j

〈Si · S j〉eiq·(ri−r j ),

Sorb(q) = 1

N2

∑
i j

〈�i · � j〉eiq·(ri−r j ).

(ii) The size distribution of the orbital field is computed as

P(�) = 1

N

∑
i

〈δ(� − |�i|)〉.

(iii) The electronic density of states is

N (ω) = 1

N

∑
n

〈δ(ω − εn)〉,

where εn are single particle eigenvalues in an equilibrium
configuration. (iv) The optical conductivity is

σxx(ω) = σ0

N

〈∑
n,m

f (εn) − f (εm)

εm − εn

∣∣∣∣∣∣Jnm
x |2δ(ω − Emn)〉,

FIG. 1. (a) Ground state phase diagram showing the metal-
insulator transition (MIT) boundary in the t/U and JAF/t plane.
We label the various magnetic phases as spin ferromagnet (S-F)
and spin liquid (S-L). The two orbital phases are labeled as orbital
ferromagnet (O-F) and orbital liquid (O-L). The detailed character-
ization of these phases is mentioned in the text. (b) The density of
states at the Fermi level N (0) for varying t/U and JAF/t . The dotted
line corresponds to MIT. N (0) vanishes in the insulating phase at
weak JAF/t . However, it retains a small nonzero value at large JAF/t ,
an indication of frustration induced Anderson localization behavior
(discussed later).

where Jnm
x is 〈n|Jx|m〉 and the current operator is given by

Jx = −i
∑
i,αβ

[(
t̃αβ

i,i+x̂c†
i,αci+x̂,β − H.c.

)]
.

Emn = εm − εn, f (εn) is the Fermi function, and εn and |n〉 are
the single particle eigenvalues and eigenstates of Hel , respec-
tively. The conductivity is in units of σ0 = e2/(h̄a0), where
a0 is the lattice constant. (v) The DC conductivity is obtained
as a low frequency average of the optical conductivity over a
window � = 0.05t ,

σDC = 1

�

∫ �

0
dωσxx(ω),

and the resistivity ρ = 1/σDC.

III. RESULTS

A. Phase diagram

Figure 1(a) shows the ground state of the model for varying
U/t and JAF/t , while Fig. 1(b) shows N (0), the density of
states at the Fermi level, over the same parameter space.

First the notation: We characterize phases in terms of their
spin and orbital character, S-L is spin liquid and S-F is a spin
ferromagnet. Similarly, O-L is orbital liquid, etc. These phases
also need to be specified in terms of their transport character.
To avoid a cluttered picture we have simply shown the metal-
insulator boundary in the t/U -JAF/t plane, the metal/insulator
aspect can be inferred from it. The metal-insulator transition
can be located from the vanishing of N (0), and also from a
calculation of the DC conductivity.

When JAF = 0 there is a metal-insulator transition at Uc ∼
11t from a ferromagnetic metal to a ferromagnetic insulator.
When the superexchange is moderate, JAF ∼ 0.2t , there is
strong competition between ferromagnetism (S-F, mediated
by double exchange) and antiferromagnetic tendency. As a
result there is a crossover from S-F to spin disordered (S-
L) behavior with increasing U/t roughly around the MIT,
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FIG. 2. Spin structure factor Smag(q) at T = 0 for U/t = 4, 8, and 12.5 for each of JAF/t = 0 (left column), 0.2 (middle column), and 0.6
(right column). We use the notation q = 2π

L (nx, ny, nz ), where ni’s are integers and 0 � ni < L. In our calculation L = 6. The size of a dot
signifies the relative weight at a given q while its color represents the actual magnitude of Smag(q). The presence of dominant weight at some
q, in these cases q = (0, 0, 0) indicates magnetic order phase, while the “random” but correlated patterns indicate a spin liquid.

although weak ferromagnetism survives in the insulator. For
strong superexchange JAF � 0.5t , the antiferromagnetic ten-
dency suppresses ferromagnetism completely and, as we will
show, there is no magnetization at any U/t . We have a spin
liquid (S-L) state at all U/t . In this large JAF limit, a relatively
weak Hubbard repulsion U ∼ 5t is enough to drive the metal-
insulator transition.

B. The magnetic state

A detailed understanding of the magnetic state is provided
by the magnetic structure factor Smag(q) computed in the op-
timized background. It highlights not only long-range order,
in terms of prominent peaks in q space, but also possible cor-
relations in the disordered state when there is no long-range
order.

Figure 2 shows Smag(q) for three different superexchange
couplings and for three U ’s in each case. The U ’s are chosen
so that they capture the metal, insulator, and crossover regime
for all three values of JAF.

For JAF = 0 there is no magnetic phase competition. At
U = 4t , Smag(q) has dominant weight at q = (0, 0, 0) describ-
ing the ferromagnetic order promoted by double exchange.

The magnetization is �0.95 (limited by our annealing pro-
cess) and the structure factor peak is ∼0.9 ∼ M2. As the
column shows, this result does not depend on U , suggesting
that even deep in the Mott insulator one would obtain a sat-
urated ferromagnetic state. The Tc’s would of course differ,
since the stiffness of the FM state depends on the kinetic
energy—which is U dependent.

For JAF = 0.2t , Smag(q) has a large weight at q = (0, 0, 0)
at U = 4t , as in the first row, but at U = 8t the peak, al-
though still at (0,0,0), has diminished weight ∼0.1. The
metal-insulator transition occurs around U ∼ 8t and by the
time U = 12.5t (last row) Smag does not have any prominent
peaks at any q. The superexchange coupling overcomes the
kinetic energy gain from DE but the pyrochlore structure
prevents AF ordering.

For JAF = 0.6t , Smag(q) the weight is spread over all q but
in a correlated manner, indicative of a spin liquid phase.

C. The orbital state

To have an idea of the underlying orbital state, we calcu-
late the orbital structure factor Sorb(q). Figure 3 shows the
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FIG. 3. (Top row) Ground state size distribution of the orbital field P(�) for JAF = 0, 0.2t , and 0.6t for the indicated U values. (Remaining
rows) Orbital structure factor at T = 0 for U/t = 4, 8, and 12.5 for each of JAF/t = 0 (left column), 0.2 (middle column), and 0.6 (right
column). We use the same convention as described in Fig. 2. The size of a dot signifies the relative weight at a given q while its color represents
the actual magnitude of Sorb(q). The presence of dominant weight at some q indicates an orbital ordered phase, otherwise a disordered phase.

structure factor for the three superexchange couplings. For
JAF = 0 we see Sorb(q) has dominant weight at q = (0, 0, 0)
describing the orbital ferro (O-F) ordering. For JAF = 0.2t ,
Sorb(q) has dominant weight at q = (0, 0, 0) for U = 4t and
8t (O-F ordering), and an orbital liquid state for U = 12.5t .
For JAF = 0.6t , Sorb(q) has weight spread over all q indicating
an orbital liquid state.

D. Density of states

Figure 4 shows the ground state density of states (DOS)
for various interaction strengths for the three regimes of
superexchange interaction of our phase diagram. We can see
that for U < Uc, the DOS has a finite weight at the Fermi
energy, and for U � Uc, the DOS has a gap in the spectrum.
As U → Uc, the DOS develops a prominent dip at the Fermi
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FIG. 4. (a)–(c) Ground state density of states (DOS) for JAF = 0, 0.2t , and 0.6t for different U/Uc. (d)–(f) Ground state DOS for U/Uc =
0.95, 1.0, and 1.05, on a normalized frequency scale, for the indicated JAF values.

energy, a signature of the pseudogap (PG) phase. We can
understand this in the following way. The band (U = 0) limit
of this model is a metal, with finite DOS and a peak at the
Fermi level. Inclusion of the interorbital interaction (U ) leads
to the emergence of orbital moments �i, with the size of the
orbital moment |�i| determined by the strength of U . For
U < Uc, we have |�i| � �sat = 1 (see Fig. 8, discussed later)
The presence of these orbital moments reduce the DOS at the
Fermi level. As U → Uc, |�i| increases monotonically and for
U � Uc it saturates to the atomic value |�i| = 1. The presence
of large orbital moments for U � Uc leads to the opening
of a gap in the DOS. From our calculation we estimate that
for JAF = 0, Uc = 11.0t , for JAF = 0.2t , Uc = 7.6t , and for
JAF = 0.6t , Uc = 5.0t . The superexchange interaction favors
the Mott-insulating phase.

The lower set of panels in Fig. 4 show the DOS near the
MIT for fixed ratios of U/Uc(JAF). Within each panel the JAF

is varied to probe if the spectral behavior changes with chang-
ing AF coupling, after factoring out the effect of Uc change by
normalizing the frequency axis by Uc. Our primary observa-
tion is that increasing JAF leads to enhanced low energy DOS
for a fixed ratio U/Uc. We attribute this to the increased spin
and orbital disorder in the larger JAF situation—leading to an
increasing “Anderson-Mott” character of the metal-insulator
transition. We have computed the inverse participation ratio
(IPR) for states as JAF is increased and found increasing lo-
calization. We discuss those results later.

E. Optics and transport

Figure 5 shows the optical conductivity σ (ω) in the ground
state for various interaction strengths and three regimes of
superexchange interaction of our phase diagram.

The band (U = 0) limit of the model has finite DOS at
the Fermi level. As a result σ (ω) shows a Drude peak in this
limit. Interorbital interaction (U ) leads to the emergence of
orbital moments �i. For U < Uc, we have |�i| � �sat = 1.
Increasing size of these orbital moments leads to a suppressed
Drude response, and σ (ω) peak shifts to higher frequencies,
indicating an increase in the insulating tendency of the system.

|�i| increases monotonically with increasing U and for
U � Uc it saturates to the atomic value |�i| = 1. Beyond Uc

there is an optical gap in σ (ω). From our calculation we find
that the Uc’s for different superexchange scales are consistent
with those obtained from the DOS results.

The lower set of panels in Fig. 5 show the optical conduc-
tivity near the MIT for fixed ratios of U/Uc(JAF). Within each
panel the JAF is varied to probe if σ (ω) changes with changing
AF coupling, after factoring out the effect of Uc change by
normalizing the frequency axis by Uc. Our primary observa-
tion is the increase in the low frequency spectral weight at
a fixed U/Uc as JAF, and the associated background disorder
increases.

We show the optical gap � in Fig. 6(a). It is clearly seen
that � = 0 for U < Uc and it increases monotonically for
U � Uc. Figure 6(b) shows the variation of the residual DC
resistivity ρ(T = 0) with U/t for different superexchange
values. The finite ρ(0) for U < Uc can be understood by the
scattering of electrons from the (small) orbital moments. For
U � Uc, the (large) orbital moments lead to an opening of a
Mott gap which manifests as ρ(0) → ∞. These behaviors are
seen in Fig. 6.

Figure 7 shows the DC conductivity σDC from our cal-
culation in the t/U -JAF/t plane. We observe σDC vanishing
as U � Uc. This also allows us to roughly estimate the MIT
boundary.
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FIG. 5. (a)–(c) Ground state optical conductivity for JAF = 0, 0.2t , and 0.6t for different U/Uc. (d)–(f) Ground state optical conductivity
for U/Uc = 0.95, 1.0, and 1.05, on a normalized frequency scale, for the indicated JAF values.

In Fig. 8(a) we highlight the behavior of the magnetization
(M ) in the ground state. We find that at JAF = 0 the system has
saturated magnetization (M = 1) at all U values, irrespective
of the metallic or insulating character. On the other hand, for
JAF � 0.5t , the magnetization is vanishingly small (M ∼ 0)
for the entire U range probed in our study. For intermedi-
ate JAF values, the magnetization displays a rapid crossover
around a scale Umag(JAF) that is close to but not quite the
metal-insulator transition point Uc(JAF). This is an indication
of distinct energy scales governing the magnetic transition and
the Mott transition in our model.

FIG. 6. (a) Variation of the optical gap (�/t) with U/t for
different JAF/t values. (b) The variation of the residual resistivity
ρ(T = 0) with U/t for different JAF/t values. The normalizing scale
is ρ0 = h̄/e2.

In Fig. 8(b) we show the behavior of average orbital mo-
ment �avg = 1/N

∑
i |�i| in the ground state. For U/t → ∞,

the orbital moment → 1, as one expects in the atomic limit.
The approach to this asymptote is faster at larger JAF values.
On the other hand, the U → 0 behavior is dictated by the
electronic band structure, and change in the magnetic state
with JAF. In Figs. 8(c) and 8(d) we show the overall variation
of M and �avg in the ground state, in the JAF/t and t/U plane.
It can be seen that the boundary separating the ferromagnetic
and spin-liquid phases, and the MIT boundary separating the

FIG. 7. Ground state DC conductivity σDC for varying t/U and
JAF/t . The normalizing scale is σ0 = e2/h̄. The MIT boundary can
be thought of as the vanishing of σDC, with increasing U/t values.
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FIG. 8. Magnetization (M ) and average orbital moment (�avg) in
the ground state. (a) U/t dependence of M at JAF = 0 indicates that
the system has M = 1 at all U , irrespective of the metal/insulator
character, and for JAF � 0.5t , M ∼ 0 for the entire U window
probed. At intermediate JAF, M shows a rapid crossover around a
scale Umag(JAF) that is close to but not quite the metal-insulator
transition point Uc(JAF). (b) For U/t → ∞, the orbital moment,
�avg → 1, as expected in the atomic limit. The approach to this
asymptote is faster at larger JAF. The U → 0 behavior is dictated
by the band structure, and change in the magnetic state with JAF.
(c) and (d) Overall variation of M and �avg in the JAF/t and t/U
plane. The dashed line is the MIT boundary separating the metallic
and insulating regimes.

metallic and insulating regimes, are distinct ones. We discuss
the detailed nature of this interplay next.

IV. DISCUSSION

To get a feel for the changing magnetic state and the shift-
ing MI transition point, it is useful to examine an approximate
effective “spin only” model. Consider the bond kinetic energy
in a spin configuration {Si}. It is the product of an electronic
average and a modulated hopping both of which depend on
{Si}. The dependence of the spin overlap factor is explicit,
it is simply

√
(1 + Si.S j )/2. The electronic average does not

have an obvious expression in terms of the spins but, as a
starting approximation, we can replace 〈c†

iαc jβ〉 by its thermal
average [74]. The thermal average, please note, is not a spin
configuration dependent quantity.

Under this assumption the kinetic energy term can be ap-
proximated as below, and added to the AF term:

Heff{S} ≈
∑

i j

Di j

√
(1 + Si · S j )/2 + JAF

∑
〈i j〉

Si · S j,

Di j =
∑
αβ

tαβ
i j 〈c†

iαc jβ + H.c.〉.

FIG. 9. The effective ferromagnetic exchange D at T = 0 for
varying t/U and JAF/t . The calculation and significance of this
quantity is explained in the text. The MIT boundary is shown by
dotted lines and coincides with the change from large to small values
of D.

The role of the Hubbard interaction, acting through the orbital
moment, is implicit in the model above. The Di j are supposed
to be computed in backgrounds that include the �i as well as
the AF coupling. Since the dependence of Di j on the magnetic
and orbital state is not known, the model above does not have
much predictive value. However, the thermally (and system)
averaged Di j , which we call just D, can serve to identify the
origin of the changing magnetic character (see Fig. 9). It can
also be related to direct measurables, e.g., (i) the spin stiffness
(spin wave velocity), since the D and JAF dictate this quantity,
and (ii) the integrated optical weight, via the f -sum rule

∑
i j

Di j

√
(1 + Si · S j )/2 ∝

∫ ∞

0
σ (ω)dω ≡ neff,

where neff, the integrated optical weight, is related to the
effective carrier density. This can be roughly simplified to
D

√
1 + m2 ∝ neff, where we have approximated the spin av-

erage by m2. The physics content of this is simple—reducing
magnetization reduces the hopping (D) and the combination
determines neff.

A. The metal-insulator transition line

The role of JAF is to generate magnetic phase competition
and reduce the ferromagnetic tendency by suppressing the
kinetic energy. To set a convenient reference, the effective
bond resolved kinetic energy D at JAF = 0 and U → 0 is
∼ − t . That allows us to set up three regimes.

(a) When JAF � D, we essentially have a weakly renor-
malized FM ground state and Uc is only modestly suppressed
with respect to the JAF = 0 value. For us this happens
when JAF � 0.1t . (b) In the interval 0.1t < JAF < 0.4t the Uc

changes quickly, at JAF = 0.4t it is roughly half the value
at JAF = 0. (c) For JAF � 0.4t the Uc does not reduce any
further since the magnetic ground state is completely disor-
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FIG. 10. Single particle DOS [N (ω)] and inverse participation ratio (IPR) at T = 0 for the system sizes L = 6 (a)–(c) and L = 8 (d)–(f),
for a selected choice of JAF = 0.2t at U = 0.9Uc, Uc, and 1.1Uc, respectively.

dered and the magnetization cannot be suppressed any further.
This shows up as the vertical asymptote of the MIT line in
Fig. 1.

B. The ferromagnet to “spin liquid” transition

The ferromagnet to spin liquid “transition” occurs along
a line that we call Umag(JAF). There is some ambiguity in
locating this line since within our parameter space the magne-
tization is always finite, if small. We set M = 0.05 as the S-F
to S-L transition. Just as Uc is dictated roughly by the compe-
tition between U and D, Umag is decided by the competition
between JAF and D.

C. Anderson character of the Mott insulating phase

Increasing superexchange leads to progressively disor-
dered spin and orbital backgrounds. As shown in Figs. 4(e)
and 5(e) there is a parameter regime where there is an optical
gap but no single particle gap (although there is a prominent
pseudogap). An examination of the states near the Fermi en-
ergy in this regime, Fig. 10, shows that the low-energy states
are localized, as characterized by significantly large values of
inverse participation ratio (see the Appendix). These localized
states are responsible for an insulating phase with finite optical
gap, but no spectral gap. As U is increased beyond Uc a gap
appears also in the single particle density of states. However,

the optical gap continues to remain larger than the single par-
ticle gap, and localized states still survive near the gap edges.
This behavior is prominent at large JAF where the geometry
of the pyrochlore lattice promotes spontaneous disorder. We
characterize the behavior as “Anderson-like” in this strongly
correlated system. The insulator close to the insulator-metal
boundary should be properly characterized as an “Anderson-
Mott insulator.”

V. CONCLUSION

In this paper we have studied the ground state properties of
a two orbital Hubbard model with the electrons additionally
strongly coupled to a background local moment—and the mo-
ments interacting antiferromagnetically among themselves.
This Hubbard–double exchange–superexchange scenario, on
the pyrochlore lattice, is the minimal model for the rare earth
molybdates. We map out the ground state phase diagram via
a simulated annealing based unrestricted Hartree-Fock calcu-
lation and establish the metal-insulator and ferromagnet-spin
liquid transition boundaries. We provide the detailed structure
factors, the density of states across the metal-insulator transi-
tion, and the optical conductivity, pointing out an increasing
Anderson character to the notional Mott transition as the anti-
ferromagnetic superexchange is increased. This effect should
be readily observable in the high pressure experiments.
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APPENDIX: INVERSE PARTICIPATION RATIO AND
ANDERSON-MOTT INSULATOR

Our measurement of spectral and optical gaps at the Fermi
level reveals that unlike the naive expectation of them being
equal, in the present system the magnitude of the optical
gap exceeds that of the spectral gap. The observation can
be attributed to “disorder free” Anderson-Mott localization,
wherein the geometric frustration of the lattice gives rise to
localization of the electrons. The corresponding single parti-
cle DOS exhibits accumulation of spectral weight at the gap
edges, thereby reducing the spectral gap.

In order to ascertain the localizing tendency of the mo-
ments, we have calculated the inverse participation ratio (IPR)
defined as

IPR =
∑
i,α,σ

∣∣ui
α,σ

∣∣4
, (A1)

where ui
α,σ is the eigenvector corresponding to the eigenvalue

εα . For an eigenstate ψi,α the localization length (ξloc) is
related to the IPR as IPR ∝ 1/ξ 2

loc. Thus, an increase in lo-
calization leads to reduced ξloc and increase in IPR. In Fig. 10
we show the single particle DOS along with the corresponding
IPR for a selected JAF = 0.2t , as a function of increasing U/t

(normalized with respect to Uc, corresponding to the MIT
at JAF = 0). Furthermore, we have compared our results at
two different system sizes which shows that our observations
are robust against finite system size effects. Note that access
to still larger system sizes is restricted by the computational
expense.

Based on Fig. 10 we infer that for U � Uc, the open-
ing of the Mott gap at the Fermi level is accompanied by
a progressive increase in IPR close to the gap edges. We
quantify the observed localization in terms of the fraction of
localized states, which is the ratio between the number of
localized states and the total number of states. As a function
of increasing U/Uc the fraction of localized states for L = 6,
varies as 0.165, 0.174, and 0.211 for U = 0.9Uc, Uc, and
1.1Uc, respectively. For L = 8, the fraction of localized states
changes to 0.154, 0.179, and 0.217 for U = 0.9Uc, Uc, and
1.1Uc, respectively. This indicates that U/t favors the localiz-
ing tendency of the moments.

Our result suggests the possibility of disorder free lo-
calization of single particle eigenstates aided by geometric
frustration of the underlying lattice. It must however be noted
that our current numerical framework does not take into ac-
count the effect of quantum fluctuations, which can lead to
the dephasing of the single particle states. An analysis of
the effect of quantum fluctuations on such frustration aided
single particle localization is beyond the scope of this work.
It is however expected that signatures of such localized states
will survive at finite temperatures as well and will provide a
possible mechanism to resolve the experimentally observed
inequality between the spectral and optical gaps in geometri-
cally frustrated pyrochlore lattices undergoing Mott transition.
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