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Transition from band insulator to Mott insulator and formation of local moment in the half-filled
ionic SU(N) Hubbard model
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We investigate the local moment formation in the half-filled SU(N) Hubbard model under a staggered ionic
potential. As the Hubbard U increases, the charge fluctuations are suppressed and eventually frozen when U is
above a critical value Uc, marking the development of well-defined local moment with integer m fermions on
the A sublattice and (N − m) fermions on the B sublattice, respectively. We obtain an analytical solution for
Uc for the paramagnetic ground state within the variational Gutzwiller approximation and renormalized mean
field theory. For large N , Uc is found to depend on N linearly with fixed m/N , but sublinearly with fixed m.
The local moment formation is accompanied by a peculiar phase transition from the band insulator to the Mott
insulator, where the ionic potential and quasiparticle weight are renormalized to zero simultaneously. Inside the
Mott phase, the low-energy physics is described by the SU(N) Heisenberg model with conjugate representations,
which is widely studied in the literature.
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I. INTRODUCTION

Quantum spin models are a class of physical models de-
scribing “spins” or “local moments” which originate from
strong correlations between fermions (e.g., electrons or cold
atoms) such that the “charge” (fermion number) degrees of
freedom are frozen [1]. For instance, the Heisenberg model is
a low-energy description of the Hubbard model only when the
Hubbard U is large enough to drive the system into the Mott
insulating phase [2,3]. In the literature, the SU(2) Heisen-
berg model has been generalized to the SU(N) case [4] with
the spin operators satisfying the SU(N) algebra. The SU(N)
Heisenberg models provide a vast area to explore many new
phenomena [5–30]. Among different SU(N) representations
for the local spins, a conjugate representation with m fermions
on the A sublattice and (N − m) fermions on the B sublat-
tice [4] is mostly studied. It may support a generalized Néel
order: for instance, the first m and remaining (N − m) fla-
vors are occupied on the two sublattices, respectively. Hence,
the SU(N) symmetry is broken into SU(m) × SU(N − m).
The gapless fluctuations above this Néel order fall into the
Grassmannian manifold Gr(N, m) = U(N )/[U(m) × U(N −
m)] [31–34], which is reduced to the N-component Ginzburg-
Landau theory [35] or equivalently the famous CPN−1 model
in the special case of m = 1.

One early motivation for doing the SU(N) generalization of
the Heisenberg model is to perform 1/N expansion around the
saddle point at N = ∞, providing a controllable way to reach
the SU(2) model [36]. However, physically speaking, the
SU(N) spin models should derive from the SU(N) Hubbard
model in the limit that charge fluctuations are completely
frozen. The SU(N) Hubbard model is widely studied [37–50],
and is now within experimental reach, thanks to the fast

technical development, mostly in the field of cold
atoms [51–64]. This brings the large-N model to life, but
not just a gedanken model, and opens up a new field in the
study of the finite but large N versions of such models, in the
search for novel quantum spin states.

However, it is important to ask under what condition is the
system aptly described by the quantum spin model for which
the local moments have to be well established. In our previous
work, we have proposed to add a staggered ionic potential to
the SU(N) Hubbard model [65]. In this work, we will examine
the specific conditions for the Hubbard U and ionic potential
V under which the local moments can exist, with immedi-
ate relevance to experimental realization. We develop and
apply an SU(N)-symmetric renormalized mean-field theory
(RMFT) based on the variational approach of the Gutzwiller
projection approximation [2,66–71]. The RMFT developed
here may be applied or extended straightforwardly for general
models with a large number of fermion flavors subject to any
internal symmetry. For the ionic SU(N) Hubbard model, we
find the local moments, with quantized integer m fermions on
the A sublattice and (N − m) fermions on the B sublattice,
are well established when U is above a critical value Uc,
which depends on N , m, and the ionic potential V . For large
N , Uc is found to depend on N linearly with fixed m/N ,
but sublinearly with fixed m. In addition, the local moment
formation is accompanied by a peculiar transition from the
band insulator to the Mott insulator [72,73], at which the ionic
potential and quasiparticle weight are renormalized to zero
simultaneously. Finally, we show that the low-energy physics
of local moments is described by the widely studied SU(N)
quantum spin model inside the Mott insulating phase. Our
results shed light on the realization of such models in, e.g.,
cold atoms.
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II. SU(N) HUBBARD MODEL IN AN IONIC POTENTIAL

The ionic SU(N) Hubbard model we consider is described
by the Hamiltonian H = Ht + HU , with

Ht = −t
∑
〈i j〉,a

[c†
a(i)ca( j) + H.c.] (1)

and

HU = U

2

∑
i

[
n̂(i) − N

2

]2

+ V
∑

i

(−1)in̂(i), (2)

where i labels the lattice site, 〈i j〉 denotes a nearest-neighbor
bond, a = 1, 2, . . . , N labels the flavor of the fermions, n̂(i) =∑

a n̂a(i) = ∑
a c†

a(i)ca(i) is the local density operator, U de-
notes the Hubbard interaction, and V is the staggered ionic
potential. The model is clearly SU(N) symmetric in the
internal flavor space. In real space, it breaks the transla-
tional symmetry, since the A and B sublattices are distinct.
However, a particle-hole transformation cia → (−1)ic†

ia inter-
changes these sublattices, so the system is invariant under
A-B sublattice transformation combined with the particle-hole
transformation. As a result, the charge density is exactly stag-
gered and the system is at half filling on average. Such a
symmetry can be used to reduce the variational parameters,
as can be seen in later discussions.

The HU term can be rewritten as

HU = U

2

∑
i

[n̂(i) − n0(i)]2, (3)

where n0(i) = N
2 − (−1)i V

U may be understood as the local
ground charge tunable continuously by the staggered gate
voltage V . We ask whether n̂(i) can be quantized to integers m
(0 < m < N) on the A sublattice and (N − m) on the B sublat-
tice, i.e., forming local moments, called m-tuple moments, for
large enough U . The concept of local moment is a natural gen-
eralization of the SU(2) case for which only one kind of local
moment with m = 1 is possible. Here, however, the states with
different m-tuple moments should belong to different Mott
insulating states. On the other hand, in the limit of U = 0, a
nonzero V always yields a band insulator. For large enough U ,
the system is expected to enter different Mott insulating states
labeled by m. Whether these m-tuple moments exist and how
to describe these band-to-Mott insulator transitions are the
main concerns of the present work. To answer these questions
clearly, and for simplicity, we shall focus on the paramagnetic
case in the following.

III. SU(N)-SYMMETRIC GUTZWILLER PROJECTION
APPROXIMATION AND RMFT

Local moment formation is beyond any Hartree-Fock
mean-field description. We employ the standard Gutzwiller
projection approximation to treat the correlation effect.
The SU(2) version of such a theory has been applied
widely [2,67,68,70,71], and will be extended here to the
SU(N)-symmetric case in which all the N flavors are equiv-
alent. For sufficient generality, we present the theory for an
arbitrary case of the applied potential in this section, and will
specify the ionic potential in the next section.

Specifically, we consider a variational theory with the fol-
lowing trial wave function,

|ψ〉 = P̂|ψ0〉, (4)

where |ψ0〉 is the ground state of a free variational Hamil-
tonian to be specified, and P̂ is the Gutzwiller projection
operator in the grand canonical ensemble

P̂ = �iP̂i, P̂i =
N∑

k=0

ηk (i)yk
i Q̂k (i), (5)

where Q̂k (i) is the projection operator for the k-tuple state
(with k fermions),

Q̂k (i) =
∑

S={a�|�=1,...,k}

∏
b∈S

n̂b(i)
∏
b/∈S

[1 − n̂b(i)]. (6)

Clearly, in the absence of projection, we have P̂i =∑
k Q̂k (i) = 1. The idea of the Gutzwiller projection is to re-

assign weights to the basis states, and this is how correlations
(at least the local ones) can be captured. Here, the weight for
the k tuple is assumed to be

ηk (i)yk
i = exp(−gik

2 + k ln yi ), (7)

where gi is the site-dependent Gutzwiller projection parameter
to punish multifermion occupations (but can be chosen to
be uniform in our case). In the spirit of density functional
theory [74], the ground state energy is a unique functional
of the density distribution. Therefore we have introduced a
fugacity yi to maintain the fermion density before and after
projection in the grand canonical ensemble [70]. The fermion
density on each site before projection is

N fi = 〈n̂(i)〉0 =
∑

k

kqk0(i), (8)

where fi is the average occupation number per flavor, and 〈·〉0

indicates the average performed with respect to |ψ0〉. We have
defined qk0(i) as the average of Q̂k (i) in the unprojected state,

qk0(i) = 〈Q̂k (i)〉0 = Ck
N f k (i)[1 − f (i)]N−k, (9)

where Ck
N is the combinatorial factor. After projection, we still

require

N fi = 〈n̂(i)〉 =
∑

k

kqk (i), (10)

with

qk (i) = 〈Q̂k (i)〉 = 〈P̂Q̂k (i)P̂〉0

〈P̂P̂〉0
, (11)

where 〈·〉 denotes average with respect to |ψ〉. Exact evalu-
ation on the right-hand side is difficult. To make analytical
progress, we resort to the usual Gutzwiller approxima-
tion [67]: the projection operator unrelated to the target
operator under average can be Wick contracted separately.
This approximation can be shown to be exact in infinite di-
mensions [75] for general on-site interactions [69], and turns
out to work satisfactorily in finite dimensions [68,69,71]. Un-
der the Gutzwiller approximation, we have

qk (i) = 〈P̂iQ̂k (i)P̂i〉0

〈P̂iP̂i〉0
. (12)
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Note the projection operator P is simplified to Pi. After sub-
stituting P̂i in Eq. (5), we obtain

qk (i) = η2
k (i)y2k

i qk0(i)

Di
, Di =

∑
k

η2
k (i)y2k

i qk0(i), (13)

where we have used Q̂2
k (i) = Q̂k (i) as a property of the pro-

jection operator Q̂k (i). The fugacity yi (or ln yi in practice) is
then tuned to satisfy the density restriction Eq. (10).

After obtaining all of qk0(i) and qk (i), we are in a position
to evaluate the variational energy in the projected state under
the Gutzwiller approximation. The local charging energy is
obtained most straightforwardly, given the fact that the total
charge operator and the projectors Q̂k (i) share the same local
basis states as eigenstates,

EU = 〈HU 〉 = U

2

∑
i

N∑
k=0

[k − n0(i)]2qk (i). (14)

The kinetic energy is slightly more difficult to evaluate. Since
the fermion hopping involves two sites, we need to keep two
projectors, say, P̂i and P̂ j in the hopping on the 〈i j〉 bond,

〈c†
a(i)ca( j)〉 = 〈P̂ic†

a(i)P̂iP̂ jca( j)P̂ j〉0〈
P̂2

i P̂2
j

〉
0

. (15)

Since the fermion operator is self-projective, we need to re-
move over projections before taking the quantum average. For
a given site i, we observe that

P̂ica(i)P̂i =
∑

k

[
ηk (i)yk

i Q̂k (i)
]
ca(i)

[
ηk+1(i)yk+1

i Q̂k+1(i)
]

≡
∑

k

[
ηk (i)ηk+1(i)y2k+1

i Q̂â
k (i)

]
ca(i), (16)

where we have defined a partial projection operator Qâ
k (i) for

k fermions in the local Fock space excluding flavor a,

Q̂â
k (i) =

∑
S={a�|�=1,...,k;a� �=a}

∏
b∈S

n̂b(i)
∏

b/∈S,b�=a

[1 − n̂b(i)]. (17)

Its average in |ψ0〉 is evaluated to be

qâ
k0(i) = 〈

Q̂â
k (i)

〉
0 = Ck

N−1 f k
i (1 − fi )

N−1−k, (18)

for any flavor a in our SU(N)-symmetric case. Inserting the
above relations in Eq. (15), we obtain

〈c†
a(i)ca( j)〉 = gt (i, j)〈c†

a(i)ca( j)〉0, (19)

where gt (i, j) = z(i)z( j) is the renormalization of the hopping
by the projection, and

z(i) =
∑

k ηk (i)ηk+1(i)y2k+1
i qâ

k0(i)

Di

=
N−1∑
k=0

qâ
k0(i)

√
qk (i)qk+1(i)

qk0(i)qk+1,0(i)
. (20)

In the second line we have used Eq. (13) to trade ηk (i)yk
i /

√
Di

for
√

qk (i)/qk0(i).

Combining the potential and kinetic energies, we obtain the
total variational energy E in the projected state,

E = −t
∑
〈i j〉a

gt (i, j)χi j0 + U

2

∑
i

N∑
k=0

[k − n0(i)]2qk (i), (21)

where χi j0 = 〈c†
a(i)ca( j) + H.c.〉0 is the average of hopping

operator in the unprojected state. This energy is understood
as a functional of (i) the fermion density fi which in turn
depends on the trial wave function |ψ0〉 and (ii) the Gutzwiller
projection parameter gi. The fugacity parameters yi are taken
as Lagrange multipliers that are eliminated by forcing the in-
variance of the local fermion density under the projection. The
variational Gutzwiller approximation is closely related to the
RMFT. Minimizing E with respect to |ψ0〉, i.e., δE/δ〈ψ0| =
0, with fixed fermion density N fi, we obtain

HRMFT|ψ0〉 = E |ψ0〉, (22)

where E is introduced as the Lagrange multiplier enforcing
normalization of the wave function, and HRMFT is a free
Hamiltonian yet encoded with the renormalization effect from
the Gutzwiller projection,

HRMFT = −t
∑
〈i j〉a

gt (i, j)[c†
a(i)ca( j) + H.c.] −

∑
i

μin̂(i),

(23)

where the variational local chemical potential μi is introduced
to enforce N fi = 〈n̂(i)〉0. It can be shown that the single-
particle spectrum of HRMFT is just the quasiparticle excitation
spectrum beyond the correlated variational ground state, with
the quasiparticle weight renormalized by gt [70].

IV. APPLICATION TO THE IONIC
SU(N) HUBBARD MODEL

In this section, we apply the variational Gutzwiller approx-
imation and RMFT developed in the previous section to the
ionic SU(N) Hubbard model in our interest.

A. General formalism

Due to the particle-hole and sublattice symmetries, and
without involving further symmetry breaking, we only have to
specify the fermion density (per flavor) f and the Gutzwiller
parameter g on the A sublattice. Correspondingly, we can
replace f → 1 − f , k → N − k, n0 → N − n0, etc., to obtain
the relevant quantities on the B sublattice, while g remains the
same. Under these simplifications, χi j0 and gt (i, j) become
bond independent, denoted as χ0 and gt , respectively. In par-
ticular, gt is now given by

gt =
(∑

k

qâ
k0

√
qkqk+1

qk0qk+1,0

)2

. (24)

Due to the presence of an ionic potential, we choose μi =
−(−1)igt�c in HRMFT to write

HRMFT = −gtt
∑
〈i j〉a

[c†
a(i)ca( j) + H.c.] + gt�c

∑
i

(−)in̂(i).

(25)
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Under such a parametrization, gt is a global factor renormal-
izing the effective bandwidth and quasiparticle excitations.
The unprojected ground state |ψ0〉, subsequently the fermion
density f , and the average hopping χ0, only depend on �c.
From HRMFT and after some algebra, we obtain

f = 1

2

∫
dε ρ(ε)

(
1 − �c√

ε2 + �2
c

)
. (26)

ζ tχ0 =
∫

dε ρ(ε)
ε2√

ε2 + �2
c

. (27)

Here ζ is the coordination number, and ρ(ε) is the density
of states. As an illustrative example, we consider the Bethe
lattice, for which ρ(ε) = (4/πW )

√
1 − 4ε2/W 2, with W the

bandwidth, giving rise to

f = 1

2
− 1

2

�̃√
�̃2 + 1

2F1

(
1

2
,

3

2
; 2;

1

�̃2 + 1

)
, (28)

ζ tχ0 = W

4
2F1

(
1

2
,

3

2
; 3;

1

�̃2 + 1

)
, (29)

where �̃ = 2�c/W and 2F1 is the standard hypergeometric
function.

In practice, for a given f , we construct qk0 [Eq. (9)],
qâ

k0 [Eq. (18)], and qk [Eq. (10) by tuning y], and hence gt

[Eq. (24)]. Then together with χ0, we obtain the total varia-
tional energy [Eq. (21)] per site explicitly given by

E = gt E
0
K + U

2

∑
k

(
k − N

2
+ V

U

)2

qk, (30)

where E0
K = −Nζ tχ0/2. Finally, the energy E needs to be

optimized with respect to ( f , g) or equivalently (�c, g).

B. SU(10) case

Let us take SU(10) as an example. In Fig. 1(a), we present
the hopping renormalization gt versus U and V . We find gt is
suppressed by U and drops to zero for large enough U above
a critical value Uc. Interestingly, the regimes with gt = 0 form
different Mott lobes, enclosed by the boundaries shown as
white curves (to be calculated analytically in the next section).

For U/W = 10, we plot the fermion density nA on the
A sublattice (solid line, left scale) as a function of V/U in
Fig. 1(b). For comparison, gt is also plotted (dashed line, right
scale). As the ionic potential V continuously varies, nA shows
a staircase behavior. Within each plateau, nA = m is quan-
tized to the nearest integer of n0 = N

2 − V
U and gt = 0, where

charge fluctuations are completely frozen. Between neighbor-
ing plateaus (Mott lobes), nA changes continuously between
two neighboring integers and meanwhile gt is nonzero. In
this region, the system is a band insulator with staggered
charge density wave as long as m �= N/2, in which there is
no gapless excitation but the charge density nA as a property
of the ground state can be continuously tuned by the staggered
ionic potential V . In contrast, the uniform part of the charge
density (averaged over both sublattices) does not change with
V , as indicated above.

In Fig. 2, we show the U dependence of gt , nA, qm, and
qm±1 with a fixed V/U = 1.8 corresponding to m = 3. It is
seen that gt drops continuously with U from 1 at U = 0 to 0

-5 0 5

0 5

V/U

0

5

10

U
/W

(a)

0

1

g t

-5
V/U

0

5

10

n A

0

0.5

1

g t

(b)

U/W=10

FIG. 1. Results of the ionic SU(10) Hubbard model. (a) Band
renormalization factor gt versus Hubbard U and ionic potential V .
The color encodes the value of gt . The white curves enclose Mott
lobes with gt = 0. (b) Fermion density nA on the A sublattice (solid,
left scale) and gt (dashed, right scale) versus V/U for U/W = 10.

at Uc and maintains at zero for U > Uc. The average fermion
number nA is found to vary continuously with U < Uc but
quantized to m when U � Uc. The most direct way to see the
local moment formation is through qm which increases with U
from the free limit value [given by Eq. (9)] at U = 0 to 1 when
U � Uc. Meanwhile, qk �=m drops to zero at Uc (for clarity, only
qm±1 are plotted), which of course is a natural consequence of
the normalization condition

∑
k qk = 1. Therefore, different

m-tuple moments are well established inside these Mott insu-
lating phases.

0 2 4 6 8
U/W

0

0.2

0.4

0.6

0.8

1

1.2

1.4

g
t, q

k, n
A
/3

V/U=1.8

U
c

n
A
/3

FIG. 2. Band renormalization factor gt , average of the k-tuple
projection operator qk , and fermion number nA versus U for V/U =
1.8, corresponding to m = 3 and δ = 0.2, in the case of SU(10). For
clarity, only qm and qm±1 are plotted.
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The phase outside of the Mott lobes are characterized by
nonzero gt , which in fact is a band insulator (except V = 0)
caused by the ionic potential in our bipartite lattice, although
there is a renormalizaiton of the quasiparticle excitations.
Therefore the phase transitions here from gt �= 0 to gt = 0
are not the usual metal-insulator transitions but from the band
insulator to the Mott insulator. It is an interesting question to
ask whether the band gap closes to generate a metallic phase
at or near the phase transition [72,73,76]. Our answer to this
question is actually bilateral: the effective excitation gap for
the quasiparticles (under projection) is given by gt�c, which
vanishes as the Mott limit is approached, but at the same time
the quasiparticle weight also vanishes.

C. Mott transitions

We now try to obtain the critical Uc analytically for the
Mott transitions. Near the Mott lobe labeled by m, we have
found qm approaches 1 and all other qk �=m are small and
linearly drop to zero at Uc as seen from Fig. 2. Therefore, it is
reasonable to assume

qk = (1 − ε− − ε+)δkm + ε−δk,m−1 + ε+δk,m+1, (31)

which satisfies the normalization condition
∑

k qk = 1 and
gives the fermion density N f = ∑

k kqk = m + (ε+ − ε−).
The hopping renormalization Eq. (24) in this approximation
is given by

gt = 1 − ε− − ε+
qm0

(
qâ

m−1,0

√
ε−

qm−1,0
+ qâ

m0

√
ε+

qm+1,0

)2

, (32)

such that the total energy per site in the projected state be-
comes

E = −gt

∣∣E0
K

∣∣ + U

2
(ε− + ε+) + U

4
δ(ε+ − ε−), (33)

where we defined

δ = n0 − m = N

2
− V

U
− m (34)

as the charge frustration, or the deviation of N/2 − V/U away
from an integer m. Requiring ∂E/∂ε± = 0 in the limit of
ε± → 0, we obtain Uc = uc|E0

K |, with a universal function uc

independent of the details in the kinetic part of the Hamilto-
nian,

uc = 2

1 − 2δ

qâ2
m0

qm0qm+1,0
+ 2

1 + 2δ

qâ2
m−1,0

qm−1,0qm0
. (35)

Using the expressions for qk,0 [Eq. (9)] and qâ
k,0 [Eq. (18)],

it can be shown that Uc is automatically invariant under
the particle-hole transformation m ↔ N − m and f ↔ 1 − f .
[We note that Eq. (35) can also be applied to the nonstaggered
case. The only exception is the value of χ0 (and hence E0

K ),
to be obtained in a uniform potential which in turn describes
a metal.] From Eq. (35), uc is found to depend strongly on
the charge frustration δ. As δ → ±1/2 (maximally charge
frustrated), uc → ∞, as seen in Fig. 1(a). This means the
Mott transition cannot be reached in this case. For δ = 0,
instead, we obtain finite uc, which we plot as a function of
m/N in Fig. 3(a). In the case of N = 2, the Brinkman-Rice
result uc = 8 is recovered [2]. For larger N , uc is reduced but

0 0.5 1
m/N

4

5

6

7

8

u
c

(a)

N=2

4

6
8
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20
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0 0.5 1
m/N

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

E
K0
/N

W

(b)

5

3

FIG. 3. (a) The universal function uc = Uc/|E 0
k | for δ = 0 versus

m/N for a series of N up to 100. (b) The kinetic energy per site per
flavor EK/N versus m/N .

always larger than 4. For a given N , uc increases quickly as m
approaches 1 or N − 1 but is always smaller than 8.

To proceed, we also need |E0
K | to obtain Uc. For the Bethe

lattice, we plot the bare kinetic energy E0
K per site per flavor

with respect to m/N in Fig. 3(b). Clearly, as m/N approaches 0
or 1, |E0

K | drops to zero. Combining uc and |E0
K |, we obtain Uc.

For the cases of N = 2, 6, and 10, respectively, we plot the
results of Uc versus V/U in Fig. 4(a). The result of N = 10 is
also plotted in Fig. 1(a) for comparison. Similar calculations
can be performed on odd N as shown in Fig. 4(b) for N =
3, 7, and 11, respectively. Note that for a fixed N (e.g., N =
10), Uc drops slightly as m approaches 1. This is the combined
effect of the corresponding increase of uc [see Fig. 3(a)] and
decrease of |E0

K | [see Fig. 3(b)].
For the N dependence of Uc with δ = 0, we show two

representative results of m = N/2 and m = 1 in the inset of
Fig. 4(a). A perfect linear dependence Uc versus N for large N
is seen for m = N/2 (solid line) since uc approaches a constant
4 from Fig. 3(a), and |E0

K | ∝ N from Fig. 3(b). We also find
the scaling of Uc ∝ N for any fixed m/N (not shown). But for
a fixed m, e.g., m = 1 as shown by the dashed lines in the inset
of Fig. 4(a), Uc does not linearly depend on N anymore. This is
because m/N decreases toward zero as N increases to infinity,
and thus |E0

K |/N does not maintain a fixed value but drops to
zero. Therefore, the linear scaling of Uc = uc|E0

K | ∝ N breaks
down to a sublinear behavior.
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FIG. 4. (a) The critical value Uc versus V/U for N = 2 (solid),
6 (dashed), and 10 (dash-dotted), respectively. The Mott lobes are
labeled by m. (b) Uc/W for δ = 0 versus N for m = N/2 (solid) and
m = 1 (dashed).
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V. SPIN DESCRIPTION OF THE MOTT
INSULATING STATES

We have found the conditions for different Mott insulating
states in which different types of local moments are formed
and charge degrees of freedom are frozen. The low-energy
effective theory inside these Mott lobes should be described
by these local moments, or equivalently the SU(N) “spins.”

Given the ground state with m fermions on the A sublattice
and (N − m) fermions on the B sublattice, we can perform a
second-order perturbation with respect to the kinetic Hamilto-
nian Ht , to obtain an effective Hamiltonian in the low-energy
sector,

H = 4t2

(1 + δ2)U

∑
〈i j〉

∑
ab

ca(i)†cb(i)c†
b( j)ca( j), (36)

subject to ni = ∑
a ca(i)†ca(i) = m on the A sublattice and

ni = N − m on the B sublattice. This restriction suggests to
define spin operators Sab(i) on site i as

Sab(i) = c†
a(i)cb(i) − ni

N
δab, (37)

such that the traceless condition Tr S(i) = 0 is satisfied. Fur-
ther, it can be checked that these Sab satisfy the SU(N)
algebra:

[Sab, Scd ] = δbcSad − δad Scb. (38)

Using these spin operators, the above Hamiltonian can be
rewritten as the SU(N) Heisenberg model

H = J
∑
〈i j〉ab

Sab(i)Sba( j), (39)

where J = 4t2

(1+δ2 )U . Since U ∼ Uc here should be proportional
to N , the above Hamiltonian has a natural large-N limit.
The SU(N) Heisenberg model has been widely studied in
the literature, as a mathematical generalization of the SU(2)
Heisenberg model [4]. In this work, we have shown its relation
to the ionic SU(N) Hubbard model.

The above SU(N) Hubbard or Heisenberg model supports
an antiferromagnetic ground state with the Néel order. To
represent the Néel order, we may select a specific spin axis,
e.g., one of the diagonal Cartan base,

Lm(i) =
∑

a

�a
mc†

a(i)ca(i), (40)

with �a
m = 1

m for a � m and − 1
N−m for a > m. The Néel or-

der is then described by 〈Lm(i)〉 ∼ (−1)iN , with m flavors
of fermions on the A sublattice and the remaining (N − m)
flavors on the B sublattice.

Note that even if the local moments Lm are ordered,
the state still enjoys an internal symmetry group, SU(m) ×

SU(N − m), which becomes of merely gauge degrees of free-
dom if the charge is fully quantized. The Goldstone modes
above the Néel ordered state fall into the Grassmannian
manifold Gr(N, m) = U(N )/[U(m) × U(N − m)] [31]. Such
fluctuations exchange the flavor content of the local moments
without affecting the charge, in analogy to the spin rotation in
the SU(2) system.

VI. CONCLUSION

In summary, we have developed a Gutzwiller approxima-
tion and RMFT for the SU(N)-symmetric fermionic systems.
Applying to the ionic Hubbard model, we find the conjugate
local moments, with m fermions on the A sublattice and
(N − m) fermions on the B sublattice, are well established
when the Hubbard U is above a critical value Uc. We ob-
tained an analytical solution to Uc which depends on the bare
kinematics and a universal function of m, N , and the charge
frustration δ. For large N , Uc is found to depend on N linearly
for fixed m/N but sublinearly with fixed m if N is fixed.
The local moment formation is accompanied by a peculiar
band-insulator to Mott-insulator transition, where the ionic
potential and quasiparticle weight are renormalized to zero
simultaneously. Inside the Mott insulating phase, the system is
effectively described by the SU(N) Heisenberg model which
is widely studied previously in the literature. Our results shed
light on the realization of such models in cold-atom systems.

Finally, several remarks on the Gutzwiller projection are in
order. First, it can be improved by including additional Jastrow
factors [71]. Second, in one dimension, the Gutzwiller projec-
tion is inaccurate or even fails, while a long-range Jastrow
factor alone (without Gutzwiller projection) turns out to be
able to capture the Mott insulating state correctly [77]. Third,
even in infinite dimensions, the metal-Mott insulator transition
is better described by the Gutzwiller projection followed by a
partial Schrieffer-Wolff unitary transformation [78]. The latter
two directions are intriguing and even challenge the notion of
the Mott state defined by the absence of double occupancy,
in the SU(2) case. It would be interesting to improve our
study of the slightly more complicated ionic SU(N ) Hubbard
model along similar lines. However, we believe our results for
two- and higher-dimensional ionic models should provide a
qualitatively correct picture regarding the multiple transitions
from the band insulator to Mott insulator, as well as the order
of magnitude of the critical interactions.
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