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We build a microscopic model to study the intralayer and interlayer superexchange due to electrons hopping
in chromium trihalides (CrX3, X = Cl, Br, and I). In evaluating the superexchange, we identify the relevant
intermediate excitations in the hopping. In our study, we find that the intermediate hole-pair excitations in
the p orbitals on X ion play a crucial role in mediating various types of exchange interactions. In particular,
the interlayer antiferromagnetic exchange may be realized by the hole-pair-mediated superexchange. Interest-
ingly, we also find that these virtual hopping processes compete with each other, leading to weak intralayer
ferromagnetic exchange. In addition, we also study the spin-orbit coupling effects on the superexchange and
investigate the Dzyaloshinskii-Moriya interaction. Finally, we extract the microscopic model parameters from
density functional theory for analyzing the exchange interactions in a monolayer CrI3.
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I. INTRODUCTION

The realization of two-dimensional (2D) magnetism in
an atomically thin chromium trihalide (CrX3, X = Cl, Br,
and I) is one of the recent breakthroughs in the field of 2D
materials [1–5]. Although 2D magnetism is relatively new
to the field, the research has progressed at an incredible
pace and demonstrated many intriguing magnetic phenomena
due to low dimensionality [6–10]. Not to mention, this 2D
magnet is a building block of van der Waals (vdW) het-
erostructures [11,12] that can be integrated into devices to
derive new functionality for spintronic applications [13–18].
Despite the fascinating magnetic properties and potential ap-
plications, the understanding of the underlying physics of
this low-dimensional magnetism is still incomplete and makes
predicting the magnetic properties of these vdW materials
challenging.

Stacking-dependent magnetism is perhaps one the of most
intriguing properties in multilayer CrX3. In this regard, many
experimental [19–32] and theoretical [33–42] efforts have
been devoted to understanding the interlayer exchange cou-
pling and stimulating a lot of interest in moiré magnetism
[43–51]. Nevertheless, modeling the interlayer exchange in
these materials quantitatively is a very challenging task [16],
and the origin of such an interlayer exchange is still an
ongoing open problem. In contrast to multilayer CrX3, the
theory of intralayer exchange in a monolayer CrX3 is very
well established [52–59], and the intralayer ferromagnetic
(FM) coupling can be intuitively explained by the superex-
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change due to the Cr-X -Cr hopping process. On the other
hand, the interlayer exchange coupling mediated by the
Cr-X -X -Cr hopping process is relatively less well understood.
The interlayer superexchange may emerge as a ferromagnetic
(FM) or antiferromagnetic (AFM) coupling depending on the
stacking structure in a multilayer. This sensitive stacking-
dependent behavior is a hallmark of competing effects of
different exchange processes. For this reason, the interlayer
superexchange is inherently a complicated problem.

Besides, the spin-orbit coupling (SOC) effects in the su-
perexchange are another outstanding theoretical problem in
CrX3 [16]. Although these effects on the magnetic exchange
may be weak, the SOC-mediated symmetric and antisymmet-
ric exchanges have important implications for 2D materials.
According to the Mermin-Wagner theorem, the long-range
order in a low-dimensional system is susceptible to thermal
fluctuations. To circumvent this in 2D magnets, the magnetic
anisotropy that arises from the symmetric exchange is essen-
tial to stabilizing the magnetic order [53].

Furthermore, unlike three-dimensional (3D) bulk, the
Dzyaloshinskii-Moriya (DM) interaction due to the antisym-
metric exchange may be enhanced significantly by the 2D
materials’ highly tunable electronic properties [60–64]. In-
terestingly, the enhanced DM interaction may lead to the
emergence of chiral magnetic order under moiré engineer-
ing [48]. As suggested by experiments [65–68] and theories
[62,69], the next-nearest-neighbor DM interaction may pro-
foundly influence the magnetic ground state of CrX3, forming
a gap at the Dirac points in the magnon dispersion. This
may lead to a topological nontrivial ground state which hosts
topological magnons at the edges [70]. To explore these inter-
esting magnetic phenomena, analyzing the competing effects
due to hopping and spin-flip processes in the SOC-mediated
superexchange also poses a challenge.
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FIG. 1. (a) Top and side views of the crystal structure of CrX3.
The dashed parallelogram is the unit cell of the crystal. The maxi-
mally localized Wannier functions (MLWF) of the X ion p orbital
are illustrated on the h2 sublattice. The other p orbitals are related by
the crystal symmetry. x̄ȳz̄ is the local coordinate system for quantiz-
ing the angular momentum at h2 which does not coincide with the
xyz global coordinate system. (b) The schematic atomic level with
crystal-field splitting near Fermi level EF . (c) MLWF of the d orbitals
in the Cr atom for ab initio TB model construction.

Therefore, we build a microscopic theory based on An-
derson’s superexchange approach [71,72] to tackle these
challenges. In Sec. II, we will describe the problem and the
model. In Sec. III, we construct the theoretical framework
for analyzing the ground state of the model. In Sec. IV, we
calculate the magnetic energy corrections for the ground state
due to superexchange processes. We then verify our theory by
applying it to CrI3 in Sec. V. This section also discusses how
to extract our microscopic model parameters from the ab initio
calculations. Finally, we summarize the paper and discuss the
outlook of this theoretical work in Sec. VI.

II. MODEL HAMILTONIAN

To study the magnetic ground state, we model the relevant
electronic modes in a monolayer CrX3 by H = HE + HU +
H′. The noninteracting Hamiltonian is

HE =
∑
Rασ

εα
Rψ

†
Rασ ψRασ , (1a)

where εα
R is onsite energy and

ψ
†
Rασ =

{
p†

rασ , α = x, y, z at R = r
d†

ṙα̇σ , α̇ = 1 . . . 5 at R = ṙ

is the creation field operator at the lattice position R with
orbital α and spin σ . Here, p†

rασ and d†
ṙα̇σ are the creation

field operators for p and d orbitals with r and ṙ being the
X and Cr sublattices’ position. We introduce the dotted in-
dices to explicitly distinguish the d-orbital from the p-orbital
degrees of freedoms. The five d orbitals split into a1g, eπ

g ,
and eσ

g in the trigonal basis [73] [see Fig. 1(b)]. In our case,
the a1g and eπ

g are degenerate which combine together to
form t2g (α̇ = 1, 2, 3) and eσ

g becomes eg (α̇ = 4, 5) in the
standard tetragonal basis. The three p orbitals are labeled by

α = x, y, z. The interacting Hamiltonian is

HU =
∑
Rαα′

[
U αα′

R n̂Rα

(
n̂Rα′ − 1

2
δαα′

)
− Jαα′

R ŝRα · ŝRα′

]
, (1b)

where n̂Rα = 1
2ψ

†
Rασ ψRασ is the occupation-number operator,

and ŝRα = 1
2ψ

†
Rασ τσσ ′ψRασ ′ is the spin operator with τ =

(τ x, τ y, τ z ) being the Pauli matrices. U αα′
R , Jαα′

R > 0 are the
onsite Hubbard and Hund interaction constants.

The tight-binding (TB) Hamiltonian is H′ = Ht + H†
t +

Hd + Vλ:

Ht =
∑

ṙr

trα,ṙα̇ p†
rασ dṙα̇σ , (1c)

Hd =
∑
ṙṙ′

uṙα̇,ṙ′α̇′d†
ṙ′α̇′σ dṙα̇σ , (1d)

Vλ =
∑

r

∑
α1α2α

iλαεαα2α1 τ̄
α
σ̄1σ̄2

p†
rα1σ̄1

prα2σ̄2 , (1e)

where trα,ṙα̇ and uṙ′α̇′,ṙα̇ being the TB constants and λα being
the spin-orbit coupling. εαα2α1 is the Levi-Civita antisym-
metric tensor. We stress that, in Eq. (1e), the spin in the
Hamiltonian is quantized in the local x̄ȳz̄ system (Fig. 1)
where their axes coincide with the p-orbital orientation.
Hence, the barred spin index (σ̄ ) and the barred Pauli matrices
(τ̄) are differentiated from the unbarred σ and τ [in Eqs. (1a)–
(1c)] which spins are quantized in the global xyz-coordinate
system (Fig. 1). The existence of such a preferential axis
for spin is the result of symmetry breaking due to spin-orbit
coupling (more discussion in Appendix C).

In this model, we include the Cr-Cr direct hopping since
the d orbitals may not be highly localized, especially for X =
I. This can be seen in the CrI3 quasiparticle dispersion that
the valence band is not very flat [74]. Furthermore, we note
that the X -X direct hopping between the p orbitals may not
be negligible as well. For instance, the hopping between the
h1 site and h2 site may not be small due to the extended p
orbitals (see Fig. 1). Nonetheless, we ignore the effect of X -X
hopping in the paper since they are irrelevant for the low-order
perturbation calculations.

To analyze the ground state of the Hamiltonian, we
can write the grand partition function formally as Z =
tr exp[−βH] where β = 1/(kBT ) with Boltzmann constant kB

and temperature T . Treating H′ as a perturbation, the partition
function in the interacting picture reads as

Z =
∑
�

〈�|T e− ∫ β

0 dτ H′(τ )e−βH0 |�〉, (2)

where T is the time-order operator and τ is the imaginary
time. H′(τ ) = eτH0H′e−τH0 with H0 = HE + HU . In Eq. (2),
|�〉 = ∑

{nRασ } �[{nα
Rσ }] ∏Rασ (ψ†

Rασ )nRασ |0〉, where |0〉 being
the vacuum with empty p and d orbitals. nα

Rσ = 0, 1 is the
occupation number and {nα

Rσ } denotes a possible occupation-
number configuration of a many-body state. �[{nα

Rσ }] is
the many-body wave-function amplitude in the occupation-
number representation. The trace in the partition function (2)
is summed over all possible many-body wave functions � in
the functional space.

To search for a stable ground state by exploring such a huge
many-body space is a formidable task. Instead, a practical
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approach is to identify the low-energy subspace and focus
on the analysis in the vicinity of this relevant space. In the
next section, we discuss the construction of this low-energy
subspace.

III. MAGNETIC GROUND STATE

In CrX3, the low-energy electronic modes are mostly com-
posed of the p orbitals on X ion and the d orbitals on Cr ion. In
particular, the d orbitals are partially filled by an odd number
of electrons. Based on the noninteracting analysis, the band
structure of such an electronic system is a metal. However, the
experimental and first-principles studies found that CrX3 is a
semiconducting magnet with a wide band gap. This indicates
the strongly correlated nature of the magnetic ground state of
CrX3. The magnetic phase of CrX3 is similar to the Mott insu-
lating phase in the Hubbard model at half-filling. The charge
carriers are highly localized in the insulating phase due to
the strong Coulomb interactions. Indeed, this picture from the
Mott physics is consistent to the magnetization measurement
[1], optical experiment [75], and the magnetization calculation
in density functional theory (DFT) [52–58].

Motivated by these studies, we employ the approximation
to project the whole many-body space |�〉 onto the low-
energy subspace |�̃〉 which describes the Mott insulating
state. This yields

Z ≈ Z0

∑
�̃

〈�̃|T e− ∫ β

0 dτ H′(τ )|�̃〉, (3)

where the projection onto the Mott state is

|�〉 ≈ |�̃〉 =
∏
rασ

p†
rασ

∏
ṙ,α̇�3

d†
ṙα̇+|0〉, (4)

and Z0 = 〈�̃|e−βH0 |�̃〉. In the Mott state, the px,y,z orbitals
are filled while the d orbitals are half-filled in α̇ = 1, 2, 3 (t2g)
[see Fig. 1(b)]. Because of the Hund’s interaction, all the elec-
trons’ spins in the same Cr ion are deemed to parallel with the
same unit vector sṙ = (sx

ṙ, sy
ṙ, sz

ṙ ). In Eq. (4), d†
ṙα̇σ̇ = χσ̇

ṙσ d†
ṙσ

(σ̇ = ±1) is the field operator that creates a electron at ṙ with
spin pointing in σ̇ sṙ where (χ+

ṙ↑, χ+
ṙ↓) = [2(1 + sz

ṙ )]−
1
2 (1+

sz
ṙ, sx

ṙ + isy
ṙ ) is the spin wave function (χ−

ṙσ = ∑
σ ′ iτ y

σσ ′ χ̄
+
ṙ,σ ′).

As compared to Eq. (2), we note that the projected ground
state in Eq. (3) has a simple many-body wave function. It is
essentially the product of each local spin wave function �̃ =∏

ṙ,α̇�3 χ+
ṙσ . Therefore, the trace over � in Eq. (2) reduces to

the trace over the many-body state with all possible local spin
orientations with amplitude �̃ in Eq. (3). We mention that this
many-body subspace is still very large and degenerates in H0.
As we can see, without the hopping (H′ = 0, atomic limit),
each of the different spin configurations with arbitrarily local
spin orientations has the same energy since H0 is merely de-
termined by the occupation number. But, this degeneracy will
be lifted by the electron hopping process. As a result, certain
spin configurations become more energetically favorable than
the others. This ultimately leads to the magnetic order in the
ground state.

To investigate these hopping effects, we calculate the ex-
pectation value in Eq. (3) perturbatively by using cumulant

expansion [76]

〈�̃|T e− ∫ β

0 dτ Ht (τ )|�̃〉=exp

( ∞∑
n=0

Cn

n!

)
, (5)

where the connected n-correlation functions (n-order cumu-
lants) are

C2 = μ2, C4 = μ4 − 3μ2
2, C5 = μ5,

(6)
C6 = μ6 − 15μ4μ2 + 30μ3

2,

with μn = 〈�̃|T [− ∫ β

0 dτ H′(τ )]n|�̃〉 (nth moment). We note
that μ3 = μ1 = 0 (Appendix B). In this paper, we only con-
sider the correlation function Cn up to n = 6.

So far, we only discussed the theoretical formalism of the
problem. In the next section, we will focus on the calcula-
tion of these correlation functions Cn. These Cn will give the
exchange energies’ corrections to the ground state. Conse-
quently, the sṙ-dependent energy corrections appear in Eq. (5)
which yield the effective spin model with various exchange
couplings.

IV. EXCHANGE ENERGIES AND Cn

The most important information for evaluating Cn is the
spectrum of the unperturbed Hamiltonian H0. The excited
states in the spectrum serve as the intermediate states in the
perturbation calculations. Hence, in the first subsection, we
will focus on solving the eigenvalue problem of H0. We
also note that the full spectrum of H0 is not required for
obtaining an accurate result. Therefore, in our paper, we only
consider the relevant low-energy excitations as follows: (1)
one-electron excitation on Cr’s d orbital and (2) one- and two-
hole excitations on X ’s p orbital. We will use these low-energy
excitations to evaluate Cn in the next subsection.

A. Quasiparticle spectrum in atomic limit

In the atomic limit, the problem reduces to a single-site
problem since we can construct all the many-body states
by knowing only the single-site properties. The single-site
physics is governed by the quasiparticle excitation which is a
creation of electron (above Fermi level) or hole (below Fermi
level).

One hole. The excitation energy of one hole is straightfor-
ward to evaluate:

H0

[
prασ

dṙα̇σ̇

]
|�̃〉 = −

[
Erα prασ

Eṙα̇dṙα̇σ̇

]
|�̃〉, (7)

where the one-hole energies are[
Erα
Eṙα̇

]
=

[
εα

r + ∑
α′ 	=α U αα′

r − 1
2U αα

r

εα̇
ṙ + 1

2

∑3
α̇′ 	=α̇

(
U α̇α̇′

ṙ − J α̇α̇′
ṙ

)]. (8)

To calculate the above, we note that the eigenvalues of the
Hubbard-U interacting Hamiltonian is obtained by counting
the number of the electrons and holes in the state. To calculate
the eigenvalues of Hund interacting Hamiltonian, it is very
instructive to write the scalar product of spin operators as

ŝRα · ŝRα′ = 1
2 [(ŝRα + ŝRα′ )2 − (ŝRα′ )2 − (ŝRα′ )2]. (9)
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Therefore, the Hund interacting energies can be obtained by
rewriting the electron or hole pair into total angular momen-
tum (singlet/triplet) representation. Also, we note that all the
excitation energies are measured from the Mott ground state.
Namely, we set H0|�̃〉 ≡ 0.

Two hole. The spectrum for creating a two-hole state may
be complicated due to the correlation effects. If the two cre-
ated holes sitting on a different lattice (nonlocal hole pair),
the excitation energy is simply the addition of the one-hole
energy [Eq. (8)]. Once the two holes are created on the same
lattice (local hole pair), we need to take into account the effect
of interactions. To calculate this excitation, we rewrite the
two-hole creation field operator into spin-singlet (η = −1)
and spin-triplet (η = +1) representations as

�
η,αα′
RR′σσ ′ = 1

2 (ψRασψR′α′σ ′ + ηψRασ ′ψR′α′σ ). (10)

Using Eq. (9), this yields

H0�
η,αα′
RR′σσ ′ |�̃〉= (�η,αα′

RR′ − Erα − Erα′ )�η,αα′
RR′,σσ ′ |�̃〉, (11)

where �η,αα′
RR′ = 1

2 [U αα′
R − (2η + 1)(1 − δαα′ )Jαα′

R ]δRR′ is the
correlation energy coming from the interaction between two
holes. In this paper, we do not consider the local hole pairs in
the d orbital since their effects only emerge in the higher-order
perturbation calculations.

One electron. We only focus on the electron’s excitation
spectrum on the d orbitals since the p orbitals are filled in
the Mott states. Furthermore, we ignore the two or more
electron excitations on the same lattice by assuming strong
Hubbard-U interactions. This is very likely to be the case
for CrX3. Therefore, we limit ourselves to calculating the
one-electron excitations (the spectrum of four-particle states
on a one-Cr site). We begin with the excitations with α̇ � 3.
This excitation is the eigenstate of H0:

H0d†
ṙα̇σ̇ |�̃〉=δσ̇ ,−

(
E α̇

r + 1
2U αα

ṙ +
3∑

α̇′ 	=α̇

J α̇α̇′
ṙ

)
dṙα̇σ̇ |�̃〉. (12)

For α̇ > 3, it is straightforward to show that

H0d†
ṙα̇σ̇ |�̃〉 =

{[
εṙα̇+ 1

2

3∑
α̇′=1

(
U α̇α̇′

ṙ −J α̇α̇′
ṙ δσ̇ ,+

)]
d†

ṙα̇σ̇

− δσ̇ ,−
3∑

α̇′=1

∑
η=±1

2η−1
2 J α̇α̇′

ṙ �
η,α̇α̇′,†
ṙ,−,+ dṙα̇′,+

}
|�̃〉,

(13)

where, in the last line, �
η,α̇α̇′,†
ṙ,−+ dṙα̇′,+ is the operator that cre-

ates a spin-singlet (η = −1) or spin-triplet (η = +1) electron
pair in α̇ and α̇′ orbitals. As we can see in the first line of
Eq. (13) that d†

ṙα̇,+|�̃〉 is the eigenstate of H0, if the created
electron’s spin aligns with the localized spin in t2g. The total
spin of this particular four-particle state is 2. On the other
hand, the second line of Eq. (13) describes a mixture of
different four-particle states with total spin 1. This implies
that d†

ṙα̇,−|�̃〉 is not the eigenstate of H0 due to the Hund’s
interaction. However, to facilitate the Cn calculation, we de-
compose d†

ṙα̇−|�̃〉 into the four-particle eigenstates with total
spin 1. To find these eigenstates (last row in Table I), we solve

TABLE I. The low-energy excited eigenstates and energies of
H0. The excitation energies Erα and Eṙα̇ are given in Eq. (8). The
two-hole state correlation energy �

η,αα′
rr′ can be found in Eq. (11). λm

α̇

and vm
k,α̇ are obtained by solving Eq. (14) where m = 0, . . . 3 is the

label of the eigenstates.

H0 eigenstates Eigenenergies

px,y,z prασ |�̃〉 ν̄rα = −Erα

�
η,αα′
rσσ ′ |�̃〉 −Erα − Erα′ + �

η,αα′
rr′

a1g, dṙα̇+|�̃〉 ω̄ṙα̇ = −Eṙα̇

eπ
g d†

ṙα̇−|�̃〉 ωṙα̇ = Eṙα̇+
3∑

α̇′ 	=α̇

J α̇α̇′
ṙ + 1

2U α̇α̇
ṙ

eσ
g d†

ṙα̇+|�̃〉 ωṙα̇ = Eṙα̇
3∑

k=0

vm
k,α̇φ

k,†
ṙα̇ |�̃〉 � m

ṙα̇ = Eṙα̇ +
3∑

α̇′ 	=α̇

J α̇α̇′
ṙ + λm

α̇

the eigenvalue λm
α̇ and the eigenvectors vm

k,α̇ in the following
equation:[

−
∑
α̇′ 	=α̇

J α̇α̇′
ṙ ŝṙα̇ · ŝṙ1α̇′ − λm

α̇

]
3∑

k=0

vm
k,α̇φk

ṙα̇|�̃〉 = 0, (14)

where φ
0†
ṙα̇ = d†

ṙα̇− and φ
k,†
ṙα̇ = d†

ṙα̇+d†
ṙk−dṙk+ (k = 1, 2, 3) are

the operators that create the four-particle states with total spin
1. The index m = 0, . . . , 3 labels these excited eigenstates.
Equation (14) is constructed by using the fact that the Hund’s
interaction preserves the total spin in the four-particle states.
We shall not pursue this discussion any further since these
states are very likely to be the high-energy states for CrX3. We
leave the details of these excitations in Appendix A. Here, we
summarize the spectrum of these low-energy quasiparticles
excitations in Table I. With these excitation energies, we can
proceed to evaluate the eigenvalue of eτH0 which are neces-
sary for calculating Cn.

B. Energy corrections due to hopping

Once the hopping between lattices is allowed, this leads to
the energy correction of the H0 ground state. This correction
is obtained by evaluating μn in the correlation function Cn

[Eq. (5)]. The evaluation of μn in Eq. (6) contains many
hopping terms, where each of these terms corresponds to an
evaluation of superexchange with a distinct hopping process.
However, many of these hopping terms are zero, except for
those having a hopping process with the ground state as its
final state. This hopping process traces a closed path on the
lattice. Although we can discard many open-path processes
immediately, μn still contains many hopping terms, partic-
ularly the processes that create several disconnected closed
paths on the lattice. Although these processes have nonzero
contributions, they cancel out exactly in Eq. (6). This can-
cellation is guaranteed by linked-cluster theorem [77] (see
Appendix B). Therefore, evaluating Cn is reduced to calculat-
ing the hopping terms with the connected closed path. Despite
this simplification, the calculation is still laborious, and we
leave those details in Appendix C. In the following, we only
present the result for the spin-dependent part of Cn up to n = 6
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since these are the nontrivial magnetic exchange energies at
low-order corrections.

Keeping only the leading term (linear in β) in the low-
temperature limit, we arrive at the first important result

1

2!
C2 + 1

4!
C4 = β

∑
ṙ1 ṙ2

Jṙ1 ṙ2 sṙ1 · sṙ2 (15)

with the Heisenberg exchange coupling

Jṙ1 ṙ2 = σ̇1

2
�

m1
α̇1σ̇1

{
Pα̇2 u1̇2̇u2̇1̇

�
m1

1̇σ̇1
− ω̄2̇

+ 1

Em1

1̇1

[
Pα̇2t1̇1t12̇t1̇2t22̇(
�

m1

1̇σ̇1
− ω̄2̇

)
Em1

1̇2

−
σ̇2
2 �

m2
α̇2σ̇2

t1̇1t2̇2

1+�
η

12/
(
Em1

1̇1
+Em2

2̇2

)
(

t21̇t12̇

Em1

1̇2
Em2

2̇1

−η
t22̇t11̇

Em1

1̇1
Em2

2̇2

)]}
.

(16)

Pα̇ = 1 for α̇ = 1, 2, 3 and zero otherwise. Here, we simplify
the expression by letting the lattice and orbital indices as n ≡
rn, αn and ṅ ≡ ṙn, α̇n. Furthermore, except ṙ1,2 (in the left-
hand side), summing all over the other indices in the right-
hand side in Eq. (16) is implicitly assumed. We will use this
notation throughout the text. In Eq. (16), the denominator

Em
ṅn = �m

ṙnα̇nσ̇n
− ν̄rnαn (17)

is the energy for creating a d-electron and p-hole pair which
is the elementary excitation energy due to the Cr-X hopping
[Fig. 2(b)]. In the above, we have rewritten the d-orbital one-
electron energies as

�m
1̇σ̇

=
{
δσ̇ ,−ω1̇, α̇ = 1, 2, 3
δσ̇ ,+ω1̇ + δσ̇ ,−� m

1̇
, α̇ = 4, 5.

(18)

We remind that the quaisparticle energies ωṅ and ν̄n are given
in Table I. The prefactor is

�m
α̇σ̇ =

{
δσ̇ ,−δm,0, α̇ = 1, 2, 3
δσ̇ ,+δm,0 + δσ̇ ,−|Am

α̇ |2, α̇ = 4, 5
(19)

where Am
α̇ is obtained by solving

∑3
m=0 Am

α̇ vm
k,α̇ = δ0,k for k =

0, . . . , 3.
In Eq. (16), we may identify the first, second, and third

terms as three distinct superexchange mechanisms according
to the number of p holes in the intermediate states. SE0 is
the lowest-order superexchange which does not involve any
p orbitals. SE1 [Fig. 2(c)] and SE2 [Figs. 2(d)–2(f)] are the
superexchange that involve one p hole and two p holes in the
intermediate states. In SE0 and SE1, the resulting exchange
coupling is mostly determined by the structure of d orbitals
instead of p orbitals. The SE0 and SE1 processes may re-
alize the FM exchange mediated by t2g-eg hopping or AFM
exchange mediated by t2g-t2g hopping. To determine which
exchange coupling is energetically favorable, it only depends
on two properties in the d orbital: the t2g-eg splitting and the
onsite interacting strength.

In the SE2 process, if the two intermediate p holes locate at
different lattices [Fig. 2(d)], this process is similar to SE0 and
SE1 where the d orbital determines the sign of the exchange
coupling. However, once the intermediate hole pair is created
locally on the same X ion, the correlated p-hole pair may me-
diate AFM exchange through spin-singlet pair [Fig. 2(e)] or
FM exchange through spin-triplet pair [Fig. 2(f)]. To identify

1

2

CrCr
X

X

Ground state(a) (b) Elementary excita�on

(c) (d)

(e) (f)

SE1: SE2:

SE2: SE2:

(nonlocal) 

(singlet) (triplet) 

FIG. 2. Illustrations of the ground state and the excited states
in the Mott phase. (a) Ground state: the electrons are localized at
the Cr d orbital giving rise to spin 3

2 . (b) Elementary excitation
due to hopping: Em1

1̇1
is the excitation energy to create a d electron

(purple arrow) and a p hole (white arrow). The dashed gray curve
corresponds to the forward-hopping process to create an excited
state. (c) The excited states by moving an electron from one Cr to
another Cr via X (SE1). The black curve (path 1 and path 2) is the
backward-hopping process that returns the excited state to the ground
state. (d)–(f) The excitations that involve creating intermediate hole
pair (SE2). The hole pair may be created nonlocally in (d) or locally
in (e) and (f).

the most favorable exchange process in SE2, the geometrical
effects in orbital overlapping play a major role. In short, we re-
mark that the material’s FM or AFM exchange is the result of
interplay between SE0, SE1, and SE2 processes. The resulting
exchange coupling is sensitive to the materials’ crystal-field
splitting, orbital overlapping, and onsite interactions.

Similarly, we proceed to calculate the correlation functions
due to the spin-orbit coupling effects. The lowest-order cor-
rection due to spin-orbit coupling is

1

5!
C5 = β

∑
ṙ1 ṙ2

Dṙ1 ṙ2 · sṙ1 × sṙ2 , (20)

where the Dzyaloshinskii-Moriya (DM) interactions

D j
ṙ1 ṙ2

= i�α1α2
r2 j δr1r2

σ̇1�
m1
α̇1σ̇1

Em1

1̇2

{
Pα̇2t31̇t2̇3t1̇1t22̇

Em1

1̇1
Em1

1̇3

(
�

m1

1̇σ̇1
− ω̄2̇

)
−

1
2 σ̇2�

m2
α̇2σ̇2

t32̇t21̇/Em1

2̇3

1 + �
−η

23 /
(
Em1

1̇2
+ Em2

2̇3

)
[

t1̇3t2̇1/Em2

2̇1
− ηt1̇1t2̇3/Em1

1̇1

Em1

1̇1
+ Em2

2̇3
+ �

η

13

+ t2̇1t1̇3

Em2

2̇1
Em2

2̇2

− η
t1̇1t2̇3

Em1

1̇1
Em1

1̇2

]}
(21)

with �
α1α2
r, j = i

∑
α λαRr

jαεαα2α1 . Rr
jα is the rotational matrix

that transforms the local x̄ȳz̄ system at r to the global xyz
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system (see Fig. 1 and Appendix C). We note that j = x, y, z
is to label the axes in xyz system instead of labeling the p
orbital. This correction gives rise to the antisymmetric ex-
change which favors the formation of magnetic chiral order.
The next-order correction due to spin-orbit coupling is

1

6!
C6 = β

∑
ṙ1 ṙ2

∑
i j

Ki j
ṙ1 ṙ2

si
ṙ1

s j
ṙ2
, (22)

where Ki j
ṙ1 ṙ2

∝ (λα )2 is a symmetric tensor in i and j in-
dices. This term is the symmetric exchange interaction that
determines the magnetic anisotropy exchange (MAE) and the
Kitaev interactions [78–80]. This small correction is impor-
tant to stabilize the magnetic order in a 2D system [53]. The
calculation of this higher-order exchange process is tedious.
Therefore, we omit the derivation of K and outline the steps
in Appendix C for the interested reader.

Next, we discuss the interlayer superexchange which is one
of the most interesting aspects in vdW 2D magnets. Using the
similar approach, it is straightforward to generalize the calcu-
lation to a bilayer system with arbitrary hopping processes. To
do this, we let the interlayer hopping Hamiltonian as

H⊥ =
∑
� 	=�′

T �,�′
rα,r′α′ p�†

rασ p�′
r′α′σ , (23)

where � = 1, 2 is the layer index. The lowest-order correc-
tions for the exchange energy due to this hopping is n = 6,

1

6!
C⊥

6 = β
∑
�1 	=�2

∑
ṙ1 ṙ2

J̃ �1�2
ṙ1 ṙ2

s�1
ṙ1

· s�2
ṙ2

(24)

with the interlayer exchange coupling

J̃ �1�2
ṙ1 ṙ2

=
σ̇1
2 �

m1
α̇1σ̇1

t1̇1t41̇

Em1

1̇1
Em1

1̇4

{
Pα̇2 T �2�1

34 t2̇3T �1�2
12 t22̇

Em1

1̇2
Em1

1̇3

(
�

m1

1̇σ̇1
− ω̄2̇

)− σ̇2

2
�

m2
α̇2σ̇2

× t2̇2T �1�2
13 − ηt2̇3T �1�2

12

Em1

1̇3
+Em2

2̇2
+�

η

23

[
t22̇T �2�1

34(
Em1

1̇3

)2 + t22̇T �2�1
34(

Em2

2̇2

)2

]}
.

(25)

The exchange mechanism in the first term is similar to SE1. It
does not involve any intermediate hole pairs in the p orbitals.
As we will see later, this SE1 process only gives rise to
interlayer FM exchange in CrX3 regardless of the stacking
order. On the contrary, the second term corresponds to the SE2
processes involving the intermediate correlated hole pairs.
This SE2 process may realize the interlayer AFM coupling
by the singlet-pair-mediated superexchange.

In summary, we have constructed a microscopic model for
the magnetic ground state of CrX3 by projecting the many-
body state onto the Mott state. We go beyond the lowest-order
correction (n = 2) to the ground state and take into account
the higher-order corrections (up to n = 6) due to the virtual
processes in Cr-X -Cr hopping, Cr-X -X -Cr hopping, and SOC.
This yields various types of exchange coupling constants
which can be explicitly expressed in terms of the TB constants
and onsite interactions. Collecting all the results in Eqs. (15),
(20), and (24), we finally arrive at the effective spin model in
Eq. (5) for the many-body system. Our next task is to estimate
these microscopic model parameters in Eqs. (16), (21), and

(25) which can be extracted from the quasiparticle spectrum
in the first-principles studies. This will be the topic in the next
section.

V. APPLICATION TO MONOLAYER CrI3

In this section, we apply our superexchange model to CrI3.
To investigate its magnetic ground state, we use the ab initio
method to estimate the model parameters in Eqs. (16), (21),
and (25).

A. DFT calculation

The electronic structure of CrI3 is calculated by using
QUANTUM ESPRESSO [81]. In the calculation, we use the
Perdew-Burke-Ernzerhof (PBE) pseudopotentials from the
standard solid-state pseudopotential efficiency library [82,83].
The in-plane lattice parameter is adopted from the experi-
mental value [1] 6.867 Å. To eliminate interaction between
supercells, we introduce more than 20-Å vacuum between the
supercell images in the out-of-plane direction. We perform
the calculation with a fixed unit-cell volume and the lattice
structure is optimized by the relax calculation until the atomic
residual force is less than 3 × 10−4 eV/Å. The numerical in-
tegration over the Brillouin zone is done by sampled over 8 ×
8 × 1 �-centered Monkhorst-Pack grid. The energy cutoff for
wave function and density is 50 and 450 Ry. In this simulation,
we find the nearest-neighbor exchange interaction 2.49 meV,1

and magnetization 2.95μB/Cr, which are consistent with the
previous studies [52–58]. To estimate the TB constants, we
construct the maximally localized Wannier functions [84] by
using WANNIER90 [85]. In the calculation, the p and d Wan-
nier orbitals are projected by using the xyz-coordinate system
(see Fig. 1). We summarize the TB constants obtained from
WANNIER90in Appendix D.

B. Quasiparticle spectrum

From the DFT quasiparticle dispersion, we can extract the
excitation energies of holes and electrons in the p and d
orbitals. The result is summarized in Table II. We note that
these quasiparticle energies in DFT calculation have already
accounted for the interactions. This effect leads to the evi-
dent splitting in the spin-up and spin-down onsite energies of
the Wannier TB Hamiltonian. Instead of identifying them as
the noninteracting onsite energy εα

R (spin independent), these
computed band energies should correspond to the quasiparti-
cle energies: ω̄ṙα̇ , ωṙα̇ , and ν̄rα in Eqs. (16), (21), and (25). One
may extract the onsite energy and coupling constants from
the spectrum with further analysis [86,87], but this is not the
main point of our study. One may also note in Table II that the
table does not include all the possible intermediate excitations
in Eqs. (16), (21), and (25). In particular, we exclude the
excitations in the d orbital with spin antiparallel (σ̇ = −1)

1The exchange interaction J is obtained by using EAFM − EFM =
2

Nc

∑
〈i j〉 J |S|2 where Nc is the number of unit cell and S = 3

2 is
the spin. The total energy per unit cell of antiferromagnetic and
ferromagnetic ground states from DFT calculation are denoted as
EAFM and EFM (see Refs. [52,53]).
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TABLE II. The quasiparticle excitations extracted from DFT cal-
culation (EF = −3.3806 eV is the Fermi energy). Unless stated, the
unit is in eV. In this table, the spin of the d hole and electron is always
parallel to the localized spins in t2g (σ̇ = +1). The high-energy
antiparallel spin d-electron states are ignored. The scissor corrected
results are given in the parentheses.

Excitations States

p hole: α = pz, py, px

ν̄rα −4.289, −4.897, −5.044
d hole (a1g, eπ

g ): α̇ = 1, 2, 3
ω̄ṙα̇ −4.156, −4.126, −4.125
d electron (eσ

g ): α̇ = 4, 5,
ωṙα̇ −3.183, −3.182
(Scissor corrected) (−1.413), (−1.412)
Exchange coupling: J Jp = 0.5 Jp = 0
from Eq. (16) Up = 1.2 Up = 0

29.1 meV 17.1 meV
(Scissor corrected) (2.53 meV), (1.73 meV)

to the localized spins in the t2g since our DFT-computed band
dispersion shows that these excitations are at least 2 eV larger
than parallel spin excitations. This may be due to the strong
onsite Hubbard-U interaction with a relatively small t2g-eg

splitting. Therefore, we only keep the excitations in creating
an electron with σ̇ = +1 and α̇ = 4, 5 on Cr since the other
high-energy excitations are suppressed by a large denominator
in Eqs. (16), (21), and (25).

Identifying the Kohn-Sham spectrum as the quasiparticle
band structure may lead to underestimating the band gap.
In our DFT calculation, the band gap in the quasiparticle
dispersion is approximately 1 eV (t2g-eg splitting). This value
is well below that in the GW calculation [88,89] (≈3 eV). To
remedy this problem, we may employ the “scissor” correction
[90–96] to shift all the conduction bands rigidly up above
the valence band by an additional 1.77 eV as suggested by
the LDSA and GW calculation in Ref. [88]. This band-gap
correction is crucial to obtaining the exchange couplings with
the correct order of magnitude. To see this, we estimate the ex-
change coupling by using (16) and the quasiparticle energy in
Table II. Without the scissor correction, the exchange constant
J is overestimated by an order of magnitude (Table II).

C. Correlation effects in p orbital

A final piece of important information is the energy split-
ting between the spin-singlet and -triplet states in the p
orbital. This energy splitting is determined by the two-particle
spectrum which we cannot obtain from the Kohn-Sham quasi-
particle dispersion. Therefore, the p-orbital Hund’s interaction
Jαα′

r and Hubbard interaction U αα′
r remain the free parameters

in our model. To see how this singlet-triplet splitting influ-
ences the exchange coupling J , we let U αα′

r = Up and Jαα′
r =

Jp plot in Fig. 3. We found that the exchange coupling from
our model agrees well with the DFT and experimental value
within the reasonable range of Up and Jp. For instance, using
Jp = 0.5 eV and Up = 1.2 eV, we can obtain the exchange
constant at 2.53 meV. Furthermore, we also check the case
with smaller interorbital interaction: U αα

r = Up > U α 	=α′
r and

FIG. 3. The Up-Jp parameter space for the intralayer exchange
coupling (J ). As we can see, in the weak correlation regime (left
bottom corner), the exchange coupling is signifcantly lower than the
DFT calculated value (∼2.5 meV).

Jαα′
r = Jp. This enhances the singlet-triplet splitting leading to

stronger exchange interaction.

D. Intralayer exchange

The FM superexchange in CrI3 is commonly attributed to
its approximately 90◦ Cr-I-Cr bond angle. In this geometry,
the hopping amplitude in SE1 may be suppressed due to
the lack of orbital overlapping, such that the higher-energy
SE2 becomes the dominant process. Typically, the SE2 pro-
cess in this geometry favors the FM superexchange because
of the Hund interaction in the intermediate spin-triplet hole
pairs. This is the celebrated Goodenough-Kanamori (GK) rule
[97,98]. However, we argue that the intralayer exchange inter-
action is a result of complicated competition between different
intermediate states in CrI3. The full picture of the emergence
of FM exchange in CrI3 is more subtle than the simple picture
from GK’s 90◦ rule.

First, we note in our model that the direct Cr-Cr hopping
contributes 0.5 meV out of 2.53 meV to the FM exchange.
This contribution is not negligibly small. Second, we observe
that the exchange constant without spin-singlet–spin-triplet
splitting in the p orbital, Up = Jp = 0, the predicted exchange
coupling (1.73 meV) is well below the DFT computed value
(2.49 meV). This implies that SE1 and SE2 have comparable
contributions to the FM exchange, even though the individual
SE1 process is weak (Fig. 4). Therefore, the intralayer FM ex-
change is a complex result coming from all equally important
contributions in SE0, SE1, and SE2 instead of predominantly
from the SE2 as suggested by GK’s 90◦ rule. On the contrary,
SE0 and SE1 together are the dominating FM exchange pro-
cesses through the t2g-eg hopping [99].

Unexpected by GK’s picture, we find that the AFM ex-
change coupling mediated by the (intraorbital) spin-singlet
hole pair is as large as the FM exchange in the SE2 (see
Fig. 4). Nevertheless, this result is consistent with the non-
negligible SE1 contribution as discussed in the previous
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SE1
SE2

singlet

triplet

[ seigrene egnahcxE
m

eV
]

Hopping processes

-

-

-

FIG. 4. The exchange couplings that arise from each distinct
hopping process. The exchange energy contributions for each hop-
ping process in SE1 are not larger than 0.18 meV (blue dashed line).
The largest SE1 contribution (0.18 meV) comes from the α̇ = 5
to α̇ = 3 hopping via py as the intermediate state. In general, SE2
has larger contribution to the exchange coupling than SE1. But, the
exchange coupling mediated by the singlet pairs in px and py orbitals
(lower dashed box) are canceled out with the triplet pairs in px-py

orbital (upper dashed box).

paragraph. This unprecedented result may attribute to the
anisotropic geometry of the 2D materials such that the p
orbitals do not orient in the sense as described in a 3D bulk
environment. Therefore, the singlet channel competes with the
triplet channel leading to weak FM exchange (Fig. 4). This
particular scenario may be unique to 2D materials. Therefore,
the application of the GK rule to such a case may not yield the
full picture of the underlying exchange mechanism.

E. DM interaction

The DM interaction may have important effects on the
magnon physics [65–68,100] in CrX3. In a perfect CrX3

crystal, the DM coupling vector D is nearly zero due to
inversion symmetry. The antisymmetric superexchange me-
diated by the upper X layer cancels out with the lower
X layer [53,101] (Fig. 1). Nevertheless, to further verify
our model, we also calculate the DM interacting strength.
Using the spin-orbit coupling λα = 0.6 eV [53,102], we ob-
tain the DM coupling vector that is mediated by the I
ion at h1: D ≈ [0.164,−0.136, 0.242] meV, and h2: D ≈
−[0.163,−0.161, 0.223] meV [see Fig. 1(a)]. As expected,
we find that these vectors canceled out due to the crystal
symmetry. Interestingly, we find that the DM interaction is
mostly mediated by the SE2 processes which are about four
times larger than the SE1 contribution. This implies that the
correlation effects of the intermediate p-hole pairs play an
important role in this interaction.

The DM interaction may be enhanced by applying elec-
tric fields [60–62], distorting the lattice [63], synthesizing
the Janus structure [103], and fabricating heterobilayer [104].
Furthermore, there are several studies suggested that the
next-nearest antisymmetry exchange may give nonzero DM
interaction [62,69]. In this higher-order exchange coupling,
the effects of direct hopping between p orbitals may no longer
be negligible. This topic deserves further studies in the future.

F. Interlayer exchange

To investigate the interlayer exchange, we may use the
technique in Refs. [105–111] to model the interlayer hopping
strength as

T �,�′
rα,r′α′ =

∑
j j′

Rr,†
jα

[
δ j j′V

⊥
π +(V ⊥

σ −V ⊥
π )

x jx j′

x2

]
Rr

j′α′ , (26)

where x = r + d� − (r′ + d�′ ) being displacement between
two X ions, and d1,2 = ± 1

2 (0, 0, d ) with d being the interlayer
distance. We note that the Slater-Koster (SK) overlap integrals
V ⊥

σ and V ⊥
π are also x-dependent functions [110].

In contrast to intralayer exchange, the interlayer exchange
coupling is a super-superexchange (SSE) of Cr-I-I-Cr hop-
ping. The relevant hopping processes are much larger than
Cr-I-Cr hopping. The GK rule does not apply to the interlayer
SSE. The detailed quantitative study of this hopping effect on
the interlayer superexchange deserves a separate publication,
especially developing the quantitative model for the SK over-
lap integrals [105–110]. Therefore, we leave them for future
studies.

Nevertheless, without a quantitative analysis, we can still
draw useful conclusions from our theory for the interlayer
exchange. First, similar to the intralayer exchange, interlayer
SE1 processes that involve t2g-eg hopping can only yield FM
exchange due to strong Hubbard-U interaction with relatively
small t2g-eg splitting. Thus, the interlayer AFM exchange must
arise from the SE2 mediated by the spin-singlet hole pair in
the p orbitals. This SE2 process includes the eg-eg, t2g-eg,
and t2g-t2g hoppings. However, our intralayer analysis suggests
that occupying t2g with an additional electron is highly un-
likely due to the strong Hubbard-U interactions. This leads
to strong suppression in t2g-eg, and t2g-t2g hopping processes.
This result agrees with the finding in DFT studies [33,34,42].

VI. CONCLUSION

In conclusion, we have built a microscopic model for the
superexchange in monolayer and bilayer CrX3. In particular,
our model accounts for the superexchange mediated by the
correlated hole pair (SE2) in the X ion that has not been
considered in the previous studies. With this model, we de-
rive the higher-order magnetic exchange processes including
intralayer DM interaction (nearest neighbor) in Eq. (21) and
the general form of interlayer exchange coupling presented in
Eq. (25).

In our DFT study of monolayer CrI3, we found that the SE2
process not only contributes substantially to the intralayer FM
exchange, but also to DM interaction. Interestingly, we found
that the superexchanges mediated by the singlet and triplet
hole pairs are comparable, but they cancel out each other
resulting in weak intralayer FM exchange coupling. We argue
that the GK’s 90◦ rule does not yield the complete picture for
this particular 2D material due to the nontrivial competing ef-
fects between different comparable superexchange processes.

In the bilayer CrX3, we demonstrated that the SE1 process
is not sufficient to explain the stacking-dependent magnetism
since it always leads to interlayer FM exchange. Hence, the
interlayer AFM exchange in CrX3 may be realized by the
SE2 mediated by the spin-singlet hole pair in p orbitals.
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Specifically, our analysis shows that eg-eg hopping is the
most relevant SE2 process mediating the interlayer AFM
exchange. This qualitative result agrees with previous DFT
studies [33,34].

The developed theory shall facilitate the studies of other
important higher-order magnetic exchange effects, such as the
next-nearest-neighbor DM interaction, interlayer DM interac-
tions, symmetric exchange, and four-spin interactions [16].
Furthermore, this microscopic theory is also useful for the
future studies in the excited-state properties such as magneto-
optics properties [112–118] in CrX3. The theoretical technique
in this paper can also be applied to the other interesting 2D
magnets [119–126].
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APPENDIX A: QUASIPARTICLE AND THE EXCITATIONS

To calculate the exchange energies, we need to evaluate
the τ evolution (eτH0 ) of the intermediate excited states. To
do this, we reduce the calculation to evaluating the excited
eigenstates that are described in Sec. IV A. With these eigen-
states at hand, the τ evolution of the intermediate states can
be trivially obtained by replacing H0 in eτH0 by the corre-
sponding eigenvalues. Generally, the intermediate excitations
created by the hopping may not be the eigenstates of H0 such
as the two-hole excitation

pr2α2σ2 pr1α1σ1 |�̃〉 =
∑

η=−1,1

�η,α1α2
r1r2,σ1σ2

|�̃〉, (A1)

and the one-electron state

d†
ṙα̇σ̇ |�̃〉 = [δσ̇ ,−Pα̇+δσ̇ ,+(1 − Pα̇ )]d†

ṙα̇σ̇

+ δσ̇ ,−(1 − Pα̇ )
3∑

m=0

Am
α̇

3∑
k=0

vk
m,α̇φ

k†
ṙα̇|�̃〉, (A2)

where
∑3

m=0 Am
α̇ vk

m,α̇ = δk,0. Nevertheless, we can always ex-
pand them into the eigenstates in Table I.

Most of the eigenstates of H0 are straightforward to obtain,
except the four-particle states in the second line of Eq. (A2).
As indicated in Eq. (13), d†

ṙα̇−|�̃〉 with α̇ ∈ eg is not the eigen-
state of H0. Namely, the Hund interaction leads to the mixing
of d†

ṙα̇−|�̃〉 with the other different four-particle states having
the same total spin since the Hund interaction commutes with
the total spin [∑

α̇

ŝṙα̇,
∑
α̇′ 	=α̇

J α̇α̇′
ṙ ŝṙα̇ · ŝṙ1α̇′

]
= 0. (A3)

This relation also implies that the full four-particle Hilbert
space breaks into different independent eigenspaces with the
same total spin.

To facilitate the evaluation of τ evolution in Cn, we can
expand Eq. (13) into the four-particle eigenstates with total
spin 1. To find these eigenstates, we only need to focus on
the eigenspace with total spin 1. This particular eigenspace
is completely spanned by the four states φk

α̇|�̃〉 with φ
0†
ṙα̇ =

d†
ṙα̇− and φ

k,†
ṙα̇ = d†

ṙα̇+d†
ṙk−dṙk+ (k = 1, 2, 3). Thus, this gives

the eigenvalue problem for H0 in Eq. (14). After obtaining
the eigenstates, we can expand d†

ṙα̇−|�̃〉 into the four-particle
eigenstates [second line in Eq. (A2)]. As we mentioned in the
main text, these excited states may be ignored since they are
high-energy states and may not correspond to the one-particle
excitation in the Kohn-Sham quasiparticle spectrum.

APPENDIX B: μn, Cn, AND LINK-CLUSTER THEOREM

We note in Eq. (6) that μn contains many hopping terms
and each of them is described by a superexchange with a
distinct hopping process. Many of these hopping terms do not
contribute to Cn. To find the relevant nonzero hopping terms in
μn, we may write the product of H′ as the sum of all position
indices r as

n∏
j=1

H′(τ j ) =
∑

r1...rn

∑
r′

1...r
′
n

O(τn )
rnr′

n
. . .O(τ1 )

r1r′
1
, (B1)

where

O(τ )
rr′ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
αα′

∑
σ

p†
rασ (τ )trα,r′α′dr′α′σ (τ ),∑

αα′

∑
σ

d†
rασ (τ )trα,r′α′ pr′α′σ (τ ),∑

αα′α′′

∑
σσ ′

δrr′�α′′
αα′τ

α′′
σ ′σ ′ p†

rασ (τ )prα′σ ′ (τ ′).

We say that O(τ1 )
r1r′

1
and O(τ2 )

r2r′
2

are connected if at least one of the

following is true: (1) r′
1 = r′

2 or r2, (2) r1 = r′
2 or r2. In other

words, to become connected, the two operators must have at
least one common position index (r). This definition can be
intuitively viewed as a connectivity of the hopping path on the
lattice. With this definition, we can regroup the product of the
perturbations as follows:

H′(τ2)H′(τ1) = H′ (τ2)H′(τ1)︸ ︷︷ ︸
connected

+H′(τ2)H′(τ1)︸ ︷︷ ︸
disconnected

. (B2)

In the first term, it only contains those products in which O(τ1 )

and O(τ2 ) are connected:

H′(τ2)H′ (τ1) =
∑

r

[∑
r′

(
O(τ2 )

rr′ O(τ1 )
rr′ + O(τ2 )

rr′ O(τ1 )
r′r

)
+

∑
r1 	=r′

2

O(τ2 )
rr′

2
O(τ1 )

r1r +
∑

r1 	=r2

O(τ2 )
r2r O(τ1 )

r1r

+
∑

r′
1 	=r2

O(τ2 )
r2r O

(τ1 )
rr′

1
+
∑

r′
1 	=r′

2

O(τ2 )
rr′

2
O(τ1 )

rr′
1

]
. (B3)
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In the second term, the operators O in each product are dis-
connected to each other:

H′(τ2)H′(τ1)=
∑

r1 	=r2r′
2

∑
r′

1 	=r2,r′
2

Or2r′
2
(τ2)Or1r′

1
(τ1). (B4)

Here, the contraction notation H′ (τ2)H′(τ1) denotes the col-
lection of all the connected terms in H′(τ2)H′(τ1).

Using Eq. (B3), we then calculate μ2. This leads to

μ2 =
∫ β

0
dτ2dτ1〈T [H′ (τ2)H′(τ1)+H′(τ2)H′(τ1)]〉=C2.

In the above, we note that the second and third lines in
Eqs. (B3) and (B4) correspond to the hopping processes with
an open path. These open-path connected terms have zero
expectation value since their hopping processes end up with
an excited state as the final state. These processes are always
projected out by the initial ground state. Therefore, the only
nonzero contribution is in the first line of Eq. (B3) and the
hopping processes of these connected graphs form a closed
path on the lattice.

Similarly, we generalize the definition to the case with n >

2 in Eq. (B1). For
∏n

j=1 Or j r′
j
(τ j ) with any integer n > 1 is

said to be a n-connected graph, if the product of O’s cannot be
partitioned into two groups such that all the O’s in one group
have no common position index (r) with the O’s in the other

group. Similarly, we denoteH′(τn) . . . H′(τ1) as the collection
of all the n-connected graphs.

We proceed to μ4 and regroup
∏4

n=1 H′(τn) according to
the connectivity in the product of O’s. Keeping only the fully
contracted terms (closed-path hopping), we have

μ4 =
∫ β

0
dτ1 . . . dτ4

[〈T H′(τ4)H′(τ3)H′(τ2)H′(τ1)〉

+ 〈T H′(τ4)H′(τ3)H′(τ2)H′(τ1)〉

+ 〈T H′(τ4)H′(τ3)H′(τ2)H′(τ1)〉

+ 〈T H′(τ4)H′(τ3)H′ (τ2)H′(τ1)〉]. (B5)

The above last three terms are the disconnected graphs which
are the products of two 2-connected graphs C2 = μ2. This
leads to

μ4 =
∫ β

0
dτ1 . . . dτ4〈T H′(τ4)H′(τ3)H′(τ2)H′(τ1)〉 + 3μ2

2.

We can see that the disconnected graphs (second terms in
the above) are canceled out exactly in C4 in Eq. (6). This is
guaranteed by the linked-cluster theorem [77].

Similarly, one can carry out the proof for n = 6 by
rewriting

C6 =μ6 − 15C4C2 − 15C3
2 . (B6)

In μ6, there are (6
2) = 15 possible contractions that give C4C2.

This can be obtained by first contracting any pair of O’s to
form C2 and then contracting the rest of H′’s to form C4.
To obtain all possible contractions that lead to C3

2 , we first
contract H′(τ1) with the others. This gives five possible pair

contractions. Then, we perform pair contraction for the rest of
H′. This has three possibilities. Therefore, there are 5 × 3 =
15 C3

2 terms in μ6. All these disconnected terms are again
canceled out in Eq. (B6). Following a similar calculation, one
can verify the linked-cluster theorem beyond n = 6.

Introducing the notion of the connected graph and the
linked cluster theorem not only simplifies the calculation of Cn

but is also essential for validating the perturbative calculation.
To see this, we note that each connected graph scales linearly
as β in low temperature. Therefore, the scaling of a discon-
nected graph is βn with n � 2 since the disconnected graphs
are a product of connected graphs. If the exact cancellation of
the disconnected graphs in Cn is no guarantee, the exponent
in Eq. (5) may scale as βn. This is problematic for the per-
turbative expansion in Eq. (5) since in the zero-temperature
limit β → ∞, the higher-order perturbations become more
and more relevant.

APPENDIX C: IMAGINARY-TIME EVOLUTION OF THE
EXCITED STATES

The connected correlation function Cn can be obtained by
calculating

∏n
j=1 H′(τ j )|�̃〉 where H′(τ j ) = eτ jH0H′e−τ jH0 .

Before doing this, we need to specify the choice of the coordi-
nate system that quantizes the spin since the spin quantization
axis cannot be chosen arbitrarily due to the spin-orbit cou-
pling. In the TB model, the spin-orbit coupling Hamiltonian
may be written as [127,128] Eq. (1e), where the orbital and
spin angular momentum are quantized with the same local
x̄ȳz̄-coordinate system (see Fig. 1). Although using these local
coordinate systems gives a simple expression to Eq. (1e), the
cost of doing so is that the local descriptions of the spin
become incompatible between different X ions across the
lattice. In order to describe the spin with the same reference,
we transform each of these local bases to a new basis where all
the spins are quantized in the same global xyz system (Fig. 1).
This can be achieved by rotating the spin with the unitary
matrix Sr

σ σ̄ as prασ = ∑
σ̄ Sr

σ σ̄ prασ̄ . This rotation leads to the
transformation of the Pauli matrices as∑

σ̄1σ̄2

Sr†
σ1σ̄1

τ̄ α
σ̄1σ̄2

Sm
σ̄2σ2

=
∑

j=x,y,z

Rr
jατ j

σ1σ2
. (C1)

In the above, Rr
jα is an orthogonal rotational matrix that

changes the local x̄ȳz̄-coordinate system to the global xyz-
coordinate system. The index j corresponds to the global
x, y, z axis instead of the p-orbital indices. With this trans-
formation, this leads to

Vλ =
∑
rσ1σ2

∑
α1α2 j

�
α1α2
r, j τ j

σ1σ2
p†

r1α1σ1
pr2α2σ2 (C2)

with �
α1α2
r, j = i

∑
α λαRr

jαεαα2α1 . Therefore, in the new basis,
all the spin-quantization axes are defined uniformly across the
crystal in the xyz system.

Furthermore, it is preferable to transform the d-orbital op-
erator in the hopping Hamiltonian Ht and Hd as

H†
t =

∑
1̇1

∑
σ̇1σ1

t1̇1d†
1̇σ̇1

χ̄
σ̇1
ṙ1σ1

p1σ1 , (C3)

Hd =
∑

1̇2̇

∑
σ̇1σ̇2

u1̇2̇d†
1̇σ̇1

d2̇σ̇2
χ̄

σ̇1
ṙ1σ

χ
σ̇2
ṙ2σ

, (C4)
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where the d-orbital spin orientation is parallel or antiparallel
with the localized spin in the t2g at Cr site. In the above
equation, we have used the compact notation n ≡ rn, αn and
ṅ ≡ ṙn, α̇n to simplify the expression.

With all these settings, we first calculate

H′(τ1)|�̃〉 = [H†
t (τ1) + Hd (τ1)]|�̃〉. (C5)

To evaluate the above, we use

eτH0 d†
ṙ1α̇1σ̇1

|�̃〉 =
3∑

m=0

e
τ�m

1̇σ̇1 ϒ
m,†
ṙ1α̇1σ̇1

|�̃〉,

where �m
1̇σ̇1

is the one d-electron excitation energy in Eq. (18),
and

ϒ
m†
ṙα̇σ̇ = [δσ̇ ,−Pα̇1 +δσ̇ ,+(1 − Pα̇ )]δm,0d†

ṙα̇σ̇

+ δσ̇ ,−(1 − Pα̇ )Am
α̇

3∑
k=0

vk
m,α̇φ

k†
ṙα̇ (C6)

with Pα̇ = 1 (Pα̇ = 0) if α̇ = 1, 2, 3 (α̇ = 4, 5). This yields

H′(τ1)|�̃〉 = [
tm1

1̇1
(τ1)χ̄ σ̇1

ṙ1σ1
ϒ

m1,†
1̇σ̇1

p1σ1

+ u1̇2̇ (τ1)χ̄ σ̇1
ṙ1σ

χ
σ̇2
ṙ2σ

ϒ
m1,†
1̇σ̇1

d2̇σ̇2

]|�̃〉, (C7)

where we have let tm
1̇1

(τ1) = e
τ1�

m
1̇σ̇1 t1̇1e−τ1 ν̄1 and um

1̇2̇
(τ1) =

e
τ1�

m
1̇σ̇1 u1̇2̇e−τ1ω̄2̇ .

Following the similar procedure, it is straightforward to
calculate H′(τ2)H′(τ1)|�̃〉. Here, we list the calculated results
as follows:

Ht (τ2)H†
t (τ1)|�̃〉 = χ̄

σ̇1
ṙ1σ

χ+
ṙ2σ

Pα̇2t
m1

1̇1
(τ1)t̄12̇(τ2)

× d2̇,+ϒ
m1†
1̇σ̇1

|�̃〉, (C8)

H†
t (τ2)H†

t (τ1)|�̃〉 = X̄ η,σ̇1σ̇2
ṙ1 ṙ2,σ1σ2

tm1

1̇1
(τ1)tm2

2̇2
(τ2)eτ2�

η
12

× p2σ2 p1σ1ϒ
m2†
2̇σ̇2

ϒ
m1†
1̇σ̇1

|�̃〉, (C9)

Vλ(τ2)H†
t (τ1)|�̃〉 = χ̄

σ̇1
ṙ1σ1

tm1

1̇1
(τ1)�α1α2

r2 j (τ2)τ j
σ1σ2

δr1r2

× p2σ2ϒ
m1†
1̇σ̇1

|�̃〉, (C10)

H⊥(τ2)H†
t (τ1)|�̃〉 = χ̄

σ̇1
ṙ1σ1

tm1

1̇1
(τ1)T �1�2

12 (τ2)

× p�2
2σ1

ϒ
m1�1,†
1̇σ̇1

|�̃〉, (C11)

where we let t̄11̇(τ1) = eτ1 ν̄1t11̇e−τ1ω̄1̇ , �
α1α2
r1 j (τ2) =

eτ2 ν̄r1α1 �
α1α2
r1 j e−τ2 ν̄r1α2 , and �

η

12 = �
η,α1α2
r1r2 . In Eq. (C9), we

let the spin-singlet and spin-triplet pair in the d orbital as

X̄ η,σ̇1σ̇2
ṙ1 ṙ2,σ1σ2

= 1
2

(
χ̄

σ̇1
ṙ1σ1

χ̄
σ̇2
ṙ2σ2

+ ηχ̄
σ̇1
ṙ1σ2

χ̄
σ̇2
ṙ2σ1

)
.

We can further calculate the higher-order excitations that
involve the spin-flip processes from the spin-orbit coupling:

Vλ(τ3)H†
t (τ2)H†

t (τ1)|�̃〉 = − 1
2

[
tm1

1̇1
(τ1)tm2

2̇2
(τ2) − ηtm1

1̇1
(τ1)tm2

2̇2
(τ2)

]
e(τ2−τ3 )�η

12�
α2α3
r3 j (τ3)eτ3�

η′
13

× (
X̄ η,σ̇1σ̇2

ṙ1 ṙ2,σ1σ2
τ j
σ2σ3

+ η′X̄ η,σ̇1σ̇2
ṙ1 ṙ2,σ3σ2

τ j
σ2σ1

)
δr2r3 p3σ3 p1σ1ϒ

m2†
2̇σ̇2

ϒ
m1†
1̇σ̇1

|�̃〉, (C12)

Ht (τ3)Vλ(τ2)H†
t (τ1)|�̃〉= − Pα̇3t

m1

1̇1
(τ1)�α1α2

r2 j (τ2)t̄23̇(τ3)δr1r2χ
+
ṙ3σ2

τ j
σ1σ2

χ̄
σ̇1
ṙ1σ1

dṙ3α̇3,+ϒ
m1†
1̇σ̇1

|�̃〉, (C13)

H†
t (τ3)Vλ(τ2)H†

t (τ1)|�̃〉 = tm1

1̇1
(τ1)�α1α2

r2 j (τ2)tm3

3̇3
(τ3) 1

2

(
χ̄

σ̇1
ṙ1σ1

τ j
σ1σ2

χ̄
σ̇3
ṙ3σ3

+ ηχ̄
σ̇1
ṙ1σ1

τ j
σ1σ3

χ̄
σ̇3
ṙ3σ2

)
× eτ3�

η

23δr2r1 p3σ3 p2σ2ϒ
m3†
3̇σ̇3

ϒ
m1†
1̇σ̇1

|�̃〉, (C14)

and the excitations created by interlayer hopping

H⊥(τ3)H†
t (τ2)H†

t (τ1)|�̃〉 = X̄ η,�1σ̇1�2σ̇2
ṙ1�1 ṙ2,σ1σ2

[
tm2

2̇2
(τ1)tm1

1̇1
(τ2) + tm1

1̇1
(τ1)tm2

2̇2
(τ2)

]
T �1�2

13 (τ3)eτ3�
η

23

× p�2
3σ1

p�2
2σ2

ϒ
m2�2†
2̇σ̇2

ϒ
m1�1†
1̇σ̇1

|�̃〉, (C15)

Ht (τ3)H⊥(τ2)H†
t (τ1)|�̃〉 = − tm1

1̇1
(τ1)T �1�2

12 (τ2)t̄22̇(τ3)χ̄ �1,σ̇1
ṙ1σ1

χ
�2,+
ṙ2σ1

d�2

2̇,+ϒ
m1�1†
1̇σ̇1

|�̃〉, (C16)

H†
t (τ3)H⊥(τ2)H†

t (τ1)|�̃〉 = ηX̄ η,�1σ̇1�2σ̇2
ṙ1�1 ṙ2,σ1σ2

tm1

1̇1
(τ1)T �1�2

12 (τ2)tm2

2̇3
(τ3)eτ3�

η

23 p�2
3σ1

p�2
2σ2

ϒ
m2�2†
2̇σ̇2

ϒ
m1�1†
1̇σ̇1

|�̃〉, (C17)

where T �1�2
12 (τ ) = eτ ν̄1 T �1�2

12 e−τ ν̄2 and

X̄ η,�1σ̇1,�2σ̇2
ṙ1 ṙ2,σ1σ2

= 1
2

(
χ̄

�1,σ̇1
ṙ1σ1

χ̄
�2,σ̇2
ṙ2σ2

+ ηχ̄
�1,σ̇1
ṙ1σ2

χ̄
�2,σ̇2
ṙ2σ1

)
.

After having the τ evolution of the excited states in Eqs. (C8)
to (C17), we can proceed to the calculation of Cn by using

〈�̃|H′(τn) . . .H′(τ1)= [H′(−τ1) . . .H′(−τn)|�̃〉]†.

To do thiscalculation, we first introduce the following
notation:

Gn(τn . . . τ1) = 〈�̃|H′(τn) . . .H′(τ1)|�̃〉. (C18)

Therefore, we have G2 = 〈�̃|H′(τ2)H′(τ1)|�̃〉:

G2(τ2τ1) =�
m1
α̇1σ̇1

[
e(τ1−τ2 )(�

m1
ṙ1 α̇1 σ̇1

−ν̄r1α1 )t11̇t1̇1

+ e(τ1−τ2 )(�
m1
ṙ1 α̇1 σ̇1

−ω̄2̇ )u1̇2̇u2̇1̇

]
.

In the above calculation, we have used the commutation
relations

〈�̃|{ϒm2

2̇σ̇2
,ϒ

m1†
1̇σ̇1

}|�̃〉 = �
m1
α̇1σ̇1

δ(1̇2̇) (C19)
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TABLE III. The the spin sum of the spin wave function χ†
ṙσ̇ =

[χ̄ σ̇
ṙ↑, χ̄

σ̇
ṙ↓], and τ = [τ x, τ y, τ z] are Pauli matrices.

Spin products Spin-sum result

χ†
ṙσ̇ τχṙσ̇ σ̇ sṙ

|χ†
ṙ2 σ̇2

χṙ1 σ̇1
|2 1

2 (1 + σ̇1σ̇2sṙ2 · sṙ1 )
χ†

ṙ1 σ̇1
τχṙ2 σ̇2

χ†
ṙ2 σ̇2

χṙ1 σ̇1
1
2 [−σ̇1sṙ1 − σ̇2sṙ2

+iσ̇1σ̇2sṙ1 × sṙ2 ]
χ†

ṙ1 σ̇1
τ jχṙ2 σ̇2

χ†
ṙ2 σ̇2

τ j′χṙ1 σ̇1
1
2 [iε j j′ j′′ (σ̇1s j′′

ṙ1
− σ̇2s j′′

ṙ2
)

+δ j j′ (1 − σ̇1σ̇2sṙ2 · sṙ1 )
+σ̇1σ̇2(s j

ṙ2
s j′

ṙ1
+ s j′

ṙ2
s j

ṙ1
)]

with δ(1̇2̇) = δṙ1 ṙ2δm1m2δα̇1α̇2δσ̇1σ̇2 and the factor �m
α̇1σ̇1

is given
by (19). Therefore, using G2(τ2τ1) and integrating out τ , we
obtain C2 in the β → ∞ limit as

C2 =2!β

[
t11̇t1̇1

Em1

1̇1

+ δσ̇2,+
∣∣χ̄ σ̇1

ṙ1σ
χ

σ̇2
ṙ2σ

∣∣2 Pα̇2 u1̇2̇u2̇1̇

�
m1

1̇σ̇1
− ω̄2̇

]
, (C20)

where the sum of all the indices in the right-hand side is
implicitly assumed. In the above, the first term corresponds to
the spin-independent energy correction to the ground state. It
is irrelevant to the magnetic states. We discard this correction
in the paper.

To calculate Gn with n � 4, we use the following relation:

〈�̃|p†
4σ4

p†
3σ3

p2σ2 p1σ1 |�̃〉 = δ(14)δ(23) − δ(13)δ(24)

with δ(12) = δr1r2δα1α2δσ1σ2 , and

〈�̃|ϒm4

4̇σ̇4
ϒ

m3

3̇σ̇3
ϒ

m2†
2̇σ̇2

ϒ
m1†
1̇σ̇1

|�̃〉
= �

m1
α̇1σ̇1

�
m2
α̇2σ̇2

[δ(3̇2̇)δ(4̇1̇) − δ(3̇1̇)δ(4̇2̇)].

To get rid of the time-ordering operator, we write the τ inte-
gration as

Cn = (−1)nn!
∫

d (n . . . 1)Gn(τn . . . τ1), (C21)

where
∫

d (n . . . 21) = ∫ β

0 dτn
∫ τn

0 dτn−1· · ·
∫ τ2

0 dτ1 with 0 <

τ1 < · · · < τn < β.
Therefore, we can write Cn as

C4 =4!
∫

d (4321)
(
Ghh†hh†

4 + Ghhh†h†

4 + Ghvvh†

4

)
, (C22)

where

Ghh†hh†

4 = 〈�̃|Ht (τ4)H†
t (τ3)Ht (τ2)H†

t (τ1)|�̃〉c,

Ghhh†h†

4 = 〈�̃|Ht (τ4)Ht (τ3)H†
t (τ2)H†

t (τ1)|�̃〉c,

Ghvvh†

4 = 〈�̃|Ht (τ4)Vλ(τ3)Vλ(τ2)H†
t (τ1)|�̃〉c.

Insteadof using contraction notation, we use the subscript c
to indicate that only the connected graphs in the expectation
values are evaluated. In the superscript of G4 in Eq. (C22),
h, h†, and v represent Ht (τ ), H†

t (τ ), and Vλ(τ ), respectively.
The superscript also shows explicitly the ordering of these
perturbative Hamiltonians in the product. Similarly, we can
write C5 and C6 by using the same notation:

C5 = − 5!
∫

d (5 . . . 1)
(
Ghh†hvh†

5 + Ghvh†hh†

5

+ Ghhvh†h†

5 + Ghhh†vh†

5 + Ghvhh†h†

5

)
, (C23)

C6 = 6!
∫

d (6 . . . 1)
(
Ghh†hvvh†

6 + Ghvh†hvh†

6 + Ghvvh†hh†

6

+ Ghhh†vvh†

6 + Ghvhh†vh†

6 + +Ghvvhh†h†

4

+ Ghhvvh†h†

6 + Ghhvh†vh†

6 + Ghvhvh†h†

6

)
. (C24)

Furthermore, we can also calculate the connected correlation
function for interlayer exchange couplings

C⊥
6 = 6!

∫
d (6 . . . 1)

(
GhT h†hT h†

6 + GhT hh†T h†

6

+ GhhT T h†h†

6 + GhhT h†T h†

6 + GhT hT h†h†

6

)
. (C25)

The superscript T in G6 stands for interlayer Hamiltonian
H⊥(τ ). The evaluation of Eqs. (C22)–(C25) are straightfor-
ward.

The τ integration and the spin σ sum (Table III) in
Eqs. (C22)–(C25) can be calculated exactly. The multidimen-
sional τ integration in these equations can be done analytically
by using specialized software. The exact integration yields
many complicated β-dependent functions (see examples in
Ref. [129]). However, in the low-temperature limit, most
of these temperature-dependent terms are suppressed by the
Boltzmann factor. Keeping the leading-order (linear in β) and
the sṙ-dependent terms, we obtain Eqs. (16), (21), and (25).

TABLE IV. The ab initio TB constants for the nearest-neigbhor Cr-X hopping: tṙα̇,rα (eV). We note that these TB constants are obtained
after performing the rotation in Eq. (D4). We only present the hopping between sublattices A, B and to sublattices h1,2 (see Fig. 1). These TB
constants are sufficient for calculating all the nearest-neighbor exchange couplings.

Hopping A → h1 A → h2 B → h1 B → h2

tṙα̇,rα pz px py pz px py pz px py pz px py

α̇ = 1 −0.201 0.2151 0.265 −0.2006 −0.2154 −0.2692 0.2007 0.2154 0.2692 0.201 −0.2151 −0.265
α̇ = 2 −0.1161 0.1385 0.2185 −0.0764 −0.1809 0.43 0.0767 0.1814 −0.43 0.1163 −0.139 −0.2178
α̇ = 3 −0.1528 0.2842 −0.3732 −0.1745 −0.2605 −0.0037 0.1743 0.2602 0.0044 0.1526 −0.2839 0.3735
α̇ = 4 −0.8352 −0.7048 −0.0267 0.4257 −0.3715 −0.0065 −0.426 0.3717 0.0066 0.8352 0.7048 0.0267
α̇ = 5 0.007 0.0216 −0.008 −0.7195 0.5972 0.0267 0.7195 −0.5971 −0.0267 −0.0067 −0.0214 0.008
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APPENDIX D: AB INITIO TB MODEL

To construct the TB Hamiltonian, we use the maximally
localized Wannier functions (MLWF) to project the d and
p orbitals onto each sublattice. The angular momentum of
these orbitals is defined in the xyz-coordinate system (see
Fig. 1). Using this MLWF, we obtain the ab initio Wannier
Hamiltonian H̄ = H̄E + H̄t + H̄†

t + H̄d , where

H̄E =
∑
ṙ j j′

ε̄m
j j′ p̄

†
r jσ p̄r j′σ +

∑
ṙōō′

ε̄ṁ
ōō′ d̄†

ṙōσ d̄ṙō′σ , (D1)

H̄t =
∑

ṙr

∑
σ

t̄r j,ṙō p̄†
r jσ d̄ṙōσ , (D2)

H̄d =
∑

ṙr

∑
σ

ūṙ′ō′,ṙōd̄†
ṙ′ō′σ d̄ṙōσ , (D3)

with t̄ṙōr j and ūṙ′ō′,ṙō being the TB constants that are directly
obtained from WANNIER90.

We note that, although the hopping Hamiltonian H̄′ is
simple to construct by using these projected MLWF, this
MLWF is not the basis that we use in Eqs. (1a)–(1e). As
a result, the onsite Hamiltonian H̄E is not diagonal. Hence,
in the Wannier Hamiltonian in Eqs. (D1)–(D3) we use ō =
dz2 , dxz, dyz, dx2−y2 , dxy for the d-orbital indices [Fig. 1(c)] and
j for the p orbital to label this projected MLWF basis (instead
of α̇ and α). In order to connect with our microscopic model
H, we perform a unitary transformation to diagonalized H̄E

and assume that the transformed TB constants from H̄ are
approximately equal to those in Eqs. (1c) and (1d). Namely,
we identify

tṙα̇,rα ≈
∑

ō

W ṙ†
α̇ōt̄ṙō,r jU r

jα, (D4)

uṙα̇,ṙ′α̇′ ≈
∑
ōō′

W ṙ†
α̇ōūṙō,r̄′ō′W ṙ′

α̇′ō′ , (D5)

where U r
jα and W ṙ

α̇ō are the unitary matrices that diagonalize
ε̄r

j j′ (p orbital) and ε̄ ṙ
ōō′ (d orbital) in H̄E . Therefore, Um

jα is
related to the rotational matrix in Eq. (C1),

U r
jα = Rr

jα, (D6)

which defines the rotation for the spin-orbit coupling Hamilto-
nian in (1e). The unitary matrix W ṙ†

α̇ō transforms the projected
MLWF basis (dz2 , dxz, dyz, dx2−y2 , dxy) to d orbitals in the trig-
onal basis [Fig. 1(b)].

Here, we stress that the Wannier Hamiltonian H̄ in
Eqs. (D1)–(D3) is not identical to H since H̄ does not have
Hubbard and Hund’s interacting Hamiltonian. Therefore, the
direct identification of the TB constants between H and H̄
may misinterpret the DFT result. Also, Eqs. (D1)–(D3) are
constructed by using the ferromagnetic ground state since the
nonmagnetic state may not yield the quasiparticle’s disper-
sion that is measured from the correct ground state. Because

TABLE V. The ab initio TB constants for the nearest-neigbhor
Cr-Cr direct hopping: uṙα̇,ṙ′α̇′ (eV). We note that these TB constants
are obtained after performing the rotation in Eq. (D5).

Hopping A → B

uṙα̇,ṙ′α̇′ α̇ = 1 α̇ = 2 α̇ = 3 α̇ = 4 α̇ = 5

α̇′ = 1 −0.0273 −0.0316 0.0154 −0.0023 0.053
α̇′ = 2 −0.0317 0.0133 0.0137 −0.0074 0.0363
α̇′ = 3 0.0154 0.0137 −0.01 0.0519 −0.0007
α̇′ = 4 −0.0024 −0.0074 0.0518 −0.0781 −0.0197
α̇′ = 5 0.053 0.0363 −0.0006 −0.0199 −0.0347

of the spin-polarized DFT calculation, the TB constants of
the Wannier Hamiltonian in Eqs. (D1)–(D3) become spin
dependent. This poses another challenge for connecting the
Wannier Hamiltonian to the spin-independent TB Hamilto-
nian in Eqs. (1a)–(1d).

The onsite energies in the Wannier Hamiltonian [diagonal-
ized Eq. (D1)] are spin dependent with an evident splitting
between majority spin (parallel to ground state) and minority
spin (antiparallel to ground state). This splitting is the con-
sequence of interacting effects between electrons which are
automatically taken into account by DFT calculation. There-
fore, the onsite energies should identify as the quasiparticle
excitations of the Mott insulator (listed in Table I) instead of
the noninteracting onsite energies in Eq. (1a). Similar spin-
dependent behavior is also found in the hopping constants
of the Wannier Hamiltonian due to the electron correlations
in the Kohn-Sham spectrum. This makes the identification of
the TB constants of the Wannier Hamiltonian to (1c) and (1d)
ambiguous. However, we found that the minority-spin onsite
energies in the eg bands may not correspond to eigenstates
in Table I (due to Hund interaction). Thus, the connection
of the minority-spin spectrum in the Wannier Hamiltonian to
our model in Eqs. (1a)–(1d) is unclear. Therefore, we use the
TB constants from the majority-spin Wannier Hamiltonian for
Eqs. (D4) and (D5) to obtain the TB constants for (1c) and
(1d). The result is summarized in Tables IV and V.

Nevertheless, we also perform a similar analysis by using
the minority-spin TB constants from the Wannier Hamilto-
nian. First, we note that the difference of the TB constants
between the majority- and minority-spin Wannier Hamilto-
nian is about ±25%. Despite the difference, both of the
Hamiltonians preserve the same signs for all TB constants.
In the minority-spin calculation, we found that the estimated
exchange coupling increases from 2.53 meV (majority) to
3.98 meV. In any case, the Wannier TB approach for estimat-
ing the exchange coupling is limited by the spin-dependent
properties of its TB constants due to interacting effects. How-
ever, we argue that this approach still yields a reasonable
estimate for the TB constants in Eqs. (1c) and (1d).
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Giannini, and A. F. Morpurgo, Nat. Commun. 9, 2516 (2018).

[26] H. H. Kim, B. Yang, T. Patel, F. Sfigakis, C. Li, S. Tian, H.
Lei, and A. W. Tsen, Nano Lett. 18, 4885 (2018).

[27] T. Song, M. W.-Y. Tu, C. Carnahan, X. Cai, T. Taniguchi, K.
Watanabe, M. A. McGuire, D. H. Cobden, D. Xiao, W. Yao,
and X. Xu, Nano Lett. 19, 915 (2019).

[28] W. Chen, Z. Sun, Z. Wang, L. Gu, X. Xu, S. Wu, and C. Gao,
Science 366, 983 (2019).

[29] H. H. Kim, B. Yang, S. Li, S. Jiang, C. Jin, Z. Tao, G. Nichols,
F. Sfigakis, S. Zhong, C. Li, S. Tian, D. G. Cory, G.-X. Miao,
J. Shan, K. F. Mak, H. Lei, K. Sun, L. Zhao, and A. W. Tsen,
Proc. Natl. Acad. Sci. USA 116, 11131 (2019).

[30] D. R. Klein, D. MacNeill, Q. Song, D. T. Larson, S. Fang, M.
Xu, R. A. Ribeiro, P. C. Canfield, E. Kaxiras, R. Comin, and
P. Jarillo-Herrero, Nat. Phys. 15, 1255 (2019).

[31] T. Li, S. Jiang, N. Sivadas, Z. Wang, Y. Xu, D. Weber, J. E.
Goldberger, K. Watanabe, T. Taniguchi, C. J. Fennie, K. F.
Mak, and J. Shan, Nat. Mater. 18, 1303 (2019).

[32] X. Guo, W. Jin, Z. Ye, G. Ye, H. Xie, B. Yang, H. H. Kim, S.
Yan, Y. Fu, S. Tian, H. Lei, A. W. Tsen, K. Sun, J.-A. Yan, R.
He, and L. Zhao, ACS Nano 15, 10444 (2021).

[33] N. Sivadas, S. Okamoto, X. Xu, C. J. Fennie, and D. Xiao,
Nano Lett. 18, 7658 (2018).

[34] S. W. Jang, M. Y. Jeong, H. Yoon, S. Ryee, and M. J. Han,
Phys. Rev. Mater. 3, 031001(R) (2019).

[35] P. Jiang, C. Wang, D. Chen, Z. Zhong, Z. Yuan, Z.-Y. Lu, and
W. Ji, Phys. Rev. B 99, 144401 (2019).

[36] D. Soriano, C. Cardoso, and J. Fernández-Rossier, Solid State
Commun. 299, 113662 (2019).

[37] E. S. Morell, A. León, R. H. Miwa, and P. Vargas, 2D Mater.
6, 025020 (2019).

[38] M. Gibertini, J. Phys. D: Appl. Phys. 54, 064002 (2020).
[39] S. Sarkar and P. Kratzer, Phys. Rev. B 103, 224421 (2021).
[40] D. Wang and B. Sanyal, J. Phys. Chem. C 125, 18467 (2021).
[41] F. Xiao, K. Chen, and Q. Tong, Phys. Rev. Res. 3, 013027

(2021).
[42] H. Yu, J. Zhao, and F. Zheng, Appl. Phys. Lett. 119, 222403

(2021).
[43] K. Hejazi, Z.-X. Luo, and L. Balents, Proc. Natl. Acad. Sci.

USA 117, 10721 (2020).
[44] Y.-H. Li and R. Cheng, Phys. Rev. B 102, 094404 (2020).
[45] C. Wang, Y. Gao, H. Lv, X. Xu, and D. Xiao, Phys. Rev. Lett.

125, 247201 (2020).
[46] H. Xie, X. Luo, G. Ye, Z. Ye, H. Ge, S. H. Sung, E. Rennich,

S. Yan, Y. Fu, S. Tian, H. Lei, R. Hovden, K. Sun, R. He, and
L. Zhao, Nat. Phys. 18, 30 (2021).

[47] Y. Xu, A. Ray, Y.-T. Shao, S. Jiang, K. Lee, D. Weber, J. E.
Goldberger, K. Watanabe, T. Taniguchi, D. A. Muller, K. F.
Mak, and J. Shan, Nat. Nanotechnol. 17, 143 (2021).

[48] M. Akram, H. LaBollita, D. Dey, J. Kapeghian, O. Erten, and
A. S. Botana, Nano Lett. 21, 6633 (2021).

[49] F. Xiao and Q. Tong, Nano Lett. 22, 3946 (2022).
[50] J. Shang, S. Shen, L. Wang, Y. Ma, T. Liao, Y. Gu, and L. Kou,

J. Phys. Chem. Lett. 13, 2027 (2022).

245111-14

https://doi.org/10.1038/s41565-019-0438-6
https://doi.org/10.1002/andp.201900452
https://doi.org/10.1088/1361-6528/ac17fd
https://doi.org/10.1103/PhysRevX.10.011075
https://doi.org/10.1021/acs.nanolett.0c04242
https://doi.org/10.1021/acsnano.1c09150
https://doi.org/10.1103/PhysRevB.105.L060404
https://doi.org/10.1103/PhysRevB.105.L081104
https://doi.org/10.1038/nature12385
https://doi.org/10.1126/science.aac9439
https://doi.org/10.1126/sciadv.1603113
https://doi.org/10.1103/PhysRevLett.121.067701
https://doi.org/10.1103/PhysRevB.100.085128
https://doi.org/10.1021/acs.nanolett.0c02381
https://doi.org/10.1021/acsnano.1c06864
https://doi.org/10.1021/acs.nanolett.1c01232
https://doi.org/10.1038/nature22391
https://doi.org/10.1038/s41565-018-0121-3
https://doi.org/10.1038/s41563-018-0040-6
https://doi.org/10.1038/s41565-018-0135-x
https://doi.org/10.1126/science.aar4851
https://doi.org/10.1126/science.aar3617
https://doi.org/10.1038/s41467-018-04953-8
https://doi.org/10.1021/acs.nanolett.8b01552
https://doi.org/10.1021/acs.nanolett.8b04160
https://doi.org/10.1126/science.aav1937
https://doi.org/10.1073/pnas.1902100116
https://doi.org/10.1038/s41567-019-0651-0
https://doi.org/10.1038/s41563-019-0506-1
https://doi.org/10.1021/acsnano.1c02868
https://doi.org/10.1021/acs.nanolett.8b03321
https://doi.org/10.1103/PhysRevMaterials.3.031001
https://doi.org/10.1103/PhysRevB.99.144401
https://doi.org/10.1016/j.ssc.2019.113662
https://doi.org/10.1088/2053-1583/ab04fb
https://doi.org/10.1088/1361-6463/abc2f4
https://doi.org/10.1103/PhysRevB.103.224421
https://doi.org/10.1021/acs.jpcc.1c04311
https://doi.org/10.1103/PhysRevResearch.3.013027
https://doi.org/10.1063/5.0075060
https://doi.org/10.1073/pnas.2000347117
https://doi.org/10.1103/PhysRevB.102.094404
https://doi.org/10.1103/PhysRevLett.125.247201
https://doi.org/10.1038/s41567-021-01408-8
https://doi.org/10.1038/s41565-021-01014-y
https://doi.org/10.1021/acs.nanolett.1c02096
https://doi.org/10.1021/acs.nanolett.2c00401
https://doi.org/10.1021/acs.jpclett.2c00177


SUPEREXCHANGE AND SPIN-ORBIT COUPLING IN … PHYSICAL REVIEW B 106, 245111 (2022)

[51] A. O. Fumega and J. L. Lado, arXiv:2207.01416.
[52] W.-B. Zhang, Q. Qu, P. Zhu, and C.-H. Lam, J. Mater. Chem.

C 3, 12457 (2015).
[53] J. L. Lado and J. Fernández-Rossier, 2D Mater. 4, 035002

(2017).
[54] O. Besbes, S. Nikolaev, N. Meskini, and I. Solovyev, Phys.

Rev. B 99, 104432 (2019).
[55] D. Torelli, K. S. Thygesen, and T. Olsen, 2D Mater. 6, 045018

(2019).
[56] Z. Wu, J. Yu, and S. Yuan, Phys. Chem. Chem. Phys. 21, 7750

(2019).
[57] I. V. Kashin, V. V. Mazurenko, M. I. Katsnelson, and A. N.

Rudenko, 2D Mater. 7, 025036 (2020).
[58] P. P. Stavropoulos, X. Liu, and H.-Y. Kee, Phys. Rev. Res. 3,

013216 (2021).
[59] R. Yadav, L. Xu, M. Pizzochero, J. v. d. Brink, M. I.

Katsnelson, and O. V. Yazyev, arXiv:2208.02195v1.
[60] J. Liu, M. Shi, J. Lu, and M. P. Anantram, Phys. Rev. B 97,

054416 (2018).
[61] J. Liu, M. Shi, P. Mo, and J. Lu, AIP Adv. 8, 055316

(2018).
[62] R. Jaeschke-Ubiergo, E. Suarez Morell, and A. S. Nunez,

Phys. Rev. B 103, 174410 (2021).
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