
PHYSICAL REVIEW B 106, 245109 (2022)

Electronic and topological properties of extended two-dimensional Su-Schrieffer-Heeger models
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One-dimensional Su-Schrieffer-Heeger (SSH) chains are one of the simplest topological models and have
been studied extensively. The two-dimensional (2D) version has been confirmed to have a nontrivial topology.
In this work, we further extend the 2D SSH model by constructing different configurations, including all possible
configurations with 4-site unit cells and another two complicated, but typical, configurations with 8- and 36-site
unit cells, respectively. We calculate and analyze the electronic structures and topologies of these SSH models
in detail and identify several rich and novel properties, such as topologically protected edge states, metallic
chains with different shapes, and a bulk–edge separation in a metal system. In particular, a flat-band feature of
topological edge states is obtained. By analyzing the spatial distribution of these edge states, we explain the
origin of the flat edge bands and show that bonding squares play a crucial role in the formation of flat bands. Our
study can be generalized to more configurations and higher dimensions, providing a basis for further theoretical
and experimental explorations.
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I. INTRODUCTION

In recent decades, topological band theory has been de-
veloped and extended to various systems [1–3], such as
topological insulators [4–7], topological crystalline insulators
[8,9], and Weyl semimetals [10–12]. In these materials, var-
ious topological boundary states arise due to the nontrivial
bulk topology. Previous studies have reported that the origin
of the nontrivial bulk topology is the nonvanishing Berry
curvature [13–16]. The Berry curvature can be viewed as
a geometric field strength in momentum space. When its
integration over the momentum space generates a nonzero
topological invariant, topological boundary states appear in
finite-size systems. These states have promising applications
in low-power-dissipation information processing and can be
used to design electronic and spintronic devices.

The one-dimensional (1D) Su-Schrieffer-Heeger (SSH)
model, as one of the simplest topological models, and its ex-
tended versions with different interactions have been studied
extensively over many decades [17–31]. Several models have
been realized in different physical platforms, such as ultracold
atoms [26,32,33], quantum circuits [27,28,34], polaritons in
an array of micropillars [35], and mechanical granular chains
[36]. In recent years, the two-dimensional (2D) SSH model,
an extension of the 1D SSH chain, has been intensively in-
vestigated and found to exhibit a nontrivial topological phase
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and some novel properties, such as fractional wave polariza-
tion and high-order topological states [37–43]. Interestingly,
different from the abovementioned topological systems, the
Berry curvature vanishes in the 2D SSH system due to the
coexistence of time-reversal and inversion symmetries, and
thus no longer plays a decisive role in the topological prop-
erties [39]. This theoretical discovery not only deepens our
understanding of the nontrivial topology, but also opens a new
avenue of research. However, most previous studies of the 2D
SSH model have focused on the case of the highest symmetry
(i.e., the C4v point group symmetry). Actually, different com-
binations of the 1D SSH chain can be extended to different 2D
configurations, only one of which is the extensively studied
2D SSH model. Therefore, this raises the question of whether
interesting topological properties can be found in other 2D
configurations.

Motivated by this idea, we construct different 2D SSH
extended configurations and calculate their electronic and
topological properties. We investigate all the configurations
with 4-site unit cells and present different phases, includ-
ing nontrivial and trivial insulators and metals. Additionally,
two relatively complicated configurations with 8- and 36-site
unit cells are studied in detail. These configurations exhibit
rich electronic structures, nontrivial topological properties,
and novel flat-band feature of edge states. Analysis of the
weight distribution allows us to explain the origin of the
flat edge bands, which can be attributed to the existence of
bonding squares at the edges. Our study can be extended
to more complicated cases, including larger unit cells and
higher dimensions, and provides a basis for theoretical and
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experimental research into novel electronic and topological
properties in SSH models.

The remainder of this paper is organized as follows. In
Sec. II, we describe the computational approach used in this
study. In Sec. III, we calculate electronic and topological
properties of different 2D SSH configurations, and present
different quantum phases and flat-band features of the edge
states. Finally, we discuss the different phases in the case of
the 4-site unit cell and the flat bands, and conclude this paper
with a brief summary in Sec. IV.

II. COMPUTATIONAL DETAILS

A. Hamiltonian

The construction of a 2D SSH model can be implemented
by stacking 1D SSH chains along the direction perpendicular
to the chain. The interaction between neighboring chains can
be varied. To construct the SSH structure, we force it to obey
the rule that in 2D configurations, each chain along the x and
y directions must be able to be regarded as a 1D SSH chain.
Therefore, the general Hamiltonian of any 2D SSH model can
be written uniformly as

H =
∑
m,n

[(tx + δx pm,n)a†
m+1,nam,n + (ty

+ δyqm,n)a†
m,n+1am,n] + H.c., (1)

where a†
m,n (am,n) is the creation (annihilation) operator of a

spinless electron at site (m, n), tx (ty) is the hopping integral
along the x (y) direction, δx (δy) is a tunable parameter cor-
responding to lattice-electron coupling in the x (y) direction,
and pm,n (qm,n) reflects the Peierls distortion along the x (y)
direction. By varying the values of pm,n and qm,n, we can
obtain a variety of extended configurations of the 2D SSH
model. For simplicity, and to clarify the properties of differ-
ent configurations, we define u = t − δ and v = t + δ with
tx = ty = t and δx = δy = δ in the following calculations.

B. Configurations with 4-site unit cells

For an initial exploration, we limit the number of sites in
a unit cell to four and fix the hopping integrals in each con-
figuration. Under these two limitations, we plot all possible
configurations in Fig. 1, where red dotted lines and black solid
lines correspond to u bonds and v bonds, respectively. There
are 16 configurations in total. They are divided into five clas-
sifications. The first classification contains two configurations
[Figs. 1(a-i) and 1(a-ii)], which are “complementary” with the
exchange of u and v and have been extensively studied and
simulated in different systems [37–46]. The second classifica-
tion also contains two configurations, as plotted in Figs. 1(b-i)
and 1(b-ii). There are two u bonds and two v bonds in their
unit cells. The two configurations are also “complementary”
and rotationally symmetric with respect to each other. The
four configurations in the third classification [Fig. 1(c)] satisfy
fourfold rotational symmetry and have the same properties.
When we set three u bonds and one v bond in the unit cell,
another four configurations can be obtained as the fourth
classification shown in Fig. 1(d). They also present some sym-
metry relations. For example, the configurations in Figs. 1(d-i)

and 1(d-ii) [and in Figs. 1(d-iii) and 1(d-iv)] are mirror sym-
metric with respect to each other. At the same time, the four
configurations exhibit fourfold rotational symmetry. The four
configurations in Fig. 1(e) form the fifth classification and
present a “complementary” relation with those in Fig. 1(d),
where each unit cell contains one u bond and three v bonds.
In the following calculations, according to these symmetries,
we only calculate the electronic and topological properties
of the configurations shown in Figs. 1(a-i), 1(a-ii), 1(b-i),
1(c-i), 1(d-i), and 1(e-i). These are named configurations I–VI,
respectively. The properties of the other configurations can be
obtained from their symmetry relations.

C. Zak phase

The Zak phase is a topological invariant that is usually
employed to describe the topology in 1D insulating systems
[47]. For example, it has been successfully used to charac-
terize linearly conjugated diatomic polymers [48], photonic
systems [49–51], acoustic systems [52], cold atom systems
[33], quantum circuits [37], and water wave states [53]. For
high-dimensional (d � 2) systems, the topological invariant
is the Chern number or Z2 in general. However, a counterex-
ample is provided by the 2D SSH model in the absence of the
Berry curvature, which leads to a vanishing Chern number but
still exhibits a nontrivial topological phase. Previous studies
report that it is the Berry connection that provides the nontriv-
ial topology, whose integration over the momentum space is
the so-called 2D Zak phase [39]. This is given by [47,54,55]

Z = 1

2π

∫∫
Adkxdky, (2)

where the integral is over the first Brillouin zone, A =∑occ.
m=1 i〈ψm | ∂k | ψm〉 is the Berry connection, occ. is the

number of occupied energy bands, and | ψm〉 is the mth eigen-
state of the Hamiltonian.

More generally, when a 2D insulating system has a di-
hedral point group symmetry, its Hall conductance remains
zero, leading to a vanishing Chern number [56]. Fang et al.
formulated a theory of quantized electric polarization on such
insulators. The electric polarization can serve as a comple-
mentary quantum number when the Chern number is zero
and can be expressed in terms of parities of bands at high-
symmetry points. Obana et al. further prove that the electric
polarization is proportional to the Zak phase [42]. In this
work, when the considered insulating system has C2 sym-
metry, the calculation of the Zak phase can be simplified
using the electric polarization as (Zx, Zy) = (2πPx, 2πPy )
[56]. Here, Px/y is the electric polarization, which can be
expressed by

Pj = 1

2
×

(
− i

π
ln

{
det[B(Kj )]

det [B(�)]

}
mod 2

)

= 1

2
×

{
− i

π
ln

[ ∏
n∈occ.

ξn(Kj )

ξn(�)

]
mod 2

}
, (3)

where j denotes the direction x or y, Kj is the high-symmetry
point X or Y in the first Brillouin zone, and B is a sewing ma-
trix, which takes the form of the twofold rotation operator Ĉ2

for a multiband system. The elements of the sewing matrix can
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FIG. 1. Sixteen configurations of 2D SSH models with 4-site unit cells. They are divided into five groups with different background colors.
Red dotted and black solid lines represent hopping integrals u and v. The unit cell in each configuration is marked by a dashed box.

be calculated by [B(Kj/�)]pq = 〈ψp(Kj/�)|Ĉ2|ψq(Kj/�)〉,
where p and q run over occupied bands. ξn(Kj/�) denotes
the parity under the Ĉ2 operation of the eigenstate at the Kj/�

point on the nth band. When a constructed 2D SSH insulating
system has a higher symmetry (e.g., C2v , C4, and C4v), Eq. (3)
can be used to calculate the Zak phase, because the three
symmetries already imply C2 [56]. In addition, we find that
Eq. (3) is more convenient than Eq. (2) for calculating the Zak
phase in systems with larger-size unit cells, such as the 8- and
36-site unit cells considered below.

III. ELECTRONIC AND TOPOLOGICAL PROPERTIES

Although we have defined the rule for constructing 2D SSH
lattices in Sec. II A, there are still countless configurations
with increasing unit-cell sizes through different stacking se-
quences and stacking interactions between the SSH chains.
Here, we focus on several typical configurations, including

those with 4-site unit cells, as constructed in Sec. II B, and
another two configurations with 8- and 36-site unit cells, re-
spectively. In each case, the Hamiltonian is given by changing
pm,n and qm,n in Eq. (1). In the following calculations, we
set u = 1 and v = 4, fix the lattice constant to unity, and
set the number of unit cells to N = 10 in the open boundary
condition, unless stated otherwise. The nanoribbon along the
x (y) direction with an open boundary along the y (x) direction
is named the x nanoribbon (y nanoribbon).

A. Configurations I and II

Figures 1(a-i) and 1(a-ii) show configurations I and II,
respectively. Their Hamiltonians are given by Eq. (1) through
respectively setting

pm,n = (−1)m, qm,n = (−1)n (4)
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FIG. 2. (a) Bulk band structure of configurations I and II. The
inset shows the first Brillouin zone with a high-symmetry path.
Nanoribbon band structures of (b) configuration I and (d) configura-
tion II, where k = kx or ky. (c) Spatial distribution of the state marked
by a red point in panel (b). l is the chain index of a nanoribbon. Berry
connections (Ax, Ay ) of (e, f) configuration I and (g, h) configuration
II in the first Brillouin zone.

and

pm,n = (−1)m−1, qm,n = (−1)n−1. (5)

Both configurations have C4v symmetry. Although their u and
v bonds are exchanged, they have the same bulk electronic
properties, such as the band structure shown in Fig. 2(a).
There are four bands and two energy gaps.

The topologies of configurations I and II cannot be charac-
terized by a 2D topological invariant, because both satisfy the
time-reversal and inversion symmetries, leading to a vanishing
Berry curvature [39]. The Zak phase can be employed for
topology characterization. According to Sec. II C, we cal-
culate the Berry connection and the Zak phase. The Berry
connections of the two configurations with the lowest band
occupied are plotted in Figs. 2(e)–2(h). There are two main

features: (i) the Berry connection Ax (or Ay) is completely
independent of ky (or kx) and (ii) for configuration I, the Berry
connection is always greater than 0, while for configuration
II, it can be greater or less than 0 in the Brillouin zone.
Further, the Zak phase can be obtained by integrating the
Berry connection over the whole Brillouin zone. Its analytic
expression is given as

Zx = Zy = π

2
− π

2

u − v

|u − v| = π for configuration I, (6)

Zx = Zy = π

2
+ π

2

u − v

|u − v| = 0 for configuration II, (7)

corresponding to nontrivial and trivial topologies, respec-
tively.

Figures 2(b) and 2(d) plot the nanoribbon band structures
of these two configurations. They are nearly identical, except
that there exist particle states within the bulk gap in configura-
tion I. We further investigate the weight distribution of these
states in Fig. 2(c), which suggests that they are edge states.
This exactly corresponds to the nontrivial Zak phase.

We can use a simple and intuitive picture to understand the
nontrivial and trivial topologies. In these two configurations,
the four sites connected by the four v bonds form a bonding
square. Such squares cover all of the sites in configuration II
and the inner sites of configuration I, but there are no bonding
squares at the edges of configuration I. This is also one of
the reasons for the formation of edge states within the bulk
gap. The bonding squares at the edges suppress the formation
of the edge states, corresponding to the trivial topology in
configuration II.

B. Configuration III

When we set

pm,n = (−1)m−1, qm,n = (−1)n (8)

in Eq. (1), the Hamiltonian describes configuration III, shown
in Fig. 1(b-i). The band calculations show that this configu-
ration has the same bulk band structure as configurations I
and II. This is reasonable because all configurations have the
same bulk lattice. The difference is their boundaries, leading
to different topological properties. The Berry connection of
configuration III along the x (or y) direction is identical to
that of configuration I (or II), resulting in the Zak phase Z =
(π, 0). Accordingly, there exist edge states within the bulk
gap in an x nanoribbon, while no such edge states occur in a
y nanoribbon. The corresponding nanoribbon band structures
are the same as in Figs. 2(b) and 2(d).

C. Configuration IV

The Hamiltonian of configuration IV [Fig. 1(c-i)] can be
obtained by setting

pm,n = (−1)m+n, qm,n = (−1)m+n (9)

in Eq. (1). By diagonalizing the Hamiltonian in the mo-
mentum space, we obtain the bulk band structure shown in
Fig. 3(a). Obviously, this is a metal system and this behav-
ior can be attributed to the 1D metallic chain with v bonds
along the diagonal direction. The nanoribbon band structure
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FIG. 3. (a) Bulk and (b) nanoribbon band structures of configu-
ration IV. (c, d) Band structures with another set of parameters, u = 0
and v = 4. k = kx or ky in panels (b) and (d).

in Fig. 3(b) also clearly illustrates the metallicity without band
gaps. It is worth noting that the bands near the Fermi level
show a flat-band feature. Recently, flat-band systems have
become a hot topic due to the novel properties induced by dif-
ferent physical mechanisms [57–59]. Physically, the flat-band
phenomenon means the particles have zero velocity, corre-
sponding to a locality. We deduce that this comes from the
weak hopping integrals of u bonds between the finite-length
metallic chains. To check this, we consider a limiting situation
in which u = 0 and v = 4 in an x or y nanoribbon, leading to
isolated metallic chains with a finite chain length. Particles
cannot conduct along the nanoribbon. The calculation results
show a totally flat band structure in Fig. 3(d), in spite of the
large dispersion of the bulk bands in Fig. 3(c), verifying our
deduction.

D. Configurations V and VI

When we set

pm,n = (−1)m, qm,n = (−1)m+n (10)

and

pm,n = (−1)m−1, qm,n = (−1)m+n−1 (11)

in Eq. (1), the Hamiltonians of configurations V and VI
are obtained, respectively. Their lattice structures are plotted
in Fig. 1(d-i) and 1(e-i). The two configurations have the
same bulk band structures, where the gap around the Fermi
level is closed at the � point and the other two gaps around
E = ±4.25 are closed at the M point. Thus, both systems
are metals. However, they present different nanoribbon band
structures due to their different edges, as shown in Figs. 4(b)–
4(d). There exist two isolated bands in the y nanoribbon
of configuration V. Although submerged in the bulk bands,
they can be separated from the others and contributed to
by the edge states. This suggests that there exist edge con-
duction states independent of bulk states. In addition, the x

FIG. 4. (a) Bulk and (b) x-nanoribbon band structures of config-
urations V and VI. y-nanoribbon band structures of (c) configuration
V and (d) configuration VI. The inset in panel (c) shows the spatial
distribution of the state marked by the red point.

nanoribbons of these two configurations have the same band
structures due to having the same top and bottom edges.

E. Configurations with 8- and 36-site unit cells

Besides the case of the 4-site unit cell, we investigated
other configurations with different unit-cell sizes, and found a
nontrivial one with an 8-site unit cell. The lattice structure of
this configuration is plotted in Fig. 5(a) and the Hamiltonian
is given by setting

pm,n = (−1)m, qm,n =
{

(−1)(m−1)/2+n, if m is odd,

(−1)m/2+n, if m is even,

(12)

in Eq. (1). The lattice structure is similar to that of config-
urations I and II, with bonding squares being formed. The
difference is that there is a relative translation between the
nearest-neighbor bonding-square columns. By diagonalizing
the Hamiltonian, we obtain a bulk band structure with eight
bands and two energy gaps, as shown in Fig. 5(b).

A fundamental property of topological insulators is the
existence of edge states that are topologically protected. As
the lattice structure is anisotropic, we calculate its x and y
nanoribbons separately. By analyzing the nanoribbon band
structures in Figs. 5(c) and 5(d), we find three main features.
(i) The number of bands for the x nanoribbon is twice the
number for the y nanoribbon. This is because the width of the
nanoribbon is set to 10 unit cells and each unit cell has four
and two lattice sites along the x and y directions, respectively.
(ii) Two isolated bands within the bulk gaps are contributed
to by edge states, as illustrated in the insets of Figs. 5(c) and
5(d). (iii) The bands of the two different nanoribbons present
different dispersion degrees. This behavior is apparent in the
bulk band structure, where the overall dispersion along the ky

direction (� − Y and X − M) is greater than that along the kx

direction (� − X and Y − M). Most notably, the edge states

245109-5



MA, ZHANG, FU, WU, AND YU PHYSICAL REVIEW B 106, 245109 (2022)

FIG. 5. (a) Configuration with an 8-site unit cell and the corre-
sponding Brillouin zone with a high-symmetry path. (b) Bulk band
structure. (c) x- and (d) y-nanoribbon band structures. The two in-
sets show the spatial distributions of the states marked by red and
green points in the band structures, respectively. (e) Eigenvalues of
the finite system with 16 × 16 sites. (f) Spatial distribution of the
states in the blue region of panel (e). For an intuitive picture, we
interpolated the weights in the interstitial region from those of the
nearest-neighbor sites.

of the x nanoribbon show a nearly flat-band feature compared
with those of the y nanoribbon. This indicates stronger locality
at the top and bottom edges. The lattice structure has bonding
squares at these two edges, while there are no such squares at
the left and right edges. Importantly, the bonding squares are
not good for the formation and conduction of the edge states
within the bulk gaps, as stated in Sec. III A. Thus, the flat-band
feature can be attributed to the existence of bonding squares at
the edges. The eigenvalues and distribution of edge states for
a finite system are plotted in Figs. 5(e) and 5(f), respectively.
The weight on the bonding squares is nearly zero, especially
at the edges. Therefore, the bonding squares may hinder the
transport of particles at the edges.

To further confirm the above explanation for the flat-band
feature of the edge states, we construct a more complicated
configuration to realize the flat-band-type edge states at all
edges. The Hamiltonian can be obtained by setting

pm,n =
{

(−1)[(n−1)/2 mod 3]+m−1, if n is odd,
(−1)[(n/2−1) mod 3]+m−1, if n is even,

(13)

qm,n =
{

(−1)[(m−1)/2 mod 3]+n−1, if m is odd,
(−1)[(m/2−1) mod 3]+n−1, if m is even,

(14)

in Eq. (1). The lattice structure is plotted in Fig. 6(a), and there
are 36 lattice sites in each unit cell. Bonding squares exist

FIG. 6. (a) Configuration with a 36-site unit cell. (b) Bulk
band structure. (c) Nanoribbon band structure, where k = kx or ky.
(d) Eigenvalues of the finite system with 24 × 24 sites. (e) Compar-
ison of the band structures in panels (b), (c), and (d) in the range
E = −5–−2.5, where bulk and edge states are marked in green and
blue, respectively. (f, g) Spatial distributions of the states in green
and blue regions of the rightmost panel of (e), respectively.

at the edges. Based on the above results, we expect localized
edge states with the flat-band feature to appear within the bulk
gap. To verify this, we first calculate the band structures. In
Fig. 6(b), the bulk bands can be separated into five groups. In
the ranges E = −10–−6, −2–2, and 6–10, the bands have a
relatively large degree of dispersion. In the ranges E = −5–
−3 and 3–5, there are two nearly flat bands. We further plot
the nanoribbon band structure and find another two flatter
bands in these ranges [Fig. 6(c)], which are contributed to by
the edge states. To intuitively present the localization of the
edge states, we calculate a finite system and plot its eigen-
values in Fig. 6(d). By comparing these with the nanoribbon
and bulk band structures in Fig. 6(e), it appears that the states
marked by the blue background correspond to the two flat
bands in the nanoribbon structure, suggesting that these are
edge states. The weight distributions of the energy states on
the lattice structure are plotted in Figs. 6(f) and 6(g), which
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TABLE I. Parities of the eigenstates at the �, X , and Y points for
the lowest ten bands of the configuration with the 36-site unit cell. j
is the band index.

j 1 2 3 4 5 6 7 8 9 10

ξ j (�) + + − − + + + − − +
ξ j (X/Y ) + − + − + − + − − +

further illustrates that they are from the four edges. Moreover,
they are separated by the bonding squares and are discretely
distributed at the edges. This results in the localization of par-
ticles, self-consistently corresponding to the flat-band feature.

To further determine the nontrivial topology of the two
configurations, we calculated their topological invariants. As
their unit cells have C2v and C4v symmetries, respectively,
Eq. (3) can be used to calculate their Zak phases. For the
case of the 8-site unit cell, the parity ξn(X/Y ) cannot be
obtained directly, because at the X and Y points the two
occupied bands with opposite parities are degenerate. But we
can calculate the Zak phase by using the first line of Eq. (3),
where det[B(�)] = 1 and det[B(X )] = det[B(Y )] = −1. This
leads to a nonzero Zak phase Z = (π, π ), corresponding to
a nontrivial topology. For the case of the 36-site unit cell,
we calculate the parities at �, X , and Y points and show the
calculation results of the lowest ten bands in Table I. When the
number of occupied bands is nine and ten [band 10 is marked
in Fig. 6(e)], both Zak phases are (π, π ). Therefore, the calcu-
lations of edge states and Zak phases in the two complicated
configurations are in exact agreement with each other.

IV. DISCUSSION AND CONCLUSION

We have extended previous studies of the 2D SSH model
that focused on configurations I and II. By investigating the
16 configurations with different 4-site unit cells, we found
four insulating systems and twelve metallic systems. For the
four insulators, three of them (configurations I and III) are
nontrivial with topological edge states and the other one (con-
figuration II) is trivial. For the twelve metals, their metallicity
can be attributed to the formation of metallic chains with v

bonds. In configuration IV, the metallic chain runs along the
diagonal direction and has a zigzag shape. In configurations
V and VI, the chain is oriented along the x or y direction and
has an “S” shape. Notably, configuration V presents a novel
phenomenon, where the edge states are in the energy range
of bulk states, but can be independent, as shown in Fig. 4(c).
This is unexpected in a metallic system and corresponds to
bulk–edge separation.

For two other, more complicated configurations, we iden-
tified an interesting flat-band feature of the edge states. In the
case of the 8-site unit cell, flat bands form at the top and
bottom edges. In the case of the 36-site unit cell, they are
realized at all four edges. Recently, systems with flat bands
have attracted considerable interest due to their novel and
unusual properties, and they provide an excellent platform
for the study of quantum phases [57–59]. Their flat-band
behaviors can be attributed to different physical mechanisms,
including symmetry [60,61], nontrivial topology [62–65], and

interactions [66–71]. In particular, the interactions in the flat-
band systems lead to rich and interesting phenomena, such
as disorder-free many-body localization [72–75], ferromag-
netism [76–82], superfluidity [83–85], superconductivity [86],
and pair formation for hard-core bosons [87]. However, the
underlying physics in our considered systems are somewhat
different. In our case, the bonding squares at the edges prevent
particle conduction, resulting in the flat band. In addition,
configuration IV exhibits flat bands in nanoribbons, as shown
in Figs. 3(b) and 3(d). However, different from all of the above
physical mechanisms, this is caused by the weak interaction
between metallic chains and the finite length of the diagonal
metallic chains in the x and y nanoribbons.

We compared the bonding square with analogous states or
orders in other systems and found some common features.
First, this square is similar to the plaquette formed by valence
bonds in a S = 1/2 Heisenberg model [88,89]. Both structures
have a closed loop, resulting in the localization of particles.
Comparing the bonding square with the bond of a large hop-
ping integral in a 1D SSH chain, the common feature is that
both are unfavorable for the formation of edge states. The only
difference is the dimension, with the 1D edge bands becoming
0D edge levels when moving from the 2D model to the 1D
model. According to this comparison, we predict that there
exists a bonding cube in a 3D SSH model, which may lead to
2D flat bands at the boundaries.

One may wonder whether other loops play the same role
as the bonding square in producing the flat edge bands. Our
answer is no. In the 2D SSH model, the smallest loop is the
bonding square and the second-smallest loop is a cross-shaped
structure called a bonding cross, as presented in Fig. 6(a).
We investigated the case in which the bonding crosses are
at the edges, and found that they are not conducive to the
formation of the flat edge band, but promote the itinerancy of
particles. Detailed calculation results are given in the Supple-
mental Material [90] (see also Refs. [91–95] and references
therein). When a larger loop is considered, one can naturally
deduce that the itinerancy and delocalization will be further
enhanced. Therefore, other loops except the bonding square
cannot realize a flat edge band.

For the constructed 2D SSH configurations, we find that
all the nontrivial edge states of nanoribbons are doubly de-
generate. Their corresponding two eigenwave functions are
symmetric and antisymmetric along the width direction, re-
spectively. This topological degeneracy can be attributed to
the inversion symmetry of 2D SSH configurations [39].

Another important issue is whether the edge states ob-
served here are just trivial extensions of the edge states of
1D SSH chains. From the above results, such as nanoribbon
band structures and edge-state distributions of configuration I,
configuration V, and two configurations with 8- and 36-site
unit cells, it indeed seems that the edge states of 2D SSH
configurations only appear at the ends of nontrivial 1D SSH
chains. However, we find that the edge states and topology
of our constructed 2D SSH models under the rule stated in
Sec. II A cannot be simply predicted from 1D ones. To illus-
trate this point, we show three specific examples. (i) If we
regard the configuration I as a extension of 1D SSH chains,
then there should exist nontrivial edge/corner states at four
corner sites. However, our study of its finite system reveals
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FIG. 7. (a) Configuration with a 16-site unit cell. (b) Bulk band
structure. (c) Nanoribbon band structure, where k = kx or ky. Inset:
zoom in of the band structure. (d) Spatial distribution of the states
marked by a red point in panel (c). (e) Eigenvalues of the finite
system with 16 × 16 sites. (f, h) Spatial distributions of the states
in green and blue regions of panel (e), respectively. (g) Spatial distri-
bution with y = 8 marked by dashed box in panel (f).

that none of such states appear within its bulk gap. This
phenomenon is also determined in a topological circuit [37].
Previous studies by Xie et al. show that the corner states can
appear only in a combined structure of trivial and nontrivial
configurations [38,41]. (ii) There is a similar behavior in the
configuration with a 8-site unit cell [Fig. 5(a)]. According to
the topology of 1D SSH chains, edge/corner states should also
appear within the bulk gap at four corner sites. However, we
do not observe the nontrivial edge/corner states in Fig. 5(f).
(iii) We also consider a new configuration with a 16-site unit
cell to show that a large hopping strength at the end of a SSH
chain may not hinder the edge states in a 2D SSH lattice. The
corresponding lattice structure is plotted in Fig. 7(a). We first
calculate the bulk band structure and investigate parities at
high-symmetry points. The parities at �, X , and Y points for
the lowest six bands are listed in Table II. When the number
of occupied bands is four and six, both Zak phases are (π, π ),
corresponding to nontrivial topology. The nanoribbon band
structure shows that two degenerate bands appear within the

TABLE II. Parities of the eigenstates at the �, X , and Y points for
the lowest ten bands of the configuration with the 16-site unit cell.

j 1 2 3 4 5 6

ξ j (�) + + − − + +
ξ j (X/Y ) − + + + − −

bulk gap around E = −2 in Fig. 7(c). We further calculate
its finite system and plot energy levels and spatial distribu-
tions of the states within the bulk gap in Figs. 7(e) and 7(f).
One can see that all of these states distribute at edges. In
particularly, the edge states also distribute at the ends with
large hopping strength of a trivial SSH chain, as shown in
Fig. 7(g). Obviously, the result is not a simple extension of
the 1D SSH chain. In addition, we obtain corner states within
the bulk gap around E = −5.5. Remarkably, they distribute
at the end of trivial SSH chains. Therefore, the appearance
of edge and corner states in 2D SSH systems do not depend
entirely on the configuration and topology of the 1D SSH
chains. The coupling interaction between chains also plays a
crucial role for the topology of the 2D SSH systems. From
the above three specific example, we can conclude that 2D
SSH configurations constructed under our rule are not trivial
extensions of 1D SSH chains and the edge and corner states
can be beyond the understanding based on the edge states of
1D SSH chains.

These topologically protected conducting edge states, cor-
ner states, flat bands, and the switch between them may be
valuable for optical couplers, robust waveguides, and topo-
logical circuit switches. According to previous successful
simulations of configurations I and II in microwave systems
[46], acoustic systems [43,44], and electrical circuits [37,45],
it is expected that such exotic properties can be experimentally
realized. The relevant parameters may need to be modified
from our theoretical calculations, but the topological proper-
ties will remain the same.

In summary, we have studied different configurations of
the 2D SSH model under the rule stated in Sec. II A, in-
cluding all the configurations with the 4-site unit cell and
two relatively complicated configurations with 8- and 36-
site unit cells. Different quantum phases were obtained, e.g.,
topologically nontrivial and trivial insulators and metals. We
investigated their electronic and topological properties in de-
tail, and obtained topologically protected edge states, metallic
chains with different shapes, and a bulk–edge separation in a
metal system. In particular, a flat-band feature of topological
edge states has been presented. We uncovered the physical
mechanism of its formation by analyzing the spatial distri-
bution of edge states and the bulk topology. This work can
be generalized to more configurations and higher dimensions,
and we hope it will provide new ideas for future experimental
simulations and observations.
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