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Tunable valley filtering in dynamically strained α-T3 lattices
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Mechanical deformations in α-T3 lattices induce local pseudomagnetic fields of opposite directionality for
different valleys. When this strain is equipped with a dynamical drive, it generates a complementary valley-
asymmetric pseudoelectric field, which is expected to accelerate electrons. We propose that by combining these
effects by a time-dependent nonuniform strain, tunable valley filtering devices can be engineered that extend
beyond the static capabilities. We demonstrate this by implementing an oscillating Gaussian bump centered in a
four-terminal Hall bar α-T3 setup and calculating the induced pseudoelectromagnetic fields analytically. Within a
recursive Floquet Green-function scheme, we determine the time-averaged transmission and valley polarization,
as well as the spatial distributions of the local density of states and current density. As a result of the periodic
drive, we detect novel energy regimes with a highly valley-polarized transmission, depending on α. Analyzing
the spatial profiles of the time-averaged local density of states and current density we can relate these regimes
to the pseudoelectromagnetic fields in the setup. By means of the driving frequency, we can manipulate the
valley-polarized states, which might be advantageous for future device applications.
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I. INTRODUCTION

In addition to charge and spin, electrons possess a
valley degree of freedom in exciting two-dimensional con-
densed matter materials such as graphene or transition metal
dichalcogenides. For example, graphene has two inequivalent
Dirac cones at the K and K′ valleys of the Brillouin zone [1].
These valleys can be used to carry and encode information for
logical operations, opening the field of “valleytronics” [2–4].
The main challenge for valleytronic devices is the precise
control of valley polarization. Several proposals for valley
filters and spatially separated valley-resolved currents by, e.g.,
nanoconstrictions [2], inversion-symmetry breaking [5], or
line defects [6,7] have been made.

Graphene’s outstanding ability to withstand mechanical
deformations of up to 25% due to the strong sp2 bonds [8] and,
most importantly, its extraordinary electromechanical cou-
pling is particularly promising in this regard. Because geomet-
rical deformations modify the electronic hopping amplitude
between the atoms, effective gauge fields with corresponding
pseudomagnetic fields (PMFs) of more than 300 T can be
generated [9]. Remarkably, electrons residing in the K or K′

valley feel opposing strain-induced PMFs since time-reversal
symmetry is conserved. In connection, inhomogeneous PMFs
due to out-of-plane deformations have attracted much at-
tention because valley filters and beam splitters can be
engineered [10–15], for an overview see Ref. [16]. Experi-
mentally, such deformations can be created and controlled by
STM tips [17]. Since the observed effects depend heavily on
the energy and the degree of the deformation, there have been

*fehske@physik.uni-greifswald.de

efforts to improve the valley-filtering efficiency by arranging
multiple Gaussian bumps in superlattices [18,19]. Interest-
ingly, time-dependent strains introduce additional pseudoelec-
tric fields (PEFs) proportional to the effective gauge field.
The PEFs give rise to valley-current generation and phonon
damping [20,21] and charge pumping in mechanical res-
onators [22]. Recently, it has been demonstrated that graphene
nanodrums are viable means for valleytronic devices [23].
Also, crossed pseudoelectromagnetic fields have been shown
to produce a charge current via a pseudo-Hall effect [24,25].
Oscillating out-of-plane strains have already been realized in
nanoelectromechanical systems, where a suspended graphene
membrane or ribbon is driven by an ac gate voltage with typ-
ical resonance frequencies in the MHz to GHz range [26,27].

The somewhat more complicated α-T3 lattice is obtained
by placing an additional atom at the center of each hexagon
in the honeycomb lattice with strength α, thereby interpolat-
ing between graphene (α = 0) and the dice lattice (α = 1)
[28–30]. Most notably, an additional, strictly flat band appears
at zero energy going through the K and K′ points, while
the conduction and valence bands remain unaltered. There
are several proposals for experimental realizations. The dice
lattice can be manufactured by growing trilayers of cubic lat-
tices, e.g., SrTiO3/SrIrO3/SrTiO3, in the (111) direction [31].
In two dimensions, Hg1−xCdxTe at a critical doping has been
reported to map onto the α-T3 lattice with an intermediate α =
1/

√
3 parameter [28,32]. There are also several suggestions

for an optical α-T3 lattice that would allow a tuning of α by de-
phasing one pair of the three counter-propagating laser beams
[28,32]. Under external electromagnetic fields, the flat band
and α-dependent Berry phase have striking consequences on
the Landau level quantization [28,33], the quantum Hall effect
[34,35], Klein tunneling [36–39], and Weiss oscillations [40].
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While the flat band has zero group velocity and therefore
zero conductivity, it is predicted to play an important role for
the transport by its nontrivial topology [31,46], the coupling
to propagating bands [41–43], or interaction effects [44–47].
Furthermore, electrons dressed by external laser fields or
shaking in the α-T3 model have attracted interest particularly
in view of tuning the electronic properties [48–51] up to the
point of inducing Floquet topological phase transitions [52].
Accordingly, several works have exploited the valley degree
of freedom, e.g., via the geometric (valley) Hall effect [53],
magnetic Fabry-Pérot interferometry [54], or crossed Andreev
reflections [55].

Recently, elastic deformations in α-T3 structures have been
shown to induce PMFs that efficiently valley filter incoming
electrons by excitation to α-dependent (pseudo) Landau levels
[56,57]. When the out-of-plane deformations also oscillate in
time, complementary PEFs are induced that drive electrons
of opposite valleys in different directions. So far, however,
the electronic transport properties of graphene (α = 0) nano-
electromechanical systems have mostly been discussed in the
adiabatic limit, i.e., the ultrafast electrons simply perceive a
static deformation profile due to the slowly oscillating nan-
odrum [23].

In this paper, we therefore consider a time-periodically
oscillating Gaussian bump on an α-T3 lattice within the Flo-
quet theory and show how the PEF improves the valley-filter
capabilities and affects the flat band. For this, we study the
transmission of electrons in a four-terminal Hall bar setup
with zigzag terminations. The advantage of such driving is
the possible tuning of α-dependent valley-polarized states by
the driving frequency and the creation of (locally) flat bands
for α > 0. The paper is structured as follows. In Sec. II,
we introduce the tight-binding model with time-periodic
Gaussian deformations and derive the Fourier decomposi-
tion of the time-dependent transfer amplitudes analytically.
We also provide results for the DC transmission, the time-
averaged local density of states and the current density in
four-terminal devices under a periodic drive in the nonequi-
librium Green-function formalism. In Sec. III, we analyze a
typical four-terminal transport setup and calculate all relevant
quantities through a recursive Floquet Green-function algo-
rithm built on top of the KWANT toolbox [58]. We conclude in
Sec. IV.

II. MODEL AND METHODS

To describe the electronic properties of the time-
periodically strained α-T3 lattice, we consider the following
tight-binding Hamiltonian (h̄ = 1)

Hα (t ) = −
∑
〈i j〉

Ji j (t )a†
i b j − α

∑
〈i j〉

Ji j (t )c†
i b j + H.c., (1)

where a(†), b(†) and c(†) create (annihilate) an electron on
Wannier sites A, B, and C, respectively. In the α-T3 lattice,
an additional site C is placed at the center of each hexagon
formed by the A and B sites. This site couples to the B sites via
αJi j (t ), which allows for an interpolation between graphene
(α = 0) and the dice lattice (α = 1). In the unstrained lattice,
the nearest-neighbor hopping is Ji j = J and the α-T3 lattice

FIG. 1. (a) Four-terminal setup with a dynamic Gaussian defor-
mation (3) in the center oscillating with frequency �. The parameters
are h0 = 8 nm, σ = 10 nm, and W = 20 nm. Semi-infinite leads
(red) attached to the Hall bar region are modeled by the pristine
tight-binding Hamiltonian, i.e., Ji j = J . For the coupling between the
Hall bar and the leads, we take Ji j = J also. To create the system
numerically, we use the KWANT library [58]. (b) Comparison of the
Fourier components of the time-dependent transfer amplitudes for
representative values of zi j , and m = 0, 1, 2. The static Ji j (t = 0)/J
case is also showcased. The horizontal line denotes J = 0. [(c) and
(d)] (Zoomed-in) Pseudomagnetic and pseudoelectric field at, re-
spectively, t = 0 and t = T/8 due to the time-periodic oscillating
Gaussian bump from (a) with � = 0.25J for electrons in the K
valley.

features a graphene-like band structure with an additional
dispersionless band at zero energy [28].

The out-of-plane lattice distortion h(r, t ) alters the site
positions r′

i(t ) = ri + h(ri, t )ez [cf. Fig. 1(a)], thereby vary-
ing the bond length di j (t ) = |r′

i(t ) − r′
j (t )| between nearest

neighbors. The modified transfer amplitude is given by

Ji j (t ) = J exp{−β(di j (t )/a − 1)}, (2)

where β = −∂ ln J/∂ ln a is the Grüneisen parameter with a
denoting the (unstrained) nearest-neighbor distance.

In this work, we look upon a temporal oscillating Gaussian
bump

h(r, t ) = h0 cos(�t ) exp (−r2/σ 2), (3)

where r is the radial distance from the center, and h0 and σ

denote the bump’s height and width, respectively. The Gaus-
sian deformation is assumed to be periodic in time, h(r, t +
T ) = h(r, t ), where T is the oscillation period and � = 2π/T
the corresponding frequency. Note that since h(r, t )2 enters
Eq. (2), Ji j (t ) [and thereby H (α)(t )] has a periodicity of T/2
(frequency of 2�) instead.

We expand Eq. (1) in a Fourier series, Hα (t ) =∑
m ei2m�t H (m)

α , with the Fourier coefficients given by
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H (m)
α = 2

T

∫ T/2
0 ei2m�t Hα (t ) dt . Rewriting Eq. (2) as Ji j (t )/J =

exp g(zi j, t ), where g(zi j, t ) = −β(
√

1 + zi j cos2 �t − 1), we
can expand Eq. (2) with respect to the (squared) height differ-
ences between nearest neighbors,

zi j = h2
0

a2

(
e−r2

i /σ 2 − e−r2
j /σ

2)2
, (4)

in a Taylor series around the pristine case zi j = 0. Then, using
Faà di Bruno’s formula, we obtain

Ji j (t )/J =
∞∑

n=0

n∑
k=0

Bn,k (t )
zn

i j

n!
, (5)

where

Bn,k (t ) = βk (−1)n

2n
cos2n(�t )[2(n − k) − 1]!!

(
2n − k − 1

2(n − k)

)

(6)

denotes the partial Bell polynomials of the second kind for the
nth derivative of exp g(zi j, t ) at zi j = 0 [59]. Due to

cos2n(�t ) = 1

22n

{
n−1∑
l=0

2

(
2n

l

)
cos[2(n − l )�t] +

(
2n

n

)}
,

(7)

[60], the Fourier coefficients of the time-dependent Hamilto-
nian

H (m)
α = −

∑
〈i j〉

J (m)
i j a†

i b j − α
∑
〈i j〉

J (m)
i j c†

i b j + H.c. (8)

become

J (m)
i j /J =

∞∑
n=|m|

n∑
k=0

Bn,k (0)

(
2n

n − |m|
)

1

22n

zn
i j

n!
. (9)

Note that the series in Eq. (5) has a convergence radius of 1,
which corresponds to a strained bond length di j = √

2a. Since
graphene is known to sustain up to 25% [8] of elastic strain
(zi j = 0.5625), any physical deformation can be correctly de-
scribed. The dependence of the different Fourier components
on the driving amplitude h0 is depicted in Fig. 1(b), where
we show Eq. (9) for m = 0, 1 and 2 as a function of the
expansion parameter zi j ∝ h2

0. We also plot the static hopping
parameter (t = 0) from Eq. (2). Due to time-averaging, J (0)

i j /J
is increased compared to the static Gaussian bump. Clearly, zi j

(h0) directly controls the magnitude of J (m)
i j . If zi j is constant,

J (m)
i j decreases exponentially with m.

Dynamic elastic strain results in a time-dependent
pseudoelectromagnetic vector potential Aps = (ReAps, ImAps)
[1,61,62], where

Aps(ri, t ) = 1

evF

3∑
j=1

Ji j (t )e−iK·δ′
i j (10)

and the sum is taken over the nearest neighbors. K denotes the
corner of the Brillouin zone and δ′

i j = r′
i − r′

j is the strained
nearest-neighbor vector. The PMF is then Bps = ∇×Aps and
the PEF is Eps = −∂Aps/∂t . The PMF and PEF induced by
oscillating Gaussian strain for electrons in the K valley is

depicted in Figs. 1(c) and 1(d). For electrons in the K′ val-
ley, the signs of the PMF and PEF are reversed. To study
the transport properties of the temporal oscillating Gaussian
bump with regard to its valley-filter capabilities, we use the
four-terminal setup shown in Fig. 1(a). The DC transmission
of electrons originating from the left lead (L) to the right lead
(R) is given by [63,64]

T (E ) =
∑
k∈Z

Tr
[
Gr

k0�
L
00Ga

0k�
R
kk

]
, (11)

where Gr(a)
k0 denotes the retarded (advanced) Green function

in Floquet basis. �
L(R)
kk = i[	r

L(R) − (	r
L(R))

†]kk is the level-
width function of the left (right) lead in Floquet representation
and 	r

L(R) denotes the respective self-energy in Floquet rep-
resentation, i.e., (	r

L(R))km = δkm	r
L(R)(E + 2k�). The trace

(Tr) is taken over all sites in the Hall bar region.
The retarded Floquet Green function Gr

mn is defined by [65]∑
m∈Z

[
(E + iη + 2k�)δkm − H (k−m)

α − (	r )km
]
Gr

mn(E ) = δkn,

(12)

where (	r )km denotes the sum over the four lead self-energies
in Floquet representation, and iη is a small complex number
guaranteeing convergence in the numerical matrix inversion.
After truncating Eq. (12) at finite m ∈ [−M, M], we apply
the recursive Green-function algorithm for Floquet systems
[66,67] and split the four-terminal setup by a circular slicing
scheme [68]. Thereby, systems with up to 150 000 lattice sites
with M = 6 are accessible, which is not feasible by direct
matrix inversion.

In order to study the valley-filtering, we choose zigzag
boundaries for the left and right lead of the Hall bar to
have well-separated valleys in momentum space and the self-
energy can be projected, respectively, onto the K or K′ points,
i.e., 	r

R = 	
r,[K]
R + 	

r,[K′]
R . Then,

T [K](E ) =
∑
k∈Z

Tr
[
Gr

k0�
L
00Ga

0k�
R,[K]
kk

]
(13)

gives the transmission of electrons originating from the left
lead into the K states of the right lead and we can define the
valley polarization

τ [K] = T [K]/T . (14)

For incidents along the armchair direction, i.e., from the top or
bottom lead [cf. Fig. 1(a)], the Gaussian bump acts as a valley-
beam splitter instead [12], which would necessitate a different
lead configuration [23,69]. In addition, the spatial distribution
of the time-averaged local density of states (LDOS) on site i
in Floquet basis,

T-LDOS(E )i = − 1

π
Im

(
Gr

00

)
i,i(E ), (15)

gives valuable insight into excited states inside the Gaus-
sian bump, quite similar to the static case, where one
has LDOSi(E ) = − 1

π
Im Gr

i,i(E ). The T-LDOS can be effi-
ciently calculated by the kernel polynomial method [70,71].
Furthermore, the Keldysh equation connects the retarded
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Floquet-Green function with the lesser Floquet-Green func-
tion in Floquet representation [72,73],

G<
mn(E ) =

∑
kl

Gr
mk (E )	<

kl (E )Ga
ln(E ), (16)

where 	<
kl = i

∑
p �

p
kl (E ) f p and f p = 1/1 + exp{(E −

μp)/kbT } denotes the Fermi-Dirac distribution of an
individual lead p with chemical potential μp = E + eVp/2,
and Vp is the applied bias voltage. Then, the time-averaged
and energy-resolved current density between site i and site j
is given by [66]

Ii j (E ) =
∑
k∈Z

J (k)
i j [G<

0k]i j (E ). (17)

III. RESULTS

In our numerical calculations, we take the system pa-
rameters given in Fig. 1, as well as the (graphene-like)
values a = 0.142 nm, β = 3, and J = 2.8 eV for the tight-
binding model [11], unless otherwise specified. Let us first
comment on the frequency dependency in the off-resonant
case. Here, the time-reversal symmetry is intact and the
time-averaged Hamiltonian H (0)

α dominates the dynamics be-
cause the first-order corrections, [H (m)

α , H (−m)
α ], vanish in the

Floquet-Magnus expansion [74]. Concomitantly, the coupling
between the Floquet sidebands is weak [cf. Fig. 1(b)], necessi-
tating frequencies smaller than the bandwidth to ensure a large
overlap between neighboring sidebands. For the parameters
used, we take J (m)

i j up to m = 3 since zi j � 0.5 [cf. Fig. 1(b)]
and M = 5 in the Floquet space to assure convergence of the
truncation scheme.

Figures 2(a), 2(b), and 2(c) show the transmission T of
electrons originating from the left lead moving to the right
lead and their valley polarization τ [K] for graphene (α = 0),
the intermediate 1/

√
3-T3 lattice, and the dice lattice (α = 1),

respectively. The main feature of the static bump is an al-
most complete valley polarization of the transmitted electrons
stemming from the excitation to α-dependent strain-induced
Landau levels leading to “flowerlike” LDOS patterns inside
the deformed region [10,11,13,56]. One of the main caveats is
the reduction in valley polarization of the output current with
increasing energy since the main contribution comes from the
lowest energy band [13].

For the graphene case [cf. Fig. 2(a)], we notice two char-
acteristic transport regimes, for E < � and E 	 �. Starting
with E < �, we observe a plateau in the valley polarization up
to E 	 0.3 eV with finite transmission because, in this energy
range, only the valley-polarized zigzag edge band is occupied
[18]. At higher energies up to E = �, the valley polarization
decreases since higher bands are populated [13]. Moreover
the transmission is suppressed near E � �, indicating a gap
at edge of the first Floquet zone. We found this Floquet gap
irrespective of the applied frequency (below the bandwidth).
Exactly at E = �, we see an abrupt onset in the transmission
with almost perfect valley polarization [τ [K] 	 0.9] at the
m = 0 and m = 1 zone boundary. This is quite contrary to
the static case, where an increase in the energy will lower the
valley polarization.

FIG. 2. [(a)–(c)] Transmission and valley polarization in depen-
dence of (quasi) energy for an oscillating Gaussian bump in a α-T3

lattice for α = 0, 1/
√

3 and 1, respectively. Vertical dashed lines
denote E = � and E = 2�. The resonances at energies E 	 1.31,
	 1.31, and 	 1.27 eV are marked by (1), (2), and (3), respectively,
where we find τ [K] = 0.4, 0.75, and 0.75.

In the intermediate case α = 1/
√

3, an additional trans-
port channel emerges around E 	 2� [cf Fig. 2(b)] related
to the flat band, besides the valley plateau at E = � and
the static-like regime E < �. For energies below a thresh-
old of 0.2 eV, the bump will block any current due to the
large PMF inside. Above this threshold, the transmission
features valley-polarized resonances with the characteristic
six-fold symmetric (T-)LDOS pattern indicative of the static
case. Near E = �, we notice a similar Floquet gap with a
valley-polarization plateau, albeit slightly reduced. Around
E 	 2�, we notice that the transmission vanishes (is greatly
suppressed) exactly at (near) the m = 1 zone center at E = 2�

(E = 2� ± 0.1 eV). Here, the flat band of the m = 1 Floquet
sideband hybridizes with the central m = 0 band, and all states
at this energy become localized [cf. discussion of Figs. 3(h)
and 3(i) below]. Since flat bands—due to their zero group
velocity—do not carry any current, the transport is completely
blocked. Regrettably, the numerical accuracy at the flat band
heavily influences the value of the calculated polarization. We
also verified that no current is transmitted into top/bottom
leads, confirming the complete blocking of any transport. The
transmission gap of width  	 0.18 eV around E = 2� is
symmetric in the energy, which is a result of the particle-
hole symmetric sidebands. Away from this gap we observe
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FIG. 3. (Zoomed-in) Time-averaged local density of states (T-LDOS) at energies E = � [(a)–(c)], resonances (1–3) in [(d)–(f)] and
E = 2� [(g)–(i)] for graphene (α = 0), the 1/

√
3-T3 lattice and the dice lattice (α = 1), respectively.

a small band of transmission resonances around E 	 1.31 eV
[cf. (2) in Fig. 2(b)] with a particular high degree of valley
polarization τ [K] 	 0.75. We will see that this is due to the
PEF, see discussion of Figs. 3(e), 3(f), and 4(b) below.

For the dice lattice [cf. Fig. 2(c)], we can again identify the
two characteristic transport regimes, E < � and E 	 2�, of
the α = 1/

√
3 model, which obviously interpolates between

graphene and the dice-lattice physics. Accordingly, as nec-
essary conditions for the different regimes, we find: When
α < 1, a valley-polarization plateau is induced around E 	 �,

while in the case of α > 0, the model features flat-band states
at E = 2� with highly valley-polarized states at the edges of
the transmission gap.

To fix the signatures of these effects and contrast them with
those of the static transport channels, in Fig. 3 we plot the
time-averaged LDOS for E = �, resonances (1)-(3) and E =
2� for α = 0, 1/

√
3 and 1, respectively.

At E = �, the T-LDOS for α = 0 (α = 1/
√

3) fea-
tures the sixfold (threefold) symmetric T-LDOS pattern
confined to the lobes of the PMF displayed in Fig. 1(c),
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FIG. 4. (Zoomed-in) Time-averaged current density profile I at energies E = � (a), resonances (2) in (b) and E = 2� (c) for graphene
(α = 0), the 1/

√
3-T3 lattice and the dice lattice (α = 1), respectively.
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while the T-LDOS almost vanishes in the dice lattice case
[cf. Figs. 3(a)–3(c)].

For resonances (1)–(3) [cf. Figs. 3(d)–3(f)], we notice for
α > 0 that the incoming electrons are confined to the center
instead of mirroring the profile of the PMF. We attribute this
to the PEF displayed in Fig. 1(d), which drives the incoming
electrons residing in the K valley to the low field region
inside the bump, while electrons in K′ valley—feeling the op-
posite field—are pushed away, thereby effectively polarizing
the transmitted electrons [see discussion on Fig. 4(b)]. This
feature is characteristic for the series of resonances around
(2) and (3) [and also Fig. 7 around (1)]. The time-averaged
LDOS at E = 2� in Fig. 3(h), 3(i) shows a highly degenerate
state restricted to the Gaussian bump [cf. the color-map scale],
which is in contrast to the flat band state at E = 0, where
the LDOS is spread over the whole lattice instead. In fact,
the LDOS diverges at E = 2�, which indicates a flat-band
like state. In the numerics, we have added a small imaginary
part to the energy (η = 10−5) to guarantee convergence of the
matrix inversion. This effect occurs at E = 2m�, where m =
0,±1,±2, . . . The spectral weight increases with increasing
h0 and 1/m. In the graphene case shown Fig. 3(g), the flat band
is decoupled and the T-LDOS vanishes in accordance with the
transmission calculations [cf. Fig. 2(a)].

Figures 4(a), 4(b), and 4(c) provide the local (time-
averaged) current densities, indicating the dynamical effects,
at E = �, resonance (2) and E = 2�, for α = 0, 1/

√
3, and

1, respectively, where a small bias is applied between the left
and right lead. The magnitude is decoded by the blue intensity,
and the arrows denote the direction of the electron flow. The
static-like nature of the system at E = � becomes particularly
apparent in Fig. 4(a), where the incoming stream of electrons
is encircling the (distorted) lobes of the PMF, nicely represent-
ing the behavior of the T-LDOS [cf. Fig. 3(a)]. The situation
for resonance (2) [cf. Fig. 4(b)] is much different, because,
here, the PEF focuses a small part of the electron flow through
the bump along the x axis before exiting the scattering region
through lead R. The majority of the electron flow is blocked
and leaves the scattering region via the top and bottom lead,
see Fig. 4(b). Recalling the corresponding valley polarization
in Fig. 2(b), we can conclude that the transmitted stream con-
sists primarily of K electrons. The density profile at E = 2�

displays a large amount of current trapped inside the bump
[cf. Fig. 4(c)], thereby blocking any transmission through the
setup. To assess the stability of the valley-polarized states near
E 	 � and E 	 2�, in Fig. 2(b), we provide a contour plot of
the valley polarization as a function of the energy E and the
bump height h0 in Fig. 5 around E = 2� (top) and E = �

(bottom). We again choose α = 1/
√

3 as this system best
interpolates between graphene and the dice lattice. We omitted
h0 < 5 nm since the amplitude, which directly controls the
interband coupling between the Floquet copies [cf. Fig. 1(b)],
is too weak in this case. In both cases, the regions of high
valley polarization are robust for a wide range of amplitudes
h0 and we can identify h0 � 6 as the optimal regime for
polarization. While the polarized resonances around E 	 2�

depend almost linearly on h0, the valley polarization reaches
nearly unity around E 	 � for large h0 	 9 nm.

So far, in order to avoid problems with the rapidly increas-
ing dimension of the Floquet space, we worked at a rather
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V
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]

0.0 0.2 0.4 0.6 0.8 1.0
τ [K]

FIG. 5. Contour plot of the valley polarization for the α = 1/
√

3
lattice as a function of E and h0 for an oscillating Gaussian bump.
Horizontal dashed lines mark E = 2� and E = �, respectively.

large driving frequency. To demonstrate that the discussed
valley-polarization effects persist for smaller frequencies, in
Fig. 6, we show the valley polarization in the �-E plane for
the 1/

√
3 lattice. Obviously, the valley-polarized regimes in-

duced by the dynamical strain for E = � and E 	 2� appear
down to at least � = 0.1J , albeit being slightly reduced. The
static-like regime E < � deteriorates when � < 0.2J through

FIG. 6. Contour plot of the valley polarization in dependence
on (quasi) energy and driving frequency for an oscillating Gaussian
bump on the intermediate 1/

√
3 lattice. The energy range is limited

by the Van Hove singularity E = J (=2.8 eV) since the valley degree
of freedom can only be defined up to this point. Dashed lines mark
E = m� for m = 1, 2, 3, and 4, respectively.
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FIG. 7. Transmission and valley polarization in dependence on
the (quasi) energy for an oscillating Gaussian bump on the dice lattice
(α = 1) with h0 = 12 nm, σ = 15 nm, and frequency � = 0.25J .
Here, the Hall bar has W = 30 nm. Vertical dashed lines mark E = �

and E = 2�.

the overlap with E = � polarization regime. The gap 

around E = 2� with the valley-polarized states [cf. Fig. 2(b),
resonance (2)] persists until  = 2�, i.e., when the reso-
nances will be located outside the first Floquet zone. Since the
discussed frequency range 34–225 THz (� = 0.05J–0.33J)
could not be expected to be realized in graphene-based nano-
electromechanical resonators [26,27], we rather envision an
implementation of the α-T3 lattice in optical lattices, where
dynamical strain also could be realized [75]. The main ad-
vantage of this route is, besides having direct access to the
scaling paramter α, that the transfer amplitudes can be freely
manipulated [76,77].

Finally, let us comment on the system-size dependence
of our results. Figure 7 gives the transmission and valley
polarization for a dice-lattice Hall bar with W = 30 nm, which
corresponds to 1.5×105 sites and a 50% increase in the lead’s
width. We take h0/σ = 0.8 and σ/W = 0.5 as in Fig. 1, i.e.,
h0 = 12 nm and σ = 15 nm. The driving frequency remains
� = 0.25J . We find a pronounced band of resonances around
(1) E 	 1.3 eV, where the valley polarization reaches almost
unity. We note that the observed effects weaken when we
analyze smaller systems (not shown). In any case, it is im-
portant that the use of larger system sizes enhances the valley
polarization and the corresponding resonances near E = 2�,
which means that our results should be robust in the thermo-
dynamic limit, i.e., for real-world devices. This is in accord
with the arguments presented in Ref. [19], where the authors
estimated the number of pseudo-Landau level subbands by
counting the iso-field orbits that enclose an integer magnetic
flux. By increasing W , the inhomogeneous PMF is spread over
a larger region, thereby increasing the number of iso-orbits
(and resonant states). Although the nature of driving-induced

valley-polarized states differs in our case, a similar mecha-
nism is at work.

IV. SUMMARY

In this paper, we have shown how a time-periodic modula-
tion of strain-induced Gaussian bumps allows for engineering
the transport properties in α-T3 lattice Hall bars. To be
more specific, we demonstrated the appearance of novel
valley-polarized states and flat bands tunable by the driv-
ing frequency and the scaling parameter α. We discussed
the role of the pseudoelectromagnetic fields in time-periodic
Gaussian bumps in terms of analytical expressions for the
time-dependent transfer amplitudes. Using the recursive Flo-
quet Green-function algorithm with a circular slicing scheme,
we obtained and examined the DC transmission, valley po-
larization, and the spatial distribution of the time-averaged
local density of states and the current density profile in a
four-terminal device. Depending on the scaling parameter
α, we identified two transport regimes with distinct valley-
polarization responses caused by the dynamic strain. For
α < 1, we detected a second plateau in the valley polarization
at the boundary of the central and first Floquet sideband. In the
time-averaged LDOS, we found a revival of the static “flow-
erlike” pattern mirroring the shape of the pseudomagnetic
field due to the incoming electron flow with K polariza-
tion encircling the lobes of the external field. In the case of
α > 0, we noticed a vanishing transmission at about 2m�,
which could be related to the flat bands of higher sidebands
coupled to states in the zeroth sideband. The corresponding
time-averaged LDOS pattern revealed a substantial spectral
weight spread inside the bump, blocking any current through
the device due to the zero group velocity of these flat-band
states. In the vicinity of this transmission “gap,” we found
highly valley-polarized resonances where the incoming (K-
polarized) electrons are focused along the zigzag orientation
through the Gaussian bump by the pseudoelectric field. We
confirmed that above a threshold amplitude of the out-of-
plane oscillation, the device facilitates valley filtering of the
incoming electrons in both regimes, E 	 � and E 	 2�, with
different scaling behaviors. We enhanced the valley-filter effi-
ciency and the resonance structure by considering larger sys-
tem sizes. While previous works on nanodrums mainly exam-
ined the adiabatic limit, we here focused on a high-frequency
regime and numerically studied the influence of the external
field dynamics on transport. We found pronounced effects
of the PEF, e.g., α-dependent Floquet gaps, novel valley-
polarized states where the incoming electrons are focused,
and flat-band states. Since Gaussian bumps in α-T3 lattices
have promising valley-filtering capabilities in the adiabatic
and anti-adiabatic limit, we believe that observed behavior is
“generic”, i.e., the used high frequencies are not a restraint.
Moreover the proposed setup should be realizable in optical
lattices, according to their tunability of hopping amplitudes.
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