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From dissipationless to normal diffusion in the easy-axis Heisenberg spin chain
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The anomalous spin diffusion of the integrable easy-axis Heisenberg chain originates in the ballistic transport
of symmetry sectors with nonzero magnetization. Ballistic transport is replaced by normal dissipative transport
in all magnetization sectors upon introducing the integrability-breaking perturbations, including external driving.
Such behavior implies that the diffusion constant obtained for the integrable model is relevant for the spread of
spin excitations but not for the spin conductivity. We present numerical results for closed systems and driven open
systems, indicating that the diffusion constant shows a discontinuous variation as the function of perturbation
strength.
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I. INTRODUCTION

The transport in integrable quantum many-body models,
the prominent example being the Heisenberg XXZ spin-1/2
chain, has attracted a lot of attention for a few decades and
recently reached a high level of understanding via novel ana-
lytical and powerful numerical approaches [1]. However, there
are still open fundamental questions, in particular, regarding
the influence of integrability-breaking perturbations (IBP).
Although theoretical tools to deal with perturbations are well
developed for the simpler but related problem of noninteract-
ing fermions, perturbed integrable many-body systems still
present a challenge [2–4].

The distinctive feature of integrable XXZ spin chain is the
dissipationless ballistic transport at finite temperatures T >

0 [5,6]. In the dynamical conductivity σ (ω) = 2πD δ(ω) +
σreg(ω) it is detected via finite Drude weight D(T > 0) > 0.
Although in the general case the lower bound for D can
be related to the local conserved quantities (CQ) of inte-
grable models [7] for the most investigated case of easy-plane
Heisenberg chain (� < 1) one has to invoke also quasilocal
CQ [8–10] to explain D > 0. A more general description of
integrable transport is a recently developed framework of gen-
eralized hydrodynamics (GHD) [11–17]. However, much less
is understood about the role of IBP, which plausibly reduce
the ballistic transport into a normal dissipative one [6,18–21],
attributed to the decay of CQ in the perturbed system [22].
Transport in spin chains has been recently also realized and
investigated experimentally in cold-atom systems [23–25].

A particular challenge is the easy-axis (� > 1) XXZ
model where D = 0 at zero magnetization m = 0, whereas the
nonequilibrium steady state of open boundary driven systems
[26], and the Hamiltonian evolutions of an inhomogeneous
spin profile [27–30] are consistent with a finite diffusion con-
stant DI > 0. It has become increasingly evident that such
transport is anomalous. Namely, integrable models do not

exhibit internal dissipation [31]. The DC conductivity σ0 =
limF→0 js/F is defined via the steady current js, induced by
a steady field F , hence, the conductivity is determined in the
presence of nonzero driving. Such driving breaks integrability
and restores normal transport (i.e., steady driving leads to
a steady heating). More recently, the anomalous origin of
spin diffusion within the integrable model has emerged also
from GHD methodology, which explains diffusion constant
DI > 0 as the grandcanonical (GC) superposition of ballistic
(i.e., dissipationless) spreading of quasiparticles belonging to
m �= 0 sectors [17,32,33].

In this paper we investigate the effect of weak IBP of
strength g on the high-T diffusion in the XXZ model with
the main conclusion that the DC diffusion constant D, ap-
pearing at nonzero g > 0 is unrelated to the dissipationless
diffusion DI in the integrable system as previously hinted
[28,34] and recently stated more explicitly [35]. As a conse-
quence, the generalized Einstein relation D = σ0/χ0, which
relates σ0 and the spin susceptibility χ0(T → ∞) ∼ 1/(4T )
(taking kB = 1) is not valid for the integrable XXZ model but
restored in the presence of IBP. We establish this by studying
different IBPs and calculating dissipative/normal DC D(g)
emerging from different methods: (a) the dynamical diffusion
response in finite systems with L � 32 for different magne-
tization sectors m � 0, (b) the steady-state currents in open
boundary-driven systems allowing for much larger L � 80,
(c) the time-dependent spin structure factor S(q, t ) at finite
wave-vectors q = 2π/L, (d) the variation of the modulated
spin profile under the influence of the finite driving field
F > 0.

In the large-L limit, results for D(g) of all methods are
expected to converge (shown here for modest g > 0). Most
important, results indicate that D0 = D(g → 0) � DI , i.e.,
diffusion reveals a jump upon introduction of IBP [36]. On
the contrary, the Einstein relation (based on the linearity of
system’s response to weak IBP) is not valid for the integrable

2469-9950/2022/106(24)/245104(8) 245104-1 ©2022 American Physical Society

https://orcid.org/0000-0001-8374-8011
https://orcid.org/0000-0003-1945-1437
https://orcid.org/0000-0001-9860-2146
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.106.245104&domain=pdf&date_stamp=2022-12-05
https://doi.org/10.1103/PhysRevB.106.245104


P. PRELOVŠEK et al. PHYSICAL REVIEW B 106, 245104 (2022)

system and different protocols, e.g., the sequence of limits
L → ∞ and ω → 0 (t → ∞) may yield different results.

II. MODEL AND DISSIPATIONLESS DIFFUSION

We study the S = 1/2 spin chain of length L with
anisotropy � > 1,

H = J
∑

i

[
1

2
(S+

i+1S−
i + H.c.) + �Sz

i+1Sz
i

]
+ gH ′. (1)

We consider different IBPs that conserve the translational
symmetry of the model. In the main text we focus on the
staggered field g = δh, H ′ = ∑

i(−1)iSz
i , whereas results for

staggered exchange g = δJ , H ′ = (1/2)
∑

i(−1)i(S+
i+1S−

i +
H.c.), and the next-nearest-neighbor (NNN) interaction g =
�2, H ′ = ∑

i Sz
i+2Sz

i are described in more detail in Appen-
dices A and B. Note that, considered H ′ conserve Sz

tot =∑
i Sz

i = mL, where |m| � 1/2 is the magnetization of the
system. We further use J = 1 and focus on the uniform spin
current, which is for unperturbed H (also for g = δh,�2)
given by js = (J/2)

∑
l (iS

+
l S−

l+1 + H.c.).
Before presenting results for perturbed XXZ chain, we

provide a simple interpretation of the dissipationless diffusion
emerging in the unperturbed system at � > 1. We first note
that for latter system the Drude weight D for m � 1 is dom-
inated by the overlap of js with the conserved energy current
jE [7],

T D � 1

2L

〈 js jE 〉2

〈( jE )2〉 = �2m2

1 + 2�2
. (2)

In an infinite system, this leads to the ballistic component
in each m �= 0 sector. However, in a finite system, the spin
current acquires a finite relaxation time τL due to scatterings
at the system boundaries. Introducing an effective velocity for
the ballistic spin propagation v̄, one gets the corresponding
scattering rate1/τL = v̄/L. Consequently, the δ(ω) contribu-
tions are to broaden to Lorentzians with the widths 	L =
1/τL. It leads to a finite (diffusivelike) response, σm(ω →
0) = 2D(m)/	L, which is obviously only a finite-size effect
in each sector m �= 0. Nevertheless, the GC averaging over m
effectively eliminates the size dependence,

DI = 2L〈D(m)〉GC

v̄χ0
∼ 4L

v̄
〈m2〉GC = 1

v̄
, (3)

where we take into account � 
 1 in Eq. (2) and the high-T
average 〈m2〉GC = 1/(4L). The underlying assumption is that
the effective v̄ weakly depends on m. We note that analogous
GC analysis is also the basis of the lower bound [32] as well
as the GHD result [17,33] for DI .

This simple scenario introduces two crucial implications:
(1) Since the diffusive spin propagation originates from

the ballistic transport in m �= 0 sectors, the diffusion is not
related to any internal energy dissipation. It means that Eq. (3)
is relevant for the propagation of spin excitations but not for
their DC response to a steady driving [34] since the latter
is immanently connected with the internal energy dissipation
(cf. the Joule heating).

(2) The IBP introduces a L-independent mean free path
λ∗, which determines the scattering rate τ−1

λ = v̄/λ∗ and

FIG. 1. High-T dynamical diffusion D(ω) evaluated for the XXZ
chain at magnetization m = 0 and fixed � = 1.5, using MCLM on
the L = 32 system and various staggered fields δh. The inset shows
the integrated quantity I (ω) = ∫ ω

0 dω′D(ω′) with the extrapolation
to limit L → ∞ for the unperturbed system.

should be used instead of L in the numerator in Eq. (3). Then,
Eq. (3) becomes just a finite-size contribution that vanishes as
λ∗/L → 0. In other words, even weak perturbation eliminates
the contribution given by Eq. (3), leading to a discontinuous
D in the thermodynamic limit.

III. DYNAMICAL DIFFUSION IN CLOSED SYSTEMS

We calculate T 
 1 dynamical conductivity σ̃ (ω) =
T σ (ω) for systems with IBP with the linear-response (Kubo)
relation,

σ̃ (ω) = π

LNst

∑
n,m

|〈n| js|m〉|2δ(ω − εm + εn), (4)

where |n〉, |m〉 are Nst many-body eigenstates with corre-
sponding energies εn, εm. In L-site chains with periodic
boundary conditions (PBCs) and fixed (canonical) magneti-
zation m we evaluate σ̃ (ω) using the microcanonical Lanczos
method (MCLM) [37,38]. The method is upgraded [39] by
performing a large number of Lanczos steps, i.e., ML ∼ 5000.
This allows for resolution δω ∼ 10−3 for systems up to L =
32 with Nst � 107. Dealing with perturbed/normal systems
we adopt the Einstein relation, D(ω) = σ (ω)/χ0 = 4σ̃ (ω) as
valid for T 
 1 and m ∼ 0.

We first comment on the canonical m = 0 results for as
presented in Fig. 1 for particular anisotropy � = 1.5 and
calculated for maximum reachable L = 32 for various stag-
gered field δh. Analogous results for �2 > 0 and δJ > 0
are presented Appendices A and B, respectively. For com-
parison, we include the unperturbed δh = 0 result obtained
by the same protocol with the inset showing the integrated
spectra I (ω) = ∫ ω

0 dω′D(ω′). As already noted [31], the in-
tegrable case exhibits vanishing DC value D(ω → 0) ∼ 0
but as well large ω ∼ 1/L oscillations, which can still be
made compatible (after L → ∞ extrapolation) with the result
DI ∼ 0.55 (see the inset), obtained also by other numerical
approaches [1,26,29,40], being also in the range of the GHD
result [16,17].

On the other hand, results for finite g = δh > 0 reveal
DC value D(ω → 0) = D0 > 0, evidently smaller than the
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FIG. 2. Canonical DC diffusion constant DC (m) for � = 1.5 as
calculated for different magnetizations m with MCLM in a system of
L = 32 sites for different staggered fields δh > 0. Results are fitted
with parabolic dependence Eq. (5) with fixed ζ = 2.1.

integrable one D0(g) � DI . Such values are not finite-size
effects, which can be deduced also from the integrated spec-
tra I (ω), which are for g > 0 systematically reduced, i.e.,
I (ω) < DIω in a wide range ω < 1, requiring the reduction
of D(ω ∼ 0). Some caution is appropriate for weakest pertur-
bation, e.g., for g � 0.1, where D(ω) in Fig. 1 still exhibits
visible finite-size oscillations ω ∼ 1/L. This indicates that
reachable systems might be too small for considered g, i.e.,
L < λ∗ where λ∗(g) represents an effective mean free path.
Similar are conclusions for g = �2, δJ perturbations shown
in Appendices A and B, where L dependence of D(ω) spectra
is presented.

For given L, we employ MCLM to calculate canonical
DC (ω, m) and extract DC DC (ω → 0, m) = DC (m) corre-
sponding to different m sectors. Results presented in Fig. 2
show parabolic dependence on m, at least, for g � 1. This can
be explained as follows. Considered IBP do not conserve jE
and lead to the normal (finite) DC energy/thermal conductiv-
ity κ0, which scales (as expected from perturbation theory) as
κ0 ∝ 1/g2 [19–21,41]. Taking into account the overlap of the
spin current with jE Eq. (2), this leads to the dependence,

DC (m) = D0 + ζm2/g2. (5)

Results in Fig. 2 are well represented with the above depen-
dence, where ζ appears universal for all g > 0’s, plausibly still
dependent on the type of perturbation, e.g., ζ = 2.1 for g =
δh, but ζ = 1.8, 9.0 for g = �2, δJ cases, respectively (Ap-
pendices A and B). The D0 = DC (m = 0) represent weakly
g-dependent canonical m = 0 values, extracted from Fig. 1,
and apparently determined by a mechanism unrelated to jE .

It is straightforward to calculate the GC-averaged value of
DGC , corresponding to 〈m〉GC = 0 at given size L. Namely,
taking into account 〈m2〉GC = 1/(4L) we get

DGC = D0 + 4ζ/(Lg2). (6)

GC values are, thus, for weaker g < 2
√

ζ/L evidently DGC 

D0 but should approach the latter value on increasing L. The
results for δh = 0.2, 0.4 are presented in Fig. 3.

FIG. 3. Diffusion constant D vs 1/L obtained for fixed � = 1.5
from finite-L results by three different approaches: Canonical m =
0 sector MCLM results D0, GC average over m sectors DGC , and
open-system steady-state Dss for two staggered fields: (a) δh = 0.2,
and (b) δh = 0.4. Displayed is also unperturbed value DI = 0.55.
(c) Diffusion constant Dss vs δh as obtained for sizes L = 20, 40, 60
within the steady-state open-system approach. Shown are also values
obtained via linear 1/L → 0 scaling.

IV. DIFFUSION IN OPEN SYSTEMS

MCLM results above are based on the exact diagonal-
ization, which restricts reachable sizes to L � 32. Larger
L are, therefore, crucial to analyze regime of weaker
perturbations g → 0. For this purpose, we study open Heisen-
berg chains where the spin current is driven via boundary
Lindblad operators L1 = √

1 + μS−
1 , L2 = √

1 − μS+
1 , L3 =√

1 − μS−
L , L4 = √

1 + μS+
L , simulating couplings to baths

with a small difference μ in spin chemical potential [26].
We use time-evolving block-decimation (TEBD) technique
for vectorized density matrices [42,43], which evolves the
density-matrix ρ under the Liouvillian L̂ρ = −i[H, ρ] + D̂ρ,
D̂ρ = ∑

k LkρL†
k − 1

2 {L†
k Lk, ρ} to reach the nonequilibrium

steady-state ρss for small μ ∼ 0.01 with bond dimension
χbd = 128. Finite bias μ yields a finite steady-state spin cur-
rents jss = Tr[ρss js] from which diffusion constant can be
obtained as Dss = − jss/∇sz, where the magnetization gra-
dient for L 
 1 is (nearly) homogeneous, ∇sz = Tr[(Sz

i+1 −
Sz

i )ρss] ∼ μ/L. Such an approach allows to deal with sub-
stantially larger L but is still limited to L � 80 due to very
slow convergence towards the steady state as a consequence
of small Dss � 1 for our parameters.

For open and closed systems, it is important to follow the L
dependence of results. In Figs. 3(a) and 3(b) we summarize D
from all methods, presented as scaling vs 1/L. It is evident that
Dss are for all cases between the canonical m = 0 values D0

and DGC . The latter can be considered as an upper bound to
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the desired thermodynamic 1/L → 0 result D(g). For larger
δh = 0.4, Dss as well as D0 and DGC yield very consistent
results allowing for a reliable extrapolation to 1/L → 0. Fur-
thermore, for weak δh = 0.2, D0 are well below DGC for
reachable L, whereas Dss still shows relevant variation with
1/L, even with a visible change in slope indicating on possible
crossover behavior with 1/L.

In Fig. 3(c) we present the dependence of open-system Dss

on δh as calculated for different sizes L = 20, 40, 60. We note
that at weak δh → 0 the open-system method reproduces the
unperturbed value, i.e., Dss ∼ DI . The continuous decrease
in Dss with δh at fixed L can be interpreted as the (partly)
persisting ballistic component due to small size L < λ∗(δh).
Still, the results indicate on a crossover, i.e., with increas-
ing L the decrease with δh becomes steeper, and the region
with Dss ∼ DI narrower. On the other hand, Dss becomes
quite L independent for larger δh � 0.3 as also evident from
Fig. 3(b). In Fig. 3(c) we also present the result of a sim-
ple linear 1/L → 0 scaling (above the presumed crossover
δh � 0.1 for reachable L), which can be regarded as an upper
bound for the thermodynamic-limit value Dss(δh). Resulting
values reveal very modest variation with δh, consistent with
Dss(δh → 0, L → ∞) � DI .

V. FINITE WAVE VECTOR AND DRIVING-FIELD
ANALYSIS

Transport can be also analyzed by considering finite
wave-vector q > 0 correlations in closed systems with PBC.
In particular, we evaluate the time-dependent spin struc-
ture factor S(q, t ) as correlations of the operator Sz

q =
(1/

√
L)

∑
j exp(iq j)Sz

j for the smallest nonzero q = 2π/L.
The numerical procedure is again MCLM in analogy to σ̃ (ω)
Eq. (4), now for S(q, ω). Large number ML ∼ 104 allows to
follow the time evolution for S(q, t ) up to t 
 100. Conse-
quently, effective (time-dependent) diffusion can be extracted
as Dq(t ) = −Ṡ(q, t )/[q2S(q, t )] [40]. It is evident that in nor-
mal systems such a procedure yields constant Dq(t → ∞) ∼
D. We argue and confirm numerically that the stationary
values Dq(t ) can be interpreted as corresponding to the GC
average for given system since operator Sz

q creates an inho-
mogeneous magnetization Sz

i distribution, in contrast to js in
Eq. (4) related to q = 0 and fixed Sz

tot . Results for normalized
S(q, t ) (shown in logarithmic scale as an inset) and extracted
Dq(t ) as calculated within MCLM for L = 28, are presented
in Fig. 4. For the integrable system δh = 0 it has been already
noted [28] that Dq(t ) ∼ DI exhibits a plateau at intermediate
t < τL, corresponding to dissipationless diffusion. In contrast,
for longer times, the Dq(t > τL ) ∝ t reflects the relaxation of
the Gaussian decay of S(q, t ) [28]. The same behavior persists
(at least, for reachable t) for weak perturbations δh.

On the other hand, δh > 0 leads to normal diffusion man-
ifested by the saturated values Dq at longer times t > τλ and
by the exponential decay of S(q, t ). The saturated values Dq

agrees with the GC averages corresponding to Fig. 2 and
Eq. (6). Here, the additional comments are in order: (a) the sat-
uration of Dq(t ) is unrelated to the mechanism of anomalous
integrable diffusion restricted to short t < τL. This is evident
for all δh, in particular, for weak δh where the saturation hap-
pens only at t 
 τL. (b) Saturated Dq can be at weak δh � 0.2

FIG. 4. Time-dependent diffusion Dq(t ) as extracted from cor-
responding spin-correlation functions S(q, t ) (shown in logarithmic
scale as the inset) evaluated for L = 28 and smallest finite q = 2π/L
for staggered fields δh = 0–0.5.

(for presented L) even larger than DI . (c) Large Dq ∼ O(1)
are finite-size results, decreasing as 1/L. As already discussed
for the GC case, the relevant results in the macroscopic limit
L → ∞ are again D0, Eq. (6).

Also weak external field F > 0 has a highly nontrivial
effect on an integrable chain at � > 1. In the previous study
[34], this has been investigated within a closed system with
PBC at high but finite T by introducing time-dependent flux
φ(t ) = Ft . The spin current js in a homogeneous canonical
m = 0 was extracted from a nearly steady state at a weak F
with a corresponding DC spin conductivity σ̃0 = T (t ) js(t )/F
at the effective (time-dependent) temperature T (t ). Results
clearly indicated that σ0 < χ0DI , i.e., the violation of the Ein-
stein relation in an integrable system, in particular, for F → 0.
Here, we present additional evidence that finite F breaks the
integrability and, consequently, qualitatively changes the spin-
transport response. Similarly as in Ref. [34], we introduce the
F > 0 via flux φ(t ) (Appendix C). Extracted DF (t ) exhibits
qualitatively the same features as results in Fig. 4. Again,
saturated values DF (t > τL ) at long-enough t emerge due
to IBP F > 0 and are unrelated to intermediate-time t ∼ τL

saturation DF (t ∼ τL ) ∼ DI . Since the procedure simulates
evolution of an inhomogeneous system, the stationary DF

corresponds to the GC average, which can appear large, i.e.,
DF > DI for weak F , but should decrease with L to DF < DI

for all F > 0.

VI. CONCLUSIONS

By studying the high-T dynamical spin transport in the
perturbed anisotropic S = 1/2 XXZ Heisenberg chain at
� > 1, we establish consistent evidence that IBP leads to
normal/dissipative transport, unrelated to the dissipationless
diffusion DI in the integrable system, which originates from
ballistic transport in sectors with nonzero magnetization. We
note that in contrast to theoretical results, the cold-atom exper-
iments in this regime tend to support the subdiffusive transport
[24], which might be due to short-time restrictions due to
presence of finite IBP but as well due to the importance of ini-
tial conditions in integrable systems. Our numerical evidence
comes from the results of different approaches: Canoni-
cal m = 0 sector results D0 and GC results DGC for finite
closed systems; steady-state analysis in open boundary-driven
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systems; finite-q correlations S(q, t ) for smallest finite q =
2π/L; and response to the finite-driving-field F > 0. Since
this indicates the breakdown of the standard perturbation-
theory approach to IBP, also the generalized Einstein relation
is not valid for the integrable system.

Several additional comments are in order: (a) Despite
expected normal transport, finite but small IBP remain
challenging for all numerical approaches. Namely, thermo-
dynamic L → ∞ results are expected only in systems with
L > λ∗(g). With restriction of MCLM to L = 32 and the
steady state of open systems up to L = 80, this still represents
some restriction for weakest g � 0.1. (b) Clearly, the goal is
to find first D(g) as extrapolated to the limit L → ∞ and then
D0 = D(g → 0). Although previous canonical m = 0 results
with finite-field-driving F > 0 [34] seem to indicate D(g →
0) → 0 for vanishing F , present MCLM analysis, and even
more the open-system results for homogeneous Hamiltonian
IBP are plausibly consistent with a jump [35], i.e., D0 > 0,
but clearly D0 < DI . (c) In this paper, we focused on results
for a particular anisotropy parameter � = 1.5, but the general
conclusion should remain valid for the whole regime � > 1. It
is, however, expected that D(g) as well as desired D0 depend
on � and possibly on the actual form of IBP.
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APPENDIX A: PERTURBED XXZ SPIN CHAIN:
NEXT-NEAREST-NEIGHBOR INTERACTION

In this Appendix we discuss results for the NNN inter-
action g = �2 as IBP. The advantage of this perturbation
for MCLM is that it does not break any translational sym-
metry, whereas it would require more effort to be encoded
into the TEBD-based open-system analysis due to the long-
range nature of exchange. It should be also recognized that at
fixed g such a perturbation is relatively weaker to considered
g = δh, δJ examples, i.e., it makes sense to discuss cases up
to �2 ∼ 0.8. To illustrate the finite-size effects of MCLM
canonical at m = 0, in Fig. 5 we present the evolution of D(ω)
at fixed �2 = 0.4 at various L = 16–32. Although L = 16
is still dominated by a large finite-size ω ∼ 1/L peak (but
also noise due to small Hilbert space) with increasing L the
corresponding peak is shifted downwards as 1/L and, more
importantly, losing in intensity. At the same time there is a
only minor shift of the DC value D0.

In Fig. 6 we summarize the NNN results in analogy to
Figs. 1, 2, and 4. In Fig. 5(a) we show high-T canonical m = 0
results for D(ω) for � = 1.5 for various �2 = 0–0.8 as cal-
culated with MCLM on L = 32 sites. We note that smaller-L
results for this case were presented already in Ref. [34].

FIG. 5. Dynamical diffusion D(ω) for the XXZ spin chain per-
turbed with NNN interaction �2 = 0.4 as obtained with MCLM for
the canonical m = 0 system with different sizes L = 16–32.

FIG. 6. Results for diffusion at various strengths of NNN in-
teractions �2 = 0–0.8 for XXZ chain with � = 1.5. (a) High-T
dynamical D(ω) as calculated with MCLM on chain of L = 32.
(b) Diffusion constant DC (m) vs magnetization m. Results are fitted
with parabola with fixed ζ = 9.0. (c) Time-dependent Dq(t ) as ex-
tracted from spin correlations S(q, t ) with smallest finite q = 2π/L
evaluated for the L = 28 system (the inset shows the corresponding
S(q, t ) on the logarithmic scale).
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Again, we conclude that unperturbed �2 = 0, but also the
weakest �2 = 0.2 result, show large finite-size ω ∼ 1/L os-
cillations. This is not the case for larger �2 � 0.4. Evidently,
for smaller �2 it is important that we reach as large L as
possible.

In Fig. 6(b) we display the canonical MCLM results for DC
DC (m) as function of magnetization m. Again, the variation
can be captured with parabolic dependence with universal
ζ = 9.0, whereas values of D0 in this case still significantly
vary with �2. Obtained D0’s are below DI for all consid-
ered �2 > 0. Finally, in Fig. 6(c) we present the Dq(t ) as
extracted from spin correlation S(q = 2π/L, t ). One can noe
the intermediate saturation Dq(t ) ∼ DI in the unperturbed and
weak �2 = 0.2 case with saturation at longer t indicating
dissipative diffusion, even quantitatively consistent with the
GC values following from Fig. 6(b).

APPENDIX B: PERTURBED XXZ SPIN CHAIN:
STAGGERED EXCHANGE

Results for the staggered-exchange IBP g = δJ are quite
analogous and quantitatively similar to the case of staggered
field g = δh. In Fig. 7 we display corresponding results g =
δJ . Canonical m = 0 MCLM results on L = 32 sites for D(ω)
in Fig. 7(a) for different δJ > 0’s reveal again the evolution
from finite-size dominated oscillation ω ∝ 1/L at weakest
δJ � 0.1, to nearly-L-independent spectra D(ω) for larger
δJ � 0.2. The reduction of integrated I (ω) (in the inset) in
a wide range of ω is consistent with the clear reduction of
DC D0 � DI for all δJ � 0.2’s. Also similar to the δh case
are conclusions for the canonical diffusion DC (m) presented
in Fig. 7(b), fitted with the parabola with universal ζ = 2.1 as
well as for the diffusion Dq(t ) extracted from S(q = 2π/L, t ),
presented in Fig. 7(c).

Since the δJ case allows for the same open-system treat-
ment as the δh perturbation in the main text, we summarize
D calculated by three different methods in Fig. 8 for two
strengths δJ = 0.2, 0.4, in analogy to Fig. 3 for δh pertur-
bation. Although for stronger δJ = 0.4 all three methods
yield quite converged results for δJ = 0.2 MCLM DGC 

D0 are still quite apart for reachable L, whereas steady-
state Dss is for largest L = 80 apparently much closer to
convergence.

APPENDIX C: DIFFUSION IN THE PRESENCE
OF THE FINITE-DRIVING FIELD

The conductivity is defined as a ratio of the steady cur-
rent js and the steady driving-field F for vanishingly small
driving, DC σ0 = limF→0 js/F . As a consequence the sys-
tem’s response should be determined in the presence of small
but nonzero driving. In generic nonintegrable systems, the
current-current correlation functions do not exhibit any dis-
continuity upon introducing weak perturbations so that DC σ0

can be calculated strictly for F = 0. However, the correlation
functions in the easy-axis XXZ model may change discon-
tinuously upon introducing a perturbation, whereby the role
of finite-driving F might be different from Hamiltonian IBP
discussed in the main text. To consider F > 0 we study the

FIG. 7. Results for diffusion for staggered-exchange perturba-
tion δJ = 0 − 0.8 for the XXZ chain with � = 1.5. (a) High-T
dynamical D(ω) as calculated with MCLM on the chain of L = 32.
(b) Diffusion constant DC (m) vs magnetization m with results fitted
to the parabola with ζ = 2.1. (c) Time-dependent Dq(t ) as extracted
from S(q = 2π/L, t ) evaluated for the L = 28 system [the inset
shows corresponding S(q, t ) on the logarithmic scale].

FIG. 8. Diffusion constant D vs 1/L obtained for fixed � = 1.5
from finite-L results by three different approaches: Canonical m = 0
sector MCLM results D0, GC average over m sectors DGC , and open-
system steady-state Dss for two staggered exchanges: (a) δJ = 0.2,
and (b) δJ = 0.4. Displayed is also unperturbed value DI = 0.55.
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FIG. 9. Time-dependent diffusion DF (t ) as extracted from the
time evolution of the spin-density profile with the smallest finite
q = 2π/L for the system of L = 28 sites with � = 1.5 for various
driving fields F = 0, 0.2, 0.3.

XXZ model with time-dependent Hamiltonian,

H (t � 0) = J
∑

i

[
1

2
(S+

i+1S−
i + H.c.) + �Sz

i+1Sz
i

]

+
∑

i

1

2
cos(qi)Sz

i , (C1)

H (t > 0) = J
∑

i

[
1

2
(eiFt S+

i+1S−
i + H.c.) + �Sz

i+1Sz
i

]
. (C2)

Using MCLM, we generate the initial microcanonical state
at time t = 0, |ψ0〉, corresponding to high but finite tempera-
ture T � 5. The last term in Eq. (C1) is responsible for the
spin-density wave 〈Sz

i 〉0 = 〈ψ0|Sz
i |ψ0〉 ∝ cos(qi) where we

choose the smallest finite q = 2π/L. Next, at t > 0 this term
is switched off whereas the driving-field F > 0 is switched
on, and |ψt 〉 evolves under the Hamiltonian (C2). During
time propagation we calculate the variance of the spatial spin
profile (δSt )2 = (1/L)

∑
i〈ψt |Sz

i |ψt 〉2. For normal diffusive
systems without driving the amplitude of the spin-density
wave decays exponentially in time δSt = δS0 exp(−DF q2t ),
hence, the effective time-dependent diffusion constant can
be obtained as DF (t ) = −δṠt/[q2δSt ]. It is evident that the
present setup which is based on time propagation of the spin-
density profile, is equivalent to the analysis based on the spin
structure factor S(q, t ) of the main text. The disadvantage
of the present approach is that the dynamics is evaluated at
finite temperature (T 
 1) and results may be affected by
nonlinear contributions which are beyond the linear-response
theory. However, the time-propagation method allows for
time-dependent Hamiltonians, and one may include the steady
driving as in the Hamiltonian (C2). The resulting DF (t ) is
shown in Fig. 9 for the integrable case of F = 0 as well as
for driven systems with F = 0.2 and F = 0.3. It is clear that
nonzero driving affects the spin dynamics in the same way as
IBP shown in Fig. 4 as well as in Figs. 6(c) and 7(c).
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[38] P. Prelovšek and J. Bonča, Ground state and finite temperature
lanczos methods, in Strongly Correlated Systems - Numerical
Methods, edited by A. Avella and F. Mancini (Springer, Berlin,
2013).

[39] P. Prelovšek, M. Mierzejewski, and J. Herbrych, Coexistence
of diffusive and ballistic transport in integrable quantum lattice
models, Phys. Rev. B 104, 115163 (2021).

[40] R. Steinigeweg and W. Brenig, Spin Transport in the XXZ
Chain at Finite Temperature and Momentum, Phys. Rev. Lett.
107, 250602 (2011).

[41] M. Mierzejewski, J. Pawłowski, P. Prelovšek, and J. Herbrych,
Multiple relaxation times in perturbed XXZ chain, SciPost
Phys. 13, 013 (2022).

[42] M. Zwolak and G. Vidal, Mixed-State Dynamics in One-
Dimensional Quantum Lattice Systems: A Time-Dependent
Superoperator Renormalization Algorithm, Phys. Rev. Lett. 93,
207205 (2004).

[43] F. Verstraete, J. J. García-Ripoll, and J. I. Cirac, Matrix
Product Density Operators: Simulation of Finite-Temperature
and Dissipative Systems, Phys. Rev. Lett. 93, 207204
(2004).

[44] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia:
A fresh approach to numerical computing, SIAM Rev. 59, 65
(2017).

245104-8

https://doi.org/10.1103/PhysRevLett.125.180605
https://doi.org/10.1103/PhysRevB.92.195121
https://doi.org/10.1103/PhysRevLett.113.147205
https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1126/science.abk2397
https://doi.org/10.1103/PhysRevLett.106.220601
https://doi.org/10.1103/PhysRevB.80.184402
https://doi.org/10.1103/PhysRevB.85.214409
https://doi.org/10.1103/PhysRevB.89.075139
https://doi.org/10.1103/PhysRevB.91.104404
https://doi.org/10.1103/PhysRevB.70.205129
https://doi.org/10.1103/PhysRevLett.119.080602
https://doi.org/10.1103/PhysRevLett.121.230602
https://doi.org/10.1103/PhysRevLett.107.126601
https://doi.org/10.1073/pnas.2202823119
https://doi.org/10.1103/PhysRevLett.127.057201
https://doi.org/10.1103/PhysRevB.68.235106
https://doi.org/10.1103/PhysRevB.104.115163
https://doi.org/10.1103/PhysRevLett.107.250602
https://doi.org/10.21468/SciPostPhys.13.2.013
https://doi.org/10.1103/PhysRevLett.93.207205
https://doi.org/10.1103/PhysRevLett.93.207204
https://doi.org/10.1137/141000671

