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We investigate the computational power of the recently introduced class of isometric tensor network states
(isoTNSs), which generalizes the isometric conditions of the canonical form of one-dimensional matrix-product
states to tensor networks in higher dimensions. We discuss several technical details regarding the implementation
of isoTNSs-based algorithms and compare different disentanglers—which are essential for an efficient handling
of isoTNSs. We then revisit the time evolving block decimation for isoTNSs (TEBD2) and explore its power
for real-time evolution of two-dimensional (2D) lattice systems. Moreover, we introduce a density matrix
renormalization group algorithm for isoTNSs (DMRG2) that allows to variationally find ground states of 2D
lattice systems. As a demonstration and benchmark, we compute the dynamical spin structure factor of 2D
quantum spin systems for two paradigmatic models: First, we compare our results for the transverse field Ising
model on a square lattice with the prediction of the spin-wave theory. Second, we consider the Kitaev model on
the honeycomb lattice and compare it to the result from the exact solution.

DOI: 10.1103/PhysRevB.106.245102

I. INTRODUCTION

Quantum many-body systems are well known for their
rich emergent behavior that can arise due to the interactions
between large numbers of degrees of freedom. Prominent
examples are quantum spin liquids that give rise to fraction-
alized excitations [1,2] and high-TC superconductivity [3].
Exact numerical simulations of such systems have generically
an exponential complexity scaling in system size due to the
growth of the Hilbert space dimension. The question to which
extent an efficient solution is possible can in many cases be re-
lated to the amount of many-body entanglement [4–7]. Tensor
network states (TNSs) are a “natural” way to describe quan-
tum states with low entanglement and various algorithms have
been developed to solve such problems: For one-dimensional
(1D) systems, it is known that ground states of gapped local
Hamiltonian fulfills the area law [8,9]. This in turn tells us
that matrix-product states (MPSs) [10,11] are good approxi-
mations of those ground states [12]. This intuition can at least
partially be carried over to two-dimensional (2D) systems,
where projected entangled pair states [13–16] (PEPSs) are the
efficient representation of certain area law states.

Given such variational states, algorithms to find the ground
state within such ansatz are of great importance for practical
purposes. The famous density matrix renormalization group
(DMRG) method is an example of an efficient variational
algorithm based on the MPS ansatz for 1D systems [17]. For
TNSs in 2D, difficulties stem from the fact that the exact
contraction of a general TNS, e.g., computing the norm, scales
exponentially O(DL ) in the linear dimension L, where D is
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the bond dimension [13,18]. A way to overcome this is to
perform an approximate contraction of the network—which is
possible for certain classes of TNSs [13,19–21]. This has led
to the development of various efficient algorithms that allow
one to obtain ground states, using for example imaginary time
evolution [22] or variational energy minimization [23–25].
While the scaling with bond dimension is not exponential, it is
still expensive as it scales with high powers, e.g., O(D10) for
a full update in imaginary time evolution [19] and O(D12) for
variational energy minimization [13]. Moreover, a DMRG-
like variational energy minimization algorithm often suffers
from being ill conditioned, which requires an ad hoc gauge
fixing to solve the problem. A promising alternative approach
combines variational Monte Carlo (VMC) with single layer
contraction [26,27]. The computational complexity of the al-
gorithm is O(NMCD6). However, the number of samples NMC

required in the end of the optimization could also be high,
∼105, for obtaining sufficient accurate gradients. Recently,
it is shown that this can be improved by the direct sampling
approach [28]. It remains an important task developing alter-
native approaches for finding ground state of 2D systems.

In addition to ground-state properties, dynamical responses
and nonequilibrium physics can also be studied with the
help of TNSs. Simulating real-time evolution is generically
difficult because of the fast entanglement growth [29,30].
Nevertheless, TNSs approaches can give reasonable results
for certain 2D systems [31–33]. For example, infinite TNSs
with the corner-transfer-matrix renormalization group ap-
proach were used to study quantum quench dynamics of the
2D transverse field Ising model [34–36] and the hole motion
in the t − J model [37]. Simulating real-time evolution also
provides information about the low-lying spectrum through
the computation of, e.g., the dynamical spin structure factor.
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It is also worth noting that it is possible to directly access the
excitation spectrum without simulating the dynamics by varia-
tional principle with translational invariant ansatz constructed
from iPEPSs [38].

Recently, isometric tensor network states (isoTNSs), which
are a subclass of general TNSs, have been proposed as a
promising ansatz for efficient algorithms [39–41]. The class of
isoTNSs generalizes the isometric condition of the canonical
form of MPSs to higher-dimensional tensor networks. Using
this ansatz, certain computations are significantly faster than
in unconstrained TNSs, e.g., the cost of the full update is
reduced from O(D10) to O(D7). However, as isoTNSs are a
restricted subclass of TNSs, it is still unclear what quantum
phases they can accurately represent. Recent paper [42] has
shown that all states obtained by applying a finite depth circuit
to a string-net liquid admit exact isoTNS representations. In
this paper, we implement the time evolving block decimation
algorithm with isoTNSs (TEBD2) and introduce a general-
ized density matrix renormalization group algorithm based on
isoTNSs (DMRG2). We show that one can study ground-state
properties and simulate the dynamics of the 2D systems with
isoTNSs.

The paper is organized as follows. First, we review the
basics of isoTNSs and their general properties. Then we in-
troduce the elementary steps in isoTNSs-based algorithms
in Sec. II. In this context, we discuss technical details
of the “Moses move” (MM) [39] and different disentan-
gling approaches–which are essential for efficient handling of
isoTNSs. Then, we introduce isoTNSs algorithms in Sec. III.
This includes the TEBD2 for real and imaginary time evolu-
tion and the DMRG2 for variational ground-states search of
2D lattice systems. In Sec. IV, we demonstrate both methods
introduced by computing the dynamical spin structure factor
of 2D quantum spin systems. First, we compare our results
for the transverse field Ising model on a square lattice with
the prediction by spin-wave theory. Second, we consider the
Kitaev model on the honeycomb lattice and compare it to the
result from the exact solution. We conclude with a discussion
of these results in Sec. V.

II. ISOMETRIC TENSOR NETWORK STATES

A pure state describing a quantum many-body system is
represented as

|ψ〉 =
∑

σ1,σ2··· ,σN

�σ1σ2···σN |σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σN 〉, (1)

where {|σi〉 ∈ Hi} are the local basis states. The full Hilbert
space is the tensor product of a set of local Hilbert spaces
H = ⊗N

i Hi. The order-N coefficient tensor �σ1σ2···σN contains
the full information of the state and the number of parame-
ters scales exponentially O(

∏i=N
i=1 di ) with the system size N .

To overcome the exponential scaling, tensor network meth-
ods approximate the full tensor �σ1σ2···σN by low-rank tensor
decompositions [43]. Usually tensor networks, for example,
MPSs in 1D and TNSs in 2D, have a connectivity resembling
the underlying lattices and are generically efficient to repre-
sent area law states with poly(N ) number of parameters. In
1D, all states with area law entanglement can be expressed as
MPSs with a system size independent bond dimension [4]. In

FIG. 1. (a) The contraction of all incoming (outgoing) arrows
of an isometric tensor with its complex conjugate gives an identity
(projection) operator. (b) For unitary, both contraction gives an iden-
tity operator. Notice that the direction of the arrow is not changed
by complex conjugation. (c) From the definition, one can combine
isometric tensors of consistent isometric directions to form a larger
isometric tensor. (d) When the direction of the arrows does not
match, the contraction will return a larger general tensor. (e) SVD
replace a general tensor with the contraction of a unitary, a diagonal
matrix, and an isometry.

contrast for D � 2, TNSs capture only part of the area law
states [44]. For example, it is still an open question to which
extent noncritical chiral topological states can be represented
by TNSs in the 2D thermodynamic limit [45–49].

Before discussing the details of isoTNSs, we start by giving
a brief definition of isometries and introduce the conventions
used. An isometry is a linear map W : Vs → Vl from a smaller
vector space Vs to a larger vector space Vl , such that W †W =
1, WW † = PVs , where PVs is the projection operator to the
vector space Vs. Isometric tensors are tensors that by grouping
the legs, i.e., matricization, become isometries. We consider a
convention as shown in Fig. 1. In particular, for isometric ten-
sors, we draw the indices belonging to the larger dimensions
as incoming arrows and the indices for smaller dimensions as
outgoing arrows. For the unitary matrix, the indices would all
be bidirectional. For general (nonisometric) tensors, we draw
the indices without arrows. Roughly speaking, isometric ten-
sor networks are then tensor networks consisting of isometric
tensors whose edges can consistently be assigned arrows.

A. IsoTNSs in 1D

We first review the basics of MPSs and identify the MPSs
with left/right-normalized tensors as 1D isoTNSs. For more
detailed reviews for MPSs and general TNSs, we refer the
readers to [6,7,32,50].

An MPS is defined as

|ψ〉 =
∑

σ

∑
m1,m2,...

T σ1
m0,m1

T σ2
m1,m2

· · · T σN
mN−1,mN

|σ〉, (2)

where the T are general tensors of order three and the mi are
indices in virtual space between site i and i + 1. The bond
dimension D is the dimension of the virtual space, such that
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mi = 1, . . . , D. Carrying out the summation
∑

m1,m2,...
, i.e.,

contraction, over the virtual indices explicitly gives the coeffi-
cient �σ1σ2···σN . The number of parameters of MPSs scales as
O(ND2), which avoids the exponential scaling in the system
size.

One can always transform the MPS tensors into the
left/right-normalized form without loss of generality. Impor-
tantly, the left/right normalization of the tensors simplifies
and stabilizes MPS based algorithms. A tensor Aσi

mi−1,mi
is left

normalized if it satisfies the isometric condition∑
σimi−1

Aσi
mi−1,mi

(
Aσi

mi−1,m′
i

)∗ = 1mi,m′
i
. (3)

Similarly a tensor Bσi
mi−1,mi

is right normalized if it satisfies the
isometric condition∑

σimi

Bσi
mi−1,mi

(
Bσi

m′
i−1,mi

)∗ = 1mi−1,m′
i−1

. (4)

The tools to bring MPSs tensors to the left/right-
normalized form are orthogonal matrix decompositions,
i.e., QR and SVD. Given an MPS with general tensors,
we can bring all tensors successively into the left/right-
normalized form by successive SVDs or QR decompo-
sitions. For example, one can start from the left with
QR decomposition T σ1

m0,m1
= ∑

m1′ Aσ1
m0,m1′ Rm1′ ,m1 , and combine∑

m1
Rm1′ ,m1 T σ2

m1,m2
= T̃ σ2

m1′ ,m2
. Now the original T σ1

m0,m1
tensor

becomes a left-normalized tensor Aσ1
m0,m1′ . Iteratively, one can

exactly bring all tensors into the left-normalized form. Simi-
larly, one can start from the right and move left and end up
with all tensors being right-normalized.

The orthogonality center of an MPS is a single bond or a
region of sites such that to the left of the center all tensors
are left-normalized and to the right all are right normalized
(note that this does not have to be the geometric center of the
chain). By the combination of both moves mentioned above,
one can exactly obtain an MPS with normalized tensors and
orthogonality center at any desired bond or region.

For example, following the normalization procedure by QR
decomposition mentioned above from both ends of the MPS
inwards, we have the following decomposition:

�σ1···σN =
∑
{mi}

Aσ1
m1

· · · Aσl−1
ml−1,ml

Rml ,ml′ B
σl
ml′ ,ml+1

· · · BσN
mN−1

. (5)

By definition, Rml ,ml′ is the orthogonality center on bond-l .
Note that, the orthogonality center on bond-l can be a general
matrix without the restriction of upper-triangular form. From
this point on, we denote such general matrix by �ml ,ml′ , which
is also known as the 0-site wavefunction.

We can obtain the MPS with orthogonality center on a sin-
gle site by merging

∑
ml′

�ml ,ml′ B
σl
ml′ ,ml+1

= �σl
ml ,ml+1

, leading
to

�σ1···σN =
∑
{mi}

Aσ1
m1

· · · Aσl−1
ml−1,ml

�σl
ml ,ml+1

Bσl+1
ml+1,ml+2

· · · BσN
mN−1

.

(6)

�σl
ml ,ml+1

is the orthogonality center on site-l and a single-site
wavefunction. We can move the orthogonality center forward
keeping constant bond dimension by repeating orthogonal
matrix decompositions and merging tensors.

The tensors excluding the orthogonality center, for exam-
ple �σl

ml ,ml+1
in Eq. (6), are a collection of isometries{

Aσ1
m1

, . . . , Aσl−1
ml−1,ml

, Bσl+1
ml+1,ml+2

, . . . , BσN
mN−1

}
.

Contracting all the internal virtual indices, they form a single
isometry T V ←∂V . In other words, the boundary map T V ←∂V of
the orthogonality center �σl

ml ,ml+1
is an isometry mapping from

the virtual space ∂V to physical Hilbert space V . Similarly, the
boundary map of the orthogonality center on bond-l is also
isometric. Because the boundary map is isometric, we can
interpret the orthogonality center itself as the wavefunction
in the lower dimensional space. For example, the �ml ,ml′ can
be interpreted as a 0D representation of the state in terms of
orthogonal states |ml〉 and |ml ′ 〉, i.e.,

|ψ〉 =
∑

σ

∑
{mi}

Aσ1
m1

· · · Aσl−1
ml−1,ml

|σ1, . . . , σl−1〉

× �ml ,ml′ B
σl
ml′ ,ml+1

· · · BσN
mN−1

|σl , . . . , σN 〉
=

∑
ml ,ml′

�ml ,ml′ |ml〉|ml ′ 〉. (7)

Since the isometric map is norm preserving, the truncation on
�ml ,ml′ based on an SVD is not only optimal for �ml ,ml′ in L2

norm but also for �σ1···σN in L2 norm.
Moreover, we define the norm tensor Nl with respect to

site-l as the contraction of the norm 〈�|�〉 but leaving out
tensors on site-l , e.g., �σl

ml ,ml+1
and (�σl

ml ,ml+1
)∗. In other words,

it is the contraction of the boundary map (T V ←∂V )†T V ←∂V .
Because of the isometric condition of the boundary map, the
norm tensor Nl = (T V ←∂V )†T V ←∂V = 1∂V with respect to the
orthogonality center is an identity operator.

From the above we see that an isoTNS in 1D has the
following properties: It is a tensor network composed of
isometries, as from Eqs. (3) and (4), and all the tensors ex-
cluding the orthogonality center form an isometric boundary
maps in both Eqs. (5) and (6).

In passing we mention that the canonical form of MPSs
imposes an additional condition aside from the isometric con-
dition [11],∑

σimi

Aσi
mi−1,mi

ρ (i)
mi,mi

(
Aσi

m′
i−1,mi

)∗ = ρ
(i−1)
mi−1,m′

i−1
(8)

where the ρ (i) and ρ (i−1) are positive diagonal matrices
and Tr[ρ (i)] = Tr[ρ (i−1)] = 1. An MPS with all left/right-
normalized tensors can be brought into canonical form by
the unitary transform determined by the condition in Eq. (8).
It is often stated in the literature that the canonical form of
MPSs is crucial to the success of the DMRG and TEBD
algorithms. Here, we would like to point out most of the
advantages in 1D numerical algorithms come from merely
the isometric condition. In terms of numerical algorithms, the
linear geometry of MPSs itself ensures the exact shifting of
orthogonality center and the exact contraction between MPSs
with cost O(D3). Apart from that, the success of efficient
1D algorithms including DMRG and TEBD with MPSs are
because of the two properties at the orthogonality center: (i)
the identity norm tensor N and (ii) the optimal bond trun-
cation. Firstly, because the norm matrix at the orthogonality
center is the identity, the optimization problem in DMRG is
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FIG. 2. (a) An MPS with orthogonality center on a bond and (b) on a single site. (c) The boundary map T V ←∂V of the MPS (b). (d) The
norm tensor N of the orthogonality center � of the MPS (b). Analogously, an isoTNS in 2D having orthogonality hypersurface colored in red
and with a column (e) without physical indices � and (f) with physical indices � [l]. (g) The decomposition of an isoTNS as the left and right
isometric boundary maps with effective 1D wavefunction � [3]. (h) The boundary map T V ←∂V of the orthogonality center of the isoTNS (f).

a standard eigenvalue problem instead of a generalized eigen-
value problem. Secondly, at each step in the algorithm, the
truncation based on the SVD over the two-site orthogonality
center is a local update, which is optimal for the global state
since the basis is orthonormal. Both properties above come
from the isometric condition of the normalized MPS tensors
as discussed above. And it does not require the additional
Schmidt-state gauge condition from the canonical form. To
generalize the success of 1D algorithms to higher dimensions,
we focus on keeping the isometric condition of the TNSs.

B. IsoTNSs in higher dimensions

To generalize the above framework to higher dimensions,
we consider isoTNSs with an arrangement of isometries de-
scribed as follows. For a k-dimensional isoTNS, we assume
that we can find a (k − 1)-dimensional hyperplane in the
isoTNS, that separates the k-dimensional space into two parts
with the condition that the isometries from both parts are
pointing towards the hyperplane. This means we can define
a (k − 1)-dimensional state in terms of the boundary states of
the two isometric maps representing the full k-dimensional
state. We can then successively continue this reduction of
the dimension until 0D. For clarity, let us first consider some
examples: (i) A 1D MPS with an orthogonality center, as dis-
cussed above, has a 0D orthogonality center and 1D boundary
maps. The truncation on the orthogonality center is optimal
for the 1D quantum state as shown in Eq. (7). (ii) A 2D
isoTNS on a rectangular lattice as shown in Fig. 2(e). The
column colored in red is an effective 1D wavefunction with
2D isometric boundary maps as shown in Fig. 2(g). We can
view the 1D wavefunction as an 1D MPS by grouping and
reinterpreting the virtual indices.

With the structure of isoTNSs in mind, we now discuss the
general properties of isoTNSs and give concrete examples us-
ing 2D isoTNSs. In terms of the numerical algorithm, isoTNSs
have the two ideal properties: (i) optimal bond truncation on
the orthogonality center and (ii) identity norm tensor on the

orthogonality center. These two properties are the direct con-
sequence of the isometric boundary map. The nested isometric
boundary maps of dimension k, k − 1, . . . , 1 would form a
single isometric boundary maps to the orthogonality center.
Therefore, any optimal truncation on the orthogonality center
in the L2 norm, e.g., SVD, is an optimal truncation of the
k-dimensional wavefunction because the isometric boundary
map is norm preserving. Similarly, because of the boundary
map of the tensor on the orthogonality center is isometric as
shown in Fig. 2(h), the norm tensor Nl = (T V ←∂V )†T V ←∂V =
1∂V is an identity operator. Formally, the arrangement of
isometries described above defines a causal structure of the
tensor network flowing in the reverse direction of the arrows
since the isometries would form Kraus operators. With our
setup, the arrows of isometries do not form loop. It means the
isoTNSs considered are physical states that could be prepared
using quantum circuits [51,52].

In this paper, we focus on 2D isoTNSs and use a notation
inherited from MPSs. We can view the 2D isoTNS on rect-
angular lattice as an generalization of the MPS where each
isometry of the MPS is extended to a column of isometries.
The 2D isoTNSs have a similar pattern in terms of the isome-
tries as 1D MPSs. Therefore, we use A[l] and B[l] to denote
columns of isometries that are left normalized and right nor-
malized. We use � and �[l] to denote the columns containing
orthogonality center that are without and with physical indices
as shown in Figs. 2(e) and 2(f). We see in Fig. 2 that the direc-
tion of the isometries is chosen consistently pointing toward
the orthogonality center (red circle) and each column can be
contracted to an isometry, recovering the MPS structure.

Following the discussion above, we see the red colored
region in Figs. 2(e) and 2(f) define subregions of isoTNSs,
which have special properties. We call these effectively 1D
regions the “orthogonality hypersurfaces” of the isoTNSs.
Inside this region, we can move the orthogonality center from
site to site exactly by orthogonal matrix decomposition. This
1D region has only incoming arrows and hence an isometric
boundary map. Any variationally optimal algorithm inside
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the orthogonality hypersurface is variationally optimal for the
global state. Utilizing these properties, we can run similar 1D
algorithms on the orthogonality hypersurface.

In the following, we consider algorithms for 2D isoTNSs
and work with columns for conceptual convenience. The
column �[l] contains the physical indices and is in the orthog-
onality hypersurface. All columns to the left of the column
�[l] are the left-normalized columns A[m] and to the right
the right-normalized columns B[n]. We have discussed that
we can run effectively 1D algorithms on the column �[l]

and move the center site, i.e., orthogonality center, freely
within the column. However, it is not possible to perform a
QR decomposition to the entire column �[l] because of the
exponential scaling. In particular, we cannot directly shift the
isometry direction of the whole column �[l] to A[l]� by a
simple orthogonal matrix decomposition and thus we require
some new algorithms. We describe two different ways to do
this in Secs. II C and II D.

General 2D TNSs contractions have exponential complex-
ity and require environment approximations [13] using for
example boundary MPSs or corner transfer matrices. For a
2D isoTNS, the expectation values for any operator acting
only on column �[l] permits an exact evaluation with poly-
nomial scaling in system size. The expectation values can be
evaluated using standard MPS contraction on this column, i.e.,
〈ψ |Ô|ψ〉 = 〈�[l]|Ô|�[l]〉—no contraction of 2D networks is
involved. For the evaluation of observable outside the col-
umn �[l], one can shift the orthogonality hypersurface (see
Sec. II C) and evaluate the expectation as described above.

C. Variational Moses move

To implement practical algorithms using isoTNSs, we
need a method to move the column �[l] around efficiently.
Recall in 1D the orthogonal matrix decompositions, e.g.,
QR decomposition, move the orthogonality center (thus shift
the directions of the isometries) by �σl−1 Bσl = Aσl−1�Bσl =
Aσl−1�σl , where each of the �, A, B is a tensor. In 2D, �, A, B
each refers to a column of tensors as in Fig. 2. There is no
orthogonal decomposition of the whole column of tensors
while keeping the locality (tensor decomposition) structure.
QR decomposition or SVD on individual tensor would destroy
the matching of isometry directions and thus destroy the iden-
tity boundary map of isoTNS.

While an exact solution does not exist, we consider the
following variational problem: Given the column �[l], we find
columns A[l], � such that the distance between two repre-
sented states is minimized, i.e.,

arg min
A[l],�

‖�[l] − A[l]�‖2 (9)

with the constraint that A[l] is a column of isometries pointing
toward � column (see Fig. 3). Notice that the � column does
not have physical indices. One can think of this variational
problem as the analogy of the QR decomposition for a column
of tensors except that � is not restricted to be upper triangular.
While the QR decomposition is a deterministic algorithm
providing a numerical exact decomposition, the variational
problem here generically only provides an approximate de-
composition. If the problem could be solved, the next step is to

FIG. 3. The column � [l] is shifted by starting with a Moses
move from (a) � [l]B[l+1] to (b) A[l]�B[l+1]. The combination of
�B[l+1] = � [l+1] would lead to higher bond dimension, which re-
quires further truncation. We implement this with the same idea as
the standard MPO-MPS compression method. This gives the two
columns A[l]� [l+1] in (c). An optional but more expensive step in-
cludes the maximizing of the two columns overlap 〈ψ |ψ ′〉 of the
wavefunction before in (a) and after in (c). We describe the detail of
the steps above in Appendix B 3.

contract the “zero-site” column � to the next right-normalized
column B[l+1] and form the �[l+1] column as in Figs. 3(b) and
3(c). And one can continue forward with the move in analogy
to the 1D case. We call this procedure of solving Eq. (9) it-
eratively and obtaining A[l], � columns the variational Moses
move.

We separate the variational Moses move into two parts,
which correspond to two common types of variational prob-
lems for tensor networks. The first part is the variational
optimization over tensors in column �. This is an un-
constrained optimization problem with general tensors. The
second part is the variational optimization over the isometries
in column A[l]. This is a constrained optimization problem
with isometry tensors. Both type of problems could be solved
in an alternating least-squares fashion as described below.

1. Unconstrained optimization for tensors in column �

The unconstrained optimization problem over � is similar
to the problem of variational approximation that occurs in the
iterative compression of an MPS [6,19]. The general problem
has the following setup: Given a target state |ψ〉, we want
to find the optimal isoTNS |φ〉 representation in L2 norm by
varying a single tensor x at site-l at a time [53].

The solution of the minimization problem

arg min
x

‖|ψ〉 − |φ(x)〉‖2 (10)

must satisfy the extremum condition ∂x∗ 〈φ|φ〉−∂x∗ 〈φ|ψ〉=0.
Therefore, the optimal tensor x is found by solving the system
of linear equations

Nlx = b, i.e., x = N−1
l b (11)

where Nl is the norm matrix obtained from contraction 〈φ|φ〉
and leaving out tensor x in ket and tensor x∗ in bra, and b
results from leaving out tensor x∗ from 〈φ|ψ〉.

Similar to the variational compression of MPS, at each
update, we keep the update tensor x at the orthogonality center
such that the norm matrix is the identity operator, Nl = 1.
As a result, the optimal update is given by the contraction b
without solving a system of linear equations. In variational
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Moses move, each local update b is formed by the contraction
of three column �[l], A[l], �. After each update, we move
the orthogonality center to the next site in the column by
orthogonal matrix decomposition.

2. Constrained optimization for isometries in column A[l]

The constrained optimization over tensors x within column
A[l] requires x to be an isometry. This could not be solved
by the same approach as in Eq. (11), since the solution is
a general tensor. The isometric constraint cannot be consis-
tently restored by orthogonal matrix decomposition. First, we
rewrite the problem from minimizing L2 distance between
states to maximizing the real part of the overlap,

arg min
x∈isometry

2 − 2Re[〈ψ |φ〉]

= arg max
x∈isometry

Re[〈ψ |φ〉]

= arg max
x∈isometry

Re[Tr[b†x]].

In the first line, we use the condition that the isoTNSs have
identity norm. In the last line, we reshape the isometric tensor
x and the tensor b to matrices. The resulting constrained opti-
mization problem is known as the orthogonal Procrustes [54],
[55] problem and permits closed form solution. The optimal
update for x is given by VU † from the SVD of the b† = U�V †

matrix. A similar problem appears also in the optimization
of multiscale entanglement renormalization ansatz (MERA)
with linearization [56,57]. The derivation and detailed discus-
sion are given in Appendix A.

One could start with randomly initialized A[l], � and it-
eratively sweep through and update all the tensors in both
columns. The algorithm stops when desired accuracy or con-
vergence criterion is reached. In practice, we observe that
random initialization with local updates may lead to slow
convergence toward a suboptimal minimum. Therefore, we
introduce in the next section a complementary approach for
shifting the column, which could serve as a good initialization
for variational Moses move.

After each variational MM, one contracts the � column
to the next column. The two columns contraction is similar
to the application of an MPO to an MPS. Therefore, the
most efficient way is to consider the MPO-MPS contraction
variationally [32,58]. Note that there are a few subtleties: The
variational Moses move �[l−1]B[l] = A[l]�[l] is generically
not exact and inherits errors. Furthermore, after the move and
tagging the column, the bond dimension on column l grows.
To keep the bond dimension fixed, a truncation occurs.

D. Sequential Moses move

In this section, we review a sequential solution for moving
the orthogonality hypersurface [39]. The sequential MM is
a greedy algorithm that sequentially splits one column into
two satisfying the isometric constraints by a single unzipping
sweep. We observe in practice that the sequential MM has an
error very close to the optimal variational result while being
much faster. In addition, this approximate solution can serve
as a good initialization for variational Moses move.

FIG. 4. [(a)–(d)] The tripartite decomposition (e) Moses move
� [l] = A[l]� by iterative tripartite decomposition. (a) We group the
indices of color black, blue, red together respectively as a, b, c and
denote the orthogonality center as �a,b,c. (b) After the SVD and
merging the singular values to the orthogonality center, we again
group the indices of same color together and denote it as 	(sl ,c),(sr ,b).
The index sr is colored in blue and sl in red. (c) The insertion
of identity operator I = U †U , where U is chosen to minimize the
entanglement in 	. We absorb the U † into isometry A and U into
	. (d) SVD on the final 	 complete the tripartite decomposition. (e)
Utilize the decomposition, we unzip the columns with orthogonality
center moving to the top.

The idea of the sequential MM is to perform a sequence of
tripartite decompositions at the orthogonality center. We illus-
trate the idea in Fig. 4. At each step, we split the single tensor
into three tensors as shown in Figs. 4(a)–4(d). Iteratively, we
split the full column into two by repeat such decompositions
as illustrated in Fig. 4(e). To simplify the notation, we always
merge the indices of the tensor at the orthogonality center as
an order-3 tensor and denote it as �a,b,c.

The tripartite decomposition is composed of two consec-
utive SVDs and a gauge fixing procedure. We use Einstein
summation convention and describe the decomposition step
by step as follows:

(i) Perform an SVD on �(a),(b,c),

�a,(b,c) = Aa,s
s,sVs,(b,c) = Aa,s	s,b,c.

The A is an isometry. In principle, we could also directly arrive
at the final form by reduced QR decomposition �(a),(b,c) =
Aa,s	s,(b,c). However, in certain cases we would truncate the
bond dimension, which requires the SVD instead.

(ii) Split the index s. To get to Fig. 4(b), we split the
index s into sl , sr . In practice, we choose their dimensions
|sl | ∼ |sr | ∼ �√|s|� in order to distribute the bonds evenly
(though in anisotropic models, other prescriptions may be
appropriate). Also the bond dimension |sl | and |sr | should be
smaller than the maximum vertical bond dimension DV and
horizontal bond dimension DH set for the simulation. Notice
that if |s| > |sl ||sr |, then the SVD in step (i) is a truncated
SVD, i.e.,

�a,b,c ≈ Aa,(sl ,sr )	(sl ,sr ),b,c. (12)
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For a given pairs of (sl , sr ), we first truncate and keep only
the leading |sl ||sr | singular values in 
s,s. We then form the
	s,b,c and reshape it into 	sl ,sr ,b,c. Note the ordering of the
reshaping, column major or row major, has only minor effect
for the following reason. The decomposition � = A	 has a
gauge degree of freedom A	 = (AU †)(U	) = A′	′, where
U is an arbitrary unitary matrix. Absorbing U † in to orthonor-
mal basis A results in a new orthonormal basis A′. We defer
the discussion of finding the unitary U , i.e., fixing the gauge,
for the decomposition until after we describe the full picture
of the sequential MM. At this point, we assume we fix the
gauge by the unitary determined by some procedures.

(iii) Perform an SVD on 	(sl ,c),(sr ,b). Given 	sl ,sr ,b,c, we
rearrange and group the indices (sl , c) and (sr, b) and perform
the (truncated) SVD as shown in Figs. 4(b) and 4(d). That is

	(sl ,c),(sr ,b) � V(sl ,c),t
t,t Qt,(sr ,b) = �sl ,c,t Qt,(sr ,b). (13)

Finally, combining Eqs. (12) and (13), we have the decompo-
sition

�a,b,c ≈ Aa,sl ,sr �sl ,c,t Qt,sr ,b (14)

as in Fig. 4(d).
The entire sequential MM is shown in Fig. 4(e), where we

start from the orthogonality center at the bottom and move
to the top, unzipping the entire �[l] column by the tripartite
decomposition. Before the MM, the � l] column is composed
of tensors [�σ1 , Pσ2 , . . . , PσLy−1 , PσLy ]. At each step, we

(i) reshape the orthogonality center �σl to an order-3 ten-
sor �a,b,c;

(ii) perform a tripartite decomposition on �a,b,c as in
Figs. 4(a)–4(d); and

(iii) merge the orthogonality center after the decompo-
sition with the tensor above to form the new center, i.e.,
�Pσl+1 = �σl+1 .

After step (iii) (merging the tensors), we recover the form
as in Fig. 4(a). Therefore, we can repeat and continue from
step (i) until we reach the top of the column. We end the
splitting at the top of the column by a single SVD. Collecting
the A tensors and the Q tensors along the way, we obtain the
A[l] column consisting of tensors [Aσ1 , Aσ2 , . . . , AσLy−1 , AσLy ]
and the � column consisting of tensors [Q, Q, . . . , Q, �]. The
full procedure is illustrated in Fig. 4(e). To continue, we see
we could combine the � column easily with the B[l+1] column
as in Fig. 3(b) and result in the �[l+1] column consisting of
tensors [Qσ1 , Qσ2 , . . . , QσLy−1 , �σLy ] as in Fig. 3(c).

In practice, we would impose a maximum bond dimen-
sion for column � and also for column �[l+1] = �B[l] as in
Fig. 3(c). Truncations may take place on column � during the
second SVD and on column �[l+1] after the combination of
columns.

Now we discuss the criterion and how to find the optimal U
in the tripartite decomposition. The crucial insight from [39]
is that the truncation error occurs in MM can be made smaller
by utilizing the gauge degree of freedom between tensors [see
Fig. 4(c)]. An insertion of a pair of unitary and its conjugate,
i.e., identity operator, before the second SVD leave the overall
tensors invariant. However, this changes the distribution of the
singular values of the tensor 	 when we absorb the unitary U
into it and hence changes the truncation error. Therefore, we

include the insertion of the pair of unitary and its conjugate as
in Fig. 4(c) between the first and second SVD.

The optimal U is the U that leads to the smallest truncation
error. Therefore, we solve for the variational problem

arg min
U∈unitary

L(U	) (15)

where the cost function L(U	) is chosen such that minimiz-
ing it reduces truncation error. In the following, we describe
two classes of cost functions. For all the cost functions consid-
ered, the gradient of the unitary can be computed by analytical
derivation or autodifferentiation scheme [25]. One can solve
the optimization problem and obtain the optimal unitary with
Riemannian gradient descent or Newton-based methods over
the Stiefel manifold [59–63]. We give an overview of these
procedures in Appendix A 3.

1. Entanglement entropies as cost functions

The first class of cost functions we consider are the entan-
glement entropies. In [39], Rényi-α entanglement entropies

α
1−α

log [Tr(ρα )] are chosen as the cost function, where ρ is
the reduced density matrix from the bipartition of the tensor
	(c,sl ),(b,sr ) and α = 1

2 or 2. Similar variational problems of
“disentangling” also show up in various different contexts.
In [64], one finds the minimal entanglement representation
of MPSs for purified state by utilizing the gauge degree of
freedom of the ancilla space in the purification, where Rényi-2
entropy is considered. In a different context of interacting
fermionic system, the local mode transformation looks for
the optimal unitary leading to smallest truncation in MPS
representation by minimizing the Rényi- 1

2 entropy [65,66].
Choosing Rényi- 1

2 entropy as cost function is justified
by the fact that Rényi-α entropy with α < 1 upper bounds
the truncation error for a fixed bond dimension [12]. With
α > 1, the optimization, however, would not give a certified
bound on the truncation error. Such cost function is still often
considered in the literature since the optimization is simpler.
For example, the optimization converges to minimum quickly
with the Evenbly-Vidal algorithm [57] due to the cost function
landscape [63]. See Appendix A 2. Therefore, it is common to
consider Rényi-α entropy with α = 2 as an alternative cost
function or an initialization for optimization with α < 1.

2. Truncation error as cost functions

The second type of cost functions is simply the truncation
error given by the maximum bond dimension D,

εD =
∞∑

i=D+1


2
i,i. (16)

Direct minimization of the truncation error is possible and
may be more effective than minimizing a upper bound or
surrogate cost functions in some cases.

As an illustrative example, we consider the case when
the tensor 	(c,sl ),(sr ,b) is randomly initialized and of size
(6,4,4,6). The tensor 	(c,sl ),(sr ,b) has approximately constant
singular values in the SVD carried out between the indices
pair (c, sl ), (sr, b). We benchmark on different losses with the
optimal unitaries U found by by minimizing Rényi-α entropy
and the truncation error εD. The overall result is shown in
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TABLE I. The resulting values for Rényi-α entropy and truncation error εD of U	 after minimizing Rényi-α or εD as the cost function.
The first row are values for the original tensor 	. Disentangling and direct minimizing truncation error both leads to smaller truncation error
while direct minimizing truncation error gives smaller truncation error. The minimal value of each column is highlighted in boldface.

Comparison of disentangling approach and direct minimization of truncation error

Minimize/Result Rényi-2 Rényi-1 Rényi- 1
2 εD=4 εD=8 εD=12 εD=16

– 3.18 3.18 3.18 0.833 0.667 0.5 0.333
Rényi-2 1.56 2.09 2.53 0.28 0.116 0.0432 0.0114
Rényi-1.5 1.58 2.06 2.5 0.26 0.1 0.0364 0.00945
Rényi-1 1.72 2.04 2.41 0.236 0.0645 0.0181 0.00344
Rényi-0.75 1.86 2.09 2.35 0.266 0.0608 0.00727 0.000507
Rényi-0.5 1.94 2.16 2.36 0.32 0.0727 0.00656 7.59e–06
εD=4 1.8 2.12 2.5 0.208 0.0964 0.0373 0.0108
εD=8 2.02 2.17 2.43 0.374 0.0336 0.0133 0.00407
εD=12 2.26 2.37 2.47 0.465 0.165 0.000714 0.000184
εD=16 2.52 2.62 2.69 0.561 0.273 0.087 9.95e–17

Table I and the singular values after the optimization is plotted
in Fig. 5.

We observe that all the truncation errors εD become smaller
after the minimization for all different cost functions consid-
ered. This suggest that utilizing the gauge degree of freedom
and inserting the unitary is in general helpful regardless of cost
function chosen. Nevertheless, the resulting singular values
depend on the cost function chosen and could have orders of
magnitude difference in truncation error.

For choosing Rényi-α as cost function, we observe that the
singular values modified varies “smoothly”. For smaller α we
see smaller singular values in the tail while for larger α we see
the first few singular values have larger values. This means
minimizing Rényi-α entropy for a smaller α leads to better
results for a larger truncated bond dimension D. And mini-
mizing a larger α leads to better results when the truncated

FIG. 5. Singular values of U	 after optimization with respect
to U using Rényi-α and εD as cost functions, where 	 is a random
tensor. The inset shows a zoom-in view.

bond dimension D is smaller. This is expected from the fact
that for α → ∞, it corresponds to εD=1. There are crossings
in between and the optimal α depends on the truncated bond
dimension. It is worth noting that, in all cases, minimizing
the Rényi-α entropy leads to smallest Rényi-α entropy but
could have larger truncation error comparing to the result of
minimizing εD.

In contrast to the “smooth” change in singular values when
minimizing the entanglement entropy, the singular values
obtained from minimizing εD show sharp drop at the cor-
responding bond dimension D. The optimization takes into
account the information of the specific bond dimension D and
pushes down all singular values afterward to minimize the
truncation error. For a given bond dimension D, we see that
minimizing εD always leads to the smallest truncation error
εD even while it may have larger entanglement entropy.

The moral we learned from this illustrative example is
that the conventional way of “disentangling” a tensor 	 by
minimizing entropy indeed brings down the truncation error,
but (at least locally) in a suboptimal way. Disentangling mod-
ifies the overall spectrum but does not utilize the information
about the anticipated truncated bond dimension D. The direct
minimization of truncation error utilizes such information to
avoid the ambiguity in choosing α and thus could potentially
lead to smaller truncation error.

In practice, the spectrum for a physical system would
not be a constant but decay exponentially. We observe sim-
ilar behavior and direct minimization of truncation error
works slightly better than the disentangling approach (see
Appendix B). However, the optimization problems are prone
to get stuck at local minima when minimizing truncation error
while in general minimizing entanglement entropy are more
robust in general. As a result, we report the results based on
minimizing Rényi- 1

2 entanglement entropy in this paper.
To summarize, we have described two complementary

approaches shifting the orthogonality hypersurface �[l] =
A[l]�. The variational MM treats the whole shifting as a vari-
ational problem and solves it with alternative least square up-
date. The sequential MM instead focuses on solving the opti-
mal tripartite decompositions locally and build up the solution
from these decompositions. Diagrammatically, MM corre-
sponds to going from Figs. 3(a) to 3(b). Going from Figs. 3(b)
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to 3(c), we apply standard variational MPO-MPS compres-
sion. Similar to the numerical algorithms in 1D, the move
from Figs. 3(a) to 3(c) is the fundamental step. The actual
error for this complete move is the difference ‖|ψ〉 − |ψ ′〉‖2

for state before and after. This is determined by the two
columns before, �[l], B[l+1], and the two columns after,
A[l], �[l+1], because the rest of the network can be contracted
to identity. In principle, we can again treat this as a variational
problem and perform alternative least square update. This step
is more expensive and considered to be optional. We include
the complete sequential MM algorithm and describe other
technical details in Appendix B.

E. Discussion of isoTNSs

To conclude the section of isoTNSs, we discuss and give
some general remarks on the properties of isoTNSs and the
related work.

Similar 2D isoTNS ansätze have also been proposed re-
cently with different approaches for shifting the orthogonality
hypersurface [40,41]. The isoTNSs can be generalized to
higher dimensions or different lattice geometries, for example,
the recent paper on 3D cubic lattice [67].

We note that it is possible for isoTNSs in 2D to have a
different arrangement in the direction of isometries that does
not look like Fig. 2(d). An example is when columns A, B are
not contracted to isometries pointing only toward the orthog-
onality center. As also pointed out in [40], the identity maps
formed by the left and the right boundary are sufficient but not
necessary condition for an isoTNS to have an orthogonality
center. For our paper, we choose the “natural” arrangement in
the sense that it is the direct generalization of MPSs by view-
ing each column of the TNSs as one site. In [40], columns of
TNSs are turned into layers of unitaries as in quantum circuits,
which corresponds roughly to the pattern as in Fig. 2(d). All
the papers so far [39–41,68] consider a similar arrangement of
isometries for numerical convenience.

Aside from the previous attempts to generalize the canon-
ical form of MPSs to PEPSs [69], recently [70] proposes a
different generalization of canonical form for cyclic tensor
networks by gauge fixing. The proposed weighted trace gauge
condition (WTG) requires the left and right boundary matrices
to be proportional to identity 1 for all the virtual bonds.
We briefly review the definition of WTG in Appendix C.
For acyclic networks, the WTG condition is equivalent to
the canonical form condition. However, for general cyclic
networks, the WTG condition is a weaker condition than the
isometric condition, since WTG condition is only a gauge
fixing, which does not change the overall states. TNSs in
canonical form defined with WTG is the same manifold of
general TNSs. In contrast, isoTNSs restricted the states and
are submanifold of the general TNSs. Notice that applying
WTG to isoTNSs results in the  − 
 form [71,72]. The
isometric condition is still satisfied by combining the bond
tensors and the site tensors.

One distinguishing property of isoTNSs from TNSs is the
absence of internal correlation. The direct renormalization
and truncation for general cyclic TNSs are not optimal due
to internal correlations. One class of prominent examples are
cyclic tensor networks with corner double line tensors [73,74].

The cycle entropy Scycle on a bond is a measure defined in [70]
to quantify this physically redundant information contained
in cyclic networks, i.e., internal correlations. We give a brief
review of the definition of the cycle entropy Scycle in Ap-
pendix C. When Scycle = 0, the bond does not carry physically
redundant information. However, TNSs usually have nonzero
internal correlation, i.e., Scycle �= 0. One advantage of isoTNSs
representation is that the cycle entropy Scycle is always zero for
all the bonds by construction. This is a property following the
definition of the cycle entropy Scycle. While we discuss this in
more detail in Appendix C, we provide an intuitive argument
here. IsoTNSs are states generated under sequential unitaries
from the product states [75,76]. The bonds in isoTNSs corre-
spond to the actual physical degree of freedom, on which the
unitaries act, and hence, Scycle = 0.

III. ALGORITHM FOR ISOMETRIC TNS

We describe two types of algorithms for isoTNSs, namely
time evolution algorithm (TEBD2) and ground-state search
algorithm by variational minimization of energy (DMRG2).
We formulate both algorithms as the minimization problems
of certain cost functions for local tensors. In this fashion, both
algorithms are iterative algorithms performing local updates
over each tensor. Here we consider the case where the tensor
updated is always at the orthogonality center by shifting the
orthogonality hypersurface.

A. TEBD2 algorithm

The TEBD algorithm with MPSs is an algorithm utiliz-
ing local updates to perform time evolution. The TEBD-like
algorithms for time evolution consist of three parts: (i) Suzuki-
Trotter decomposition of the time evolution operator Û (dt ) =∏

i e−idtHi of local Hamiltonian H = ∑
i Hi into a set of two-

site local operators; (ii) local updates by applying the time
evolution operator following optimal bond truncation at the
orthogonality center; and (iii) shifting of orthogonality center.
Combining these with 1D isoTNSs, i.e., MPSs, the resulting
TEBD-like algorithms are similar algorithms slightly varying
in the implementation details [71,72,77,78].

The TEBD2 algorithm is the 2D generalization of the
TEBD algorithm with 2D isoTNSs. The three building blocks
work similarly in 2D. For part (i), we consider the Suzuki-
Trotter decomposition of the time evolution operator Û (dt ) =∏

r,i e−idtHr
i
∏

c, j e−idtHc
j , where Hr

i and Hc
j are the terms of the

local Hamiltonian acting on columns and rows. For part (ii),
we perform similar local updates at the orthogonality center.
Since optimal bond truncation is guaranteed by the isometric
form, there is no difference to the 1D algorithm except the
additional indices. However, the computational cost can be
drastically reduce from O(D9) to O(D5) by applying the
two-site gate update on the reduced tensors [19]. Moreover,
the reduced tensor update is optimal for isoTNSs, which is
different to the general TNSs [19,79]. For part (iii), we utilize
the SVD and MM to move around the orthogonality center
and orthogonality hypersurface.

We sketch the outline of TEBD2 algorithm here.
(i) Start with an isoTNS with all isometries pointing to-

ward the top left as in Fig. 6(b)(i).
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FIG. 6. The TEBD2 algorithm: (a) The 1D TEBD. (b)(i) Be-
ginning with isometries pointing toward the upper left, one TEBD
step as in (a) on the column would bring the orthogonality center
down as in (ii). The MM as in Fig. 3 bring the arrow back up
and shift the orthogonality hypersurface as in (iii). Repeating this
through the system, we arrive at the form as in (iv) in the end. With a
anticlockwise 90◦ rotation of (iv) we are back to (i) with column and
row reverse. We then repeat the same steps and evolve the rows.

(ii) Perform 1D TEBD with reduced tensor update on
the column of the orthogonality center. After the sweep, the
isometries all points down as in Fig. 6(b)(ii).

(iii) Perform MM to bring the orthogonality center for-
ward to the next column Fig. 6(b)(iii), then repeat the 1D
TEBD as in step (ii). Continue and repeat this steps over all
columns.

(iv) The isometries now point toward the top right as in
Fig. 6(b)(iv). The orientation of the isometries has effectively
been rotated by 90◦ counterclockwise from the starting point,
Fig. 6(b)(i). We may thus go back to step (i) by rotating the
network by 90◦, exchanging the role of rows and columns,
and repeat.

Each TEBD2 step evolves the system dt with two cycles
of operation from step (i) to (iv). This is because on the first
round we finish the application of all the terms on columns
Û col(dt ) = ∏

c, j e−idtHc
j to the state. With the rotation at step

(iv), we interchange the columns and rows. On the second
round, we thus evolve the “rows” of the original lattice. After
two rounds, we arrive at a 180◦ rotated lattice with the system
evolved by Û (dt ). By repeating this, one can perform real- or
imaginary-time evolution with isoTNSs. We note that while
each 1D TEBD step is individually a first-order Trotteriza-
tion, after four rounds we obtain a second-order Trotterization
within columns and rows, as the effective reversal by 180◦
during rounds 3–4 cancels out errors via symmetrization. By
using half time steps in the first and last time steps of the
column updates, we could make the overall algorithm second
order [39]. The method is termed TEBD2 since it is a nested
loop of the 1D TEBD algorithm [39].

The TEBD2 algorithm differs from the time evolution al-
gorithm of general 2D TNSs [19,31] in the step of tensor
updates. In general, application of the time evolution operator
increases the bond dimensions of the TNSs. For isoTNSs,
we can simply truncate the bond dimension by a local SVD,
which is the globally optimal truncation because of the isom-
etry conditions. For generic TNSs, local truncation is not
optimal because it does not take into account the information
of the rest of the tensor network. Instead, one has to solve the
minimization problem approximating the time-evolved state

|ψ (t + dt )〉,
arg min

x
‖|φ〉 − Û (dt )|ψ (t )〉‖2. (17)

The |ψ (t )〉 denotes the original state at time t . One updates a
single local tensor x in |φ〉, which is a 2D TNS of same fixed
bond dimensions as the original TNS [80]. The optimal update
is given by solving the systems of linear of equation with the
norm matrix N and vector b, similar to the problem described
in variational MM. For TNSs, the evaluation of the norm
matrix N and vector b involves the approximate TNSs contrac-
tion for the environment, which gives rise to the difference in
simple and full update scheme [19]. The isometric condition
provides the optimal truncation and avoids the need of solving
the systems of equation and environment approximation. This
advantage comes with the cost of the truncation error in MM.
Nevertheless, the computational complexity for the time evo-
lution algorithm decreases from D10 for general TNSs to D7

for isoTNSs, where the D7 complexity comes from the MM
(see Appendix B).

The 1D TEBD algorithm with MPSs has two sources of
error: the Trotterization error εTrotter and truncation error εtrunc

due to the restricted bond dimension. Suppose we want to
evolve the system to time T with a controllable targeted error
of order εT , we could keep the error εTrotter and εtrunc both
around the order ∼εT . The truncation error εtrunc could be
made smaller than εT by increasing the bond dimension. The
Trotterization error can be made as small as one wish by de-
creasing step size δt or increasing the order p of Trotterization
[32]. More precisely, the Trotterization error of each time step
δt is ∼δt (p+1) in L2 norm and the accumulated Trotterization
error is estimated by the sum of error at each time step and is
about ∼T δt p [81].

The TEBD2 algorithm has one additional source of error:
the error in the MM εMM. This additional error affects the opti-
mal choice of step size and order of Trotterization, depending
on the use case. Crucially, unlike in 1D, where the truncation
per step εtrunc → 0 as δt → 0 (because the state does not
change), in 2D εMM remains finite even as δt → 0. This is
because the MM is generally not exact (though εMM → 0 as
D → ∞). To assess the consequence for real-time evolution,
suppose we are interested in evolving a system to a specific
total time T , and assume the MM error εMM is fixed, there
exists an optimal step size δt and order p, which minimizes
the sum of Trotterization error εTrotter and MM error εMM, i.e.,
εtotal = (T δt p)2 + T

δt εMM. By iterating through p = 1, 2, . . .,
we can solve the minimization problem given the values of
T and εMM and obtain the error ε∗

total and step size δt∗ for
the corresponding p. Comparing the total error obtained for
different p, we can pick the optimal p∗ and the correspond-
ing optimal step size δt∗. When considering imaginary-time
evolution, this error εtotal acts against the deceasing of energy
∼εEe−�Egapdτ per time step dτ . The converging results thus
have an error in energy εE ∼ aδτ 2p + b εMM

δτ
[39].

B. DMRG2 algorithm

DMRG is a variational energy minimization algorithm for
the ground state with MPSs as the variational ansatz. Extend-
ing the algorithm for TNSs is considered in [13,82] with the
main drawbacks of high complexity O(D12) and numerical
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FIG. 7. The generalization of DMRG algorithm to 2D isoTNSs.
(a) The norm matrix N of isoTNSs is an identity operator N = 1
when the update site is the orthogonality center. (b) Heff is con-
structed by summing up the contraction of MPO representation of
the Hamiltonian in the rows and columns.

instability. Here, we first review the general approach of en-
ergy minimization with TNSs and then discuss the difference
when isoTNSs were used. There is recent proposal on fixing
this issue [83], which shows potential to be applied to large
system size in general. The energy minimization algorithm
with 2D isoTNSs are dubbed as DMRG2 as it resembles the
1D DMRG algorithm.

In general, the energy minimization problem is solved by
an iterative local update on each tensor x is as follows:

xupdate ← arg min
x

〈ψ |Ĥ |ψ〉
〈ψ |ψ〉 . (18)

By introducing the Lagrangian multiplier λE ,

∂x∗ 〈ψ |Ĥ |ψ〉 − ∂x∗λE 〈ψ |ψ〉 = 0, (19)

the solution of the optimization problem on a single tensor x
is given by the generalized eigenvalue problem

Heffx = λE Nx, (20)

where Heff is the contraction of energy expectation value
〈ψ |Ĥ |ψ〉 with leaving x and x∗ tensors out. And N is the norm
matrix, as defined in Sec. II B, is the contraction of the norm
〈ψ |ψ〉 leaving the x and x∗ tensors out.

The crucial difference between considering TNSs and
isoTNSs as variational ansätze is that the generalized eigen-
value problem reduces to standard eigenvalue problem with
isoTNSs. This is because the norm matrix of the orthogo-
nality center is an identity operator N = 1 by the isometric
condition. See Fig. 7. This has the advantages of simplifying
the computation and also stabilizing the algorithm, since the
ill-conditioned generalized eigenvalue problem may return
infinite or ill-disposed eigenvalues [82].

In practice, our implementation expresses the Hamiltonian
as a sum of 1D matrix-product operator (MPO) over the
rows and columns. The expected energy is then a sum of the
contraction over the isoTNS and MPOs. Similarly, the Heff is
a sum of the contraction over the isoTNS and MPOs while
leaving the tensor x and x∗ (see Fig. 7). We contract each
term approximately using the boundary MPSs approach [19].
The accuracy of the approximation is controlled by the bond
dimension DbMPS of the boundary MPS and the overall cost of
contracting the boundary MPS is O(D6D2

bMPS + D4D3
bMPS). In

the following, we take DbMPS = 2D2 and explicitly construct
the matrix Heff with the cost O(D12). Note that in principle
only the matrix-vector multiplication Heffx operation is re-
quired for solving eigenvalue problem. The complexity can

be reduced to O(D10) if Heff were not constructed explicitly.
It is possible that the approach above may be improved by the
advanced optimal MPO compression scheme in [84].

We sketch the outline of DMRG2 algorithm here. It is
similar to the TEBD2 algorithm but replacing the local update
with solving an eigenvalue problem.

(i) Start with an isoTNS with the orthogonality center at
the leftmost column.

(ii) Perform the 1D DMRG over the column. That is we
update each tensor x in the column by solving the standard
eigenvalue problem Heffx = λx on the orthogonality center to
obtain the lowest eigenvector xupdate. We move the orthogonal-
ity center from site to site by SVD.

(iii) Perform MM to bring the orthogonality center for-
ward to the next column, then repeat the 1D DMRG as in step
(ii). Continue and repeat this steps over all columns.

(iv) At the end of the sweep, all tensors are updated. We
perform a similar trick of rotation or a horizontal reflection to
bring the isometries direction back to the starting arrangement
as in step (i).

The above steps give one DMRG2 sweep updating over all
tensors. The algorithm continues until the energy converges.

We would like to point out that the DMRG2 proposed here
is not a standard variational algorithm, which optimize over
the parameters of a single variational wavefunction. Instead,
we optimize over a set of quantum states approximately con-
nected by MM. While we can variationally update the tensors
in the column with orthogonality center to improve result, we
always introduce an approximation (truncation) error when
we move on with MM to optimize the tensors in the next
column. As a result, the variational energy does not mono-
tonically decrease as in the standard DMRG algorithm, which
is observed later in our numerical experiment and similarly
in Ref. [41]. The approximation of the ground-state energy
found by DMRG2 is thus, similar to TEBD2, bound by the
MM error.

Another possible way to carry out DMRG2 with isoTNSs is
to fix the isometric structure and not to perform MM when one
sweeps through the lattice. In that case, one has to compute the
N and solve for generalized eigenvalue problems. One expects
better condition numbers comparing to the case without gauge
fixing. With this approach one can study the representation
power of the isoTNSs since there is no truncation involved.
Our observation is that the isometric condition itself without
gauge fixing is still not stable. Therefore, for the application
in this paper, we consider the former approach instead.

As a demonstration of both algorithms discussed, we con-
sider the transverse field Ising (TFI) model on the square
lattice defined as

HT FI = −J

(∑
〈i, j〉

σ̂ x
i σ̂ x

j − g
∑

i

σ̂ z
i

)
, (21)

where 〈i, j〉 denotes the nearest neighbors for site i, j. We set
J = 1 as the unit. In the thermodynamic limit, the TFI model
exhibits a quantum phase transition from a symmetry-broken
phase to a disordered phase at gc ≈ 3.044. For benchmark,
we consider a square lattice of size Lx = Ly = 11 with open
boundary condition and g = 3.0, close to the critical point.
We compare the ground-state energy estimate obtained from
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FIG. 8. The result from the TEBD2 and DMRG2 algorithms for
the TFI model with g = 3.0 on an 11×11 square lattice. (a) The rel-
ative energy error εE = (E − Eexact )/|Eexact| is plotted as function of
the Trotter step size dτ . We show data of different bond dimensions
D in different color. The solid lines in the background represent error
of DMRG2 with the bond dimension D of the same color. (b) We
plot the relative energy error εE against the runtime with TEBD2 in
dotted lines and DMRG2 in solid lines. The bond dimension on the
orthogonality hypersurface are all η = 2D for TEBD2 and η = D for
DMRG2.

the imaginary-time evolution using second-order TEBD2 and
DMRG2 with the numerically exact results from 1D-DMRG
simulation with bond dimension D = 1024. The result is plot-
ted in Fig. 8. The bond dimension of the overall isoTNS is
denoted by D and we allow the bond dimension in the or-
thogonality hypersurface to be η. We consider the setup where
η = 2D for TEBD2 and η = D for DMRG2. In Fig. 8(a), we
show that for TEBD2 the energy estimates do not go down
monotonically with the decrease of step dτ because of the
MM error εMM. As described in previous section, the en-
ergy error could be fitted with �ETEBD2 = aεMM/dτ + bdτ 2p

where p is the order of Trotterization [39]. The extrapolated
optimal energy estimate is given by the minimum of the fit. On
the other hand, �EDMRG2 ∝ εMM. We see in general DMRG2

has smaller error estimates than the imaginary TEBD2. even
when we use the same bond dimension η = D over the or-
thogonality hypersurface. We plot the computational runtime
in Fig. 8(b). Despite the difference in the scaling of computa-
tional complexity with respect to bond dimension, we observe
that TEBD2 and DMRG2 reach similar accuracy at a given
time for isoTNSs of different bond dimension.

FIG. 9. Benchmark on repeating the MM over a D = η = 2
isoTNS representing the ground state of the TFI model with g = 3.0
on an 11×11 square lattice. (a) The fidelity F between the original
state |�0〉 and the state |�n〉 after n MM. (b) The relative energy
difference of the state |�n〉 comparing to the original state. We per-
form in total 2L − 1 = 21 MM, sweeping from left to right and from
right to left. The MM are carried out in different bond dimensions
D′, η′ plotted in different color. The solid circle and the cross mark
the data obtained with variational MM and without variational MM.
The fidelity and the energy are measured by boundary MPS method
with DbMPS = 4η′2.

Let us finally comment on error made by repeated MMs.
Note that we introduce an error εMM for each MM. Consider a
state |�0〉 that has the orthogonality center in the 0th column,
by repeating the MM, we can move the orthogonality center to
nth column—we denote the corresponding state as |�n〉. The
accumulated error of repeating the MM results in a deviation
from the original state, which can be measured by the fidelity
between the state |�n〉 and the original state |�0〉, i.e., F =
|〈�0|�n〉|2 ≈ (1 − εMM)n. We take the D = η = 2 isoTNS
obtained from the DMRG2 for TFI model with g = 3.0 on
an 11×11 square lattice and perform repeatedly MM using
bond dimension D′, η′ sweeping from left to right and then
from right to left. The result is shown in Fig. 9. We indeed
observe a decrease of F with respect to n in Fig. 9(a) as
we sweep from left to right. However, we find that sweeping
from the right end back to the original 0th column does not
cause further error in fidelity. In fact, in some cases the fidelity
F even increases. We measure the corresponding energy for
state |�n〉 and plot the error in Fig. 9(b). The error density
εMM introduces a bound on the accuracy that can reach by the
algorithms. We observe that continuing the left-right sweep of
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FIG. 10. The dynamical structure factor Syy(k, ω) for g = 1 to g = 5 in logarithmic color scale. The dark (light) green curve indicates the
dispersion calculated perturbatively from the limit g � 1 (g � 1).

MM more than once lead to further degradation in fidelity. But
we also find, in some cases, an approximate fixed point where
the fidelity almost converges with the continuing left-right
sweep of MM. We show the data in Appendix D.

IV. SPECTRAL FUNCTIONS

As an application of the algorithms introduced above, we
consider numerical evaluation of the dynamical spin structure
factor (DSF), also known as the spectral function. The dynam-
ical structure factor is defined as

Sαα (k, ω) = 1

2π

∑
R

e−ik·R
∫ ∞

0
2Re[eiωtCαα (R, t )]dt, (22)

where the correlation functions Cαα (R, t ) = 〈σ̂ α†
R (t )σ̂ α

0 (0)〉 is
evaluated with respect to the ground state |ψ0〉. It is of special
importance since it gives us direct insight into the physical
properties of the quasi-particles and the spectral properties
of the Hamiltonian. In addition, DSF can be measured by
inelastic neutron scattering in experiment and can be com-
puted using various methods theoretically.

Here, we compute Sαα numerically following the definition
Eq. (22). We first obtain the ground state |ψ0〉 by DMRG2 with
isoTNSs. Then the locally perturbed state σ̂ α|ψ0〉 is evolved
using the TEBD2 algorithm. Once we have the ground state
|ψ0〉 and the time evolved state e−iĤt σ̂ α|ψ0〉, the time depen-
dent real space correlation function 〈σ̂ α†

R (t )σ̂ α
0 (0)〉 is obtained

by the approximate contraction of TNSs. For the data shown
in next section, we apply linear prediction to double the time
simulated from T to 2T . In all cases, we multiply the data with
the Gaussian (σt ≈ 0.44T ), which corresponds to a decay of
factor 10 at time T and effectively smooth out and broaden
the data in the frequency space. Finally, the double Fourier
transform of the correlation function gives us the spectral
function. We plot the spectral function in logarithmic scale
with cutoff chosen to avoid showing the noise.

For the isoTNS with bond dimension chosen here, we
observed MM error around εMM = ‖|ψ〉 − |ψ ′〉‖2 ∼ 10−2 for
sweeping the central column from the left to the right. The
corresponding two error made for first-order and second-order
TEBD2 are similar. For easier evaluation of time-dependent
correlation function, we choose the first-order TEBD2 method
here [85]. We consider two different models to demonstrate

the methods introduced could give qualitative insight into
physical Hamiltonian.

A. Transverse field Ising model

The TFI model, defined as in Eq. (21), is a paradigmatic
model for studying quantum many-body systems. The ground
state is ferromagnetically ordered for g smaller than gc ≈
3.044 [86,87], and a disordered phase for g > gc. The ex-
citation spectrum is known perturbatively in the large and
small-g limit by effective Hamiltonian method. We compute
the DSF Syy on a square lattice of size Lx = Ly = 11 for g = 1
to g = 5. We plot the DSF result from the simulation and the
perturbative calculation in Fig. 10.

In the limit g � 1, the single-particle (magnon) excitation
consists of a single spin flip costing energy ∼8J . To lowest
nonvanishing order in g, we find a nearest-neighbor hopping
model with energy

εg�1 = 8 − g2

4
(1 + cos(kx ) + cos(ky)) + O(g3). (23)

The two-magnon excitations in the ferromagnetic phase form
a bound state. By simple counting, these bound states, which
consist of two flipped spins on nearest neighbor sites, have
energy 12J (lower than the two-particle continuum ε ∼ 16J).
We see for the g = 1 and g = 2 plots in Fig. 10 the dispersion
obtained by the simulation matches the result from perturba-
tive calculation. Moreover, we can see a slight signal of the
bound states. However, throughout the full range of coupling,
the two magnon continuum is not observed.

In the limit g � 1, by carrying out similar calculation, the
energy of single-particle excitation is given as

εg�1 = g

[
2 − 2

g
( cos(kx ) + cos(ky)) + O(1/g2)

]
. (24)

We again find that the DSF matches well with the perturbative
calculation.

For g = 3 near the critical point, we observe a small gap.
The gap size is slightly larger than the result in [38] due to
finite-size effect.

B. Kitaev model on Honeycomb Lattice

As a second example, we consider the Kitaev model on the
honeycomb lattice [88], consisting of three alternating spin
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(a) (b) (c)

FIG. 11. The total dynamical structure factor S(k, ω) = ∑
α Sαα (k, ω) for Kitaev honeycomb model at the isotropic point in logarithmic

color scale. (a) Exact result obtained for infinite system size following [89]. (b) Our numerical result obtained from simulation of system size
11×11. For better comparison, we perform smoothing by linear interpolation between discrete k points. (c) The dynamical structure factor at
 point, i.e., Sxx

k=0,ω.

couplings between bonds,

HKitaev = −Jx

∑
〈i j〉x

σ̂ x
i σ̂ x

j − Jy

∑
〈i j〉y

σ̂
y
i σ̂

y
j − Jz

∑
〈i j〉z

σ̂ z
i σ̂ z

j . (25)

The Kitaev model is an exactly solvable model describing two
types of quantum spin liquids depending on the couplings.
The system is either a gapped Z2 spin liquid with Abelian
excitations or a spin liquid with gapless Majorana and gapped
flux excitations. Here, we consider the isotropic coupling
Jx = Jy = Jz, which belongs to the latter category.

The Kitaev model is of special importance for the rea-
son that there are few examples of excitations of topological
states that can be solved analytically. Utilizing the Majorana
fermions representation, one can obtain not only the ground-
state properties but also the properties for excitations. The
exact solutions for Kitaev model provided by [89,90] for
infinite system and [91] for finite system serve as a chal-
lenging benchmark for numerical simulation of the DSF for
two-dimensional systems.

We obtain the DSF by a similar procedure with isoTNSs as
before and plot the result in Fig. 11. We compare the the data
with the exact solution [89]. The DSF at the isotropic gapless
point is gapped due to the flux excitations and has a broad
excitation continuum, as seen in Fig. 11(a). We see indeed
in Fig. 11(b), the simulation reproduces the gapped excita-
tion and broad dispersiveless signal due to fractionalization,
similar to the analytic result. In Fig. 11(c), we examine the
Sxx(k = 0, ω) more closely, and confirm the excitation to be
gapped. While it is promising to see that we can qualitatively
reproduce the result as from analytic solution, we would like
to point out the result is still severely limited by the accuracy
from both DMRG2 and TEBD2 method. See Appendix D for
more details.

V. CONCLUSIONS

We introduced and discussed several properties of
isoTNSs. IsoTNSs are the natural generalization of MPSs
in the isometric form to higher dimensions. The isoTNSs
in higher dimensions embed an effective 1D sub-region re-
sembling the MPSs. This MPS-like subregion is dubbed the
orthogonality hypersurface and the known 1D algorithms can

run efficiently within it. We considered two different algo-
rithms for shifting orthogonality hypersurface, which are the
analogy to the orthogonal matrix decompositions in 1D. We
sketch the algorithms for time evolution and variational en-
ergy minimization with 2D isoTNSs. And we demonstrate
that one can efficiently simulate the real-time evolution for
2D systems and compute the dynamical structure factors of
the TFI model on a square lattice and the Kitaev model on the
honeycomb lattice.

The study of isoTNSs is related to quantum com-
putation [51,52]. Essentially, isoTNSs are sequential and
geometrically-local circuit ansatz. IsoTNSs, in this perspec-
tive, are states that could be directly prepared on quantum
computers. The study of the properties, e.g., variational power,
of isoTNSs tells us the properties of the constant depth se-
quential quantum circuit [75,76] constructed by local gates of
size growing logarithmically with the bond dimensions.

Algorithms for isoTNSs can be viewed as classical simu-
lation algorithms for quantum circuits. The insight from the
study of isoTNSs could potentially leads to new quantum
algorithms. As we see, MMs are approximate algorithms for
changing the isometric pattern in isoTNSs. In other words,
they are approximate algorithms for re-ordering the quantum
gates in the circuit. They have potential applications in quan-
tum state preparation and quantum circuit compilation. One
example is that applying MM iteratively on MPSs yields 1D
quantum circuits. Additionally, it is shown that noisy quantum
computers could be simulated efficiently classically by MPS
[92]. As a generalization of MPS, 2D isoTNSs could possibly
yield a better classical simulation algorithm for 2D quantum
circuits.

The accuracy achieved by isoTNSs algorithm could be
improved by improving the algorithms for shifting orthog-
onality hypersurface. A bottom-up approach would be to
develop better tripartite decomposition to directly targeting
the truncation error and overcoming the difficulties in the
optimization. Alternatively, one may consider the top-down
approach, which optimizes the variational Moses move us-
ing different gradient-based optimization. This global update
approach may result in a better minimum than the current
local update approach solving the alternating least square
problem.
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One promising application of isoTNSs would be to com-
bine it with Monte Carlo methods for studying ground states
and time evolution. IsoTNSs fit in Monte Carlo methods be-
cause isoTNSs allow ancestral sampling along the direction of
causality, i.e., reverse direction of the arrows in the isometries.
This requires only single layer TNSs contraction, which is
shown can be contracted at a cheaper cost O(D6) [26,27].
Samples from ancestral sampling are independent and do not
have the problem with the autocorrelation time as in Markov
chain Monte Carlo (MCMC) sampling. Therefore, it may be
more efficient in terms of the number of Monte Carlo sweeps
and the number of samples NMC comparing with the approach
using general TNSs [26,27]. In this approach, there is no trun-
cation error since the orthogonality hypersurface is held fixed
and it would serve as a good test for the variational power
for isoTNSs. Recently, the similar idea has been applied to
general TNSs with the combination of importance sampling
[28].
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APPENDIX A: OPTIMIZATION OF ISOMETRIES

Here, we provide an overview of the optimization problems
with isometries. In the most general form, the problem we
are concerned with is the following. Given W ∈ Cm×n, m � n
and f : W → f (W ) ∈ R, we want to find the optimal W opt

leading to extreme of f (W opt) under the isometry constraint
W †W = 1. These problems show up commonly in algorithms
for isometric tensor networks and quantum circuits.

The simplest case for this type of problem is when f is a
linear function and with W restricted to be real valued, i.e.,
orthonormal matrix. The problem is known as the orthogo-
nal Procrustes problem and has close-formed solutions. We
review the solution and the proof of this type of problem
in Appendix A 1. For general cases where f is a nonlinear
function, one could consider to linearize the function and
update W in a similar fashion as in the linear case. This is also
known as the Evenbly-Vidal algorithm, which we review in
Appendix A 2. However, such an algorithm does not converge
to the extrema in general. As a result, we review the standard
gradient descent methods over isometries [59] used in our
previous paper [39] and in Appendix A 3.

1. Orthogonal Procrustes problem

The orthogonal Procrustes problem [54] is an optimization
problem of finding the orthonormal matrix W ∈ Rm×m, which
best transforms matrix A ∈ Rl×m to matrix B ∈ Rl×m, that is

arg min
W

‖AW − B‖F .

Expanding out the expression, the problem is equivalent to

arg max
W

Tr[W M]

where M = B†A and M ∈ Rm×m.
More generally speaking, the optimization problem could

be stated as finding the maxima of the function f linear : W →
f linear(W ) ∈ R, where f linear is a function linear in W . Such a
problem permits an exact solution. We first derive the maxi-
mum value of the function f , and show the solution, which
gives the maximum value.

We first find out the upper bound for the quantity Tr[W M].
Suppose the SVD of M gives M = USV †,

Tr[W M] = Tr[WU
√

S
√

SV †] = Tr[(
√

SU †W †)†(
√

SV †)]

= 〈
√

SU †W †|
√

SV †〉
Since the matrix inner product induces the Frobenius norm.
By the Cauchy-Schwarz inequality, we have

Tr[W M] � ‖
√

SU †W †‖F ‖
√

SV †‖F = ‖
√

S‖F ‖
√

S‖F

= Tr[S].

We use the invariance of the Frobenius norm under orthonor-
mal transformation in the first equality. The result suggest that
the quantity Tr[W M] is upper bounded by Tr[S]. At the same
time, we see that choosing orthonormal matrix W = VU †, we
could have the maximum value Tr[S],

Tr[W M] = Tr[VU †USV †] = Tr[S]. (A1)

Therefore, the solution to the optimization problem is given
by W opt = VU †.

The generalized version of the problem consists of a matrix
M of dimension (n, m), m � n, which could be complex-
valued, M ∈ Cn×m. Instead of optimizing over an orthonormal
matrix, we are now looking for an isometry W ∈ Cm×n, which
maximizes the absolute value |Tr[W M]|. Note that this is
equivalent to maximize Re[Tr[W M]] since one can always ab-
sorb the phase factor inside the isometry. A similar derivation
from the above holds. The solution is then given as W̃ opt =
ṼU † from the reduced SVD M = USṼ †, where U, S, Ṽ † are
of dimension (n, n), (n, n), (n, m). Ṽ is now isometry. That is
Ṽ †Ṽ = I , and Ṽ Ṽ † = Pn.

Note that with a matrix M of dimension (n, m), m > n, the
solution is an isometry of dimension (m, n). That is there is
a fixed direction for the isometry tensor. In some cases in
the isoTNSs algorithms, we require the isometry tensor to
be in a different direction. To satisfy the isometric condition
needed in the algorithm, one must first truncate the surround-
ing tensors to having dimensions n = m and then solve for the
unitary matrix W .
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2. Evenbly-Vidal algorithm

In general, the optimization problems with isometries are
nonlinear, such as the disentangling problem in the tripar-
tite decomposition or finding the ground state with MERA.
The optimization problem then is to find the isometry ma-
trix W ∈ Cm×n, m � n, which minimizes the function f :
W → f (W ) ∈ R. There is no exact solution in general. It
was proposed by Evenbly and Vidal [56,57] to linearize the
function f (W ) and apply the exact solution from the previous
section as an iterative update.

The idea of linearizing the function is to keep all the tensors
fixed except the one being optimized. One could rewrite the
function as

f (W ) = Tr[W EW ] + constant, (A2)

where EW is the environment tensor of W , which in general
may also depend on W . Evenbly and Vidal proposed to update
the isometry W ← W ′ = VU † by treating EW as if it were
independent of W and EW = U�V †. The algorithm continues
iteratively until convergence.

The algorithm has been generalized to cases where the
environment tensor cannot be written easily as a tensor net-
work [63]. Instead of obtaining the environment tensor EW

by tensor-network contraction, one can compute the derivative
with respect to W i.e., ∂ f

∂W . The algorithm consists of iterative
update of the isometry W ← W ′ = VU † until convergence,
where ∂ f

∂W = U�V †.
This algorithm could be viewed as a first-order optimiza-

tion algorithm with the connection given in [62,63]. The
algorithm converges to the optimal point only for restricted
cases. The algorithm converges for a negative (positive) def-
inite quadratic form which includes examples such as the
entanglement renormalization [63] and minimizing Rényi-α
entropy with α = 2. It is observed that it converges also for
cases with α > 1.

3. Gradient descent algorithm

Gradient descent algorithms are iterative optimization al-
gorithms finding the local minimum given a differentiable
function f . Assuming a Euclidean geometry, a simple version
of the gradient descent algorithm update the parameters W
with,

W ← W ′ = W − γ × ∂ f

∂W ∗

where γ is known as the step size and is determined by the
line-search procedure or other prescribed procedures.

To apply gradient descent algorithm to problems with
isometry constraint, one can consider to modify the update
with projection, i.e.,

U�V † = W − γ × ∂ f

∂W ∗

W ← UV †.

A better way to adapt to the isometry constraint is to con-
sider the Riemannian optimization approach [59] on Stiefel
manifold with Euclidean metric [93]. Such approach has re-
cently been reintroduced for isometric tensor network and

Algorithm 1. The sequential Moses move algorithm

Input: central column � [l], cost function L, bond
dimension D, central bond dimension η

Output: left-normalized column A[l] and central
column � minimizing ‖� [l] − A[l]�‖2

with
error ε

idx = 0, ε0 = inf;
for (idx < Nrow − 1) {

idx = idx + 1;
Group the indices of � [l][idx] to form �a,b,c;
Tripartite Split (�a,b,c ) {

(i) SVD on �(a),(b,c)

Ca,b,c � Aa,s
s,sVs,b,c = Aa,s	s,b,c

(ii) Split the index s to sl , sr , s.t.
|sl | < D, |sr | < D
Ca,b,c � Aa,(sl ,sr )	(sl ,sr ),b,c

(iii) Find unitary U from
arg minU∈unitaryL(U	)

(iv) Insert the identity I = U †U
A ← AU † and 	 ← U	

(v) SVD on 	(sl ,c),(sr ,b), s.t.
	sl ,sr ,b,c � Vsl ,c,t
t,t Qt,sr ,b = �sl ,c,t Qt,sr ,b

|t | < η

(vi) Collect the tensors and error
�a,b,c ≈ Aa,sl ,sr �sl ,c,t Qt,sr ,b

A[l][idx] ← A, �[idx] ← �

εsplit = εSVD-1 + εSVD-2

}
Absorb � to � [l][idx + 1];
ε+ = εsplit

}
SVD on � [l][N] � A[l][N]�[N]
ε+ = εSVD

quantum circuits [62,63]. The gradient is defined as the pro-
jection of partial derivative W = ∂ f

∂W ∗ onto the tangent space
TW and is given by

∇ f = W − 1
2W (W †W + 

†
W W ). (A3)

Then the update is given by moving in the gradient direction
along the geodesics with step size γ ,

W ← e−γ∇ f W. (A4)

One may also consider generalized approaches not following
the geodesics but retraction and update the isometry W by
The Cayley transform. These approaches are equivalent up to
second order [60].

In addition, one can combine the Riemannian gradient
descent with various different first-order gradient-based opti-
mization method [63,94,95]. In this paper and in our previous
work on isoTNSs [39], we have used the Riemannian nonlin-
ear conjugate gradient algorithm [96].

APPENDIX B: MOSES MOVE

1. Sequential Moses move algorithm

The sequential Moses move (MM) algorithm is shown in
Algorithm 1. We choose the convention that the algorithm
takes central column �[l] with isometries pointing downward
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FIG. 12. Comparison of the error in the decomposition
‖� [1,2] − A[1]� [2]‖2 for the Moses Move with minimization based
on Rényi- 1

2 entropy and truncation error εη. Furthermore, the varia-
tionally optimized solutions are also included. η is the vertical bond
dimension of � [2]. The test state � [1,2] is the ground state of the TFI
model on a two-columns ladder.

as input and returns left-normalized column A[l] and central
column � with isometries pointing upward. The tripartite
decomposition over �a,b,c involves an optimization problem
finding optimal unitary U , which is solved by methods de-
scribed in Appendix A.

2. Comparison of Moses moves

We consider the similar test on truncation error for a 2-
column physical wavefunction as in [39] for Moses moves
�[1,2] → A[1]�[2] minimizing two different cost functions,
Rényi- 1

2 and εη. The wavefunction considered is the ground
state of the transverse field Ising model on a two-columns lad-
der of size 2×20 obtained from DMRG. The coupling strength
is set to be different between the horizontal and vertical
bonds, i.e., H = ∑

i gσ x
i − ∑

〈i, j〉h
Jhσ

z
i σ z

j − ∑
〈i, j〉v Jvσ

z
i σ z

j ,
where g = 2.5, Jh = 0.5, Jv = 1.5.

The MM factorizes the two-column wavefunction �[1,2]

into A[1]�[2], where [1] denotes all physical indices for the
first column and [2] for the second column. We consider
the A[1] column to have fixed horizontal bond dimension DH

and vertical bond dimension DV with DH = DV = 2, while
for �[2] column we have DH = 2 and DV = η. We compare
the result of two different cost functions in the tripartite
decomposition as described in Sec. II D and measure the
performance of MMs by ‖�[1,2] − A[1]�[2]‖2, which depends
on η as shown in Fig. 12. We see choosing the truncation
error εη as a cost function gives slightly better results and the
variational Moses move based on such initialization almost
does not improve.

To understand the effect of cost functions in the tripartite
decomposition, we take one tensor from the middle of the
column during the MM and perform tripartite decomposition
based on all different cost functions introduced in Sec. II D.
We show the resulting truncation error and entanglement en-
tropy in Table II. Similar to the observation in Sec. II D,
disentangling and direct minimizing truncation error both

leads to smaller truncation errors while direct minimizing
truncation error gives a slightly better result.

We would like to point out that the convergence results
for MMs depend both on the cost function and the optimiza-
tion procedure, because in general the optimization is not
guaranteed to converge to the global minimum. We consider
two different types of the first-order Riemannian optimization
methods: Riemannian Adam [95] and Riemannian nonlin-
ear conjugate gradient method [96] with line search. Setting
Rényi- 1

2 entanglement entropy as the cost function, the con-
vergent result for the truncation error (thus the MM error) are
similar with both optimization methods. Setting the trunca-
tion error as the cost function, the Riemannian Adam gives
slightly lower truncation error than that of having Rényi- 1

2
entanglement entropy as cost function. However, setting the
truncation error as the cost function, the Riemannian conju-
gate gradient method with line search often gives worse result,
i.e., higher truncation error, than the result of having Rényi- 1

2
entanglement entropy as cost function. Although we observe
that the Riemannian Adam optimization with truncation error
as cost function gives slightly better result, it also has slower
convergence rate. Moreover, it is sensitive to the step size
and require problem-specific step size tuning. As a result,
we consider the Riemannian conjugate gradient methods with
Rényi- 1

2 entanglement entropy as cost function in this paper
for efficiency reason.

3. Implementation details

In practice, it is observed that increasing the bond dimen-
sions on the orthogonality hypersurface could increase the
representation power with less cost comparing to increase the
bond dimensions uniformly. As a result, we consider a maxi-
mal bond dimension D throughout the tensor network, and a
maximal bond dimension η on the orthogonality hypersurface.
With this setup, Moses move would decompose the column
�[l] with bond dimension η into two new columns A[l] and
� with bond dimension D and η respectively. See Fig. 3. The
computation complexity of Moses move is O(η3D4 + η2D5)
including the variational Moses move.

After the MM, one has to combine � column and B[l+1]

column to form the new �[l+1] column. This step is similar
to the standard MPO-MPS contraction. The direct contraction
and truncation by randomized SVD have complexity O(η2D5)
and O(η3D4) respectively. Similar to MPSs compression, the
one-sided truncation may lead to a suboptimal result and
one could consider it as initialization and further improve by
variationally optimizing the truncated column with O(η3D4).
Another possible way would be to consider combining the
column variationally like variational MPO-MPS contraction,
which gives the same structure in contraction as in varia-
tional MM but with now the single �[l+1] column varying.
Thus, it would also have the same cost. Note that direct
contraction of � and B[l] following standard SVD truncation
would however cost O(η3D5), which should be avoided. With
the above counting, we show that shifting the columns from
�[l]B[l+1] to A[l]�[l+1] has complexity O(η3D4 + η2D5) in
general.

After MM and combining the columns, i.e., �[l]B[l+1] →
A[l]�[l+1], an optional step to improve overlap can be
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TABLE II. The result from a tensor taken in the middle of MM for the two-column wavefunction described in Appendix B 2. We compare
the resulting values for Rényi-α entropy and truncation error εD of U	 after minimizing Rényi-α or εD as the cost function. Note that we
choose a bond dimension DV = η for the column � [2] so εD = εη. The values in the first row are from the original tensor 	. Different to the
test in Table I, we see exponential decay in the truncation error εη for the original tensor in the first row. This indicates the singular values of
the original tensor decay exponentially. We see utilizing the gauge degree of freedom to perform disentangling or direct minimizing truncation
error could still lead to a substantial improvement in the truncation. The best values of each column are highlighted in boldface.

Comparison of disentangling approach and direct minimization of truncation error

Minimize/Result Rényi-2 Rényi-1 Rényi- 1
2 εη=2 εη=4 εη=6 εη=8

– 0.386 0.575 0.914 0.0198 0.00263 0.000178 1.28e–05
Rényi-2 0.266 0.429 0.749 0.00751 0.00103 9.06e–05 9.59e–06
Rényi-1.5 0.266 0.426 0.74 0.00673 0.000973 9.23e–05 9.44e–06
Rényi-1 0.268 0.425 0.727 0.00558 0.000943 0.000105 9.19e–06
Rényi-0.75 0.272 0.426 0.72 0.00494 0.000885 0.000109 9.22e–06
Rényi-0.5 0.278 0.431 0.718 0.00461 0.000767 7.49e–05 9.88e–06
εη=2 0.283 0.435 0.719 0.00437 0.000623 6.43e–05 9.35e–06
εη=4 0.289 0.441 0.717 0.00446 0.000579 4.44e–05 7.34e–06
εη=6 0.296 0.449 0.718 0.00481 0.000665 1.99e–05 1.45e–06
εη=8 0.298 0.452 0.725 0.00511 0.000842 2.28e–05 1.27e–06

considered by variationally maximizing 〈�before|�after〉 =
〈�[l]B[l+1]|A[l]�[l+1]〉 again over the two new column A[l] and
�[l+1]. This variational optimization has contraction structure
of four columns and the computation complexity O(η3D4 +
η2D6). In practice, we adapted all three variational procedures
as in Fig. 3 when the numerical cost is acceptable. Notice
that even with the optional variational step, the overall com-
putational complexity for the time evolution algorithm would
still be cheaper than full update [19] if the bond dimension in
central column η does not grow with O(D2).

One can consider reducing the computational complexity
further by decomposing the order-4 isometry into two trivalent
tensors (omitting physical index). Similar strategy is consid-
ered in the so-called triad network in the context of tensor
network renormalization group [97]. The scaling could then
be brought down to O(η3D3) with the trade-off for less repre-
sentation power. But it has the potential advantage of working
with larger bond dimensions.

APPENDIX C: WEIGHTED TRACE GAUGE, INTERNAL
CORRELATION, AND THE CORNER DOUBLE

LINE TENSORS

Here, we review the definition of weighted trace gauge
(WTG) condition and cycle entropy Scycle quantifying the
internal correlation introduced in [70]. We consider a tensor
network state |ψ〉, which in general includes bond matrices σ

on the virtual leg between two tensors. The bond environment
γ

i j
i′ j′ is defined through the contraction of 〈ψ |ψ〉 leaving out

the corresponding bond matrix σ and its complex conjugation,
where the indices i j, i′ j′ are the corresponding bond indices.
The left and right boundary matrices are defined as (ρL )i

i′ =∑
k, j, j′ σk jσk j′γ

i j
i′ j′ , and (ρR) j

j′ = ∑
k,i,i′ σikσi′kγ

i j
i′ j′ , The WTG

is the gauge choice over the bond such that the resulting left
and right boundary matrices ρL and ρR are proportional to the
identity operator and the bond matrix is diagonal and positive
and has elements in descending magnitude. An algorithm to

find the WTG is proposed in [70]. For an acyclic tensor net-
work, the WTG is equivalent to the standard canonical form.

For an acyclic tensor network, a bond is a “bridge” if by
cutting the bond the tensor network becomes bipartite. As
a result, the bond environment factorizes, γ

i j
i′ j′ = (γR)i

i′ (γL ) j
j′ ,

when the bond is a bridge. To quantify the amount of internal
correlation over a bond, the cycle entropy Scycle is defined as
follows:

Scycle = −
∑

i

λ̃i log λ̃i, (C1)

where λ̃i = |λi|/(
∑

i |λi|) is the normalized eigenvalue of the
transfer operator (σ ⊗ σ )γ formed by contracting the tensor
product of the bond matrices to the bond environment. The
definition of cycle entropy is chosen such that it is gauge-
invariant and is zero if the underlying bond is a bridge. It
is also invariant under the unitary transformation acting on
the physical degree of freedom as this does not change the
bond matrix σ and the bond environment γ . For an isoTNS,
we see for any chosen bond, the corresponding bond environ-
ment always factorizes due to isometric conditions. Therefore,
isoTNSs have no internal correlation inside the tensor net-
work. The alternative way to see that isoTNSs have zero
internal correlation is based on the property that the bond
environment is invariant under unitary transformation acting
on the physical degree of freedom. The isoTNSs have zero
cycle entropy because the product states have zero cycle en-
tropy and isoTNSs are unitary transformation from product
states.

One example of tensor network having internal correlation
is TNS consisting of corner double line (CDL) tensors, which
has the form
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Each line in the tensor is a Kronecker-delta δi j of dimension d .
Taking this CDL tensor as an example, we will gain intuition
on why isoTNS has no internal correlation.

The CDL tensor can be viewed as the left or right isometric
form up to a normalization factor as shown below:

Consider a state defined by the CDL tensors in a loop over
four sites as in [70],

(C2)

(C3)

The representation can be viewed as a periodic MPS or an
generic 2D TNS. We can also view it as an isoTNS that has
isometric direction forming loop and has no orthogonality
center. This is in fact an example of invalid isoTNS repre-
sentation, which violates our assumption that the isometric
direction of isoTNSs does not form loop and must have ex-
actly one orthogonality center. We will show in the following
valid isoTNS representations of the same state, satisfying our
assumption.

Firstly, we notice that the state defined in Eq. (C2) has
redundancy in the tensor network representation and can be
rewritten as

(C4)

The tensor network states in Eq. (C2) and in Eq. (C4) are
equivalent but the tensor network in Eq. (C2) has bond

dimension d2 instead of d due to the internal correlation.
When using generic TNS describing the state, this is often an
issue and is hard to diagnose in tensor renormalization group
[98] algorithms for generic TNS. Recently, there are proposals
in removing this redundancy locally [70,99].

The tensor in Eq. (C4) can be normalized and identified as
tensor in four different isometric forms,

(C5)

(C6)

(C7)

(C8)

Using the identities shown above, we can rewrite the state
in Eq. (C4) as a valid isoTNS,

,

(C9)

where the orthogonality center is on the first site as in Eq. (C8)
and the tensor on the last site is as in Eq. (C7). Note that this
is a valid isoTNS representation, i.e., the isoTNS has no loop
in the isometric direction and has exactly one orthogonality
center. In the valid isoTNS representation of the state, there is
no internal correlation.
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The valid isoTNS representation of the state, however, is
not unique. In fact, we can also rewrite the tensor network in
Eq. (C4) in the following form:

(C10)

(C11)

which permit another valid isoTNS representation. We notice
that this isoTNS representation has bond dimension d2, which
comes from the price of encoding the correlation from the first
site to the last site.

Although the isoTNS representation of the state is not
unique and might subject to growth of bond dimension due to
encoding long-range correlation, under this construction, it is
not possible to add additional redundancy, i.e., internal corre-
lation, to the valid isoTNS representation without violating the

FIG. 13. Benchmark on repeating the MM over a D = η = 2
isoTNS representing the ground state of the TFI model with g = 3.0
on an 11×11 square lattice. (a) The fidelity F between the original
state |�0〉 and the state |�n〉 after n MM. (b) The relative energy
difference of the state |�n〉 comparing to the original state. We
perform 30 left-right sweep, which is in total 30×(2L − 1) = 630
MM. The MM are carried out in different bond dimensions D′, η′

plotted in different color. The solid circle and the cross mark the
data obtained with variational MM and without variational MM. The
fidelity and the energy are measured by boundary MPS method with
DbMPS = 4η′2.

assumption or the isometric condition. This is different from
the generic tensor network as in Eq. (C2), which in principle
can have arbitrary bond dimension growth due to the internal
correlation.

The state consisting of CDL tensors shows as an illustrative
example as why isoTNS representation has zero cycle entropy.
It might be important to develop algorithm to understand and
distinguish between the representation in Eq. (C9) and that in
Eq. (C11).

APPENDIX D: EXTRA DATA

In Fig. 13, we show the benchmark result on repeating the
MM over a D = η = 2 isoTNS representing the ground state
of the TFI model with g = 3.0 on an 11×11 square lattice.
We observe that for MM using D′ = η′ = 2, we can reach an
approximate fixed point, where the fidelity almost remains the
same. Interestingly, for MM with D′ = η′ = 4, we find better
result for the initial sweeps but do not find an approximate
fixed point.

We take the approximate fixed point wavefunction of D′ =
η′ = 2 in Fig. 13 after 30 left-right sweeps and compute
the connected correlation functions 〈σ z

i,5σ
z
5,5〉c

and 〈σ x
i,5σ

x
5,5〉c

along the horizontal line across the center of the lattice.
We plot the comparison with the result obtained with the

FIG. 14. The comparison of the connected correlation functions
(a) 〈σ z

i,5σ
z
5,5〉c

and (b) 〈σ x
i,5σ

x
5,5〉c

. The approximate fixed point wave-
function (FP) of D′ = η′ = 2 is obtained from the 30 left-right
sweeps as shown in Fig. 13. The ground-state wavefunction (GS)
is the isoTNS obtained from DMRG2 and is also the initial state for
the repeating MM sweep.
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TABLE III. Table for energy per site E0/N of Kitaev honeycomb model at isotropic point Jx = Jy = Jz = 1.

System sizea DMRG DMRG isoTNS isoTNS
(Lx, Ly ) Exact χ = 512 χ = 1024 D = 4, η = 8 D = 6, η = 12

(5, 5) –0.71402401 –0.71362916 –0.71401082 –0.70689939
(7, 7) –0.73416737 –0.72593548 –0.73039993 –0.72696637 –0.72987357
(11, 11) –0.75303346 –0.72405548 –0.72808531 –0.74448479 –0.74682331

aN = Lx × Ly × 2.

ground-state wavefunction in Fig. 14. The result suggest the
correlation functions remain unchanged under multiple MMs.

We list the ground-state energy for Kitaev honeycomb
mode obtained through DMRG2 with 2D isoTNSs in Table III.
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