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Carbon nanotubes are quasi-one-dimensional systems that possess large electronic conductance (for the
metallic variants), high mechanical strength, selective emission and detection of light, and can be made
chemically functionalized. In this work, we generalize the notion of disorder hyperuniformity, a recently
discovered exotic state of matter with hidden long-range order, to quasi-one-dimensional materials. As a proof
of concept, we then apply the generalized framework to quantify the density fluctuations in amorphous carbon
nanotubes containing randomly distributed Stone-Wales defects. We demonstrate that all of these amorphous
nanotubes are hyperuniform; i.e., the infinite-wavelength (normalized) density fluctuations of these systems are
completely suppressed, regardless of the diameter, rolling axis, number of rolling sheets, and defect fraction
of the nanotubes. We find that these amorphous nanotubes are energetically more stable than nanotubes with
periodically distributed Stone-Wales defects. Moreover, certain semiconducting defect-free carbon nanotubes
become metallic as sufficiently large amounts of defects are randomly introduced. This structural study of
amorphous nanotubes strengthens our fundamental understanding of these systems, and suggests possible exotic
physical properties, as endowed by their disordered hyperuniformity. Our findings also shed light on the effect
of dimensionality reduction on the hyperuniformity property of materials.

DOI: 10.1103/PhysRevB.106.235427

I. INTRODUCTION

Carbon nanotubes, a class of quasi-one-dimensional
(quasi-1D) materials that can be conceptually constructed by
rolling a graphene sheet, have been investigated extensively
since their discovery [1,2]. Benefiting from their desirable
physical, chemical, and mechanical properties, crystalline
carbon nanotubes are popular candidates for a variety of ap-
plications, such as field-effect transistors [3], rectifiers [4], and
sensors [5]. However, the industrial production of carbon nan-
otubes (e.g., by catalytic chemical vapor deposition) is still not
sufficiently well controlled and various defects can form dur-
ing nanotube growth [6]. Thus, it is crucial to understand how
the defects affect the physical properties and performance of
carbon nanotubes. For example, Robinson et al. demonstrated
controlled introduction of oxidation defects can enhance sen-
sitivity of a single-walled carbon nanotube (SWNT) network
sensor to a variety of chemical vapors [7]. Recently, Gifford
et al. investigated the effect of the sp3-hybridized defects on
the energies of the optical emissive features and the influence
of synthetic modifications on the resulting defect geometry
toward attaining desired narrow photoluminescence capac-
ity [8].

*The first two authors contributed equally to this work.
†Corresponding author: duyu@alumni.princeton.edu

A variety of SWNTs can be formed by rolling up an in-
finitely long strip of a single graphene sheet along different
directions. Conventionally, the type of SWNT can be specified
by a rolling vector (n, m) (with n > 0, m � 0, and n � m)
in the basis of two linearly independent vectors that connect
a carbon atom in the graphene sheet to either two of its
nearest atoms with the same bond directions [9]. The two
most common types of SWNTs are (i) zigzag nanotubes with
n > 0 and m = 0, and (ii) armchair nanotubes with n = m.
Multiwalled nanotubes (MWNTs) consisting of purely zigzag
nanotubes, purely armchair nanotubes, or a mixture of both
are also of great interest. A type of commonly seen defect in
covalently bonded network materials is the Stone-Wales (SW)
topological defect [10]. A SW topological defect rotates a
bond in the network by 90 degrees, transforming 4 adjacent
hexagons into a pair of pentagons and a pair of heptagons
in the absence of adjacent SW defects. Experimentally, the
SW defects can be introduced into carbon nanotubes via
high-energy radiations, during the synthesis of materials, or
by applying strains [6]. In Fig. 1 we schematically show
the generation of a defected (3,0) zigzag nanotube and a
defected (3,3) armchair nanotube with SW defects. Previous
computational studies have also investigated the effect of the
orientation and concentration of SW defects on the electronic
properties of various single-walled carbon nanotubes at low
defect concentrations [11–13]. However, a comprehensive
study of large-scale structures of carbon nanotubes with SW
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FIG. 1. Illustration of a defected (3,0) zigzag (a) nanotube and
a defected (3,3) armchair (b) nanotube formed by rolling graphene
sheets with randomly distributed Stone-Wales defects along different
rolling directions in two dimensions.

defects across a large range of defect concentrations is still
lacking.

Very recently, it has been found that the SW defects in
a variety of two-dimensional (2D) material systems, includ-
ing amorphous 2D silica [14], amorphous graphene [15],
defected transition metal dichalcogenides [16], and defected
pentagonal 2D materials [17], can lead to special amorphous
states [14,15,17,18], in which the density fluctuations in the
materials are largely suppressed, a property termed “hype-
runiformity.” Interestingly, it was found that the disordered
hyperuniform (DHU) states of these materials usually pos-
sess a significantly lower energy than other disorder models,
suggesting the stability of DHU states for these systems over
other disorder models. Moreover, DHU states can lead to
unique electronic and thermal transport properties, which are
due to mechanisms distinct from those that have been identi-
fied for their crystalline counterparts. A key discovery is that
the SW defects in these systems play a significant role in es-
tablishing hyperuniformity of these 2D material systems [15].

Disordered hyperuniformity is a recently discovered exotic
state of matter [19,20], which lies between a perfect crystal
and liquid. DHU systems are similar to liquids or glasses
in that they are statistically isotropic and possess no Bragg
peaks, and yet they completely suppress large-scale normal-
ized density fluctuations such as crystals. In this sense, DHU
materials possess a hidden long-range order [19–21] similar
to that in crystals. DHU is also manifested as the vanishing
of static structure factor S(k) in the infinite-wavelength (or

zero-wave-number) limit, i.e.,

lim
k→0

S(k) = 0, (1)

where k is the wave number [19,20]. Here S(k) is defined
as S(k) ≡ 1 + ρh̃(k), where h̃(k) is the Fourier transform of
the total correlation function h(r) = g2(r) − 1, g2(r) is the
pair correlation function, and ρ is the number density of
the system. Note that this definition implies that the forward
scattering contribution to the diffraction pattern is omitted. For
computational purposes, S(k) is the angular-averaged version
of S(k), which can be obtained directly from the particle
positions r j , i.e.,

S(k) = 1

N

∣∣∣∣∣∣
N∑

j=1

exp(ik · r j )

∣∣∣∣∣∣
2

(k �= 0), (2)

where N is the total number of points in the system [21], and
k is the wave vector. Equivalently, the local number variance
σ 2

N (R) ≡ 〈N2(R)〉 − 〈N (R)〉2 associated with a spherical ob-
servation window of radius R grows more slowly than the
window volume for DHU systems in the large-R limit [19,20],
i.e.,

lim
R→∞

σ 2
N (R)

Rd
= 0, (3)

where N (R) is the number of particles in a spherical win-
dow with radius R randomly placed into the system, Rd is
proportional to the observation window volume, and d the
dimensionality of the system. The small-k scaling behavior of
S(k) ∼ kα dictates the large-R asymptotic behavior of σ 2

N (R),
based on which all DHU systems can be categorized into
three classes: σ 2

N (R) ∼ Rd−1 for α > 1 (class I); σ 2
N (R) ∼

Rd−1 ln(R) for α = 1 (class II); and σ 2
N (R) ∼ Rd−α for 0 <

α < 1 (class III) [20]. We note that conventional disordered
systems, such as the Poisson point patterns that are generated
by randomly placing point particles into a simulation box
and that mimic the ideal gas systems, are known to be not
hyperuniform [19].

Disordered hyperuniformity has been observed in a wide
spectrum of physical and material systems [20], in both equi-
librium and nonequilibrium, and both classical and quantum
mechanical varieties. Examples include the density fluctua-
tions in the early universe [22], maximally random jammed
packing of hard particles [23–25], exotic classical ground
states of many-body systems [26,27], jammed colloidal sys-
tems [28,29], driven systems [30–32], certain quantum ground
states [33,34], avian photoreceptor patterns [24], organiza-
tion of immune systems [35], amorphous silicon [36,37],
a wide class of disordered cellular materials [38], dy-
namic random organizing systems [39–43], electron density
distributions [44,45], and vortex distribution in superconduc-
tors [46,47], to name but a few.

Since nanotubes can be constructed by rolling the cor-
responding sheets of 2D materials, it is natural to ask the
question: Are these quasi-1D materials containing Stone-
Wales topological defects also hyperuniform? In this paper,
we address this question by generalizing the notion of hyper-
uniformity to quasi-1D materials, which can be considered as
1D projections of higher-dimensional structures in this con-
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text, and may involve the nontrivial situations where multiple
points in the higher-dimensional structures are mapped to the
same point in the projection. In particular, we systematically
generate a diverse spectrum of amorphous carbon nanotubes
by continuously introducing SW topological defects into the
crystalline systems, and we quantify the generalized den-
sity fluctuations in these systems. We demonstrate that all
amorphous nanotubes are hyperuniform; i.e., the infinite-
wavelength normalized density fluctuations of these systems
are completely suppressed, and the systems possess hidden
long-range order, regardless of the diameter, rolling axis,
number of rolling sheets, and defect fraction of the nanotubes.
This structural study of amorphous nanotubes strengthens our
fundamental understanding of these systems, and suggests
possible exotic physical properties, as endowed by their dis-
ordered hyperuniformity.

The rest of the paper is organized as follows: In Sec. II we
discuss the the generalization of the hyperuniformity concept
to quasi-1D materials. In Sec. III we discuss the procedures
to generate various types of carbon nanotubes with randomly
distributed SW defects. In Secs. IV and V, we respectively
investigate the density fluctuations of single-walled and mul-
tiwalled nanotubes, which we use as examples to demonstrate
the use of the theoretical framework for analyzing hyperuni-
formity properties in quasi-1D materials. In Sec. VI, we report
the physical properties of the hyperuniform carbon nanotubes,
including their stability and density of states. In Sec. VII, we
provide concluding remarks and discuss the implications of
our work in other quasi-1D material systems.

II. HYPERUNIFORMITY OF QUASI-1D MATERIALS

In this section we introduce the generalization of the hy-
peruniformity concept to quasi-1D materials. These systems
typically have small width in all the directions other than the
axial/propagation direction. For example, carbon nanotubes
have small finite width in the rolling direction. Since hyper-
uniformity is a large-scale structural feature, only the density
fluctuations along the propagation direction should be rele-
vant in the context of hyperuniformity, and effectively we are
looking at 1D projections of the graphene sheets along the
axial/propagation direction in the case of carbon nanotubes.

An important issue that we need to address when looking at
density fluctuations of low-dimensional projections of higher-
dimensional structures is that multiple points in the higher-
dimensional structures can be mapped to the same point in
the projections. Here we generalize the definition of particle
density ρ(x) to be

ρ(x) =
M∑

j=1

g jδ(x − x j ), (4)

where M is the number of distinguishable points in the projec-
tions, and the multiplicity g j is defined as the number of points
in the higher-dimensional structures that are mapped to the
given point x j in the projections. Accordingly, the structure
factor S(k) is generalized to be

S(k) = 1

G

∣∣∣∣∣∣
M∑

j=1

g j exp(ik · x j )

∣∣∣∣∣∣
2

(k �= 0), (5)

where G = ∑M
j=1 g j . We also generate the concept of N (R) ≡

〈N (R; x0)〉 associated with σ 2
N (R) to be

N (R; x0) =
M∑

j=1

g jm(x j − x0; R), (6)

where 〈· · · 〉 denotes ensemble average, and m(x − x0; R) is
the indicator function of the observation window centered at
x0 with radius R and is defined as

m(x; R) =
{

1, |x| � R,

0, otherwise. (7)

We note that using a 1D observation window to look at
σ 2

N (R) of the projection is equivalent to using an observa-
tion window in the higher dimension that encompasses the
quasi-1D materials in the radial directions, but slides in the
axial/propagation direction, which is illustrated in Fig. 1.
Moreover, since a single point at the location x j with multi-
plicity g j can also be viewed as g j different points at the same
location x j and the latter case is a standard 1D point pattern
where the definitions of hyperuniformity from Eq. (1) and
Eq. (3) have been shown to be equivalent [19], the equivalence
of Eq. (1) and Eq. (3) for the definition of hyperuniformity in
the case of multiplicity immediately follows. Nonetheless, in
many contexts, e.g., when directly extracting atom locations
from projected experimental images and analyzing the pair
correlations of atom locations, multiple points at the same
projected location could be identified as one, and it would be
straightforward to use our generalizations of S(k) and σ 2

N (R)
as specified in Eqs. (5) and (6) to take into account the particle
“intensity” information. With these generalizations of S(k)
and σ 2

N (R), we can then use the definitions of hyperuniformity
specified in Eqs. (1) and (3) for a low-dimensional projection,
and use the dimension of the projection for d in Eq. (3).

III. GENERATION OF AMORPHOUS CARBON
NANOTUBES CONTAINING STONE-WALES DEFECTS

To generate a defected (n, 0) zigzag nanotube at a given
defect concentration p, we first introduce a prescribed number
of randomly distributed SW defects Nd = Nb p = 3

2 N p into a
graphene sheet with finite width Ly in the vertical direction in
Fig. 1(a), where Nb = 3

2 N and N are the number of bonds and
atoms in the sheet, respectively, and Ly = √

3n is the length
of the (n, 0) vector. We then relax the structure according to
the procedure described in Ref. [15], and subsequently roll
up the sheet along the vertical direction shown in Fig. 1(a).
Specifically, for a given atom at location (x, y) in a graphene
sheet, its coordinate (x′, y′, z′) in the resulting zigzag nanotube
is given by

x′ = Ly

2π
cos

(
2πy

Ly

)
,

y′ = Ly

2π
sin

(
2πy

Ly

)
,

z′ = x, (8)

where x and y axis are the horizontal and vertical direc-
tions in Fig. 1(a). On the other hand, to generate a defected
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armchair nanotube at a given defect concentration p, we first
follow a similar procedure described in Ref. [15], but use a
graphene sheet with finite width Lx in the horizontal direction
in Fig. 1(a), where Lx = 3n is the length of the (n, n) vector.
We note that the directions in Fig. 1(b) are rotated by 90
degrees from those in Fig. 1(a) for clear visualization, so
the horizontal direction in Fig. 1(a) is the vertical direction
in Fig. 1(b). We then roll up the sheet along the horizon-
tal direction shown in Fig. 1(a), or the vertical direction in
Fig. 1(b). Specifically, for a given atom at location (x, y) in
a graphene sheet, its coordinate (x′, y′, z′) in the resulting
armchair nanotube is given by

x′ = Lx

2π
cos

(
2πx

Lx

)
,

y′ = Lx

2π
sin

(
2πx

Lx

)
,

z′ = y, (9)

where the x and y axes are the horizontal and vertical direc-
tions in Fig. 1(a).

To obtain MWNTs with SW defects consisting of con-
centric single-walled nanotubes, we simply generate the
constituting single-walled nanotubes separately according to
the procedures above, and combine the atoms together. This
is possible because the aforementioned procedure produces
nanotubes that all wrap around the z′ axis in three dimensions.
For instance, the coordinate (x′

i, y′
i, z′

i ) of atom i in the double-
walled MWNT consisting of a (n1, 0) nanotube and a (n2, 0)
nanotube is given by

x′
i =

⎧⎨
⎩

Ly,1

2π
cos

( 2πyi

Ly,1

)
, 1 � i � N1,

Ly,2

2π
cos

( 2πyi

Ly,2

)
, N1 + 1 � i � N2,

(10)

y′
i =

{ Ly,1

2π
sin

( 2πyi

Ly,1

)
, 1 � i � N1,

Ly,2

2π
sin

( 2πyi

Ly,2

)
, N1 + 1 � i � N2,

(11)

z′
i = xi, (12)

where (xi, yi ) is the coordinate of atom i in the original
graphene sheets, N1 and N2 are the numbers of atoms in the
(n1, 0) and (n2, 0) nanotubes, respectively, and Ly,1 = √

3n1

and Ly,2 = √
3n2. On the other hand, the coordinate (x′

i, y′
i, z′

i )
of atom i in the double-walled MWNT consisting of an
(n1, n1) nanotube and an (n2, n2) nanotube is given by

x′
i =

{ Lx,1

2π
cos

( 2πxi
Lx,1

)
, 1 � i � N1,

Lx,2

2π
cos

( 2πxi
Lx,2

)
, N1 + 1 � i � N2,

(13)

y′
i =

{ Lx,1

2π
sin

( 2πxi
Lx,1

)
, 1 � i � N1,

Lx,2

2π
sin

( 2πxi
Lx,2

)
, N1 + 1 � i � N2,

(14)

z′
i = yi, (15)

where (xi, yi ) is the coordinate of atom i in the original
graphene sheets, N1 and N2 are the numbers of atoms in the
(n1, n1) and (n2, n2) nanotubes, respectively, and Lx,1 = 3n1

and Lx,2 = 3n2. For a double-walled MWNT consisting of

an (n1, 0) nanotube and an (n2, n2) nanotube, the coordinate
(x′

i, y′
i, z′

i ) of atom i is given by

x′
i =

{ Ly,1

2π
cos

( 2πyi

Ly,1

)
, 1 � i � N1,

Lx,2

2π
cos

( 2πxi
Lx,2

)
, N1 + 1 � i � N2,

(16)

y′
i =

{ Ly,1

2π
sin

( 2πyi

Ly,1

)
, 1 � i � N1,

Lx,2

2π
sin

( 2πxi
Lx,2

)
, N1 + 1 � i � N2,

(17)

z′
i =

{
xi, 1 � i � N1,

yi, N1 + 1 � i � N2,
(18)

where (xi, yi ) is the coordinate of atom i in the original
graphene sheets, N1 and N2 are the numbers of atoms in the
(n1, 0) and (n2, n2) nanotubes, respectively, and Ly,1 = √

3n1

and Lx,2 = 3n2.

IV. DENSITY FLUCTUATIONS OF SINGLE-WALLED
NANOTUBES

To investigate density fluctuations of zigzag and armchair
single-walled nanotubes, we employ the procedures described
in Sec. III to generate 10 configurations of (3,0), (5,0), (3,3),
and (5,5) nanotubes at each of the given defect concentrations
p = 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, and 0.14. We then com-
pute their local number variance σ 2

N (R) and structure factor
S(k). This setting also allows us to study the effect of nanotube
radius on the structural features of nanotubes.

As a reference, it can be easily seen that defect-free (n, 0)
zigzag nanotubes are mapped into two-scale 1D point patterns
with ζ = 1

3 [19] when projecting onto the cylinder axis of
the nanotubes, with n carbon atoms superimposed onto each
other at each point in the 1D projected point pattern. Here
ζ is the ratio of the distance between the nearest neighbors
and the length of the smallest repeating unit in the two-scale
1D patterns [19]. The number variance of the (n, 0) zigzag
nanotubes σ 2

N (R) can then be determined analytically as

σ 2
N (R) = n2σ 2

N,D(R), (19)

where σ 2
N,D(R) is the number variance of the projected two-

scale 1D point patterns with ζ = 1
3 [19]. As a result, σ 2

N (R)
of defect-free zigzag nanotubes fluctuates around certain con-
stants, whose value depends on n, and these nanotubes are
class-I hyperuniform.

As SW defects are introduced into the nanotubes, the struc-
tures gradually transition into amorphous ones, which are
reflected in their local number variance σ 2

N (R). For example,
we show the computed σ 2

N (R) for (3,0) zigzag nanotubes at
different defect fractions p in Fig. 2(a). At low p, σ 2

N (R)
exhibits “periodicity” in the window radius R, suggesting
the reminiscence of the crystalline order in the systems; at
large p, σ 2

N (R) varies smoothly with damped oscillations as R
increases, indicating the emergence of truly amorphous states.
Also, by comparing the results of (3,0) zigzag nanotubes in
Fig. 2(a) and the results of (5,0) zigzag nanotubes in Fig. 2(b),
one can see that at given p, increasing the radius (or decreas-
ing the curvature) of the armchair nanotube increases density
fluctuations. Interestingly, the variance σ 2

N (R) of these zigzag
nanotubes fluctuates around certain constants as R increases
at all investigated p, indicating that these structures are class-I
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FIG. 2. Local number variances σ 2
N (R) (top) and structure factor S(k) (bottom, log-log scale) of defected single-walled zigzag and armchair

nanotubes at different defect concentrations p. Column 1: (3,0) zigzag. Column 2: (5,0) zigzag. Column 3: (3,3) armchair. (d) Column 4: (5,5)
armchair. The results are all averaged over 10 configurations.

hyperuniform. This is related to the fact that SW transfor-
mation and subsequent structural relaxations only result in
local rearrangements of atoms, and do not affect the scaling
of large-scale density fluctuations in these nanotubes.

Similarly, defect-free (n, n) armchair nanotubes are
mapped into single-scale 1D point patterns [19] when project-
ing onto the cylinder axis of the nanotubes, with 2n carbon
atoms superimposed onto each other at each point in the 1D
point pattern. The number variance of the (n, n) armchair
nanotubes σ 2

N (R) can then be determined analytically as

σ 2
N (R) = 4n2σ 2

N,S (R), (20)

where σ 2
N,S (R) is the number variance of the projected single-

scale 1D pattern. As a result, σ 2
N (R) of defect-free armchair

nanotubes fluctuates around certain constants, whose value
depends on n, and these nanotubes are class-I hyperuniform.

As SW defects are introduced into the nanotubes, the be-
haviors of these armchair nanotubes are similar to those of the
zigzag nanotubes. For example, we show the computed σ 2

N (R)
for (3,3) armchair nanotubes at different defect fractions p
in Fig. 2(c). Importantly, at all investigated p, the variance
σ 2

N (R) of these armchair nanotubes fluctuates around certain
constants, indicating that these structures are hyperuniform.
Also, by comparing the results of (3,3) armchair nanotubes
in Fig. 2(c) and the results of (5,5) armchair nanotubes in
Fig. 2(d), one can see that at given p, increasing the radius (or
decreasing the curvature) of the armchair nanotube increases
density fluctuations.

The results of ensemble-averaged S(k) of the afore-
mentioned zigzag and armchair nanotubes are shown in
Figs. 2(e)–2(h), which all decreases to zero as k goes to zero,
regardless of defect concentration p. These results further
confirm the hyperuniformity of these nanotubes, and are con-
sistent with the results of σ 2

N (R). Moreover, as p increases,
the magnitudes of the Bragg peaks in S(k) generally decrease,
consistent with increasing disorder of the systems. In addition,
S(k) of these nanotubes goes to zero as k goes to zero, but

is not zero at small finite k, indicating that carbon nanotubes
with randomly distributed SW defects are hyperuniform, but
not stealthy hyperuniform [20]. This is in contrast to defect-
free carbon nanotubes, which possess periodic structures that
are translationally and rotationally invariant, and thus are
known to be stealthy hyperuniform [20]; i.e., their S(k) is not
only zero as k goes to zero, but also zero at finite k smaller
than the wave number associated with the first Bragg peak in
the Fourier space.

V. DENSITY FLUCTUATIONS OF MULTIWALLED
NANOTUBES

It can be easily seen that MWNTs consisting of K defect-
free zigzag nanotubes with (n1, 0), (n2, 0), . . ., (nK , 0) rolling
vectors, respectively, are mapped into two-scale 1D point
patterns with ζ = 1

3 [19] when projecting onto the cylinder
axis of the nanotubes, with n1 + n2 + · · · + nK carbon atoms
superimposed onto each other at each point in the 1D point
pattern. The number variance of the MWNTs σ 2

N (R) can then
be determined analytically as

σ 2
N (R) = (n1 + n2 + · · · + nK )2σ 2

N,D(R), (21)

where σ 2
N,D(R) is the number variance of the projected two-

scale 1D point patterns with ζ = 1
3 [19]. Therefore, σ 2

N (R) of
defect-free MWNTs consisting of multiple zigzag nanotubes
fluctuate around certain constant, and these nanotubes are
class-I hyperuniform.

On the other hand, as SW defects are introduced into
the nanotubes, the structures gradually transition into amor-
phous ones, which are reflected in their local number variance
σ 2

N (R). For example, we show the ensemble-averaged σ 2
N (R)

for MWNTs consisting of a (3,0) zigzag nanotube and a (5,0)
zigzag nanotube at different defect fractions p in Fig. 3(a).
At low p, σ 2

N (R) exhibits “periodicity” in the window radius
R, indicating that the crystalline order is reminiscent in the
systems; at large p, the oscillations of σ 2

N (R) become much
more damped as R increases, suggesting the emergence of
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FIG. 3. Local number variances σ 2
N (R) (top) and structure factor S(k) (bottom, log-log scale) of defected multiwalled nanotubes at different

defect concentrations p. (a) σ 2
N (R) of double-walled nanotubes consisting of a (3,0) zigzag nanotube and a (5,0) zigzag nanotube. (b) σ 2

N (R)
of double-walled nanotubes consisting of a (3,3) armchair nanotube and a (5,5) armchair nanotube. (c) σ 2

N (R) of double-walled nanotubes
consisting of a (5,0) zigzag nanotube and a (5,5) armchair nanotube. (d) S(k) of double-walled nanotubes consisting of a (3,0) zigzag nanotube
and a (5,0) zigzag nanotube. (e) S(k) of double-walled nanotubes consisting of a (3,3) armchair nanotube and a (5,5) armchair nanotube. The
results are all averaged over 10 configurations.

truly amorphous states. Interestingly, the variance σ 2
N (R) of

these MWNTs fluctuates around certain constants as R in-
creases at all investigated p, indicating that these structures
are class-I hyperuniform. These behaviors are similar to those
in the cases of the SWNTs.

Similarly, MWNTs consisting of K defect-free armchair
nanotubes with (n1, n1), (n2, n2), . . ., (nK , nK ) rolling vec-
tors, respectively, are mapped into single-scale 1D point
patterns [19] when projecting onto the cylinder axis of the
nanotubes, with 2(n1 + n2 + · · · + nK ) carbon atoms super-
imposed onto each other at each point in the 1D point pattern.
As a result, the number variance of the MWNTs σ 2

N (R) can be
theoretically determined as

σ 2
N (R) = 4(n1 + n2 + · · · + nK )2σ 2

N,S (R), (22)

where σ 2
N,S (R) is the number variance of the projected single-

scale 1D pattern. On the other hand, as SW defects are
introduced into the nanotubes, the behaviors of these MWNTs
consisting of purely armchair nanotubes are similar to those
MWNTs consisting of purely zigzag nanotubes. For example,
we show the computed σ 2

N (R) for MWNTs consisting of a
(3,3) armchair nanotube and a (5,5) armchair nanotube at
different defect fractions p in Fig. 3(b). Importantly, at all
investigated p, the variance σ 2

N (R) of these MWNTs fluctuates
around certain constants, indicating that these structures are
class-I hyperuniform.

Interestingly, MWNTs consisting of both zigzag and arm-
chair nanotubes exhibit different behaviors in their density
fluctuations from SWNTs or MWNTs consisting of purely
zigzag or armchair nanotubes. For example, as shown in
Fig. 3(c), σ 2

N (R) of MWNTs consisting of a (5,0) zigzag

nanotube and a (5,5) armchair nanotube exhibit no “period-
icity” in the window radius R even at low p, and appear close
to those of a limit-periodic set [48]. This is a direct result
of the fact that the length of the smallest repeating unit in
a defect-free (5,0) zigzag nanotube and that of the smallest
repeating unit in a defect-free (5,5) armchair nanotube do
not have an integer common multiple, and the 1D projec-
tions of the two nanotubes collectively onto the cylinder axis
are no longer periodic. Here when placing the observation
window in the process of computing σ 2

N (R), we restrict the
observation window to fall entirely in the range of the (5,5)
armchair nanotube in the axial direction, which is smaller
than that of the (5,0) zigzag nanotube. We note that while a
limit-periodic set is a union of infinite number of single-scale
periodic patterns with ever-increasing lattice constants of the
form aqn [48], where a is a constant, q is an integer, and n
runs over all possible integers, the projection of a MWNT
is a union of a finite number of periodic patterns, which do
not need to possess lattice constants in the form of aqn or be
single-scaled.

The results of ensemble-averaged S(k) of MWNTs consist-
ing of a (3,0) zigzag nanotube and a (5,0) zigzag nanotube,
and MWNTs consisting of a (3,3) armchair nanotube and a
(5,5) armchair nanotube, are shown in Fig. 2(d) and Fig. 2(e),
respectively, which all decrease to zero as k goes to zero,
regardless of defect concentration p. These results further
confirm the hyperuniformity of these nanotubes, and are con-
sistent with the results of σ 2

N (R). We note that due to the lack
of periodicity of the simulation box in the axial direction of
the MWNT consisting of a (5,0) zigzag nanotube and a (5,5)
armchair nanotube, S(k) is not well defined for this MWNT,
and we do not compute its S(k).

235427-6



DISORDERED HYPERUNIFORM QUASI-ONE … PHYSICAL REVIEW B 106, 235427 (2022)

FIG. 4. Two classes of defected graphene sheets with periodic
distribution of Stone-Wales defects, which are then rolled into (10,0)
nanotubes. Their unit cells are shown by the blue boxes, which are
replicated five times in the horizontal direction (propagation direc-
tion of the nanotubes) before rolling into the nanotubes, and for clear
visualization we only show a portion in the horizontal direction.
Top: Defect model I sheets at (a) p = 0.0167, (b) p = 0.0333, and
(c) p = 0.05. Bottom: Defect model II sheets at (d) p = 0.02 and (e)
p = 0.0333.

VI. STABILITY AND DENSITY OF STATES OF
DISORDERED HYPERUNIFORM CARBON NANOTUBES

We use (10,0) zigzag SWNTs as examples to demonstrate
the effect of different concentrations of SW defects on the
stability and electronic structure properties of the amorphous
SWNTs. Specifically, density functional theory (DFT) [49,50]
calculations are performed with the Atomic-orbital Based Ab
initio Computation at UStc (ABACUS) package [51,52]. The
norm-conserving pseudopotential [53,54] is employed to de-
scribe the ion-electron interactions and the valence electron
configuration of C is 2s22p2. The generalized gradient ap-
proximation (GGA) in the form of Perdew-Burke-Ernzerhof
(PBE) [55] is used for the exchange-correlation functional.
In order to deal with large systems of (10,0) zigzag SWNTs,
we employ numerical atomic orbitals (NAOs) in the form of
double-ζ plus polarization function (DZP) orbitals as basis
sets in our calculations, whose accuracy and consistency have
been verified in previous studies [52,56,57]. Specifically, we
use 2s2p1d NAOs for C, whose radius cutoff is set to 8 bohrs.
The energy cutoff is set to 60 Ry. Besides, periodic boundary
conditions and a single k point (� point) are used. We employ
the Gaussian smearing method with the smearing width of
0.001 Ry. Structural optimizations are performed with the
conjugated gradient method until forces on each atom are
below 0.04 eV/Å.

We first demonstrate the stability of DHU nanotubes. To
this end, we compare the results of the DHU configurations
at different defect concentrations p to those of the defect-
free counterpart, as well as two other representative models
of nanotubes containing periodically distributed SW defects
shown in Fig. 4. Specifically, in defect model I we introduce
SW defects into a unit cell with 40 carbon atoms shown by
the blue box in the top row of Fig. 4, and then replicate the
unit cell five times in both horizontal and vertical directions
to generate a graphene sheet before rolling up to form (10,0)
nanotubes. In defect model II, we introduce SW defects into
a unit cell with 100 carbon atoms shown by the blue box
in the bottom row of Fig. 4, and then replicate the unit cell
five times in the horizontal direction and two times in the
vertical directions to generate a graphene sheet before rolling

FIG. 5. (a) Excess energy per atom 	E (difference of the total
energy between the amorphous system and the corresponding defect-
free state, divided by the number of atoms in the nanotube) of (10, 0)
zigzag DHU nanotubes at different SW defect concentrations p,
compared to 	E of two other representative defect nanotube models
with periodically distributed SW defects. (b) Excess energy per atom
	E for (10, 0) zigzag DHU nanotubes and two other representative
defect nanotube models with periodically distributed SW defects as
a function of system size N at p = 0.0333.

up to form (10,0) nanotubes. Due to the constraints associated
with the construction of defected nanotube models, we only
consider three distinct defect concentrations for defect model
I SWNTs, and two concentrations for defect model II SWNTs,
which we believe are sufficiently representative.

In particular, we calculate the total energy E (i.e., the
sum of interaction energy and electronic kinetic energy of
many-body systems) of DHU carbon nanotubes at T = 0 K
with a wide spectrum of defect concentration p after structural
optimizations, as well as the total energy of the two defect
models at selected p. Figure 5(a) shows the excess energy
per atom 	E of the aforementioned systems compared to the
defect-free carbon nanotube. Since introducing defects always
increases the energy of the system, we have 	E > 0 for all
p > 0. It can be seen that for all three different defected
nanotube models, 	E increases approximately linearly as
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FIG. 6. Density of states (DOS) of (10, 0) zigzag DHU carbon nanotubes computed by PBE functional at defect concentration p: (a) 0.00,
(b) 0.01, (c) 0.0167, (d) 0.02, (e) 0.03, (f) 0.04, (g) 0.05, (h) 0.06.

the concentration p increases. The DHU nanotubes appear to
possess the lowest 	E among the three models for the same
p values, and possess the smallest slope among the three.
This result implies that DHU states are more energetically
stable than the two defect models with periodically distributed
SW defects. In Fig. 5(b) we also show the excess energy
per atom 	E of the aforementioned systems compared to the
defect-free carbon nanotube as a function of the system size
N at a given defect concentration p = 0.0333. These results
suggest that our observation that DHU states are the most
energetically stable among the three is robust with respect to
finite-size effects.

We further investigate the electronic structures of DHU
nanotubes to shed light on the effects of increasing SW de-
fects on the material properties. Figure 6 shows the DOS of
(10, 0) zigzag DHU carbon nanotubes computed by the PBE
functional at different p as well as the DOS of defect-free
carbon nanotubes. It is well known [12,13] that (10,0) nan-
otubes possess a well-defined band gap at Fermi level, which
is captured in our calculations [see Fig. 6(a)]. Increasing
disorder in the DHU system (i.e., increasing the amount of
SW defects) results in two observed effects on the computed
DOS: (i) Closure of the band gap at Fermi level and (ii)
broadening and flattening of the DOS, which are consistent
with previous computational study of a defected nanotube that
is semiconducting in its defect-free state [11]. This trend is
also similar to the observations in DHU 2D materials [14,15].
Specifically, the band gap is closed at p = 0.0167, suggesting
the presence of the semiconductor-to-metal transition around
this defect concentration. Moreover, as p increases the DOS
becomes more and more extended, converging to a metallic
characteristic, as shown by the electron densities at the Fermi
level in Fig. 7. We note that although the exact values of the
band gaps could be underestimated by PBE functional com-
pared with the actual values, the qualitative behavior of the
DOS in DHU nanotubes suggests a semiconductor-to-metal
transition should be robust.

It is also noteworthy that as mentioned above, in this work
we randomly introduce SW defects into the originally perfect

crystalline systems; i.e., there is essentially no correlation
between the locations of the defect centers, in particular at
low and intermediate defect concentrations [15]. This setting
mimics typical experimental realizations of the SW defects,
which are introduced by random proton radiations [6]. More-
over, we consider the periodic defect models in order to obtain
insights on the effects of SW defect distribution. Intuitively,
in these periodic models, the defects are more “clustered”
compared to the random distribution model, and the remaining
region is free of defects (i.e., crystalline). We speculate that
the clustered defects lead to larger local distortion of the co-
valent bonds in the defected region and, thus, increased energy
of the system. The two representative periodic models that
we have numerically investigated confirm our speculation.
However, we note that this does not imply that the random

FIG. 7. Electron densities at the Fermi level of (10, 0) zigzag
nanotubes at different p. The yellow surface represents isosurface
of 1.0 × 10−10 atomic unit. (a) p = 0.03. (b) p = 0.04. (c) p = 0.05.
(d) p = 0.06.
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defect distribution model would possess the lowest energy
over all defect distributions. With the development of new
experimental techniques, other correlated defect distributions
could be realized, which may possess lower energy than the
random defect distribution model in the current work.

VII. CONCLUSIONS AND DISCUSSION

In this work, we generalized the concept of hyperuni-
formity to structurally characterize quasi-one-dimensional
materials, which in the context of hyperuniformity can be
viewed as one-dimensional projections of higher-dimensional
structures along the axial direction. As a proof of concept,
we systematically investigated the density fluctuations across
length scales in amorphous carbon nanotubes containing dif-
ferent amounts of Stone-Wales topological defects, which
can be constructed by rolling up defected graphene sheets.
We demonstrated that all amorphous nanotubes containing
SW defects studied here are hyperuniform; i.e., the normal-
ized infinite-wavelength density fluctuations are completely
suppressed, regardless of the diameter, rolling axis, num-
ber of rolling sheets, and defect fraction of the nanotubes.
Disordered hyperuniformity is a recently discovered exotic
state of matter. Using DFT simulations, we also showed
that these amorphous carbon nanotubes with randomly dis-
tributed Stone-Wales defects are energetically more stable
than their ordered counterparts with periodically distributed
Stone-Wales defects. We also demonstrated that the electronic
band gap closes for a semiconducting zigzag nanotube as
Stone-Wales defects are randomly introduced into the car-
bon nanotubes by determining the density of states near the
Fermi level. Our structural study of amorphous nanotubes
strengthens our fundamental understanding of these quasi-1D
materials, and suggests possible exotic physical properties, as
endowed by the unique disordered hyperuniformity feature.

Our findings on the effect of the projection operation
on the hyperuniformity property of the graphene sheets
may also shed light on our understanding of the general
effect of dimensionality reduction on the preservation of
(non)hyperuniformity, as projection is a common type of di-
mensionality reduction operation. While we conjecture that
projection should preserve (non)hyperuniformity of isotropic
higher-dimensional structures since each dimension con-
tributes equally to the density fluctuations in the isotropic
cases, this is definitely not always the case for anisotropic
structures. This can be seen from the following example of
anisotropic point patterns, where the points are placed ran-
domly in the vertical direction, but are constrained to discrete
equally distributed lattice sites in the horizontal direction with
each site having the same number of points, as shown in Fig. 8.
The projection of this two-dimensional point pattern along the
vertical direction is a one-dimensional Poisson point pattern,
which is known to be nonhyperuniform [19]. On the other

FIG. 8. An anisotropic point pattern where the points are placed
randomly in the vertical direction, but are constrained to discrete
equally distributed lattice sites in the horizontal direction with each
site having the same number of points. The projection of this point
pattern is hyperuniform when projected along the horizontal di-
rection, and nonhyperuniform when projected along the vertical
direction.

hand, the projection of this two-dimensional point pattern
along the horizontal direction is a single-scale lattice in one
dimension, which is known to be class-I hyperuniform [19].
This example shows that the projection of an anisotropic point
could be hyperuniform when projected in one direction, but
nonhyperuniform when projected along another direction. It is
also noteworthy that many quasicrystals can be constructed by
a projection from higher dimensions [20], e.g., the Fibonacci
chain, which preserves the hyperuniformity of the structures
in the higher dimensions before projection, similar to the case
of carbon nanotubes.
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