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The feedback of the geometrical Berry phase, accumulated in an electron system, on the slow dynamics
of classical degrees of freedom is governed by the Berry curvature. Here, we study local magnetic moments,
modeled as classical spins, which are locally exchange coupled to the (spinful) Haldane model for a Chern
insulator. In the emergent equations of motion for the slow classical-spin dynamics there is a an additional
anomalous geometrical spin torque, which originates from the corresponding spin Berry curvature. Due to the
explicitly broken time-reversal symmetry, this is nonzero but usually small in a condensed-matter system. We
develop the general theory and compute the spin Berry curvature, mainly in the limit of weak exchange coupling,
in various parameter regimes of the Haldane model, particularly close to a topological phase transition and for
spins coupled to sites at the zigzag edge of the model in a ribbon geometry. The spatial structure of the spin
Berry curvature tensor, its symmetry properties, the distance dependence of its nonlocal elements, and further
properties are discussed in detail. For the case of two classical spins, the effect of the geometrical spin torque
leads to an anomalous non-Hamiltonian spin dynamics. It is demonstrated that the magnitude of the spin Berry
curvature is decisively controlled by the size of the insulating gap, the system size, and the strength of local
exchange coupling.
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I. INTRODUCTION

The time evolution of a quantum system with a non-
degenerate and gapped ground state, steered by external
time-dependent classical degrees of freedom, is governed by
the adiabatic theorem [1,2]: If prepared at time t = 0 in its
ground state, the system state at t > 0 is given by its in-
stantaneous ground state for the then existing configuration
of classical degrees of freedom. Roughly, the adiabatic the-
orem applies, if the typical timescale τ of the classical time
evolution is large compared to the inverse of the gap �E
between the ground state and the first excited state. Aside from
the dynamical phase, the system accumulates a geometrical
phase during the adiabatic time evolution, which cannot be
gauged away in case of a cyclic motion in the classical state
space [3–5]. This Berry phase and related phenomena, such
as the molecular Aharonov-Bohm effect, have been studied
extensively in molecular physics [6,7], assuming that the
coordinates Rm of the nuclei can be treated as classical ob-
servables.

The Berry-phase physics of the quantum system also feeds
back to the dynamical state of the classical observables as
has been pointed out early [8–10]. In molecular systems, for
example, this leads to an additional geometric force term in
the classical Newtonian set of equations of motion, which has
the form of a Lorentz force despite the absence of a physical
magnetic field.

The geometric force plays an important role also in other
contexts as, for example, in the semiclassical theory of elec-
tron dynamics in crystals, where the wave vector k is treated

as a dynamical classical variable [7,11]. Its pendant on the
side of the quantum system is the k-space Berry phase, an
important quantity in topological band theory [12–14]. In fact,
Berry phase and geometrical force are rather general concepts
that can be applied to configuration spaces of various kinds of
classical degrees of freedom.

Hence, a similar situation arises for another type of
quantum-classical hybrid system as well, namely, for a
quantum-mechanical electron system with an exchange cou-
pling to the local magnetic moments Sm of magnetic atoms,
which are modeled as classical spins, i.e., vectors of fixed
length S2

m = 1. The typical (picosecond) timescale for clas-
sical spin dynamics is much longer than that of the fast
(femtosecond) electron quantum dynamics, such that the
electron system can adiabatically follow the classical spin
configuration and accumulate a finite spin Berry phase [15].
The feedback of the Berry physics on the classical system,
however, is different and given by a geometrical spin torque
rather than a force, and can thereby strongly affect the preces-
sional spin dynamics [16].

This spin torque is given in terms of the gauge-invariant
spin Berry curvature [16], which must be distinguished from
the k-space Berry curvature and the Rm-space or atomic-
nuclei Berry curvature of molecular dynamics. A simplified
variant of the approach presented in Ref. [16] has been used
to discuss the effect of the geometrical spin torque on the
spin-wave spectrum of magnetic systems [17,18].

In recent years, the spin Berry curvature and the ge-
ometrical spin torque have been studied more intensively.
A numerical study for an exactly solvable one-dimensional
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model of local magnetic moments has been carried out to
quantitatively disentangle the geometrical spin torque from
other contributions to the spin dynamics [19]. This work also
emphasizes the close relation to geometric-friction effects
[20,21], i.e., Gilbert spin damping, which can be derived
within linear-response theory [22–26] or adiabatic-response
theory [27]. To go beyond the strict adiabatic limit, a general-
ized geometrical spin torque originating from the non-Abelian
spin Berry curvature has been proposed recently [28], in the
spirit of Ref. [5]. Effects of the geometrical spin torque in
purely classical spin systems, where a single slow spin [29]
or several slow spins [30] interact with an exchange-coupled
system of fast spins, have been studied within a formal frame-
work largely analogous to the quantum-classical hybrid case.
This goes back to earlier work that drew attention to holonomy
effects in purely classical systems [31].

The main subject of this paper is to study the spin Berry
curvature for a model for local magnetic moments (classical
spins) coupled to an insulator. The latter is described by a
two-band tight-binding model for electrons hopping on a two-
dimensional lattice. With the (spinful) Haldane model on the
honeycomb lattice [32,33] we choose a prototypical model for
a Chern insulator.

Our motivation for this choice is twofold: First, the Hal-
dane model stands at the origin of the development of
topological band theory [12–14,34] and represents the first
model for a quantum anomalous Hall insulator. It can be ex-
perimentally realized in a setup with ultracold fermions [35].
Furthermore, there is generally a rapidly increasing interest
in the study of magnetic impurities in topological insulators
and at the boundaries of topological materials in particular
[36–48] as well as in their mutual interaction [49–53].

Second, if the Hamiltonian of the quantum system is
time-reversal symmetric, there may be a finite Berry phase
originating from a singularity in the classical configuration
space, while the Berry curvature vanishes [54]. A finite
Berry curvature (k, Rm, or spin Berry curvature), however,
requires an explicit breaking of time-reversal symmetry. In
case of the spin Berry curvature in a model including an
exchange coupling to the classical spins, time-reversal sym-
metry is already broken intrinsically since the classical spins
act like local symmetry-breaking magnetic fields. This ef-
fect, however, becomes irrelevant in the (physical) limit of
weak exchange-interaction strength J . As is shown later, the
spin Berry curvature generally vanishes in perturbation theory
up to O(J2), if the quantum system itself is time-reversal
symmetric. The Haldane model is constructed such that the
symmetry is broken due to a “magnetic field” coupling to the
orbital degrees of freedom rather than to the local electron
spin (note that the original model is spinless anyway), which
averages to zero in a unit cell. The mechanism by which
the Haldane model leads to a nonzero Chern number can be
realized in actual materials, where the spin-orbit coupling acts
as a source of the orbital magnetic field [55,56].

The spinful Haldane model is interesting, as it allows us to
study the impact of the spin Berry curvature on the effective
interaction between local magnetic moments and thus on the
resulting effective spin dynamics. The standard indirect mag-
netic Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange is
of the Bloembergen-Rowland type [57] in case of an insulator,

and its strength depends exponentially on the insulating gap
�E , opposed to RKKY theory for metallic phases [58,59]. A
central question is thus if the geometric spin torque is able to
“boost” the indirect coupling between two classical spins.

To this end, we generalize the theory of Ref. [16] to an
arbitrary number of classical spins and derive the nonlocal
geometrical spin torque that emerges in the adiabatic limit (see
Sec. II). This requires to deduce explicit expressions for the
spin Berry curvature, which can be evaluated numerically, and
an analysis of time-reversal and spatial symmetry transforma-
tions. In particular, we show that the spin Berry curvature is
closely related to the spin susceptibility of the electron system.
For two classical spins, we explicitly demonstrate that the
resulting adiabatic spin dynamics is anomalous and cannot be
derived from an effective Hamiltonian.

On this basis, we numerically analyze the dependence of
the bulk spin Berry curvature on the positions and on the
distance between two sites, at which two classical spins are
exchange coupled to the electron system (see Sec. III). Fur-
thermore, we study its dependence on the parameters of the
Haldane model in the weak-J regime both for topologically
trivial and nontrivial phases, and especially in the parametric
vicinity of a topological phase transition. Invoking a phase-
space argument, one can show that the spin Berry curvature is
in fact continuous across the transition. It diverges, however,
for the Haldane model in a ribbon geometry, if the classical
spins couple to sites at the zigzag edge.

II. THEORY

A. Effective low-energy theory

We consider a quantum-classical hybrid system consisting
of M classical spins S ≡ (S1, . . . , SM ) of fixed length Sm =
|Sm| = 1, the intrinsic dynamics of which are governed by
a classical Hamilton function Hcl(S), and N electrons with
corresponding quantum tight-binding Hamiltonian Ĥqu con-
structed with the help of creation and annihilation operators
c†

iσ and ciσ . Here i refers to a site of a given lattice and σ =↑
,↓ to the electron spin projection. The orthonormal states |iσ 〉
span the one-particle Hilbert space. To develop the general
theory, it is not yet necessary to further specify Hcl(S) and
Ĥqu. Concrete calculations will be performed for Hcl(S) = 0
and for Ĥqu given by the Haldane model [32,33], but trivially
generalized for spinful electrons (see Sec. II G). Spins and
electrons interact via a local exchange

Ĥint(S) = J
M∑

m=1

Smsim (1)

between the mth classical spin Sm and the local spin sim of the
electron system at the site im given by si = 1

2

∑
σσ ′ c†

iσ τσσ ′ciσ ′ ,
where τ = (τx, τy, τz )T is the vector of Pauli matrices.
With J > 0 the coupling is antiferromagnetic. The total
Hamiltonian is

Ĥ (S) = Ĥqu + Hcl(S) + Ĥint (S). (2)

The coupled equations of motion for the spin configura-
tion S = S(t ) and the pure N-electron state |�〉 = |�(t )〉 are
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given by

i∂t |�(t )〉 = Ĥ (S)|�(t )〉,

Ṡm(t ) = ∂〈Ĥ (S)〉
∂Sm

× Sm(t ). (3)

Here, 〈. . . 〉 is the expectation value with the state |�(t )〉,
and the overdot denotes the time derivative. The equa-
tions can be derived from the Hamiltonian Ĥ (S) or, equiv-
alently, via the action principle, from the Lagrangian L =
L(S, Ṡ, |�〉, ˙|�〉, 〈�|, ˙〈�|):

L =
∑

m

A(Sm)Ṡm + 〈�|i∂t |�〉 − 〈�|Ĥ (S)|�〉. (4)

Here,

A(Sm) = − 1

S2
m

e × Sm

1 + eSm/Sm
, (5)

with a fixed unit vector e, which is usually chosen as e = ez

[60]. We have

∇ × A(Sm) = −Sm/S3
m, (6)

and thus A(Sm) can be interpreted as the vector potential of a
unit magnetic monopole located at Sm = 0. For the derivation
of Eq. (3) from Eq. (4), see the Supplemental Material of
Ref. [29].

The Lagrangian formulation is convenient to implement
the central constraint

|�(t )〉 = |�0(S(t ))〉 (7)

of adiabatic spin dynamics (ASD) theory [16,29,30]. This is a
holonomic constraint without explicit time dependence. We
thereby assume that the fast electron dynamics is perfectly
constrained to the manifold of instantaneous ground states
|�0(S)〉 of Ĥ (S), and that the ground states are nondegenerate.
The smooth map S �→ |�0(S)〉 is characterized by the spin
Berry connection

Cm(S) = i〈�0(S)

∣∣∣∣ ∂

∂Sm

∣∣∣∣�0(S)〉. (8)

Under a local (S-dependent) gauge transformation

|�0(S)〉 �→ |� ′
0(S)〉 = eiχ (S)|�0(S)〉 (9)

given by a smooth function χ (S), the spin Berry connection
transforms as

Cm(S) �→ C′
m(S) = Cm(S) − ∂χ (S)

∂Sm
, (10)

while the spin Berry curvature

�mα,m′α′ (S) = ∂

∂Smα

Cm′α′ (S) − ∂

∂Sm′α′
Cmα (S) (11)

(α, α′ = x, y, z) is gauge invariant.
Using the constraint (7), we can eliminate the electron

degrees of freedom in the Lagrangian (4) so that a spin-only
low-energy theory is obtained. The effective Lagrangian de-
pends on the spin degrees of freedom only and is given by

Leff (S, Ṡ) =
∑

m

A(Sm)Ṡm + 〈�0(S)|i∂t |�0(S)〉

− 〈�0(S)|Ĥ (S)|�0(S)〉 −
∑

m

λmS2
m. (12)

The last term, with Lagrange multipliers λm, takes care of the
normalization condition Sm = 1. The Euler-Lagrange equa-
tions are straightforwardly derived. We find

0 = d

dt

∂Leff

∂Ṡm
− ∂Leff

∂Sm
= Ṡm × Sm

S3
m

+ ∂〈Ĥ (S)〉
∂Sm

−
∑

α

∑
m′α′

�mαm′α′ Ṡm′α′eα + 2λmSm, (13)

where eα is the αth canonical unit vector, 〈. . . 〉 is the expec-
tation value in the ground state |�0(S)〉, and where we have
made use of Eqs. (6), (8), (11) and the antisymmetry of the
spin Berry curvature

�mα,m′α′ (S) = −�m′α′,mα (S). (14)

Scalar multiplication of Eq. (13) with Sm yields an expression
for λm. Taking the cross product with Sm from the right and
using S2

m = 1, we find the effective equation of motion

Ṡm = ∂〈Ĥ (S)〉
∂Sm

× Sm + T m × Sm, (15)

where the last term, T m × Sm, with

T m = T m(S, Ṡ) =
∑

α

∑
m′α′

�m′α′mα (S)Ṡm′α′eα (16)

is the geometric spin torque. We note that for M = 1 this
reproduces the result given in Ref. [16].

The spin Berry curvature represents the feedback of the
geometrical Berry physics of the quantum system on the clas-
sical spin dynamics in the deep adiabatic limit. In addition
to the first term in Eq. (15), it gives rise to an anomalous
spin torque. The strength of this geometrical spin torque is
determined by the elements of the spin Berry curvature tensor.

B. Spin Berry curvature

There are various useful general representations of the spin Berry curvature. First, starting from the definition (11) and using
Eq. (8), we get

�mα,m′α′ (S) = i

(
∂〈�0|
∂Smα

∂|�0〉
∂Sm′α′

− ∂〈�0|
∂Sm′α′

∂|�0〉
∂Smα

)
= −2 Im

(
∂〈�0|
∂Smα

∂|�0〉
∂Sm′α′

)
, (17)

where |�0〉 = |�0(S)〉 has been written for short.
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Second, let |�n(S)〉 for n > 0 be the (possibly degenerate) nth excited eigenstate of Ĥ (S), i.e., Ĥ (S)|�n(S)〉 = En(S)|�n(S)〉.
Differentiating with respect to Smα yields the following identity, valid for n 
= 0:

〈�0(S)|∇mα|�n(S)〉 = 〈�0(S)|∇mαĤ (S)|�n(S)〉
En − E0

, (18)

where ∇mα ≡ ∂/∂Smα . Inserting a resolution of the unity with a local orthonormal basis of eigenstates {|�n(S)〉}n=0,1,... in
Eq. (17) and using Eq. (18), we find

�mα,m′α′ (S) = −2 Im
∑
n 
=0

〈�0(S)|∇mαĤ (S)|�n(S)〉 〈�n(S)|∇m′α′Ĥ (S)|�0(S)〉
[E0(S) − En(S)]2

, (19)

and with Eqs. (1) and (2),

�mα,m′α′ (S) = −2J2 Im
∑
n 
=0

〈�0(S)|simα|�n(S)〉 〈�n(S)|sim′α′ |�0(S)〉
[E0(S) − En(S)]2

. (20)

Note that a possibly present classical-spin–classical-spin coupling in Hcl(S) does not contribute here.
Third, we note that the energy eigenstates for J = 0 are trivially independent of the spin configuration S. Expanding |�n(S)〉 =

|� (0)
n 〉 + O(J ) and En = E (0)

n + O(J ) and noting the explicit J2 prefactor in Eq. (20), the spin Berry curvature takes the form

�mα,m′α′ (S) = �mα,m′α′ = −2J2 Im
∑
n 
=0

〈
�

(0)
0

∣∣simα|� (0)
n

〉 〈
� (0)

n

∣∣sim′α′ |� (0)
0

〉
(
E (0)

0 − E (0)
n

)2 + O(J3) (21)

in the weak-J limit. We see that the spin Berry curvature becomes independent of the classical spin configuration in this case.
Fourth, in the weak-J limit, there is a close relation with the retarded magnetic spin susceptibility of the unperturbed (J = 0)

electron system, which is defined as

χiα,i′α′ (t ) = −i�(t )e−ηt 〈[siα (t ), si′α′ (0)]〉(0). (22)

Here, � is the step function, η is a positive infinitesimal, and 〈. . . 〉(0) denotes the expectation value with the ground state of
the J = 0 electron system. Furthermore, siα (t ) = eiĤ0t siαe−iĤ0t with Ĥ0 = Ĥ |J=0. Expanding the commutator and inserting a
resolution of the unity with eigenstates of Ĥ0 yields the Lehmann representation via Fourier transformation:

χiα,i′α′ (ω) =
∫

dt eiωtχiα,i′α′ (t ) =
∑
n 
=0

(〈
�

(0)
0

∣∣siα

∣∣� (0)
n

〉 〈
� (0)

n

∣∣si′α′ |� (0)
0

〉
ω + iη − (E (0)

n − E (0)
0 )

−
〈
�

(0)
0

∣∣si′α′
∣∣� (0)

n

〉 〈
� (0)

n |siα|� (0)
0

〉
ω + iη − (E (0)

0 − E (0)
n )

)
. (23)

The susceptibility at ω = 0 and its ω derivative at ω = 0 are given by

χiα,i′α′ (0) = −2 Re
∑
n 
=0

〈
�

(0)
0

∣∣siα

∣∣� (0)
n

〉 〈
� (0)

n

∣∣si′α′
∣∣� (0)

0

〉
E (0)

n − E (0)
0

,
∂

∂ω
χiα,i′α′ (0) = −2i Im

∑
n 
=0

〈
�

(0)
0

∣∣siα

∣∣� (0)
n

〉 〈
� (0)

n

∣∣si′α′
∣∣� (0)

0

〉
(
E (0)

n − E (0)
0

)2 . (24)

Here, for a gapped system, we can disregard the infinitesimal iη. Comparing with Eq. (21), we conclude

�mα,m′α′ (S) = �mα,m′α′ = −iJ2 ∂

∂ω
χimα,i′mα′ (ω)

∣∣∣∣
ω=0

+ O(J3). (25)

We see that, in the weak-coupling limit, the spin Berry curvature describes the linear magnetic response of the electron system
due to a slow time-dependent perturbation and in fact represents the first nontrivial correction to a static perturbation.

C. Time reversal and spin rotation

Equations (15) and (16) tell us that anomalous adiabatic
spin dynamics under a geometrical spin torque requires a finite
spin Berry curvature. In this context, it is remarkable that the
spin Berry curvature vanishes in the weak-J regime, if the
underlying quantum system is time-reversal symmetric.

This is easily seen as follows: Let � be the usual an-
tiunitary representation of time reversal in the Fock space.
We have �sim�† = −sim , and thus �Ĥint�

† = −Ĥint . Ob-
viously, the interaction term (1), involving classical spins
that may be seen as local magnetic fields, explicitly breaks
time-reversal symmetry. However, this is irrelevant in the
weak-J limit [see Eqs. (24) and (25)] since here the spin

Berry curvature is a property of the unperturbed (J = 0)
electron system only. The unperturbed electron system is
time-reversal symmetric if [Ĥqu,�] = 0. The case of a non-
degenerate ground state, as considered here, implies that
there is no Kramers degeneracy and that the total number
of spin- 1

2 electrons must be even. Hence, the time-reversal
operator squares to unity, �2 = +1, and we can choose an or-
thonormal basis of time-reversal-symmetric eigenstates |� (0)

n 〉
of Ĥqu, i.e., we have �|� (0)

n 〉 = |� (0)
n 〉 for the ground state

(n = 0) and all excited states (n > 0). Therewith, we have
〈� (0)

0 |siα|� (0)
n 〉 = 〈��

(0)
0 |siα|�� (0)

n 〉 for the matrix element
in Eq. (24). Antilinearity of � implies 〈��

(0)
0 |siα|�� (0)

n 〉 =
〈� (0)

0 |�†siα�|� (0)
n 〉∗, and with �†siα� = −siα and �†� = 1,
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we eventually find 〈� (0)
0 |siα|� (0)

n 〉 = −〈� (0)
0 |siα|� (0)

n 〉∗. We
conclude that time-reversal symmetry enforces that the matrix
elements are purely imaginary and that

∂

∂ω
χiα,i′α′ (0) = 0. (26)

The spin Berry curvature vanishes in the weak-J limit for a
time-reversal-symmetric electron system. As we are particu-
larly interested in the geometrical spin torque, this motivates
us to study systems with broken time-reversal symmetry al-
ready at J = 0. Beyond O(J2), time-reversal symmetry is
broken explicitly.

Next, we consider the usual unitary representation U =
U (n, ϕ) = exp(−istotnϕ) of spin rotations on the Fock space,
where the unit vector n defines the rotation axis and ϕ the rota-
tion angle. The generators are given by the components of the
total spin stot = ∑

i si. Invariance of Ĥqu under spin rotations,
[Ĥqu, stot] = 0, implies that its eigenstates {|�n〉} can be si-
multaneously chosen as eigenstates of U . As sim is a vector op-
erator, we have U †simαU = ∑

β Rαβsimβ , where R = R(n, ϕ)
is the defining SO(3) matrix representation. With this, the left
matrix element in the expression for �mα,m′α′ [see Eqs. (24)
and (25)] can be written as 〈� (0)

0 |UU †simαUU †|� (0)
n 〉 =∑

β Rαβeiφ0〈� (0)
0 |simβ |� (0)

n 〉e−iφn , where the phase factors eiφn

are the corresponding eigenvalues of U . These cancel with
those obtained from the right matrix element and, hence,
we find �mα,m′α′ = ∑

ββ ′ Rαβ�mβ,m′β ′RT
β ′α′ . Irreducibility of

R and Schur’s lemma thus imply �mα,m′α′ = �mm′δαα′ . Fur-
thermore, the antisymmetry condition (14) requires that the
matrix � with elements �mm′ is skew symmetric. In case of
two impurity spins (M = 2) this means

(�mα,m′α′ ) = � ⊗ 1 = �

(
0 1

−1 0

)
⊗ 1, (27)

i.e., the spin Berry curvature is fully determined by a single
real number �. Note that spin-rotation symmetry requires
� = 0 in the case of a single-impurity spin (M = 1), i.e.,
a finite spin Berry curvature is obtained beyond the weak-J
limit only.

D. RKKY interaction

The static (ω = 0) magnetic susceptibility χiα,i′α′ (0) is gen-
erally nonzero, even if Ĥqu is time-reversal symmetric and
the matrix elements are purely imaginary. This quantity just
describes the linear-in-J response of the electron system at
time t . In the adiabatic limit, the response of the electron
system is in fact static: The local magnetic moment 〈sim〉 at
site im in the (instantaneous) ground state |�0(S(t ))〉 at time
t , which is induced by the classical perturbations JSm′ (t ) that
couple to sim′ , is given by

〈simα〉 =
∑
m′α′

χimα,im′ α′ (0)JSm′α′ (t ) + O(J2) . (28)

Invariance of Ĥqu under SU(2) spin rotations implies that
χimα,im′ α′ (0) = δαα′χim,im′ (0) ≡ δαα′χmm′ (0), so that we can
write 〈sim〉 = ∑

m′ Jχm,m′ (0)Sm′ (t ) up to linear order in J . With
the Hellmann-Feynman theorem we have ∂〈Ĥ (S)〉/∂Sm =
J〈sim〉 + ∂Hcl(S)/∂Sm. Assuming that Hcl ≡ 0, for the sake of

simplicity, and using Eqs. (15) and (28), we find

Ṡm =
∑

m′
J2χm,m′ (0)Sm′ × Sm + T m(S, Ṡ) × Sm. (29)

For a time-reversal-symmetric Hamiltonian, the second, ge-
ometrical, term vanishes while the first is just the standard
classical spin dynamics described by the effective classi-
cal Hamiltonian HRKKY = ∑

mm′ JRKKY
mm′ SmSm′ with effective

RKKY [59] exchange coupling JRKKY
mm′ = J2χmm′ (ω = 0). We

note that both spin torques in Eq. (29), the RKKY torque and
the geometric torque, come with the same prefactor J2.

E. Effective dynamics of two classical spins

Equation (29) is an implicit nonlinear system of differential
equations. It can be further simplified in the case of two
classical spins. With Eqs. (15) and (16) we get for M = 2

Ṡ1 = JRKKYS2 × S1 − �Ṡ2 × S1,

Ṡ2 = JRKKYS1 × S2 + �Ṡ1 × S2. (30)

These equations hold in the weak-J limit with JRKKY =
J2χ12(ω = 0) = J2χ21(0), where we can explicitly make use
of Eq. (27). Note that for finite � they are not form invariant
under exchange of the two spins 1 ↔ 2. This is interesting
since any Hamilton function Hcl(S1, S2) for identical clas-
sical spins would be symmetric, Hcl(S1, S2) = Hcl(S2, S1),
and would lead to form-invariant equations of motion. In
fact, the asymmetry of the second term ∝� demonstrates the
anomalous, non-Hamiltonian character of the resulting spin
dynamics. A similar discussion has been given earlier [30] in
a different (purely classical) context.

For m = 1, 2 we introduce real and antisymmetric 3 × 3
matrices

Am =
⎛
⎝ 0 −Smz Smy

Smz 0 −Smx

−Smy Smx 0

⎞
⎠, (31)

such that we can replace the cross product by a matrix-vector
multiplication Sm × (. . . ) = Am(. . . ), and write

Ṡ1 = JRKKYS2 × S1 + �A1Ṡ2,

Ṡ2 = JRKKYS1 × S2 − �A2Ṡ1. (32)

Using this notation, we can formally solve for Ṡ1 and Ṡ2,(
Ṡ1

Ṡ2

)
= JRKKYM−1

(
A2 0
0 A1

)(
S1

S2

)
, (33)

where the 6 × 6 matrix M is defined as

M ≡ 1 − �

(
0 A1

−A2 0

)
=

(
1 −�A1

�A2 1

)
. (34)

Therewith we have rewritten the equations of motion as ex-
plicit differential equations. We note that the determinant of
the block matrix is

det M = det(1 + �2A2A1). (35)

A straightforward calculation yields the simple result

det M = �4(S1S2)2 − 2�2S1S2 + 1, (36)
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i.e., matrix inversion is possible unless det M = 0 or

S1S2�
2 = 1. (37)

The inversion can be done analytically:

M−1 = 1

1 − �2S1S2

(
1 − �2S2⊗S1 �A1

−�A2 1 − �2S1⊗S2

)
,

(38)

where S1 ⊗ S2 is the outer (dyadic) product of S1 with S2.
Using the identity S1 ⊗ S2 · S1 × S2 = 0 and combining the
results, we find

Ṡ1 = JRKKY

1 − �2S1S2
[S2 × S1 + �S1 × (S1 × S2)],

Ṡ2 = JRKKY

1 − �2S1S2
[S1 × S2 − �S2 × (S2 × S1)]. (39)

We immediately see that |S1|, |S2|, and the scalar product
S1S2 are conserved. The total impurity spin S1 + S2 is not
conserved for � 
= 0. This is compensated by a respective
dynamics of the total quantum spin (see Ref. [30] for a dis-
cussion in the purely classical case).

For � = 0 we recover the standard RKKY dynamics gov-
erned by the RKKY coupling constant JRKKY

12 = JRKKY
21 =

J2χ12(ω = 0). Here, S1 and S2 precess around S1 + S2 =
const with frequency ωL = JRKKY|S1 + S2|. The spin dynam-
ics in that case is a Hamiltonian dynamics and derives from
the effective RKKY Hamiltonian HRKKY = JRKKYS1S2.

For finite �, we can distinguish between two additional
effects: First, there is an overall renormalization of the RKKY
coupling JRKKY

12 �→ JRKKY
12 /(1 − �2S1S2), which depends on

the initial spin configuration. Second, there is an additional
(non-Hamiltonian) coupling between the spins, the relative
strength of which is given by �. We note that for � → ∞
the additional coupling cannot outweigh the renormalization
effect [see Eq. (39)], and there is no spin dynamics at all in
this limit.

Equation (37) shows that the theory must break down
for model parameters, where � = �c ≡ 1/(S1S2) (recall that
S1S2 is conserved). For a spin Berry curvature right at the
critical value �c, the dynamics of the two spins gets arbitrarily
fast, such that the adiabatic theorem does not apply. On the
other hand, Eq. (37) or Eq. (39) show that the strongest renor-
malization effect due to the geometrical spin torque occurs for
model parameters, where � is close to �c, while the exchange
coupling J at the same time must satisfy a condition

1

τ
≡ J2 χ12(0)

1 − S1S2�2
� �E (40)

to ensure the applicability of the adiabatic theorem. As a rule
of thumb, for M = 2 spins and for a generic value of S1S2 in
the initial state, the value of the (with h̄ ≡ 1) dimensionless
quantity � should be � = O(1) to get a strong effect of the
geometric torque.

Introducing the dimensionless timescale t ′ = t/τ , the ef-
fective equations of motion can be rewritten in a form that is
independent of all model parameters, except for the spin Berry
curvature:

dS1

dt ′ = S2 × S1 + �S1 × (S1 × S2),

dS2

dt ′ = S1 × S2 − �S2 × (S2 × S1). (41)

Let us emphasize once more that these equations cannot be
derived from a Hamilton function H = H (S1, S2).

The nonlinear system of equations (41) is easily solved
analytically. We define

� = S1 + S2 + �S2 × S1. (42)

Using Eq. (41), d�/dt = 0 is obtained straightforwardly.
Furthermore, since d (S1S2)/dt = 0, the enclosed angle ϕ is
conserved. Both S1 and S2 undergo a precession around �,
i.e., we have Ṡ1 = � × S1 and Ṡ2 = � × S2 with frequency
ωprec =

√
�2. With |S1| = |S2| = 1, we find

ωprec =
√

4 cos2(ϕ/2) + �2 sin2 ϕ. (43)

For � = 0 the conventional RKKY dynamics is recovered.

F. Computation of the spin Berry curvature

The actual calculations of the spin Berry curvature are
performed for a gapped tight-binding model of noninteracting
electrons with Hamiltonian

Ĥqu =
∑
ii′,σ

tii′c
†
iσ ci′σ =

∑
Ir,I′r′,σ

tIr,I′r′c†
Irσ cI′r′σ

=
∑

k

trr′ (k)c†
krσ ckr′σ =

∑
kν

εν (k)c†
kνσ

ckνσ . (44)

Here, tii′ is the (spin-independent) hopping matrix, and we
write i = (I, r), where I are the lattice translation vectors
and r labels the sites within a unit cell. For the honeycomb
lattice considered below, r = A, B, corresponding to A- or
B-sublattice sites. The hopping matrix is diagonalized with
repect to I, I′ by a unitary transformation of the form c†

krσ =∑
I U (r)

Ik c†
Irσ , such that tIr,I′r′ = ∑

k U (r)
Ik trr′ (k)U (r′ )†

kI′ . In case
of a translationally symmetric lattice with periodic boundary
conditions, k runs over the discrete set of L wave vectors in the
first Brillouin zone, where L is the number of unit cells, and
U (r)

Ik = UIk = L−1/2eik·I . In a second step, the k-dependent di-

agonalization of trr′ (k) = ∑
ν U rν (k)εν (k)U

†
νr′ (k) is achieved

by the unitary transformation c†
kνσ

= ∑
r U rν (k)c†

krσ for each
k. Here, ν is the band index, if Ĥ is translationally symmetric.
We have tIr,I′r′ = ∑

k U (r)
Ik U rν (k)εν (k)U

†
νr′ (k)U (r′ )†

kI′ . With the
combined transformation

SIr,kν = U (r)
Ik U rν (k), (45)

this reads as tIr,I′r′ = ∑
kν SIr,kνεν (k)S†

kν,I′r′ .
Evaluating the matrix elements in Eq. (20) for N-electron

Slater determinants |� (0)
n 〉 = ∏

kνσ c†
kνσ

|vac〉 is straightfor-
ward. We find

�mα,m′α′ = −J2δαα′ Im
occ.∑
kν

unocc.∑
k′ν ′

∑
rr′

S†
kν,IrSIr,k′ν ′S†

k′ν ′,I′r′SI′r′,kν

[εν ′ (k′) − εν (k)]2
,

(46)

where (I, r) = im and (I′, r′) = im′ . This representation ap-
plies to the translationally symmetric model Ĥ = Ĥqu for
J = 0 and can be used for the case, where J is treated per-
turbatively. Beyond the weak-J regime, it applies for each
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2e+i2e i

M

+M
unit cell

FIG. 1. Haldane model on the honeycomb lattice. A sites in-
dicated by blue dots with onsite potential +M. B sites: red dots,
potential −M. Nearest-neighbor hopping with amplitude τ1: dashed
lines. Next-nearest-neighbor hopping τ2 with additional Peierls fac-
tor e−iξ (eiξ ) for hopping in clockwise (counterclockwise) direction:
purple (light blue) arrows.

spin configuration S in Ĥ = Ĥqu + Ĥint (S). But as transla-
tional symmetry is broken in this case, SIr,kν does no longer
contain the Fourier factor L−1/2eikI and must be computed
numerically and explicitly include the α index.

G. Spinful Haldane model

For generic parameters the half-filled Haldane model [32]
is a prototypical Chern insulator with broken time-reversal
symmetry. Numerical calculations have been performed for
the spinful Haldane model at half-filling, which consists of
two identical copies of the Haldane model for electrons with
spin projection σ =↑ and σ =↓, respectively. The spinful
Haldane model is trivially invariant under SU(2) spin rota-
tions. Rotation symmetry is broken in the full model (2),
where the two copies are coupled by the interaction term (1).

The corresponding tight-binding quantum Hamiltonian in
Eq. (2) is given by

Ĥqu = M
∑

iσ

zic
†
iσ ciσ − τ1

∑
〈ii′〉,σ

c†
iσ ci′σ

− τ2

∑
〈〈ii′〉〉,σ

eiξii′ c†
iσ ci′σ . (47)

Here, i, i′ run over the sites of the two-dimensional bipartite
honeycomb lattice (see Fig. 1). M is the strength of a stag-
gered onsite potential, where the sign factor zi = +1 for a
site i in the A sublattice (r = A) and zi = −1 for i in the
B sublattice (r = B). For M 
= 0 the potential term breaks
particle-hole symmetry. The amplitude for hopping between
nearest-neighbor sites on the lattice, 〈ii′〉, is denoted by τ1.
We set τ1 = 1 to fix the energy scale (and with h̄ = 1) also
the timescale. The next-nearest-neighbor hopping amplitude
eiξii′ τ2 with real τ2 includes a phase factor with ξii′ = −ξ for
hopping from i′ to i in clockwise direction (see purple lines in
Fig. 1), and with ξii′ = ξ in counterclockwise direction (light

FIG. 2. Topological phase diagram of the Haldane model in
the ξ -M/τ2 plane. C denotes the first Chern number. The nearest-
neighbor hopping τ1 = 1 sets the energy scale.

blue). This ensures that the total flux of the corresponding or-
bital magnetic field through a unit cell vanishes. Time-reversal
symmetry is broken for τ2 
= 0 and ξ 
= 0,±π .

The band structure of the spinful Haldane model consists of
two bands with trivial twofold spin degeneracy each. The band
structure is gapped for all M and all ξ , if |τ2/τ1| < 1

3 , except
for parameter values satisfying the condition [32] |M/τ2| =
3
√

3| sin ξ |, or, in terms of the band gap given by

�E = |M − 3
√

3τ2 sin ξ | != 0 , (48)

for M, τ2 > 0 and 0 < ξ < π . In the M/τ2 vs ξ phase diagram
(see Fig. 2), this condition defines lines of topological phase
transitions (see red and blue lines in the figure). At a phase
transition, there is a band closure in the first Brillouin zone,
either at K = 2π (1/3

√
3, 1/3), when M = −3

√
3 τ2 sin(ξ ),

or K ′ = 2π (2/3
√

3, 0), when M = 3
√

3 τ2 sin(ξ ) [33].
In the Altland-Zirnbauer classification [61], the model

belongs to symmetry class A. For parameters inside the
boundary in Fig. 2, i.e., in the orange or green regions for
|M/τ2| < 3

√
3| sin ξ |, the model represents a Chern insula-

tor with finite Chern number C = −1 (ξ < 0) and C = +1
(ξ > 0). Outside the boundary, we have C = 0, and the system
is a topologically trivial band insulator.

The Haldane model Ĥqu is invariant under SU(2) spin ro-
tations, i.e., we can make use of Eq. (27). Furthermore, it is
invariant under the discrete C3 rotations of the lattice around a
fixed site, and thus � is C3 invariant. Time-reversal symmetry,
on the other hand, is broken explicitly. Under time reversal,
we have 〈� (0)

0 |siα|� (0)
n 〉 �→ −〈� (0)

0 |siα|� (0)
n 〉∗. With Eq. (21),

this implies �mα,m′α′ �→ �m′α′,mα , and using Eq. (27) we find
� �→ −�. Under a reflection at a mirror-symmetry axis of
the hexagonal lattice, the Hamiltonian transforms in the same
way as under time reversal, H �→ �H�†. The first two terms
on the right-hand side of Eq. (47) are invariant. Reflection of
the hopping term for two next-nearest-neighbor sites i, j is
represented by complex conjugation since ξi j = −ξ ji. Hence,
we have

� �→ −� under time reversal or reflection. (49)
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The Hamiltonian and thus � is invariant under the combined
transformation.

H. Spin Chern number

Let us emphasize that the different topological phases of
the Haldane model are characterized by the first Chern number
C, which is obtained by integrating the conventional k-space
Berry curvature F (k) over the entire BZ, i.e., the torus T 2.
The spin Berry curvature is a different concept, motivated
by the geometrical spin-torque contribution to the adiabatic
impurity-spin dynamics.

Still it can be employed to define a topological invariant:
The Hamiltonian of the quantum system smoothly depends on
the parameters S = (S1, . . . , SM ) ∈ S , where S is the Carte-
sian product of two-spheres (recall |Sr | = 1). The parameter
manifold S is closed, i.e., has no boundary, and is 2M dimen-
sional. Hence, according to the general theory (see Ref. [62],
for example), the Mth spin Chern number C(S)

M is given by

C(S)
M = 1

(2π )M

1

M!

∮
S

tr ωM, (50)

where ω = dA − iA2 is the spin Berry curvature two-form
derived from the one-form A, the spin Berry connection. If
the ground state of the Hamiltonian is nondegenerate on the
entire manifold S , the spin Chern number C(S)

M is well defined
and quantized.

The computation of C(S)
M is a highly nontrivial task. Here

we note that C(S)
M = 0 in the weak-J limit, on which we con-

centrate in this study. This is easily verified since for J = 0
the spin Berry curvature is independent of S [see Eq. (21)]
and hence C(S)

M (J = 0) = 0. Quantization of the spin Chern
number and continuity with respect to J then imply C(S)

M (J ) =
0 + O(J2) = 0.

On the other hand, in the strong-coupling limit, the inter-
action term [Eq. (1)] will dominate the physics. In the case of
a single classical spin, the first Chern number of the “atomic”
model Ĥ = Ĥint(S) = JSs is C(S)

1 = ±1 [16,33]. Generally, it
is thus plausible that there is a nonzero spin Chern number
C(S)

M for J → ∞. Hence, as a function of J we expect a
topological phase transition and thus an accompanying gap
closure, which, due to the vanishing energy denominator in
Eq. (20), may have a substantial effect on the magnitude of the
spin Berry curvature close to transition. Interestingly, our data
presented below (see Sec. III F) indeed demonstrate a quali-
tative difference between the weak- and the strong-coupling
limits but do not hint towards singular behavior of the spin
Berry curvature. Further research along this line is in progress.

III. NUMERICAL RESULTS

The spin Berry curvature of the Haldane model can be
computed numerically using the representation (44), if the
exchange coupling J is weak. As mentioned above in the
discussion of Eq. (46), a slightly generalized formula applies
to the general, nonperturbative case. As translational sym-
metry is broken in this case, however, the accessible system
sizes are considerably smaller. We will, therefore, start with
a discussion of results, obtained for a bulk system in the
weak-J limit.

A. Spatial structure of the spin Berry curvature

The m, m′ element of the spin Berry curvature tensor
�mα,m′α′ = �mm′δαα′ describes the strength of the mutual ge-
ometric spin torque of two classical spins Sm and Sm′ , locally
exchange coupled to local spins of the electron system at two
sites im and im′ of the lattice. Since �mm′ is antisymmetric, it
is sufficient to specify a single real number � for each pair
of lattice sites [see Eq. (27)]. We consider a translationally
invariant system with periodic boundary conditions, fix the
position of one site, and compute the spin Berry curvature �

as a function of the position of the second site, using Eq. (46).
In Fig. 3, the fixed site in the center of the plot is marked

with green color, and the J-independent quantity �/J2 is
given by the color code on each of the remaining lattice sites.
Sites of the A sublattice are indicated by circles, those of
the B sublattice sites by squares. A large lattice is chosen
with L = 39 × 39 unit cells, each consisting of two sites, i.e.,
with a total number of 2L = 3042 sites. Calculations have
been done for parameters τ2 = 0.1 and ξ = π/4, where the
system is in the topologically nontrivial and the trivial phase,
with M = 0.8Mcrit (left plot) and M = 1.2Mcrit (right plot),
respectively. For this parameter set we have Mcrit ≈ 0.37. Note
that the parameters are chosen such that the gap size �E is the
same for both the topologically nontrivial (left) and the trivial
(right) phases.

One can nicely see the invariance of � under discrete
2π/3 rotations of the lattice around the fixed site. This set
C3 of spatial rotations forms in fact a symmetry group of
the Haldane model. Furthermore, consistent with Eq. (27), �

changes sign if im and im′ , i.e., m and m′, are exchanged. In the
figure, where site im is kept fixed, this is seen be comparing �

for A-sublattice sites im′ at opposite positions Im and −Im′ .
Finally, consistent with Eq. (49), � changes its sign under
a reflection at the horizontal axis through the central site
im and at the axes rotated by 2π/3 and −2π/3 against the
horizontal. This also implies that directly on these mirror axes
� vanishes.

Concerning the distance dependence, we can distinguish
between two different ranges. For small distances, up to about
three unit cells, � has an oscillatory distance dependence. In
this close range, the spatial structure is rather complicated
generally. On the other hand, in the far range � does not
change sign and monotonically decreases with increasing dis-
tance between im and im′ along any spatial direction.

We recall that, in the weak-J limit, the spin Berry curvature
� is purely a property of the spinful Haldane model. However,
it is not directly related to its band topology, as the weight fac-
tors in Eq. (46) are constructed from the same Bloch states but
in a different way as compared to the k-space Berry curvature.
Nevertheless, the sign structure of � in the far range is quite
universal, and it is different for the topologically nontrivial
and the trivial phase, as can be seen in Fig. 3, although the
gap �E is the same. This implies that, to some degree, the
spin dynamics is sensitive to the respective topological phase.
In this sense, the spin Berry curvature can be seen as a marker
for the topological properties of the model.

Differences between the two phases become more pro-
nounced in the case of a smaller gap �E . Figure 4 displays
results for a next-nearest-neighbor hopping amplitude τ2,
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FIG. 3. Nonzero element � of the spin Berry curvature �mα,m′α′ [see Eq. 27] for various positions im and im′ of the two impurity sites,
to which the classical spins are coupled. The first spin resides at the central site i1 (see green dot), and the second one is varied over the
remaining 2L − 1 sites of the hexagonal lattice. Calculations for a lattice with L = 39 × 39 unit cells and periodic boundary conditions. Model
parameters: τ2 = 0.1, ξ = π/4. τ1 = 1 sets the energy scale. Left: M = 0.8Mcrit , such that the system is in a topologically nontrivial phase.
Right: M = 1.2Mcrit , topologically trivial phase. Results for the weak-J regime. The color code indicates the value of �/J2.

which is smaller by two orders of magnitude as compared
to Fig. 3. Choosing M = 0.8Mcrit and M = 1.2Mcrit , respec-
tively, as in Fig. 3, a small τ2 leads an overall small gap �E in
the entire phase diagram, as can be inferred from Eq. (48).
Again, the gap �E is the same for both the topologically
nontrivial and the trivial phases.

But now, for small τ2, the spatial structure of � is largely
different for both phases. In the nontrivial phase (left plot),
the close range now spreads over the entire (finite) system,
and there is hardly any visible decrease of � with increas-
ing distance. In the trivial phase (right), on the contrary,
the close range is limited to distances of a few unit cells
only, while � is clearly reduced in size in the far range.
For still larger distances from the central site, � increases
again. This is due to finite-size effects, which are more
pronounced for small �E . Since, as compared to Fig. 3,
the gap is smaller by two orders of magnitude, this is not
unexpected.

B. Finite systems in the small-τ2 regime

Interestingly, the absolute value of � in Fig. 4 is
much larger in the nontrival case, where the far range ex-
tends over the whole lattice. Quite generally, finite systems
(with periodic boundary conditions) in the regime of small

next-nearest-neighbor hopping τ2 are interesting as here the
spin Berry curvature can be extremely large.

This is seen in Fig. 5, where � is plotted as a function of τ2.
Here, we have set M = 0, such that the model is topologically
nontrivial for all values of τ2. Exactly at τ2 = 0, however, the
model is a time-reversal-symmetric semimetal, such that the
Chern number is zero. Hence, in the thermodynamical limit
L → ∞, there is a phase transition at τ2 = 0.

From the log-log plot in Fig. 5 we can infer that � ∝ 1/τ 2
2

for τ2 → 0. This has interesting consequences, as has already
been discussed above in Sec. II E: namely, for τ2 → 0, the
spin dynamics is entirely dominated by the anomalous con-
tribution from the geometrical spin torque. The adiabatic spin
dynamics slows down, and the system in this limiting case
ultimately shows no dynamics at all. At intermediate values
for τ2, however, depending on the value for J , the value of �

can be of order one. This is exactly the range, where dynamic
effects of the geometrical spin torque are most pronounced, as
argued in Sec. II E.

Figure 5 also shows that the 1/τ 2
2 behavior is realized for

strictly finite systems only. Comparing the results for different
L with linear extension l up to l = 210 (88 200 sites), we
see that rather a linear dependence �(τ2) ∝ τ2 is obtained
in the thermodynamical limit. Note that this is just the τ2

dependence that must be expected, when expanding �(τ2)
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FIG. 4. The same as Fig. 3 but for τ2 = 0.001. Left: topologically nontrivial phase at M = 0.8Mcrit . Right: trivial phase, M = 1.2Mcrit .

around τ2 = 0, where the model is time-reversal symmetric
and thus � = 0, up to linear order in τ2. We conclude that
in the thermodynamical limit � is continuous at the phase
transition, when this is steered via τ2, while � diverges as
1/τ 2

2 for any finite system.

FIG. 5. � for next-nearest-neighbor sites as function of τ2 for
ξ = π/4 and M = 0. Note the log-log scale. Calculations for finite
systems with periodic boundary conditions of different size L = l ×
l as indicated.

The underlying mechanism is the following: For small
systems, where the k space is strongly discretized, the rel-
ative contribution to � from regions in the Brillouin zone
close to K or K ′ is comparatively large, so that this becomes
the dominating contribution to �, for model parameters close
to the transition. For larger systems, however, the relative
contribution diminishes, as can be seen in Fig. 5. If, for a finite
system, τ2 is sufficiently small, only the contributions from K
or from K ′ are relevant in the double sum over k and k′ in
Eq. (46). In this case, the τ2 dependence of the spin Berry
curvature is essentially given via the energy denominator in
Eq. (46) only, and since �E ∝ τ2 [see Eq. (48)], we have the
scaling � ∝ 1/τ 2

2 .
The different scalings � ∝ τ2 and � ∝ 1/τ 2

2 distinguish
between asymptotic behavior in the thermodynamic limit and
for a finite-size system. Figure 4 (left) for the nontrivial phase
is in fact representative for a system, where finite-size ef-
fects dominate, while in the case of Fig. 3 the system size
is sufficiently large to reflect the spin Berry curvature in the
thermodynamic limit (for not too large distances).

C. Distance dependence

For an analysis of the distance dependence of �, we revert
to the same parameters τ2 = 0.1 and ξ = π/4, as underlying
Fig. 3, but choose a larger system with L = 150 × 150 unit
cells. Figure 6 shows the dependence of the spin Berry cur-
vature � on the distance d between the two impurity sites. d
is defined as the Euclidean distance between the sites im and
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FIG. 6. �/J2 as a function of the distance d between the two
impurity sites for the topologically nontrivial (M = 0.8Mcrit , blue di-
amonds) and the trivial phase (M = 1.2Mcrit , orange squares) along a
path including A-sublattice sites, starting from the central (green) site
in Fig. 3 in vertical direction. Full symbols: positive sign of �/J2.
Light symbols: negative sign. Further parameters as in Fig. 3, but
for a larger lattice with L = 150 × 150 unit cells (periodic boundary
conditions).

im′ on the hexagonal lattice in units of the nearest-neighbor
distance. The distance of a site to all of its six next-nearest
neighbors, for example, is given by d = √

3. For distances
40 � d � 100, we find a nearly linear dependence of ln �

on d , i.e., � ∝ exp(−d/λ) with λ > 0, while for too large
distances d � 100, the linear trend is disturbed by finite-size
effects. Note that for the larger distances only the sign of �

depends on M but not its absolute value, if the gap is the same
(as is the case for M = 1.2Mcrit and M = 0.8Mcrit).

Performing calculations for different M to vary the gap
�E , we can extract the �E dependence of the slope −1/λ.
This is plotted in Fig. 7. We find a nearly linear dependence

FIG. 7. 1/λ as a function of the gap �E , as obtained from
calculations for systems with L = l × l with l = 150 unit cells for
different M. Calculations for the nontrivial and the trivial phases with
the same gap size. See text for discussion.

FIG. 8. The same as Fig. 6 but for JRKKY/J2 as a function of the
distance d . Full symbols: positive sign of JRKKY/J2. Light symbols:
negative sign.

1/λ ∝ �E . This means that the spin Berry curvature has an
exponential d dependence for large d , which is controlled by
the bulk band gap �E : � ∝ exp(−�E d ).

This behavior is reminiscent of the exponential decay of
the RKKY exchange interaction with d for insulating systems
[57]. Figure 8 gives an example. Here, JRKKY/J2 is plotted as
function of d for the same model parameters as in Fig. 6, and
exponential behavior is found for the RKKY coupling in the
same range 40 � d � 100.

The range of distances with an exponential dependence of
� or JRKKY exactly corresponds to the far range seen in Fig. 3,
where there is a comparatively smooth dependence of � on
the position of the second impurity spin. In the close range,
for d � 20, the distance dependence of � is less regular, and
there are sign changes of � in addition. This is somewhat rem-
iniscent of the oscillatory distance dependence of the RKKY
exchange for a metal or semimetal [49–53,58,59].

As can be seen in Figs. 6–8, differences between topologi-
cally nontrivial and trivial cases are not very pronounced as
concerns the distance dependence. This is governed by the
finite gap �E , which has always been chosen to be the same
when comparing both phases.

Qualitatively, the exponential decay of both the spin Berry
curvature and the RKKY exchange can be understood easily:
In the weak-J regime the coupling of two impurity spins
results from virtual second-order-in-J processes involving
(de)excitations of electrons across the gap �E . This is not
only the cause of the exponential distance dependence, but
also explains the small absolute values of �/J2 and JRKKY/J2,
which do not exceed values of the order of 10−2.

D. Parameter dependence of the spin Berry curvature

The discussion of M = 2 spin dynamics in Sec. II E has
shown that a value of � close to unity is required for a substan-
tial impact of the geometrical spin torque. As we have seen,
this is in fact possible in case of finite systems with periodic
boundary conditions at small values for τ2 (see Figs. 4 and 5).
We now focus on large systems again and study the model
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FIG. 9. Thick gray lines: phase diagram of the Haldane model
in the ξ -M/τ2 plane (see Fig. 2 for comparison). The color codes
the spin Berry curvature �/J2 for next-nearest-neighbor sites im,
im′ . Calculations for a system with 27 × 27 unit cells with periodic
boundary conditions at τ2 = 10−1.

for small distances between im and im′ at τ2 = 0.1, where
finite-size effects can be neglected safely.

Figure 9 gives an overview over the dependence of the
nonzero element � of the spin Berry curvature on the parame-
ters M and ξ for next-nearest neighbors im, im′ . The boundaries
of the topological phase transitions are superimposed in the
figure (see thick gray lines). We find a somewhat larger ab-
solute value of � within a topologically nontrivial phase.
Furthermore, we note that � → −� under a sign change of
ξ . As a sign change of phase ξ has the same effect for the
Hamiltonian of the Haldane model (47) as a reflection at a
mirror-symmetry axis of the hexagonal lattice, this observa-
tion is easily explained with Eq. (49). Otherwise the parameter
dependence is more or less featureless. Absolute values for �

do not exceed ∼10−3 in the entire parameter regime.
For larger distances between the sites im and im′ , absolute

values for � are smaller. But its parameter dependence can be
much more complicated. An example is given with Fig. 10,
which displays results for sites at a distance d = ‖im − im′ ‖ =
5
√

3. This must be traced back to the matrix elements in
Eq. (46).

In all cases we find that the parameter dependence of � is
smooth, including parameter ranges where the model is close
to or right at a topological phase transition. This is worth
mentioning since the squared energy denominator in Eq. (46)
[εunocc.(k

′) − εocc.(k)]2 suggests that the contributions of wave
vectors k, k′ at (or close to) the critical point K or K ′ lead to a
diverging or at least large spin Berry curvature.

E. Spin Berry curvature close to a topological phase transition

Close to a transition, however, a careful analysis of the
finite-size effects is necessary. For systems with a finite num-
ber of units cells L = l × l , the spin Berry curvature is in fact
discontinuous at a topological phase transition (actually, the
latter is well defined for L = ∞ only). Figure 11 displays
results for the M dependence of �. A finite jump �� at the

FIG. 10. The same as Fig. 9 but for sites im and im′ with Euclidean
distance d = 5

√
3 (in units of the nearest-neighbor distance).

critical point M = Mcrit = 3
√

3τ2 sin ξ is found for various
l . At l = 15, the relative jump ��/� is considerable. With
increasing L, however, it monotonically but slowly decreases
with l and is about an order of magnitude smaller at l = 51.

The data are consistent with the proposition that � is con-
tinuous at M = Mcrit in the limit L → ∞. A numerical proof,
however, is difficult to achieve since aside from the L → ∞
limit, the �M = |M − Mcrit| → 0 limit must be taken simul-
taneously. Figure 12 displays the jump �� as function of l
for various �M/Mcrit . For comparatively large �M/Mcrit =
0.1, we see that �� decreases but approaches a finite value
for l → ∞. At smaller relative distances �M/Mcrit to the
transition point, however, this assumed convergence with l
eventually becomes invisible for the largest feasible system
sizes (see red line). Nevertheless, continuity of � at a topo-
logical phase transition appears highly plausible.

In fact, an analytical argument can be given: Parametrically
close to a topological phase transition and in the vicinity of
the band-closure points K or K ′ in the first Brillouin zone,

FIG. 11. � for next-nearest-neighbor sites as function of M/Mcrit

at τ2 = 0.1 and ξ = 0.1π , where Mcrit refers to the critical M value.
Calculations for system size L = l × l with various linear extensions
l as indicated.
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FIG. 12. The jump �� = |�top − �triv|, obtained by computing
the spin Berry curvature at M = Mcrit ± �M, as function of l for
various �M/Mcrit . Calculations for next-nearest neighbors, τ2 = 0.1,
ξ = π/2.

the band structure of the Haldane model takes the form of a
relativistic Dirac theory [32,33]. If κ = (�kx,�ky) and κ′ =
(�k′

x,�k′
y) denote the wave vectors relative to K or K ′, i.e., if

κ, κ′ = 0 refer to a band-closure point, we have

εν (κ) = ε±(κ) ∝ ±
√

κ2
x + κ2

y + m2. (51)

The “mass” m is linearly related to the insulating gap: m ∝ �.
We can analytically check for a possible divergence of the
spin Berry curvature in the thermodynamical limit L → ∞
on approaching the phase transition via m → 0 with help of
Eq. (46). To this end, we compute the contribution Ibulk of
wave vectors in a sufficiently small ball B with radius �

around κ = 0. Up to a constant factor, we find

Ibulk ∝
∫

B
d2κ

∫
B

d2κ ′ 1(√
κ2 + m2 + √

κ′2 + m2
)2 , (52)

and the spin Berry curvature is continuous at m = 0, if
limm→0 Ibulk exists.

Note that to realize the thermodynamical limit, the wave-
vector sums in Eq. (46) have been replaced by integrations.
Furthermore, ν = − (occupied) and ν ′ = + (unoccupied) [see
Eq. (51)]. The κ dependence of the matrix elements SIr,κν in
the numerator in Eq. (46) can be disregarded for small �: the
first factor of each matrix element is a Fourier factor with a
smooth κ dependence [see Eq. (45)]. For each ν, the second
factor is given by the two-component eigenstate of the Dirac
Hamiltonian [32,33]

HD ∝ κyσx − κxσy + mσz, (53)

from which the dispersion (49) is derived. Rewriting the
two-dimensional κ integration (and analogously for the κ′
integration) with the help of polar coordinates (κ, ϕ), i.e.,∫

d2κ = ∫
dκ κ

∫
dϕ, the ϕ-dependent part of this factor is

of the form e±iϕ and thus cannot lead to a divergence.
The remaining two-dimensional integral

Ibulk =
∫ �

0

∫ �

0
dκ dκ ′ κκ ′

(
√

κ2 + m2 +
√

κ ′2 + m2)2
(54)

FIG. 13. Spin Berry curvature as function of J for an L = 60 ×
60 lattice at M = 0, τ2 = 0.1, ξ = 0.25π , and for a fixed classical
spin configuration Sm = (0, 1, 0), Sm′ = (−1, 0, 0), where im and
im′ are next-nearest neighbors. Blue data (see left scale): off-site
m, m′ element � = �mα,m′α′ (for α = α′ = x), divided by J2, to be
compared with the corresponding perturbative result (orange data).
Violet, green, red data (see right scale): onsite elements �mα,mα′ at
the position im.

can be computed analytically and turns out to stay finite in
the limit m = 0 with an additive lowest-order correction of
the form −m2 ln m → 0 for m → 0. This implies that the
spin Berry curvature, at a topological phase transition, is a
continuous function of the model parameters.

F. Strong exchange coupling

The representation (44) for the spin Berry curvature holds
in case of weak exchange coupling J . For coupling strengths
beyond the perturbative regime, we must resort to Eq. (20),
where the matrix elements are defined with eigenstates car-
rying a nonvanishing dependence on the spin configuration.
The numerical evaluation can be performed as described by
the text below Eq. (46).

Figure 13 displays the spin Berry curvature as a function of
J . Comparing the results obtained from the full theory (blue
data, left scale) with those of the perturbative-in-J approach
(orange), we see that perturbation theory applies to cou-
pling strengths J � 0.1 and is still a good approximation up
to J � 1.

For even stronger J beyond the perturbative regime, the
structure of the spin Berry curvature tensor �mα,m′α′ changes
qualitatively. In the J → ∞ limit, only onsite elements
�mα,mα′ are nonzero, and the blue curve (left scale) ap-
proaches zero in this limit. These onsite elements are given
by the spin Berry curvature of the effective two-spin model
H2-spin = Jsim Sm at im, where sim can be treated as an s = 1

2
quantum spin. The two-spin model is easily solved analyti-
cally [16], and �m ≡ 1

2

∑
αα′α′′ εαα′α′′�mα,mα′eα′′ is given by

the “magnetic-monopole field”

�m = −1

2

Sm

|Sm|3 = −1

2
Sm (55)

since |Sm| = 1 and J > 0. As Sm = (0, 1, 0) has been as-
sumed to point in y direction, we find that only �mx,mz =
−�m,y = + 1

2 remains nonzero (green data, right scale) for
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J → ∞. On the contrary, the perturbative approach [see
Eq. (27)] yields �mα,m′α′ = �mm′δαα′ = 0 for the onsite ele-
ments m = m′ due to the antisymmetry of the tensor.

In the intermediate-J regime (see J ≈ 10 in Fig. 13), there
is still a finite off-site element (blue, left scale). The onsite
element �mx,mz = −�m,y (green, right scale) is still far from
its asymptotic value for J → ∞, while �my,mz = �m,x has
a finite negative value due to the proximity of Sm′ pointing
into the −x direction. Finally, for the chosen classical spin
configuration, �mx,my = �m,z = 0 in the entire J range.

The data in the intermediate-coupling regime [J ∼ O(10)]
demonstrate that the elements of the spin Berry curvature ten-
sor may well assume values of the order of one. They appear
to be limited, however, by their J → ∞ values |�m,α| � 1

2 .
Nevertheless, one would have a strongly anomalous spin dy-
namics with it.

G. Results for a ribbon geometry

We have seen that the spin Berry curvature stays finite at
a topological phase transition since the gap merely closes at a
single critical point K or K ′ in the two-dimensional Brillouin
zone. This is a too weak singularity to have a significant
impact on the k, k′ sums in Eq. (46). For the model on a one-
dimensional lattice, however, this is qualitatively different.

Here, we consider the Haldane model on a one-
dimensional ribbon with a large number of unit cells Lx and
periodic boundary conditions in the x direction, and with a
finite number of unit cells Ly and open boundary conditions
in the y direction, so that the ribbon is bounded by zigzag
edges in the y direction. Equation (44) applies accordingly for
one-dimensional wave vectors kx, k′

x and for I, I ′ = 1, . . . , Ly.
In a topologically nontrivial phase with C = ±1 and

disregarding the trivial spin degeneracy, the bulk-boundary
correspondence principle requires the existence of two gap-
less chiral eigenstates of Ĥqu exponentially localized at the
opposite edges. For finite but large Ly, the band dispersions
εν (kx ) for ν = 1, . . . , 2Ly form two quasicontinua of bulk
states in the one-dimensional Brillouin zone separated by the
bulk band gap �E . Within the bulk band gap, the edge-state
dispersions ε1(kx ) and ε2(kx ) take the form of an avoided
crossing at low energies. With κ ≡ �kx we have

ε1,2(κ ) ∝ ±
√

κ2 + m2, (56)

with a gap ∝2m that is exponentially small in Ly for large Ly.
For Ly → ∞ the energy spectrum is gapless (m = 0), and at
low excitation energies the edge-state dispersions are linear
with positive and negative slope, respectively:

ε1(κ ) ∝ κ, ε2(κ ) ∝ −κ. (57)

As an example, Fig. 14 shows the ribbon band structure for
model parameters, where the spectrum is particle-hole sym-
metric. Fixing the Fermi energy at zero, εF = 0, we have a
half-filled system.

Addressing the weak-J limit, we use Eq. (46) to compute
the contribution Irib to the spin Berry curvature, for sites im, im′

at one of the edges and for Lx, Ly → ∞, due to relative wave
vectors κ in a sufficiently small range around κ = 0. This is

FIG. 14. Band structure of a Haldane ribbon with zigzag edges.
Calculations for a ribbon of finite thickness with Ly = 50 unit cells
in the y direction. Periodic boundary conditions are assumed along
the x direction. Parameters: ξ = π/2, τ2 = 0.1, and M = 0.

given by limε→0 Irib(ε) for positive ε, where

Irib(ε) =
∫ �

ε

dκ

∫ �

ε

dκ ′ 1

(κ + κ ′)2
. (58)

It is straightforward to see that the integral diverges for ε →
0 as Irib(ε) ∼ − ln ε, contrary to the two-dimensional case
[see Eq. (54)]. We conclude that the spin Berry curvature is
weakly (logarithmically) divergent in the topologically non-
trivial phase due to the presence of edge modes.

There are two sources for a finite gap regularizing the spin
Berry curvature. First, for a ribbon with a large but finite Lx <

∞, the kx-space discretization δkx = 2π/Lx will regularize
the divergence, such that � ∼ ln Lx. Second, for Lx → ∞, but
for a finite ribbon width Ly, a gap ∝m < �E is produced by
overlapping edge wave functions [see Eq. (56)]. In this case,
� ∼ − ln m.

Figure 15 displays the nonzero element � of the spin Berry
curvature for two next-nearest-neighbor sites at the same edge
as function of Lx and for various finite Ly. For fixed Lx and
with increasing Ly, the overlap between the edge states local-
ized at different edges and thus the gap parameter m decrease
exponentially fast with Ly, such that one expects that the gap
due to k-space discretization δkx = 2π/Lx quickly becomes
the dominating factor. In fact, for any Lx, the spin Berry
curvature � as a function of Ly quickly converges to a finite
value. On the scale of the plot, there is no visible difference
between the results for Ly = 30 and 45 (see also the red and
violet data in the inset). For the largest Ly, one notes that �

still increases with Lx at values of the order of Lx = O(104)
(see inset). The dependence of � on log Lx is close to linear,
as expected, but with a small slope.

Importantly, the absolute values of �/J2 in the wide
Lx-Ly range considered are of the order of unity. According
to Eq. (37) and if J is of the order of unity as well, this is
just the range, where the strongest effects of the geometrical
spin torque can be expected. We conclude that, compared with
the situation of the two-dimensional bulk system close to a
topological phase transition, the phase-space reduction in the
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FIG. 15. � as function of nanoribbon length Lx (with periodic
boundary conditions in the x direction) for various ribbon widths
Ly as indicated. Note the logarithmic scale for Lx . The classical
impurity spins are located at next-nearest-neighbor sites at the same
zigzag edge. Calculations for the particle-hole-symmetric case with
M = 0 and with Fermi energy εF = 0. Further parameters: τ2 = 0.1,
ξ = 0.1π .

one-dimensional case is very favorable for a large spin Berry
curvature.

IV. SUMMARY AND OUTLOOK

The typical timescale of the dynamics of local magnetic
moments, exchange coupled to an electron system, is con-
trolled by the strength of the exchange coupling J . Since this
is usually one or even several orders of magnitudes smaller
than the characteristic energy scales of the electron system,
the local-moment dynamics is slow as compared to the charac-
teristic electronic timescale. In particular, if J � �E , where
�E is size of the gap of an insulating electron system, the
adiabatic theorem applies, and the ground state of the electron
system at an instant of time t is well approximated by the
instantaneous ground state corresponding to the configuration
of the local moments at time t . Modeling the magnetic mo-
ments as classical spins of fixed length, the spin dynamics is
described by an effective low-energy classical theory, which
is much simpler than the full coupled semiclassical electron-
spin dynamics since it involves ground-state quantities of the
electron system only.

We have developed this effective spin-only theory within
a Lagrange formalism. Aside from the torque resulting from
well-known indirect magnetic exchange, there is is an addi-
tional spin torque that is given in terms of the spin Berry
curvature. This geometrical spin torque is analogous to the
geometrical force discussed in molecular dynamics and is
nonzero in case of electron systems with broken time-reversal
symmetry. As we have demonstrated explicitly for the sim-
ple case of two classical spins, the emergent dynamics is
highly unconventional and differs from the dynamics of
any spin-only Hamiltonian. Future studies may address this

non-Hamiltonian spin dynamics for systems like the semiclas-
sical Kondo-lattice model with a large number of spins.

For our present study, which aims at an in-principle demon-
stration, we have considered the (spinful) Haldane model as
a prototypical system, where time-reversal symmetry is bro-
ken explicitly. This choice has the additional benefit that the
spin Berry curvature can be compared with k-space Berry
curvature, which plays a central role in topological band
theory. There is in fact a (weak) relation between both, as
their Lehmann-type representations involve exactly the same
energy eigenstates, albeit different operators must be consid-
ered in the matrix elements. This explains the sensitivity to
the topological phase that has been observed in the study
of the spatial structure of the spin Berry curvature tensor,
particularly at the zigzag edges of the lattice. For forthcoming
work, it will be interesting to consider other condensed-matter
systems with broken time-reversal symmetry, such as systems
with spontaneous magnetic order.

It has been shown that the spin Berry curvature tensor,
in the weak-J limit, is closely related, namely, by the fre-
quency derivative at ω = 0, to the magnetic susceptibility.
This insight opens the possibility to make close contact to
well-known properties of the indirect magnetic exchange,
i.e., to RKKY theory and to its pendant for insulators and
semimetals, e.g., as concerns their distance dependence.

We have systematically studied the magnitude of the spin
Berry curvature. As the example for two classical spins has
shown, its effects, namely, an overall renormalization of the
indirect magnetic exchange and an additional coupling be-
tween the spins, are most pronounced, if this is of the order
of unity. Apart from the strong-J regime, however, this is not
easily achieved in case of the Haldane model. The main reason
is that virtual second-order-in-J processes are exponentially
damped by the finite gap size �E , similar to the exponen-
tial �E dependence of the indirect magnetic exchange. This
suggests that strong effects should be expected for systems in
close parametrical distance to a topological transition with a
band closure. However, we could argue that the spin Berry
curvature is finite and continuous at a topological transition
of the infinite bulk system. On the contrary, an arbitrar-
ily large curvature can be observed for finite systems (with
periodic boundaries). This underpins the view that a phase-
space mechanism is at work: A large spin Berry curvature
of a condensed-matter system in the thermodynamical limit
requires parametric vicinity to a band closure on a (D −
1)-dimensional submanifold of the D-dimensional Brillouin
zone. In fact, we could observe a logarithmically diverging
spin Berry curvature for the Haldane model at the D = 1
zigzag edge, where a (D = 0 dimensional) gap closure is
enforced via the bulk-boundary correspondence. This insight
will be useful for forthcoming studies.
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Kozłowski, A. Pulkin, G. Autès, I. Miotkowski, O. V. Yazyev,
and R. Wiesendanger, Phys. Rev. B 89, 104424 (2014).

[43] Y. Li, X. Zou, J. Li, and G. Zhou, J. Chem. Phys. 140, 124704
(2014).

[44] Y. Jiang, C. Song, Z. Li, M. Chen, R. L. Greene, K. He, L.
Wang, X. Chen, X. Ma, and Q.-K. Xue, Phys. Rev. B 92, 195418
(2015).

[45] C.-C. Chen, M. L. Teague, L. He, X. Kou, M. Lang, W. Fan,
N. Woodward, K.-L. Wang, and N.-C. Yeh, New J. Phys. 17,
113042 (2015).

[46] A. Pieper and H. Fehske, Phys. Rev. B 93, 035123 (2016).
[47] P. Rüßmann, S. K. Mahatha, P. Sessi, M. A. Valbuena, T.

Bathon, K. Fauth, S. Godey, A. Mugarza, K. A. Kokh, O. E.
Tereshchenko, P. Gargiani, M. Valvidares, E. Jimenez, N. B.
Brookes, M. Bode, G. Bihlmayer, S. Blügel, P. Mavropoulos,
C. Carbone, and A. Barla, J. Phys. Mater. 1, 015002 (2018).

[48] K. Sumida, M. Kakoki, J. Reimann, M. Nurmamat, S. Goto, Y.
Takeda, Y. Saitoh, K. A. Kokh, O. E. Tereshchenko, J. Güdde,
U. Höfer, and A. Kimura, New J. Phys. 21, 093006 (2019).

[49] Q. Liu, C.-X. Liu, C. Xu, X.-L. Qi, and S.-C. Zhang, Phys. Rev.
Lett. 102, 156603 (2009).

[50] J. Gao, W. Chen, X. C. Xie, and F.-C. Zhang, Phys. Rev. B 80,
241302(R) (2009).

[51] V. D. Kurilovich, P. D. Kurilovich, and I. S. Burmistrov, Phys.
Rev. B 95, 115430 (2017).

[52] M. V. Hosseini, Z. Karimi, and J. Davoodi, J. Phys.: Condens.
Matter 33, 085801 (2020).

[53] O. M. Yevtushenko and V. I. Yudson, Phys. Rev. Lett. 120,
147201 (2018).

[54] J. Ihm, Phys. Rev. Lett. 67, 251 (1991).
[55] Y. Ren, Z. Qiao, and Q. Niu, Rep. Prog. Phys. 79, 066501

(2016).
[56] Y. Mokrousov, Anomalous Hall Effect, in Topology in

Magnetism (Springer, Berlin, 2018), Chap. 6, p. 177.
[57] N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679 (1955).
[58] C. Kittel, in Solid State Physics, edited by F. Seitz, D. Turnbull,

and H. Ehrenreich (Academic, New York, 1968) Vol. 22, p. 1.
[59] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); T.

Kasuya, Prog. Theor. Phys. 16, 45 (1956); K. Yosida, Phys. Rev.
106, 893 (1957).

[60] P. A. M. Dirac, Proc. R. Soc. London A 133, 60 (1931).
[61] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).
[62] M. Nakahara, Geometry, Topology, and Physics (Institute of

Physics Publishing, Bristol, 1998).

235423-16

https://doi.org/10.1063/1.2798382
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.51.2167
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1103/RevModPhys.64.51
https://doi.org/10.1088/0953-8984/12/9/201
https://doi.org/10.1143/PTP.74.439
https://doi.org/10.1103/PhysRevLett.56.893
https://doi.org/10.1016/0375-9601(87)90189-7
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1016/j.physe.2018.05.011
https://doi.org/10.1103/PhysRevLett.119.227203
https://doi.org/10.1103/PhysRevLett.80.2205
https://doi.org/10.1103/PhysRevLett.83.207
https://doi.org/10.1103/PhysRevLett.125.187202
https://doi.org/10.1063/1.469915
https://doi.org/10.1098/rspa.1993.0127
https://doi.org/10.1103/PhysRevLett.96.066603
https://doi.org/10.1103/PhysRevLett.108.057204
https://doi.org/10.1088/1367-2630/17/11/113058
https://doi.org/10.1103/PhysRevLett.117.127201
https://doi.org/10.1103/PhysRevB.99.134409
https://doi.org/10.1103/PhysRevA.86.032114
https://doi.org/10.1103/PhysRevB.106.094433
https://doi.org/10.1103/PhysRevLett.124.197202
https://doi.org/10.1103/PhysRevB.103.024449
https://doi.org/10.1088/0305-4470/18/2/011
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nphys1838
https://doi.org/10.1103/PhysRevLett.108.256811
https://doi.org/10.1103/PhysRevLett.108.256810
https://doi.org/10.1103/PhysRevLett.108.117601
https://doi.org/10.1103/PhysRevB.88.075110
https://doi.org/10.1103/PhysRevLett.110.126804
https://doi.org/10.1103/PhysRevB.89.104424
https://doi.org/10.1063/1.4869146
https://doi.org/10.1103/PhysRevB.92.195418
https://doi.org/10.1088/1367-2630/17/11/113042
https://doi.org/10.1103/PhysRevB.93.035123
https://doi.org/10.1088/2515-7639/aad02a
https://doi.org/10.1088/1367-2630/ab3ac6
https://doi.org/10.1103/PhysRevLett.102.156603
https://doi.org/10.1103/PhysRevB.80.241302
https://doi.org/10.1103/PhysRevB.95.115430
https://doi.org/10.1088/1361-648X/abcc11
https://doi.org/10.1103/PhysRevLett.120.147201
https://doi.org/10.1103/PhysRevLett.67.251
https://doi.org/10.1088/0034-4885/79/6/066501
https://doi.org/10.1103/PhysRev.97.1679
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1098/rspa.1931.0130
https://doi.org/10.1103/PhysRevB.55.1142

