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Floquet engineering of dressed surface plasmon polariton modes in plasmonic waveguides
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We present a comprehensive study surface plasmon polariton (SPP) propagation on planar metallic waveguides
under a dressing field. We perform a set of analytical calculations of the periodic time-dependent Schrödinger
equation to study the interaction of an intense electromagnetic field with a metallic system. We model the
strong light coupling to the metallic system using a nonperturbative procedure. In this paper, we show that,
by introducing Floquet theory into the dressed metal, the behavior of the Floquet states are similar to the
phase-modulated signals in the communication system. This will reveal a new perspective on the underlying
science in an intricate, dressed quantum system. Furthermore, we examine the impurity scattering effects on
charge transport in disordered plasmonic metals using the generalized Floquet-Fermi golden rule and provide a
novel approach to diminish the losses in plasmonic materials using the dressing field. To gauge the effectiveness
of our results, we introduce a figure of merit to compare the performance of plasmonic metals, subjective to a
dressing field. The calculated dressed SPP characteristics suggest that high-efficiency SPP propagation can be
achieved in practice. Our findings open up new directions for state-of-the-art nanoplasmonic devices.
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I. INTRODUCTION

We have witnessed an ever-increasing demand for faster
information sharing and data processing capabilities over the
last few decades. As a result, the semiconductor industry
progresses towards faster, smaller, and more power-efficient
semiconductor devices, circuits, and components. Neverthe-
less, signal delaying and thermal issues associated with
electronic interconnections limit the continuous increase of
data processing capacity in modern electronic devices. One
of the most promising solutions introduced is substituting
the electronic signals with optical waves for the reason that
optical interconnections possess a significant information-
carrying capability, low loss, and offers alternative methods
to avoid the issues mentioned above [1–3]. However, the poor
miniaturization capability of dielectric photonic devices leads
to a significant size mismatch between modern electronic
and photonic components. This prevents the implementation
of light waves as data carriers in modern computing units
[1]. The cause behind the constraint on the miniaturization
of conventional photonic devices is the fundamental law of
diffraction limit, i.e., an optical wave in a dielectric media
cannot localize into nanoscale regions much smaller than the
wavelength of the optical wave in the material [4]. An ex-
citing area of research known as plasmonics has emerged to
bridge this gap between microscale photonics and nanoscale
electronics [5–7].

Plasmonics is a novel technology that studies the unique
optical properties of metallic nanostructures to manipulate
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the propagation, localization, and guidance of light at the
nanoscale [6]. Plasmonics, in principle, is concerned with
the behavior of plasmons. Plasmon is a quantum quasiparti-
cle that represents a quantum of charge density oscillation.
Researchers introduced two distinct concepts of plasmons
(bulk and surface) to explain the two characteristic peaks
in empirical observations on loss spectra [8–13]. Plasmon
waves that occur independently in the volume of metal are
described as bulk plasmons and are responsible for the high-
frequency peak in the loss spectra. The lower-frequency peak
on the loss spectra is due to the surface plasmons (SPs). In
this article, we focus on the characteristics of SPs. SPs are
plasmon waves that exist on the surface of a metal. Due
to the collective oscillations of free electrons of the metal,
SPs always arise with trapped electromagnetic fields on the
surface. The combination of the surface charge oscillation and
the linked electromagnetic field is called either a localized
surface plasmon (LSP) for a closed surface of a small volume
or a surface plasmon polariton (SPP) for an extended planar
surface.

Various types of metallic nanostructures were proposed
and analyzed for their LSP modes over the last few decades.
These include spheres [14,15], hemispheres [16,17], ellip-
soids [18,19], nanoshells [20,21], cubes [22,23], nanorods
[24–26], and composite structures [27,28] formed by inte-
grating basic shapes as building blocks. However, the most
relevant mechanism required for concentrating and delivering
light energy between nanophotonic devices is the guiding
of SPPs. By changing the waveguide geometry, the charac-
teristics of SPPs can be modified and this paves the path
to unleash the full potential of nanophotonic devices. Thus,
numerous geometrical nanostructures were investigated in-
cluding thin metal films [29–31], cylindrical waveguides of
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a circular cross-section [32,33], cylindrical waveguides of
a rectangle cross-section [34,35], gap waveguides [36,37],
metal wedges [38–40], and arrayed nanoparticles [41–43].
With the recognition of the vast potential of SPPs, a wide
range of novel applications originated in recent times, such
as biosensors [44,45], optical devices [7,46–50], data storage
[51,52], and photovoltaic devices [53,54]. Interestingly, the
quality of the SPP waveguiding mechanism relies on two
major factors: (i) propagation length and (ii) mode confine-
ment [13]. Unfortunately, we cannot realize these two factors
at the same time. The long-range SPP modes exhibit poor
subwavelength field confinement while the short-range SPP
modes provide better localization. With the possibility of
strong subwavelength field confinement of the guided optical
signals, highly integrated photonic circuits and nanophotonic
technologies use the short-range SPP modes in most cases [1].
However, several critical issues prevent the realization of the
immense potential of SPP-based future photonics, especially
the propagation length limitations imposed by the inevitable
propagation losses. The key to achieving a higher propaga-
tion length in plasmonic waveguides is reducing losses in the
metal regions. One solution to compose a less-energy loss
waveguide is to keep the majority of the field distribution
away from the metal. We can achieve this by varying the
geometrical parameters of the plasmonic waveguide [13,55–
58]. Alternatively, we can use active waveguiding techniques
to provide loss-compensating energy through electron or op-
tical illumination [59–61]. Furthermore, several studies used
the plasmonic laser or spaser (surface plasmon amplification
by stimulated emission of radiation) [62,63] concept to build
ultrafast nanoamplifiers for SPP waves [64,65]. However, a
multitude of factors like the waveguide geometry, the operat-
ing frequency, and the nature of the implementation restricts
the amount of energy that can be transferred to the SPP signal.
In this paper, we present a novel analytical method to sup-
press energy losses and secure higher propagation length in
plasmonic waveguides using Floquet engineering [66].

Identifying novel states of matter using controllable quan-
tum systems has been under the spotlight of scientists over
the past several decades. Researchers examine two main ap-
proaches to reach this goal. The first method is fabricating
materials, or artificial materials [67,68]. The second method
involves driving a system using external electromagnetic
fields [66,69–71]. Since the driving mechanisms might enable
us to explore unreachable conditions in static fabricated sys-
tems [71], driven quantum systems are a much better option
to achieve unique states of matter. A better understanding of
the fundamental mechanisms of charge transport in matter
allows us to realize the SPP characteristics under an external
field correctly. Most works studying the subject considered
the driving field as a perturbation field [72,73]. Modeling
the effects induced by external fields under a perturbative
approach involves expanding the interaction terms in powers
of the field intensity and discarding the higher-order terms.
We can approximate the external field influence under the
conventional perturbation approach in weak-intensity condi-
tions. However, higher-order terms influence the physics at
high intensities more strongly. This breaks the basis of the
perturbative treatment. In these instances, a more accurate
treatment needs to be adopted. A recent study by Wackerl

et al. [74] derived a fully closed analytical expression for
conductivity in a driven quantum system. In their theoret-
ical and numerical analysis, they showed that the previous
conventional perturbation approach based on results overes-
timated the driving field’s effect on the transport properties.
Formally, the driven-induced gauge fields generate an ef-
fective Hamiltonian that captures the unique characteristics
of the driven quantum system. Our method deals with this
effective time-dependent effective Hamiltonian. This allows
us to identify exact solutions within the framework of the
time-dependent Schödinger equation. Although the conven-
tional perturbation approaches are valid under weak-intensity
fields, our method can model the characteristics of the driven
quantum system under any intensity range. In this study, we
apply the Floquet engineering methods to find exact solutions
for a driven quantum system. Floquet engineering is a unique
procedure that manipulates quantum systems with a high-
intensity time-periodic external electromagnetic field. This
allows us to identify the SPP characteristics more accurately
in any driving field’s intensity range. At high intensities, we
must treat the material and the radiation as a single com-
bined quantum system, namely, a dressed system. We call the
applied high-intensity radiation the dressing field. Under the
Floquet engineering methods, we can dynamically generate
fascinating exotic quantum properties by choosing a matching
dressing field for the target material [66]. Theoretical analyses
on the usage of Floquet engineering can be found in several
fields of physics [66,70,71,74–76]. However, a detailed anal-
ysis of its application on plasmonic waveguides to manipulate
SPP modes is still to be investigated in detail. Thus, this paper
presents a robust theoretical analysis of dressed SPP modes in
plasmonic waveguides.

In this study, we analytically examine the manipulation
of SPP properties using a dressing field. First, we describe
the behavior of electrons in a metal film under a dressing
field with the help of the Floquet theory [70,77,78]. Then, we
derive the Floquet-Fermi golden rule for the dressed metallic
system. Here, we use a novel set of Green’s functions, namely,
the four-times Green’s functions introduced in Ref. [74]. This
leads to an analytical expression for the inverse scattering time
of dressed electrons in the metal. Furthermore, we present an
analytical mechanism to manipulate inverse scattering time
through the intensity of the dressing field. Since the scat-
tering rate and the inverse scattering time depend on the
wave-function solutions, we can control the inverse scattering
time by altering the electron wave functions. As long as the
wave-function solution in a quantum Floquet system relies on
the radiation strength, this will enable the possibility to tailor
the transport properties and SPP properties using external
radiation. In particular, we demonstrate that we can increase
the propagation length of SPP modes in simple planner metal
plasmonic waveguides. Finally, we use detailed numerical cal-
culations to analyze the SPP properties of different plasmonic
metals: silver (Au), gold (Au), copper (Cu), and aluminum
(Al) under a dressing field.

One of the key results of our work is the comparison of
various plasmonic metals under a dressing field. We introduce
a new figure of merit (FoM) to evaluate the SPP characteris-
tic improvements induced by the external dressing field. We
can use this novel FoM formula to calculate the FoM values
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of dressed plasmonic metals and compare their reliability
in various plasmonic applications. Furthermore, we suggest
several candidate plasmonic metals to be utilized when using
our proposed method. This will pave the path to achieving
high-efficiency state-of-the-art nanoscale plasmonic devices,
circuits, and components.

Moreover, we believe that our theoretical model will ini-
tiate a specific experimental regime in SPP waveguides. As
a direct result of our proposed mechanism, we can experi-
mentally realize our prediction of the SPP propagation length
enhancements with an external field. Due to its generality, the
presented model can describe the experimental results taken
from a broad class of materials and compare their deviations.
Here, we modeled the influence of disorder structure in the
metal as a single short-range perturbation potential. Analyzing
the transport properties of a particular impurity distribution is
a rather formidable task. In addition, we do not consider a
specific impurity configuration in our study as it is unlikely
to represent a measured impurity configuration in an exper-
iment. Since we only assume elastic scattering arising from
the impurities under our model, we can accurately describe
systems with dominant elastic scattering. This can always be
assumed if the temperature is low enough and photon absorp-
tion is restricted. To avoid the photon exchange between a
driving field and conduction electrons, the radiation should
be purely dressing. Our work gets inspiration from many
similar studies [73,74,79,80] that used steady-state particle
distribution function assumption with very low-temperature
conditions. In those studies, the theoretical models are built
on the free electron gas framework. A vital recurring theme of
these theory works is the low-temperature stable conditions
for free electron gas. Also, the radiation field must dress the
system to avoid photon exchange between a driving field and
conduction electrons. The frequency of the dressing field is
far from resonant electron frequencies to reduce the energy
absorption between the conduction band and the valence band
of the electron gas. Moreover, the wave frequency ω is high
enough to satisfy the inequality ωτ0 � 1. Here, τ0 is the
electron relaxation time in a natural electron gas. Therefore,
the intraband absorption of energy from the driving field by
conduction electrons is negligible under this condition. Very
much like all the theories mentioned before, we adopt the free
electron gas model for our work. It is important to note that
our analytical explanation of dressed plasmons is valid for any
material that satisfies the free electron model conditions. We
used Ag, Au, Cu, and Al metals to finally interpret our results
as they are popular metals that meet the free electron model
assumptions. In addition, we selected the dressing field’s fre-
quency in the same range that the authors of previous literature
[80] used for their numerical calculations. This choice enables
us to compare our analytical results with these earlier models.
However, we may choose any material that satisfies the free
electron gas model. In addition, to avoid the heating of the
system, we can follow few other mechanisms to remove the
heat from the interacting system and achieve a stable state.
First, if we analyze our system under short timescales, then we
can apply various approaches for stabilizing the driven quan-
tum system using bath engineering methods [81–84]. With an
upper limit for the dressing field’s intensity, we can neglect the
perturbative effects of the associated bath in the system. Next,

FIG. 1. Our thin metal film is placed in the xy-plane while the
dressing field is applied perpendicular to the xy-plane. The dressing
field is linearly polarized with a y-polarized electric field E.

we can use narrow pulses of a strong dressing field to avoid
heating. This well-known methodology was elaborated upon
long ago, and it is commonly used to observe various dressing
effects—in particular, modifications of the energy spectrum
of dressed electrons arising from the optical Stark effect—in
semiconductor structures [80,85,86]. Finally, we restrict our
dressing field intensity to a particular region under our model
to eliminate the contribution from nonzero elements in the
inverse scattering time matrix. In the experimental studies, we
should identify the most promising regime for driven fields
and materials to obey these validity settings.

The paper is organized as follows. Section II introduces our
dressed metallic system and describes the electron behavior
under the dressing field in the metal. Here, we employ the
Floquet theory to describe the dressing field effects. Sec-
tion III provides an analogy between Floquet states in dressed
metallic systems and the phase-modulated signals in com-
munication systems. We analyze the inverse scattering time
for the dressed electrons in our metallic system using the
Floquet-Fermi golden rule in Sec. IV. Section V presents
a comprehensive numerical analysis of SPP characteristics
under a dressing field. We propose a novel FoM value to eval-
uate plasmonic metals in Sec. VI. Section VII discusses the
physical significance of our outcomes and their possible use
in future nanoplasmonic devices. Finally, we summarize our
findings and conclude our discussion in Sec. VIII. The deriva-
tion of the wave-function solutions for the dressed metallic
quantum system is provided in Appendix A. Appendix B
gives a detailed discussion on the metal disorder models. The
derivation of the general Floquet-Fermi golden rule with t-t ′
formalism is given in Appendix C. We present the detailed nu-
merical analysis of wavelength and decay lengths of dressed
SPP modes in Appendix D.

II. FLOQUET THEORY PERSPECTIVE ON
DRESSED METALS

SPPs only exist at a metal-dielectric interface. As an ex-
ample we can generate SPPs in a surface of metal sheet
in the air. Thus, it is necessary to analyze the behavior of
electrons in a metal film under a dressing field. Therefore, we
consider an isolated thin metal film subjected to an external
high-intensity electromagnetic field as illustrated in Fig. 1. We
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carefully select the frequency of the driving field to be in the
off-resonant regime to avoid photon absorption and heating
the system [81]. Therefore, the driving field behaves as a pure
(nonabsorbable) dressing field.

Our analysis treats the fermion system and the radiation as
one combined quantum system, namely, a dressed metal. We
represent the metallic system with the free electron model.
Under this model, we assume that a metal consists of elec-
trons free to move in the crystal. Although the crystal lattice
potential and electron-electron interactions are not explicitly
taken into account, we can modify the model to overcome
the deficiencies partly. In this modification, the electron mass
m becomes an effective mass me [87]. In three-dimensional
crystals, the electron acceleration will not be colinear. Thus,
in general, we have an effective mass tensor. We consider
the metals as isotropic mediums in the free electron model.
Therefore, the conduction band electron’s effective mass me

becomes simply scalar.

A. Wave-function solutions for the dressed metal

Our system consists of a thin metal film placed on the xy-
plane of the three-dimensional coordinate space. We consider
a high-intensity linearly polarized electromagnetic field that
propagates perpendicularly to the metal surface. In this study,
we assume that the dressing field’s wavelength is much larger
than the height of the metal. Therefore, we can assume that
the dressing field behaves as a homogeneous field inside the
metal at a given time. In this study, we use linearly polarized
radiation as the dressing field. Without any loss of generality,
we can assume that the linearly polarized illumination pos-
sesses a y-polarized electric field E(t ) = E sin(ωt )êy, where
E is the amplitude of the electric field, ω is the frequency of
the dressing field, and ê j is the unit vector that is pointed to
the subscript direction j = x, y. Furthermore, we can model
the dressing field in the Coulomb gauge as a vector potential

A(t ) = E

ω
cos(ωt )êy. (1)

The wave function of a single electron ψ (r, t ) in the metal un-
der the dressing field satisfies the time-dependent Schrödinger
equation

ih̄
dψ (r, t )

dt
= Ĥe(t )ψ (r, t ), (2)

with the time-dependent Hamiltonian Ĥe(t ). Here, h̄ is the
reduced Planck constant, and r = (x, y, z)ᵀ is the position
vector in the three-dimensional coordinate space. Since the
vector potential is independent of the position coordinates, we
can identify the time-dependent Hamiltonian as

Ĥe(t ) = 1

2me
[−h̄2∇2 + 2ieh̄A(t )·∇ + e2A(t )·A(t )], (3)

where me is the effective electron mass of the metal, and e is
the elementary charge.

Since the metal block has a finite size, the wave function of
the dressed metal electron is quantized. Following the proce-
dure in Appendix A, we derive multiple discrete solutions for

the wave function in the time-dependent Schrödinger equation

ψk(r, t ) = 1√
V

exp

[
−i

(
ε̃k

h̄
t + e2E2

4meω2h̄
t − ekyE

meω2
sin(ωt )

+ e2E2

8meω3h̄
sin(2ωt )

)
+ ik·r

]
, (4)

where V is the volume of the system, k = (kx, ky, kz )ᵀ is the
wave vector, ε̃k = h̄2k2/2me is the quantized energy levels for
a bare electron, and k = |k| with the quantized values

k = π

[
n2

x

L2
x

+ n2
y

L2
y

+ n2
z

L2
z

]1/2

with nx, ny, nz ∈ Z+. (5)

We used Li to represent the length of the system in the
i-direction. Furthermore, the wave function of the dressed
electron can be rewritten as follows:

ψk(r, t ) = χ (k, t )ϕk(r), (6)

where

χ (k, t ) = exp

[
− i

h̄

(
ε̃kt + e2E2

4meω2
t − eh̄kyE

meω2
sin(ωt )

+ e2E2

8meω3
sin(2ωt )

)]
, (7)

and

ϕk(r) = 1√
V

exp(ikr). (8)

In the absence of the dressing field (E = 0), the wave function
of the dressed electron reduces to the wave function of the bare
electron in a finite space

ψk|E=0(r, t ) = exp

(
− i

ε̃k

h̄
t

)
ϕk(r). (9)

B. Floquet modes and quasienergies

Next, we recognize the momentum space wave-function
solutions using the Fourier transformation [88] on a finite
region

ψ (k, t ) =
√
V exp

[
− i

h̄

(
ε̃kt + e2E2

4meω2
t − eh̄kyE

meω2
sin(ωt )

+ e2E2

8meω3
sin(2ωt )

)]
. (10)

Using Floquet theory [70,78], we can separate the quasiener-
gies and time-periodic Floquet modes from the wave func-
tions. Recall that the Floquet theory yields a factorization of
the time evolution into periodic and exponential parts. The
latter involves the quasienergy values [70]. Thus, we factorize
the wave function in Eq. (10) into a linearly time-dependent
part and a periodic time-dependent part. Here, we identify the
quasienergies as

εk = ε̃k + e2E2

4meω2
, (11)
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and represent the Floquet modes with

φ(k, t ) =
√
V exp(−i[ζ (2γ ky) sin(ωt ) + ζ (γ 2/4) sin(2ωt )]),

(12)

where ζ (η) = h̄η/2meω, and γ = −eE/h̄ω. Thereupon, we
present the wave-function solutions for our dressed system as
Floquet states

ψ (k, t ) = exp

(
− i

εk

h̄
t

)
φ(k, t ), (13)

with identified quasienergies and Floquet modes for each
quantized k values.

III. ANALOGY TO PHASE MODULATION

In the previous section, we demonstrated the Floquet the-
ory perspective on dressed metals. We illustrate the analogy
between Floquet states and phase-modulated signals in the
communication theory in this section [89]. After that, we
propose a method to manipulate the Floquet modes using the
dressing field.

A. Fourier series components of Floquet modes

Since the identified Floquet modes are time-periodic func-
tions, we can expand them using the Fourier series expansion.
First, recall the Jacobi-Anger expansion [91]

e−iz sin(θ ) =
∞∑

l=−∞
Jl (z)e−ilθ , (14)

where Jl (·) are Bessel functions of the first kind with lth
integer order. Using Eq. (14), we can reformulate Eq. (12) as

φ(k, t )

=
√
V

∞∑
l ′=−∞

∞∑
l=−∞

Jl ′ (ζ (2γ ky))Jl (ζ (γ 2/4))e−i(l ′+2l )ωt

=
√
V

∞∑
n=−∞

∞∑
l=−∞

Jn−2l (ζ (2γ ky))Jl (ζ (γ 2/4))e−inωt .

(15)

Here, we introduced a new integer parameter n = l ′ + 2l .
Now, we derive the Fourier series expansion of the Floquet
modes by analyzing the structure of the above expression

φ(k, t ) =
√
V

∞∑
n=−∞

un(k)e−inωt , (16)

where

un(k) = Jn(ζ (2γ ky), ζ (γ 2/4)). (17)

Here, we use the definition of the generalized Bessel function
of integer order [91]

Jn(z1, z2) =
∞∑

l=−∞
Jn−2l (z1)Jl (z2). (18)

B. Frequency domain analysis

Note that the derived Floquet states in Eq. (13) are similar
to the phase-modulated continuous signals in communication
systems [89]

χPM(t ) = Ac exp[−iωct − i�χ (t )], (19)

where χPM(t ) is the phase-modulated signal dependent on
time, Ac is the amplitude of the carrier signal, ωc is the fre-
quency of the carrier signal, � the phase modulation index,
and χ (t ) is the information signal. For a given k wave vector,
comparing Eqs. (13) and (19), we can identify the analogies
between parameters

Ac ↔
√
V, (20)

ωc ↔ εk

h̄
= h̄2k2

2me
+ e2E2

4meω2
, (21)

�χ (t ) ↔ ζ (2γ ky) sin(ωt ) + ζ (γ 2/4) sin(2ωt ). (22)

Note that the quasienergy operates as the carrier signal fre-
quency from this observation. Further, we observe that the
dressing field behaves as a phase-modulated information sig-
nal on the electron wave function. If we turn off the external
dressing field, the terms on the right-hand side of Eq. (22) will
disappear. This leads to the bare electron wave function. This
is an analogy to a carrier signal without any information signal
in communication systems. Furthermore, we can manipulate
the γ value using the applied dressing field’s intensity. This
allows us to control the effects of the dressing field in the
same manner as the phase modulation index. Thus, we can
conclude that the dressing field influence acts the same way as
an information signal affects on the phase-modulated signal
in a communication system. Accordingly, we can achieve
diverse behaviors of charge transport properties in metals by
applying different dressing field configurations, mimicking
telecommunication analogies.

Now, we analyze our Floquet states in the frequency do-
main to find more analogies with the phase-modulated signal.
Note that we examine the Floquet states for a given k wave
vector in this section. Using the previous Floquet mode ex-
pansion in Eq. (16), we expand our Floquet states as a Fourier
series

ψk(t ) =
√
V

∞∑
n=−∞

un(k)e−i(ωk+nω)t , (23)

where the quasienergy frequency

ωk = h̄k2

2me
+ e2E2

4meh̄ω2
. (24)

From Eq. (23), we observe that the frequency spectrum con-
sists of a quasienergy-frequency line plus with an infinite
number of sideband lines at frequencies ωk ± nω. While these
lines are equally spaced by the dressing field’s frequency ω,
we note that this exhibits the same behavior as the phase-
modulated signal’s frequency spectrum in communication
systems [89]. The relative amplitude of a line at ωk ± nω is
given by un(k). To visualize the effect from the dressing field
on the frequency spectrum of our Floquet states, we illus-
trate each amplitude of Fourier components using empirical
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FIG. 2. The normalized Fourier components un of the Floquet states in dressed Ag for four distinct dressing field intensities (a) I =
0.5I0, (b) I = I0, (c) I = 5I0, and (d) I = 10I0 against the Fourier component number n. Here, I0 = 0.1 W cm−2, the dressing field frequency
ω = 1.35 × 1012 rads−1, and ky = kAg

F . The empirical material parameters for Ag are used from Ref. [90] including effective mass mAg
e =

9.109 × 10−31 kg, and Fermi wave vector kAg
F = 1.20 × 1010 m−1.

parameters [90] for Ag, one of the most common plasmonic
metals. We demonstrate our results in Fig. 2, where we used
four distinct dressing field intensity levels with the same
dressing field frequency.

It can be observed from Fig. 2 that the number of nonzero
components increase with the dressing field intensity. This
suggests that we get multiple sidebands with a high-intensity
field. Additionally, the relative amplitude of the sidebands
varies with the dressing field’s intensity. This behavior is
identical to the frequency spectrum representation of phase-
modulated signals in communication systems. A modulation
index with a smaller magnitude implies a tight sideband
structure and a larger magnitude implies an wide sideband
structure. If � 	 1, then we assume that the spectrum con-
sists of a carrier and two sideband lines. This is called the
narrowband phase modulation (NBPM). However, if � �
1, then multiple sideband lines will appear and produce a
spectrum with a wide bandwidth. This modulation method is
commonly known as wideband phase modulation (WBPM).
In our case, we can identify the analogy of our system to
NBPM or WBPM conditions. In a dressed metal system,
these conditions are only defined by the applied electromag-
netic field’s amplitude. In other words, we need to address
the contribution from multiple numbers of Floquet modes
for a Floquet system under a high-intensity dressing field.
Nevertheless, under low-intensity dressing field conditions,
we can observe that the zeroth Floquet mode has the most
significant contribution to charge transport properties. Thus,
we can assume that the zeroth Floquet mode only induces the
low-intensity dressing field effects.

As a result of the above-discussed similarities, we can
adapt the information processing techniques from the com-
munication systems to our dressed quantum systems. Thus,
we predict that Floquet engineering will pave the way to intro-
duce novel electronic and photonic applications in the future.
As a feasible example, we can identify the intercavity modu-
lation of the phase of the lasers, which is commonly known
as frequency modulated (FM) laser oscillations [92,93]. Such
modulations affect the properties of the emitted electromag-
netic radiation, sometimes unpredictable at first sight [94].
In this mechanism, we can use an external high-intensity
dressing field to manipualte the phase of the wavefunction of
the electron in the cavity as discussed previously. Due to the
periodic time dependence of parameters in the laser equation,
any dressing field effect in the cavity can be decomposed as a
superposition of Floquet solutions. With the help of previous

analysis, we can expand these solutions as Floquet modes
and their Fourier components. Using the understanding of
these components, we can describe the underlying science
of more complex time-dependent modulations to the laser
equation. Thus, we believe that our theoretical analysis and
knowledge generated from it will aid in the development of
FM laser applications. However, these electronic and photonic
applications require a rich physics treatment and need the
contribution from multiple science and technology domains.
As a starting point, we only consider the prospect of manip-
ulating SPPs with the Floquet engineering methods in this
study. Before proceeding with that, we need to analyze the
inverse scattering time in dressed metals.

IV. INVERSE SCATTERING TIME ANALYSIS

In this study, we model metallic solids using the free
electron model. Within the view of this model, we consider
a gas of noninteracting electrons. Furthermore, we assume
that the effective mass me takes the effects of band structure
and electron-electron interactions into account [87]. Never-
theless, experimentally we can depict that the resistivity of
a metal is inversely proportional to the temperature until it
reaches a finite value [95]. This finite value (residual resis-
tivity) is assumed to be generated by the imperfections in
the crystal, such as impurities, vacancies, grain boundaries,
or dislocations. The residual resistivity is essentially not tem-
perature dependent. Additionally, the presence of impurity
affects various electronic and photonic properties of metallic
solids significantly. Theoretical understanding of the phys-
ical consequences caused by impurities in metal is critical
from both fundamental and engineering perspectives. Further-
more, since we hope to interpret the low-temperature charge
transport properties in metals, our free electron model needs
an adjustment to address the ultracold electrical resistance.
Therefore we introduce a static disorder potential V (r) to
our free electron model Hamiltonian to address this static
impurities effects

Ĥe(r, t ) = 1

2me
[p̂ − eA]·[p̂ − eA] + V (r). (25)

This potential is also known as the stationary scattering po-
tential of the system. In our analysis, we adopt the Gaussian
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model with white noise conditions describing the disorder
potential, and we extensively analyze this in Appendix B. We
introduce a crucial parameter named inverse scattering time
to address the charge transport modifications induced by the
scattering potential.

A. Inverse scattering time matrix for dressed metals

Following the general Floquet-Fermi golden rule presented
in Appendix C, we can derive the inverse scattering time
matrix for our dressed metal system. Due to the fact that we
can describe our natural metallic system using a single energy
band, we can neglect the energy band quantum numbers in the
general Floquet-Fermi golden rule. Therefore, we can rewrite
the inverse scattering time matrix for a given dressed metal as(

1

τ (ε,k)

)nn′

=2πVimp

h̄

V2

Vk′

×
∑

k′
cn(k,k′)[cn′ (k,k′)]∗δ[ε − ε(k′)],

(26)
where

cn(k,k′) =
∞∑

m=−∞
um(k)[um+n(k′)]∗. (27)

Here, ε is a given energy value, Vk′ is the momentum space
volume, Vimp = 〈|Vk,k′ |2〉imp with Vk,k′ = 〈k|υ(x)|k′〉, and |k〉
is a bare electron state with k momentum. 〈·〉imp presents the
average over realizations of the impurity disorder.

Since the disorder is not supposed to change the eigenen-
ergies of the undressed system [74], we can neglect the
off-diagonal elements of the inverse scattering time matrix.
Thus, we obtain the diagonalized inverse scattering time ma-
trix for the dressed metal(

1

τ (ε,k)

)nn

= 2πVimp

h̄

V2

Vk′

∑
k′

|cn(k,k′)|2δ[ε − ε(k′)].

(28)
Substituting the Fourier components of Floquet modes pre-
sented in Eq. (17) back into Eq. (27), we find that

cn(k,k′) =
∞∑

m=−∞
Jn+m(ζ (2γ k′

y), ζ (γ 2/4))

× Jm(ζ (2γ ky), ζ (γ 2/4)). (29)

Using the generalized Neumann’s addition theorem for the
generalized Bessel functions [91]

∞∑
m=−∞

Jn∓m(z1, z2)Jm(z′
1, z′

2) = Jn(z1 ± z′
1, z2 ± z′

2), (30)

we evaluate the inverse scattering time matrix elements with
the following expression:(

1

τ (ε,k)

)nn

= 2πVimp

h̄

V2

Vk′

×
∑

k′
J2

n (ζ [2γ (ky − k′
y)])δ(ε − εk′ ). (31)

By introducing the momentum continuum limit in polar coor-
dinates, we can write Eq. (31) as(

1

τ (ε,k)

)nn

= VimpV2

4π2h̄

∫ ∞

0

∫ π

0

∫ 2π

0
δ(ε − εk′ )k′2 sin θ ′

× J2
n (ζ [2γ (ky − k′ sin θ ′ sin ϕ′)])dϕ′dθ ′dk′.

(32)
We only focus on the electrons that possess energy near the
Fermi energy under the charge transport analysis. Thus, we
can simplify the above equation as(

1

τ (εF ,k)

)nn

= VimpV2

4π2h̄

∫ ∞

0

∫ π

0

∫ 2π

0
δ(εF − εk′ )k′2 sin θ ′

× J2
n {ζ [2γ (ky − k′ sin θ ′ sin ϕ′)]}dϕ′dθ ′dk′.

(33)
with

εF = h̄2

2me
k2

F , (34)

where εF is the Fermi energy, and kF is the Fermi wave vector.
Then, we substitute the energy parameter to the momentum
parameter k′ in the integral using the definition of quasienergy
after neglecting the constant shift of the energy added by the
dressing field

εk′ = h̄2

2me
k′2 ⇒ k′dk′ = me

h̄2 dεk′ , (35)

and Eq. (33) simplifies to(
1

τ (εF ,k)

)nn

=mekFVimpV2

4π2h̄3

∫ π

0

∫ 2π

0
sin θ ′

× J2
0 (ξ [κy − sin θ ′ sin ϕ′])dϕ′dθ ′,

(36)

where

ξ = eEkF

mω2
, and κy = ky

kF
. (37)

B. Numerical analysis of energy band broadening

We define the normalized energy band broadening matrix
elements as

�nn(εF ,k) = [1/τ (εF ,k)]nn

[1/τ (εF ,k)]00
∣∣
E=0

, (38)

and we can evaluate this by

�nn(εF ,k)

= 1

4π

∫ π

0

∫ 2π

0
sin θ ′J2

n (ξ [κy − sin θ ′ sin ϕ′])dϕ′dθ ′.

(39)
In this analysis, we are only interested in electrons that

contain energy near the Fermi energy. Thus, we can derive
that |k| ≈ kF . Therefore, we can identify that |ky| � kF , and
|κy| � 1. Under this condition, we numerically calculate the
normalized energy band broadening against κy for several in-
tensity levels of dressing field and the results are illustrated in
Fig. 3. By comparing each diagonal element value in the sub-
figures of Fig. 3, we can identify that, when the value of n is
moving away from the zero, normalized energy band broaden-
ing values reduce for each intensity level of the dressing field.
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FIG. 3. The normalized inverse scattering time matrix diagonal elements in dressed Ag (a) �11 or �−1−1, (b) �22 or �−2−2, (c) �33 or �−3−3,
and (d) �44 or �−4−4 against the normalized y-directional wave-vector component κy with different intensities I of the external dressing field
with a frequency of ω = 1.35 × 1012 rads−1 and I0 = 0.1 W cm−2. The empirical material parameters for Ag are used from Ref. [90] including
effective mass mAg

e = 9.109 × 10−31 kg, and Fermi wave vector kAg
F = 1.20 × 1010 m−1.

Furthermore, the central element (n = 0) of the normalized
energy band broadening matrix provides the largest contribu-
tion regardless of the intensity level. This implies that, under
relative low-intensity fields, we can neglect the contribution
of nonzero elements while analyzing the charge transport
behaviors of dressed metals. However, the contribution from
nonzero Floquet modes under high-intensity fields is signif-
icant. Thus, we need to address multiple nonzero diagonal
elements from the inverse scattering time matrix. To make it
more explicit, we illustrate normalized inverse scattering time
matrix diagonal elements against the y-directional normalized
wave vector in Fig. 4. Here, we use two distinct levels of
intensities (I = I0 and I0 = 16I0) for the dressing field. All

diagonal elements show a general decrease with increasing
the dressing field intensity. Under the low-intensity dressing
field, we can neglect the contribution from nonzero diagonal
elements compared to the central element of the normalized
inverse scattering time matrix. However, the values of nonzero
components are comparable to the central element value under
the high-intensity field.

C. Normalized total energy band broadening

In this part of the analysis, we introduce an auxiliary pa-
rameter named normalized total energy band broadening (χ )
for the conductivity electrons in the dressed metal. Under

FIG. 4. The normalized inverse scattering time matrix diagonal elements �nn in dressed Ag for two distinct dressing field intensities
(a) I = I0 and (b) I = 16I0 against the normalized y-directional wave-vector component κy in a electron gas under dressing field with a
frequency of ω = 1.35 × 1012 rads−1 and I0 = 0.1 W cm−2. The empirical material parameters for Ag are used from Ref. [90] including
effective mass mAg

e = 9.109 × 10−31 kg and Fermi wave vector kAg
F = 1.20 × 1010 m−1.
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low-intensity dressing field conditions, we only address the
contribution from the central element (n = 0) of the inverse
scattering time matrix for further analysis. First, we calculate
the total energy band broadening ς of the conductivity elec-
trons of dressed metal by

ς = 1

Vk

∑
Vk

(
1

τ (εF ,k)

)00

δ

(
εF − h̄2k2

2me

)
. (40)

Next, we evaluate ς by substituting the central element of the
inverse scattering time matrix in Eq. (36) and introduce the
momentum continuum limit in polar coordinates

ς = 1

(2π )3

∫ ∞

0

∫ π

0

∫ 2π

0
k2 sin θ

mekFVimpV2

4π2h̄3

×
[∫ π

0

∫ 2π

0
sin θ ′J2

0 (ξ [κy − sin θ ′ sin ϕ′])dϕ′dθ ′
]

× δ

(
εF − h̄2k2

2me

)
dϕdθdk. (41)

Then, let ky = k sin ϕ sin θ and this implies κy =
(k/kF ) sin ϕ sin θ . Now, ς can be expressed as

ς = mekFVimpV2

32π5h̄3

∫ ∞

0

∫ π

0

∫ 2π

0
k2 sin θ

×
[ ∫ π

0

∫ 2π

0
sin θ ′J2

0

(
ξ

[
k

kF
sin ϕ sin θ

− sin θ ′ sin ϕ′
])

dϕ′dθ ′
]
δ

(
εF − h̄2k2

2me

)
dϕdθdk. (42)

We recall the energy parameter substitution in Eq. (35) and
thus the above expression simplifies to

ς = m2
ek2

FVimpV2

32π5h̄5

∫ π

0

∫ 2π

0
sin θ

[ ∫ π

0

∫ 2π

0
sin θ ′

× J2
0 (ξ [sin ϕ sin θ − sin θ ′ sin ϕ′])dϕ′dθ ′

]
dϕdθ. (43)

By allowing ξ = 0, the natural energy broadening ς0 of the
metal can be written as

ς0 = m2
ek2

FVimpV2

32π5h̄5

∫ π

0

∫ 2π

0
sin θ

[∫ π

0

∫ 2π

0
sin θ ′dϕ′dθ ′

]
dϕdθ.

(44)
Next, we define the normalized total energy band broadening
as

χ = ς

ς0
, (45)

and we obtain

χ = 1

16π2

∫ π

0

∫ 2π

0
sin θ

[ ∫ π

0

∫ 2π

0
sin θ ′

× J2
0 (ξ [sin ϕ sin θ − sin θ ′ sin ϕ′])dϕ′dθ ′

]
dϕdθ. (46)

Moreover, we numerically calculate the relationship be-
tween the normalized total energy band broadening against
the dressing field’s intensity. Figure 5 demonstrates this rela-
tionship and we can identify that the normalized total energy

FIG. 5. The normalized energy band broadening χ against
the normalized dressing field intensity Ĩ = I/I0 for Ag, Au, Cu,
and Al. Here, I is the dressing field intensity, I0 = 0.1 W cm−2

and the dressing field’s frequency is ω = 1.35 × 1012 rads−1. The
empirical material parameters for the metals are obtained from
Refs. [90,96,97].

band broadening reduces with increasing the applied dressing
field’s intensity. Here, all four metals show a general decrease
in the total energy band broadening with increasing the in-
tensity level of the dressing field while Al shows a relatively
low-energy band broadening compared to other metals. It
is important to note that we can interpret the total energy
band broadening as the normalized damping factor for the
electrons in the dressed metal system. Thus, we also refer to
this parameter as χ = ς/ς0, with ς as the damping factor in
the dressed metallic system, while ς0 is the natural damping
factor in the metallic system. This interpretation will help us
to analyze the behavior of dressed SPPs in the next section.

V. MANIPULATE SURFACE PLASMONIC POLARITONS

SPPs are collective oscillations in the electron charge
density at the dielectric-metal interfaces. In this section, we
examine a plane air-metal interface as illustrated in Fig. 6.
The dielectric function of the air region ε1 is assumed to
be real, whereas the metal region ε2 is characterized by
a general, complex frequency-dependent dielectric function
ε2(�) = ε′

2(�) + iε′′
2 (�). Here, � is the angular frequency

of the SPP excitation electromagnetic field. Since we model
our metallic solid under the free electron model, we apply
the Drude-Sommerfeld model [98,99] to derive expressions

FIG. 6. The propagation of SPPs on the metal-air interface. Col-
lective oscillations of electron charge density are positioned on the
xy-plane, and the electric field lines of SPPs are illustrated on the
xz-plane. The dielectric function of the air is ε1 and the metal is ε2.
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for the real and imaginary components of the metal dielectric
function

ε′
2(�) = 1 − �2

p

�2 + ς2
, (47)

ε′′
2 (�) = ς�2

p

�(�2 + ς2)
, (48)

where ς is the damping factor of the metal.

A. Characteristics of surface plasmonic polaritons

In general, we present the SPP’s parallel wave number
using a complex number �x = �′

x + i�′′
x where the real com-

ponent �′
x defines the SPP wavelength λspp, and the imaginary

component �′′
x describes the attenuation of the SPP while it

travels along the interface. By solving the Maxwell’s equa-
tions at the interface, we can write the dispersion equation for
the SPP [98]

�x = �

c

√
ε1ε2

ε1 + ε2
, (49)

where c is the speed of light in a vacuum. Considering the di-
electric function of noble metals [100] with respect to the light
wave frequencies, we can assume that |ε′′

2 | 	 |ε′
2|. Under this

assumption, we derive expressions for the real and imaginary
components of �x such that

�′
x = �

c

√
ε1ε

′
2

ε1 + ε′
2

, (50)

�′′
x = �

c

[
ε1ε

′′
2

2ε′
2(ε1 + ε′

2)

]√
ε1ε

′
2

ε1 + ε′
2

. (51)

Then, the SPP wavelength is given by

λspp = 2π

�′
x

=
√
ε1 + ε′

2

ε1ε
′
2

λ, (52)

where λ = 2πc/� is the wavelength of the excitation elec-
tromagnetic field in free space. Furthermore, we express the
normal component of the wave vector by

�z, j = �

c

√
ε2

j

ε1 + ε2
, (53)

where j = 1, 2 represents the upper and lower regions.

B. Numerical results

From Sec. IV, we identified that we can manipulate the
damping factor of the electrons in the metallic systems using
a dressing field. This implies that we obtained the potential
to manipulate the real and imaginary components of the di-
electric function of metals. In this part of the analysis, we
numerically evaluate the tunability of SPPs characteristics
with an external electromagnetic field. For the simplicity, we
can assume that ε1 ≈ 1 for the dielectric region throughout
the calculations. Unless specified otherwise, the following pa-
rameters are used in the numerical calculations: the excitation
field frequency � = 2.975 × 1015 rads−1 and the dressing
field frequency ω = 1.35 × 1012 rads−1. The effective mass

FIG. 7. The normalized propagation length L against normalized
energy band broadening χ for Ag, Au, Cu, and Al. The empirical ma-
terial parameters for the metals are obtained from Refs. [90,96,97].

me are 1.0m0, 1.1m0, 1.3m0, and 1.4m0 [90,96], and the Fermi
energies are 5.5 eV, 5.53 eV, 7 eV, and 11.7 eV [90] for Ag,
Au, Cu, and Al, respectively. Here, m0 presents the mass of an
electron. The Drude model parameters, plasma frequencies,
and natural damping factors are obtained from Ref. [97].
The full MATHEMATICA code for the numerical calculations is
available in Ref. [101].

The numerical evaluation of the dressing field effects on
SPP wavelength and decay lengths reflects that the change
in these characteristics is of the order of an angstrom in the
best cases. Details of this numerical analysis can be found
in Appendix D. Thus, we move our focus to the next sig-
nificant property of SPPs. Here, we evaluate the potential to
manipulate the propagation length of SPPs. We specify the
propagation length of the SPP along with the interface by
the imaginary part of the parallel wave number �′′

x that is
responsible for exponential attenuation of the electric field
amplitude. We write the propagation length of the SPP as

L = 1

2�′′
x

. (54)

Furthermore, we introduce the normalized propagation length
concerning the wavelength of the excitation field and evaluate
it as follows:

L = L

λ
= 1

2π

[
ε′

2(1 + ε′
2)

ε′′
2

]√
1 + ε′

2

ε′
2

. (55)

Using the expressions in Eqs. (47) and (48), we can examine
the relationship between the normalized propagation length
and the normalized energy band broadening. This correlation
for Ag, Au, Cu, and Al is depicted in Fig. 7. We can observe
that the behavior of Au-based normalized SPP propagation
length resembles those of Cu, and Al also shows almost
similar behavior. However, the Ag-based curve shows a sig-
nificant increase with decreasing the normalized energy band
broadening. In other words, we can identify Ag-based SPP as
an adequate candidate to achieve high-propagation lengths in
plasmonic applications.

In general, we can observe that irradiating a metallic sys-
tem with a dressing field increases the propagation length of
SPP modes as a result of the metal’s conductivity improve-
ments. Surface plasmons result from collective oscillations
of conduction electrons at the interface between a metal and
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dielectric sustained by an electromagnetic wave. The elec-
tron charge density and its electromagnetic fields propagate
as a surface wave along a metal-dielectric interface. Due
to the propagation losses of conduction electrons, the elec-
tromagnetic field intensity decays exponentially away from
the interface. The observation that the electrons lose energy
in metals can be directly related to their scattering proper-
ties. Electron scattering is a fundamental physical mechanism
consisting of the reflection of moving electrons in another
direction. As a result, electron scattering causes the dissi-
pation of the kinetic momentum of the electrons. Thus, we
can use electron scattering to explain the reduced electron
mobility in metals. There are various mechanisms of electron
scattering in a metallic system, including elastic scattering
processes generated by the disorders in metals and unelastic
scattering processes caused by phonons. In our work, we
assume that the temperature is always low enough to take
that the elastic scattering is dominant in the conducting sys-
tem. The presence of impurities and their elastic scattering
cause residual electrical resistivity. The scattering amplitude
or scattering rate indicates the amount of energy loss in
the metal. Scattering rates generally depend on the details of
the incident and outgoing state wave functions. Dressing by
the external field modifies the wave functions and, thereby, the
rates. This physical phenomenon was analyzed and used for
many applications in previous literature [74,102–104]. By re-
ducing the impurity-electron scattering rates, we can achieve
higher electron mobility in a given direction. This leads to
improved SPP propagation length in plasmonic waveguides.
This physical description is summarized in Fig. 8. From the
mathematical viewpoint, this can be explained by the rapid
decrease of the Bessel function in Eq. (46) against the dressing
field intensity. Focusing on the qualitative physical mean-
ing of this behavior of SPP modes, we need to consider
the characteristic changes in electron transport properties in
dressed quantum systems. As was analytically explained in
previous studies [73,74,76,79], we can achieve high-mobility
rates and low-energy losses in electron transport by changing
the natural electron states. By manipulating the wave-function
solutions in the dressed SPP systems, we can decrease elec-
tron propagation losses in the metal region and enhance the
propagation length of SPP modes. Since we adopt the more
accurate Floquet engineering framework [74] to derive our
analytical expressions, we believe our predictions will align
better with the experimental observations.

Comparing the results from Appendix D and Fig. 7, we can
identify that the changes impact on the propagation length of
SPPs from a dressing field is noticeable compared to others.
The ability to increase the propagation length of SPPs without
altering other characteristics is a significant advancement in
plasmonic devices. To make a comprehensive analysis, we
examine the relationship between the normalized propagation
length difference factor and the dressing field intensity. Here,
we define the normalized propagation length difference factor
as

L̃ = L − L|χ=1

L|χ=1
, (56)

where L|χ=1 is the natural normalized propagation length
of SPP. Figure 9 depicts the behavior of the normalized

FIG. 8. A visual depiction of how the dressing field intensity
affects conductivity and SPP propagation length. Here Floquet-FGR
means the Floquet-Fermi’s golden rule.

propagation length difference factor against the normalized
dressing field intensity. All four metals show a positive-valued
normalized propagation length difference factor. This signifies
that we can enhance the propagation length of SPPs using
an external dressing field. Significantly, the applied dressing
field modifies the behavior of conducting electrons in the
metal and this leads to SPPs with reduced losses inside the
metal region. The curves of Ag, Au, and Cu show similar
behavior against the changes of dressing field intensity. Nev-
ertheless, Al shows a greater normalized propagation length
enhancement than the other three metals. If we expect to find a
good dressed plasmonic metal candidate for applications with
increased efficiency, we need to compare the variations in all

FIG. 9. The normalized propagation length L̃ against normalized
dressing field intensity Ĩ for Ag, Au, Cu, and Al. The empirical ma-
terial parameters for the metals are obtained from Refs. [90,96,97].
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characteristics of SPP. Thus, in the next section, we introduce
a new performance evaluation method to compare the dressed
plasmonic metals.

VI. DRESSED SURFACE PLASMONIC POLARITON
FIGURE OF MERIT

In practice, we can identify various SPP-based waveg-
uide configurations along with different materials. Metal
SPP-based waveguides offer specific advantages along with
particular limitations. In the previous section, we propose a
method to enhance the propagation length of SPPs by apply-
ing dressing radiation on the metal. Furthermore, we identify
that different plasmonic metal waveguides behave differently
variously against the dressing field. Thus, it is more conve-
nient to propose a FoM that considers all the characteristics
discussed previously. Then, we can use the FoM to assess the
influence of the dressing field on different metals and select
the best candidate out of different arrangements usable for a
given application.

Ag and Au are noble metals and they are considered the
material of choice for SPP waveguides due to the ease of
implementation and stability against oxidation by the envi-
ronment. Moreover, Cu and Al are also suitable for various
plasmonic devices as their desirable properties and lower cost
[105]. Due to high conductivity and inexpensiveness, Cu was
used as a substitute for Ag and Au metals [106,107]. Since
the potential of Al nanostructures to sustain surface plasmon
resonances in the UV region, it was used in various optoelec-
tronic applications [108,109]. Accordingly, we included these
four metals under our evaluation of FoM.

There are several FoMs proposed in the literature to
evaluate and compare the performance of SPPs [110–112].
However, the key point of this study is to evaluate the dressing
field influence on SPP properties for each metal. This requires
the FoMs to only assess the characteristics differences caused
by the dressing field. Using the definitions given in Sec. V, we
define the new FoM as

FoM =
∣∣∣∣∣ L̃�̃2

�̃1�̃

∣∣∣∣∣. (57)

A higher FoM value indicates a better improvement of single
metal SPPs over another under a dressing field.

The new FoM directly compares different plasmonic met-
als in terms of the four factors introduced previously. The
first factor is L̃ and it represents the propagation length en-
hancement as a normalized deviation factor. Since the higher
values of L̃ are favorable effects on the SPPs’ propagation,
we include it as a numerator in the FoM. We expect to com-
pare the metal performance for utilizing them in plasmonic
waveguides. Thus, it is better to confine the SPP into the
interface. This requires a lower decay length in both regions.
Under the dressing field �̃1 shows a raise while �̃1 declines.
Consequently, we include the �̃1 and �̃2 as a denominator and
numerator, respectively. In plasmonic applications, it is crucial
to maintain the wavelength of the SPP. Thus, we expect a min-
imized dressing field effect on the wavelength of the SPP. As
a result, we include the normalized propagation wavelength
difference factor in the denominator of the FoM. Since we

TABLE I. FoM results for Ag, Au, Cu, and Al under two distinct
dressing field intensities (I = I0 and I = 4I0). Here I0 = 0.1 W cm−2.

FoM (10−5) I = I0 I = 4I0

Ag 2.5488 4.6941
Au 0.1858 0.3387
Cu 0.1795 0.3291
Al 0.1536 0.2861

address the sign of these parameters by placing them in the
FoM, we only need to consider the magnitude of these factors.
Note that the FoM depends on the choice of the excitation
frequency and the dressing field intensity.

Table I gives the new FoM values for all these four metals
for two intensity levels of dressing field (I = I0 and I = 4I0).
Here we use the same excitation frequency � = 2.975 ×
1015 rads−1 as the previous calculations. The second and third
columns show the FoM values for low and high dressing field
intensity level, respectively. Under both conditions, we can
arrange in the order of their FoM as Ag > Au > Cu > Al.
The results show that the Ag-based SPPs outperforms the
other three metals with significant variance. This describes
its ability to achieve propagation length improvements while
minimizing the variations in other characteristics. Further-
more, Cu and Au show almost similar results under the two
intensity levels, while Al performs poorly. Thus, Al is not an
attractive plasmonic material under these conditions. How-
ever, we can identify that this is due to the existence of
interband transitions in the visible wavelength range and large
values of ε′′(�). We can expect better results for Al in the
high-frequency range excitation fields.

Every single application of surface plasmons suffers from
damping caused by absorption in metals [113]. This results
in propagation length limitations. Thus, finding a solution
for this is a very hot topic in modern photonic research.
One way of achieving high propagation lengths is an ampli-
fication of plasmons analogous to photon amplification in a
laser [113,114]. For this, it is required to introduce an opti-
cal gain to the surrounded medium of the metallic structure
[114]. Several remarkable research used this technique with
optically pumping dye-impregnated polymers [113], semi-
conductor heterostructures [61,115], erbium-doped phosphate
glass [116], and polymer embedded with quantum dots [117].
Under this technique, the gain required to match with the SPP
losses, and it is significant [1]. Thus, this is a challenging
process to achieve. On the other hand, one can achieve higher
propagation lengths in SPPs by following passive approaches
such as adopting different shapes and geometrical parame-
ters [55,56,58]. However, the possible enhancement of the
propagation length is limited, and the choice of geometrical
parameters can be restricted by the application. Thus, we pro-
pose our approach of enhancing the SPP propagation length
using an external dressing field as a replacement for the above
techniques.

The realization of the improvements in propagation length
of SPP promises its potential in advanced plasmonic appli-
cations. With our detailed analytical model, we demonstrate
that it is possible to improve the propagation lengths in SPP
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applications. Furthermore, we present a comprehensive com-
parison between metals as candidates for dressed SPPs. As a
result, we identify that Ag-based SPPs outperformed under
the dressing field influence. Thus, we suggest that Ag is a
potential plasmonic material for achieving long-propagation
lengths while maintaining other properties almost steady.

VII. PROSPECTS FOR APPLICATIONS

The SPP-based nanostructures demonstrate their strong
subwavelength localization of SPP modes. This encourages
the advancement of highly integrated and efficient plasmonic
signal-processing components and devices. We can sepa-
rate the present investigations and applications on SPP-based
nanostructures into two interrelated areas: short-range SPPs
with extreme confinement and long-range SPPs with reduced
confinement. Under our proposed method, we hope to achieve
higher propagation lengths while the mode confinement re-
mains unchanged. Thus, this technique realizes long-range
SPPs with higher electromagnetic wave confinement. We be-
lieve that this can be exploited in both areas of applications
mentioned above.

Various experimental and theoretical techniques were pro-
posed to realize high-efficiency plasmon waveguides. Zia
et al. [118] introduced a method to develop plasmonic waveg-
uides with metal stripes while channels built with periodically
corrupted regions were suggested by Bozhevolnyi et al. [119].
Furthermore, several nanowaveguide formations [120] and
gap waveguides with SPP propagation between profiled metal
surfaces were proposed [121,122]. The main challenge in this
field of application is to strongly confine the SPP wave while
keeping relatively high propagation lengths [122]. A reduced
SPP propagation length leads to low efficiency waveguiding
[123]. Our analysis shows that we can enhance the prop-
agation length using an external dressing field. Thus, our
theoretical model will aid in the realization of high-efficiency
plasmonic waveguides.

SPP-based optical lenses are one of the most important
applications because they allow to couple a plane propagat-
ing wave to a spatially localized wave mode. In plasmonics,
several methods were introduced for wave focusing by re-
structuring the surface of a metal film with curved slits [124],
curved ridges [125], and a curved chain of nanoparticles
[126]. Due to the short propagation length of SPP in these
methods it gives a low-efficiency rate. As a solution, these
methods can take advantage of our proposed methods to
reduce the propagation losses and obtain relatively long prop-
agation lengths.

Plasmonic sensing is a significant multidisciplinary re-
search area. It has been largely employed in detecting trace
molecules in chemistry and biology [127]. Nanowire-based
SPPs are novel types of structures for sensing applica-
tions. The characteristics of nanowire SPP are susceptible to
changes in the dielectric environment [128]. This results in
them being used in sensing applications. Recently, several
efforts were made to improve the efficiency of SPP-based
sensors [127,129]. However, it is vital to remove ambiguity
on the characteristics of SPP while applying improvements.
Thus, we believe that our dressed SPP method would be a

good candidate for improving the efficiency of plasmonic
sensor applications.

By selecting a proper plasmonic metal as described in
Sec. VI, we can specifically add modifications to the propa-
gation length of dressed SPP modes. This will lead the way
to innovate novel optically controlled SPPs-based switching
devices. Since the basic components of modern electronics
are switching devices, we expect that our proposed methods
and detailed numerical analysis will aid in the advances in the
future nanoscale electronics and photonic devices.

Investigation of low-dimensional SPPs characteristics is
one of the major emerging research area in the last decade
due to their feasibility in modern applications. However, the
SPPs in two-dimensional systems can no longer be described
in relation to the bulk SPPs and requires a different ana-
lytical model [130]. We believe that applying an external
dressing field will improve the propagation length of SPPs in
low-dimensional systems as well. To derive an analytical ex-
pression to describe the properties of dressed two-dimensional
(2D) SPPs through our proposed analytical model needs to be
reformulated from the beginning. However, consideration of
dressed SPPs in low-dimensional systems will offer further
directions for extensions and might reveal new, interesting
physics.

VIII. CONCLUSION

We studied the behavior of electrons in a periodically
driven metallic system under the free electron model assump-
tions. With the help of the Floquet theory, we demonstrated
that we could present the nonperturbative solution of electron
wave functions as Floquet states. Then, we derived an analyt-
ical expression for the total energy band broadening of the
metallic system under the dressing field using the Floquet-
Fermi golden rule. Here, we assumed that the driving field
only renormalizes the Floquet system’s parameters rather than
changing the particle distribution under low temperatures.
Since there is a novel regime of closed Floquet systems with
a quasi-steady-state that persists for a considerably long time,
it is a reasonable assumption that the particle distribution is
time independent.

Using our derived expression for the total energy band
broadening, we found that the system’s scattering rate or
the energy band broadening depends on the Floquet states.
As long as the wave-function solution in a quantum Floquet
system depends on the dressing field’s intensity, this will
enable the possibility to tailor the transport properties using
external radiation. This implies that we could manipulate the
SPP properties as well. Primarily, we found that the dress-
ing field enhances the propagation length of the SPP mode
while the modifications made on the other characteristics are
relatively low. Furthermore, we presented a novel FoM to
evaluate the improvements added by the dressing field on
the plasmonic metal. We used the proposed FoM to compare
various modifications on noble, transition, and posttransition
metals using Ag, Au, Cu, and Al as the representative plas-
monic materials. Using the evaluated values of FoM, we
suggested Ag as a better candidate to achieve SPP with long
propagation lengths while other properties remained roughly
unaffected.
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The realization of intrinsic challenges in identifying the
optimum SPP components in plasmonic devices alleviates the
burden of advancing the efficiency of SPP applications and
makes future research clear and innovative. The formalism
and intuitive understanding presented in this paper can be used
to enhance the efficiency of a variety of plasmonic systems
under the application of a dressing field. The demonstrated
ability of the enhanced SPP propagation initiates new horizons
in the advancement of different applications of nanoplasmon-
ics.

We leave some important generalizations for future work.
Recent literature introduced novel analytical concepts on the
Floquet-Hamiltonian that correctly described heating dynam-
ics [131,132]. Although our results were obtained on short
timescales, related studies suggested that dissipation due to in-
terparticle collisions could lead to heating in quantum Floquet
systems under long timescale conditions. We are planning to
use this generalized description to explain the dressed SPP
characteristics in long timescales.
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APPENDIX A: SCHRÖDINGER PROBLEM FOR
DRESSED METALS

In this Appendix, we derive wave-function solutions in
position space ψ (r, t ) for the time-dependent Schrödinger
equation expressed in Eq. (2). The exact solutions of relativis-
tic time-dependent Schrödinger for an electron in an external
radiation was first derived by Volkov [133]. The wave fucn-
tion of the charged particle, called the Gordon-Volkov wave
function has been extensively used in many applications such
as ones that calculate ionization of atoms [134], scattering of
the charged particle [135], and excitation in band-gap semi-
conductors [136]. In the following, the steps of the finding the
Gordon-Volkov wave-function solution for Eq. (2) are similar
to the ones applied in Refs. [79,137,138].

Referring to the nonradiation condition solutions for the
free electron model [139], we express the Gordon-Volkov
wave function as

ψk(r, t ) = 1√
V

eik·re−i�k (t ), (A1)

where k is the electron’s wave vector, V is the volume of
the metal block, and �k(t ) is the time-dependent Volkov
phase [138]. Here, this solution represents a wave traveling in
the positive r direction and a corresponding wave traveling in
the opposite direction as well. We can substitute the Eq. (A1)
back into the Eq. (2) and obtain [140]

�k(t ) =
∫ t

0

h̄

2me
k·k − e

me
A(t ′)·k + e2

2meh̄
A(t ′)·A(t ′)dt ′.

(A2)

Then applying the vector potential defined in Eq. (1) into this
equation yields

�k(t ) =
∫ t

0

h̄k2

2me
− ekyE

meω
cos(ωt ′) + e2E2

2meω2h̄
cos2(ωt ′)dt ′,

(A3)
where k = |k|. We can assume that the metallic system is an
isotropic medium under the free electron model. Therefore,

we can identify that k =
√

k2
x + k2

y + k2
z and ki is the electron

wave-vector component in the i-direction. Now, we can easily
solve this equation by direct integration over time t . Here,
without loss of generality, we assume that the dressing field
is switched on at t = 0, and �k(0) = 0. In addition, the upper
boundary condition

lim
t→∞ A(t ) = 0 (A4)

is applied to the dressing field. Then, the solution for �k(t )
can be found as

�k(t ) =
[

h̄k2

2me
+ e2E2

4meh̄ω2

]
t − ekyE

meω2
sin(ωt )

+ e2E2

8meh̄ω3
sin(2ωt ). (A5)

Here, the first dressing-field-dependent additional term is the
ponderomotive energy. The second term is the time-dependent
position displacement of the electron due to the dressing field,
giving rise to the so-called quiver motion [141]. The last
term is a time-dependant phase-shift induced by the dressing
field. Due to finite volume restrictions, we can identify a
quantized electron wave vector k. This leads to a discrete
number of solutions for the wave function. Finally, we obtain
wave-function solutions for the time-dependent Schrödinger
equation

ψk(r, t ) = 1√
V

exp

[
−i

(
ε̃k

h̄
t + e2E2

4meω2h̄
t − ekyE

meω2
sin(ωt )

+ e2E2

8meω3h̄
sin(2ωt )

)
+ ik·r

]
, (A6)

where ε̃k = h̄2k2/2me is the quantized energy levels for a bare
electron, and k = |k| with the quantized values

k = π

[
n2

x

L2
x

+ n2
y

L2
y

+ n2
z

L2
z

]1/2

with nx, ny, nz ∈ Z+. (A7)

Here Li is the length of the metal block in the i-direction.
This well-known answer was used frequently in the literature
[79,135,142]. With the previously defined dressing field’s up-
per bound condition, after a significant time period this wave
function goes to a familiar bare electron wave function

lim
t→∞ψk(r, t ) = 1√

V
eik·re−i

ε̃k
h̄ t . (A8)

APPENDIX B: MODEL OF DISORDER

Consider a dressed fermion system described by the
Hamiltonian in Eq. (25). The causes of the disorder potential
V (r) are numerous and ambiguous. In a metallic solid, the
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reasons would be dislocations, substitutional impurities, va-
cancies, grain boundaries, and so on [87]. Finding the electric
and optical properties for a specific impurity configuration is a
rather formidable task and is not desirable since it is unlikely
to have exactly the calculated impurity configuration in an
experiment. Hence, our interest is in the statistically averaged
properties of metals over impurity configurations. The static
disorder potential corresponds to the situation in which the
electrons scatter elastically, in other words, no change of
energy. In this study, we only consider the elastic scattering
processes.

1. Gaussian model

Suppose that the static scattering potential V (r) is a contin-
uous and random function of position. We choose the zero of
energy such that the average potential is zero 〈V (r)〉imp = 0,
where 〈·〉imp presents the average over realizations of the im-
purity disorder. We can derive one particularly straightforward
model by assuming that V (r) is a Gaussian random potential
that can be characterized by

〈V (r)〉imp = 0, (B1)

〈V (r)V (r′)〉imp = �(r − r′), (B2)

where �(r − r′) is a decaying function. Furthermore, we as-
sume that it only depends on the distance |r − r′| and that it
decays with a characteristic length rc.

In a scenario where the wavelength of radiation or scattered
electrons is much greater than rc, it is a reasonable approxima-
tion to take the two-point correlation function to be

〈V (r)V (r′)〉imp = ϒδ(r − r′), (B3)

where the parameter ϒ has dimensions of energy squared
times volume. This implies that there is no spatial correlation.
A random scattering potential V (r) with this property is called
a white noise.

2. Edwards model

The Gaussian model contains no information about the
microscopic nature of disorder. Another model, introduced by
Edwards [143], describes the potential V (r) as the contribu-
tion of Nimp identical impurities in a volume V , localized at
randomly distributed points ri and characterized by a potential
υ(r)

V (r) =
Nimp∑
i=1

υ(r − ri ). (B4)

Furthermore, we take the limit V → ∞, while keeping the
density ηimp = Nimp/V constant. The average distance be-
tween impurities is η−1/d

imp where d is the space dimensionality.
Moreover, we assume that the υ(r) is a central potential, with
a characteristic range r0.

We can recover the Gaussian model by taking the limit of
a high density (ηimp → ∞) of weakly scattering impurities
(υ(r) → 0) [87]. Furthermore, we can consider these single
impurities as δ scatters

υ(r) = υ0δ(r), (B5)

where υ0 is a constant and this leads to

V (r) =
Nimp∑
i=1

υ0δ(r − ri ). (B6)

When the disorders are evenly distributed over a large sys-
tem, we can assume that the properties of the system can
be described as an average over its ensemble of macro-
scopically identical subsystems [144]. This is also known as
self-averaging. In this case, we can calculate the correlation
function considering only a single impurity [87] as follows:

〈V (r)V (r′)〉imp = ηimp

∫
υ(r′′ − r)υ(r′′ − r′)dr′′, (B7)

and this can be evaluated with

〈V (r)V (r′)〉imp = ηimp

∫
υ2

0δ(r′′ − r)δ(r′′ − r′)dr′′. (B8)

Then we simply it into

〈V (r)V (r′)〉imp = ηimpυ
2
0δ(r − r′). (B9)

By comparing Eq. (B9) with Eq. (B3), we can identify that

ϒ = ηimpυ
2
0 , (B10)

and we can transform the Edwards model to the Gaussian
model. In the framework of the Edwards model, this implies
that the collisions are isotropic [87].

APPENDIX C: FOLQUET-FERMI GOLDEN RULE

We derive the Floquet-Fermi golden rule for a general
dressed system with the help of the t-t ′ formalism. The steps
of the derivation of the Fermi golden rule for t-t ′ Floquet states
are similar to the one derived in Refs. [74]. We can identify the
t-t ′-Floquet states [70]

|ψα (t, t ′)〉 = exp

(
− i

εα

h̄
t

)
|φα (t ′)〉, (C1)

by separating the aperiodic and periodic components of the
Floquet states. Here, α is the quantum number of the con-
sidering Floquet state. However, considering the properties
of t-t ′-Floquet states, we can find repeated Floquet states for
each Floquet zone (l = 0,±1,±2, . . . ,) [70,74]. A general
t-t ′-state in the lth Floquet zone can be present as∣∣ψ l

α (t, t ′)
〉 = exp[ilω(t ′ − t )]|ψα (t, t ′)〉. (C2)

Furthermore, these states fulfill the t-t ′-Schrödinger equa-
tion [70,74]

ih̄
∂

∂t ′
∣∣ψ l

α (t, t ′)
〉 = ĤF (t ′)|ψ l

α (t, t ′)〉, (C3)

where the Floquet Hamiltonian defined as

ĤF (t ′) = Ĥe(t ′) − ih̄
∂

∂t ′ . (C4)

Here, Ĥe(t ) the time-dependent Hamiltonian of the dressed
system. The corresponding time evolution operator to the t-t ′-
Schrödinger equation is given by

UF (t, t0; t ′) = exp

(
− i

h̄
ĤF (t ′)[t − t0]

)
. (C5)
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It is important to note that the advantage of t-t ′ formalism lies
on this time evolution operator that avoids any time-ordering
operators [74].

As discussed in Appendix B, we model the stationary
scattering potential by a group of randomly distributed im-
purities. We address this single scattering potential using the
framework of the Edwards model with Gaussian white noise
approximation. Furthermore, we assume that the perturbation
was turned on at the reference time t = t0. We modify our
time-dependent Hamiltonian by adding a time-independent
total perturbation V (r).

ih̄
∂

∂t ′
∣∣� l

α (t, t ′)
〉 = [ĤF (t ′) + V (r)]

∣∣� l
α (t, t ′)

〉
. (C6)

This introduces a new wave-function solution 〈�α| for a sys-
tem with a given perturbation. If t � t0, both of the solutions
for Eqs. (C3) and (C6) coincide∣∣ψ l

α (t, t ′)
〉 = ∣∣� l

α (t, t ′)
〉

when t � t0. (C7)

Adopting the interaction picture representation [88,145], we
write the t-t ′-Floquet state as∣∣� l

α (t, t ′)
〉
I = U †

0 (t, t0; t ′)
∣∣� l

α (t, t ′)
〉
. (C8)

Due to time independence, the scattering potential has the
same form in the interaction picture

VI (r) = U †
0 (t, t0; t ′)V (r)U0(t, t0; t ′) = V (r). (C9)

Now we can write the t-t ′-Schrödinger equation in the inter-
action picture representation

ih̄
∂

∂t ′
∣∣� l

α (t, t ′)
〉
I = VI (r)

∣∣� l
α (t, t ′)

〉
I , (C10)

with the recursive solutions [88,145]∣∣� l
α (t, t ′)

〉
I = ∣∣� l

α (t0, t ′)
〉
I + 1

ih̄

∫ t

t0

VI (r)
∣∣� l

α (t1, t ′)
〉
I dt1.

(C11)
Next, we assume that the contribution from the higher-order
terms of the perturbation can be neglected. Thus, we can write
the solution up to the first-order term (Born approximation):

∣∣� l
α (t, t ′)

〉
I ≈ ∣∣ψ l

α (t0, t ′)
〉 + 1

ih̄

∫ t

t0

VI (r)
∣∣ψ l

α (t0, t ′)
〉
dt1.

(C12)
Our general t-t ′-Floquet states create a basis. Thus, we can

write the solutions for the t-t ′-Schrödinger equation given in
Eq. (C10) employing our known t-t ′-Floquet states∣∣� l

α (t, t ′)
〉 =

∑
β

all ′
αβ (t, t ′)

∣∣ψ l ′
β (t, t ′)

〉
. (C13)

Here, we define the coefficient as the scattering amplitude

all ′
αβ (t, t ′) = 〈

ψ l ′
β (t, t ′)

∣∣� l
α (t, t ′)

〉
, (C14)

and we rewrite this as

all ′
αβ (t, t ′) = 〈

ψ l ′
β (t, t ′)

∣∣ψ l
α (t, t ′)

〉
+ 1

ih̄

∫ t

t0

〈
ψ l ′
β (t1, t ′)

∣∣V (r)
∣∣ψ l

α (t1, t ′)
〉
dt1. (C15)

Further, we examine a scattering phenomenon when a
electron scatters from a known t-t ′-Floquet state |ψ l ′

β (t, t ′)〉

into a distinct t-t ′-Floquet state |� l
α (t, t ′)〉 with a constant

quansienergy ε as follows:

ψ l ′
β (k′, t, t ′) = e− i

h̄ [εβ (k′ )+l ′ h̄ω]tφβ (k′, t ′)eil ′ωt ′

scattering−−−−→ � l
α (k, t, t ′) = e− i

h̄ (ε+l h̄ω)t�α (k, t ′)eilωt ′
.

(C16)
We calculate the scattering amplitude for this scattering sce-
nario using the expression derived in Eq. (C15) as follows:

all ′
αβ (t, t ′) = δαβeiω(l−l ′ )(t ′−t )

+ 1

ih̄

∫ t

t0

〈
ψ l ′
β (t1, t ′)

∣∣V (r)
∣∣ψ l

α (t1, t ′)
〉
dt1.

(C17)

Next, we write down the derived scattering amplitude as a
Fourier series with second time argument (t ′)

all ′
αβ (t, t ′) =

∞∑
n=−∞

all ′
α,β (t, n)einωt ′

, (C18)

and we derive the these Fourier coefficients

all ′
αβ (t, n) = 1

T

∫ T

0
all ′
αβ (t, t ′)e−inωt ′

dt ′. (C19)

By subtituting the expression from Eq. (C17) into Eq. (C19),
we obtain

all ′
αβ (t, n) = δαβδn,l−l ′e

−inωt

+ 1

ih̄

∫ t

t0

e
i
h̄ [εβ−ε+(l−l ′ )h̄ω]t1

(C20)

×
∞∑

m=−∞

〈
um+l ′+n
β

∣∣V (r)
∣∣um+l

α

〉
dt1.

We set t0 to zero and for different quantum numbers α �= β,
we can simplify this into

all ′
αβ (t, n) = − i

h̄

∫ t

0
e

i
h̄ [εβ−ε+(l−l ′ )h̄ω]t1

×
∞∑

m=−∞

〈
um+l ′+n
β

∣∣V (r)
∣∣um+l

α

〉
dt1. (C21)

Then, we rewrite the integral with the substitution t1 = t1 −
t/2 as follows:

all ′
αβ (t, n) = − i

h̄
e− i

2h̄ [εβ−ε+(l−l ′ )h̄ω]t

×
∫ t/2

−t/2
e

i
h̄ [εβ−ε+(l−l ′ )h̄ω]t1

×
∞∑

m=−∞

〈
um+l ′+n
β

∣∣V (r)
∣∣um+l

α

〉
dt1. (C22)

In a long-time limit, the integral turns into a delta distribution

lim
t→∞

∫ t/2

−t/2
e

i
h̄ εt1 dt1 = 2π h̄δ(ε). (C23)
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Therefore, the expression in Eq. (C22) yields

all ′
αβ (t, n) = −2π iδ(εβ − ε + (l − l ′)h̄ω)

×
∞∑

m=−∞

〈
um+l ′+n
β

∣∣V (r)
∣∣um+l

α

〉
.

(C24)

Using the completeness property of free electron eigenstates
|k〉, we can obtain

all ′
αβ (t, n) = −2π i

∑
k

∑
k′

δ(εβ (k′) − ε + (l − l ′)h̄ω)

×
∞∑

m=−∞

〈
um+l ′+n
β

∣∣k′〉〈k′|V (r)|k〉〈k∣∣um+l
α

〉
,

(C25)

and for a given k and k′ values we can identify the scattering
amplitude as

all ′
αβ (k,k′, t, n) = −2π iVk,k′δ(εβ (k′) − ε + (l − l ′)h̄ω)

×
∞∑

m=−∞

[
um+l ′+n
β (k′)

]∗
um+l
α (k).

(C26)
Here, Vk,k′ = 〈k′|V (r)|k〉. Define a new function

cn
αβ (k,k′) =

∞∑
m=−∞

um
α (k)

[
um+n
β (k′)

]∗
, (C27)

and we restructure the expression in Eq. (C26) as

all ′
αβ (k,k′, t, n)

= −2π iVk,k′δ[εβ (k′) − ε + (l − l ′)h̄ω]cl−l ′+n
αβ (k,k′).

(C28)
This leads to the definition of the transition probability matrix[

All ′ j j′
αβ (k,k′)

]
n,n′ =

∑
γ

all ′
αγ (k,k′, t, n)

[
a j j′
βγ (k,k′, t, n′)

]∗
.

(C29)
Substitute the expression from Eq. (C28) back into the above
equation[

All ′ j j′
αβ (k,k′)

]
n,n′

= 4π2V 2
k,k′

∑
γ

cl−l ′+n
αγ (k,k′)

[
c j− j′+n′
βγ (k,k′)

]∗

× δ[εγ (k′) − ε+ (l − l ′)h̄ω]δ[εγ (k′) − ε+ ( j − j′)h̄ω].
(C30)

However, we choose the quasienergies ε and any other εi to
be in the central Floquet zone such that

|ε − εi| < h̄ω. (C31)

This simplifies our expression for transition probability matrix[
All ′ j j′
αβ (k,k′)

]
n,n′

= 4π2V 2
k,k′

∑
γ

cn
αγ (k,k′)

[
cn′
βγ (k,k′)

]∗
δ2[ε − εγ (k′)].

(C32)

Then rewrite the square of the delta distribution using the
following interpretation [79,80]:

δ2(ε) = δ(ε)δ(0) = δ(ε)

2π h̄
lim

t→∞

∫ t/2

−t/2
e

i
h̄ 0t ′

dt ′ = δ(ε)t

2π h̄
.

(C33)
Using this relation on Eq. (C32), we can perform the time
derivative of each matrix elements. Then, we define the tran-
sition amplitude matrix as

�nn′
αβ (k,k′) = d

[
All ′ j j′
αβ (k,k′)

]
nn′

dt
, (C34)

and we evaluate this as follows:

�nn′
αβ = 2π

h̄
V 2

k,k′
∑
γ

cn
αγ (k,k′)

[
cn′
βγ (k,k′)

]∗
δ[ε − εγ (k′)].

(C35)
To calculate the inverse scattering time matrix, first we take
the impurity average and then the sum over all momenta over
the transition probability matrix(

1

τ (ε,k)

)nn′

αβ

= 1

Vk′

∑
k′

〈
�nn′
αβ (k,k′)

〉
imp, (C36)

where Vk′ is the momentum space volume. In this analysis we
consider the Edwards model with the Gaussian white noise
approximation for the impurity potential. Then, under this
condition we can find that 〈V 2

k,k′ 〉imp = Vimp is a constant that
only depends on the material. Therefore, we can conclude our
final expression for the inverse scattering time matrix as(

1

τ (ε,k)

)nn′

αβ

= 2πVimp

h̄

1

Vk′

∑
k′

∑
γ

cn
αγ (k,k′)

× [
cn′
βγ (k,k′)

]∗
δ[ε − εγ (k′)]. (C37)

APPENDIX D: DRESSING FIELD EFFECTS ON SPP
WAVELENGTH AND DECAY LENGTHS

First, we take into account the dressing field effects on
the SPP wavelength. Then, we introduce the normalized SPP
wavelength as

� = λspp

λ
=

√
1 + ε′

2

ε′
2

. (D1)

Using the normalized energy band broadening or damping
effect in the dressed metal χ = ς/ς0 in Eq. (45), we rewrite
the normalized SPP wavelength

� =
√

2�2 + 2χ2ς2
0 −�2

p

�2 + χ2ς2
0 −�2

p

. (D2)

For better understanding, we can define the normalized
SPP wavelength difference factor

�̃ = �−�|χ=1

�|χ=1
, (D3)

where �|χ=1 represents the natural normalized wavelength of
SPP. The relationship between �̃ and χ is plotted in Fig. 10
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FIG. 10. The normalized SPP wavelength � against the nor-
malized energy band broadening χ for Ag, Au, Cu, and Al. The
empirical material parameters for the metals are obtained from
Refs. [90,96,97].

for Ag, Au, Cu, and Al. All four metals show a positive-valued
normalized difference factor against the normalized damping
factor. In other words, the wavelength of the dressed SPP
increases with reducing the total energy band broadening. It
can be observed from Fig. 10 that the behavior and shape of
Au curves look like those of Cu, whereas Ag-based curves
show a significant reluctance against the modification of the
normalized damping factor. Moreover, Al shows a bit higher
alteration compared to the other three metals. It is important

FIG. 11. The normalized SPP decay length � j in (a) air ( j = 1)
and (b) metal ( j = 2) against the normalized energy band broadening
χ for Ag, Au, Cu, and Al. The empirical material parameters for the
metals are obtained from Refs. [90,96,97].

to notice that these changes induced by the dressing field is of
the order of a tenth of an angstrom.

Next, we focus on the decay length of electric fields of
SPP. The electric field of the SPP decays when they move
away from the interface. Using the expression in Eq. (53), and
only considering the first-order terms of |ε′′

2 |/|ε′
2|, we derive

expressions for the normal component of the wave number in
the region of air

�z,1 = �

c

√
1

1 + ε′
2

[
1 − i

ε′′
2

2(1 + ε′
2)

]
, (D4)

and the mettalic region

�z,2 = �

c

√
ε′2

2

1 + ε′
2

[
1 + i

ε′′
2

2ε′
2

]
. (D5)

Then, we write the decay length for the two regions ( j = 1, 2)
as

δ j = 1

2�′′
z, j

, (D6)

and define the normalized decay length by

� j = δ j

λ
. (D7)

Finally, we can identify the normalized decay length the two
regions

� j = 1

2λIm(�z, j )
. (D8)

Further, we introduce the normalized decay length difference
factor as

�̃ j = � j −� j |χ=1

� j |χ=1
, (D9)

where � j |χ=1 represents the natural normalized decay length
of SPP. The variation of �̃ j in air and metal regions against
χ are shown in the subfigures of Fig. 11. Here, we can ob-
serve that the normalized decay length in the air �̃1 shows a
positive-valued difference factor while the normalized decay
length in the metal �̃2 shows a negative-valued difference
factor for all four metals. This implies that with lower values
of χ , the decay length of SPP in the air tends to increase
while it gets decreases inside the metal region. Additionally,
Au-based curves behave similarly to Cu, and Ag demonstrate
a very low deviation against the variation of χ compared
to other metals. The decay length of Al-based SPP shows
bit higher change compared to other metals in both regions.
However, these changes in decay lengths in both regions are
an order of an angstrom in the best cases.
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