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The band-inverted electron-hole bilayers, such as InAs/GaSb, are an interesting playground for the interplay
of quantum spin Hall effect and correlation effects because of the small density of electrons and holes and
the relatively small hybridization between the electron and hole bands. It has been proposed that Coulomb
interactions lead to a time-reversal symmetry broken phase when the electron and hole densities are tuned from
the trivial to the quantum spin Hall insulator regime. We show that the transport properties of the system in
the time-reversal symmetry broken phase are consistent with recent experimental observations in InAs/GaSb.
Moreover, we carry out a quantum transport study on a Corbino disk where the bulk and edge contributions
to the conductance can be separated. We show that the edge becomes smoothly conducting and the bulk is
always insulating when one tunes the system from the trivial to the quantum spin Hall insulator phase, providing
unambiguous transport signatures of the time-reversal symmetry broken phase.
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I. INTRODUCTION

The advent of topological materials [1,2] has brought
band-inverted semiconductors, with small electron and hole
densities, to the focus of attention in the search for quantum
spin Hall (QSH) insulators [3–8]. However, the electron-
electron interactions are important in these materials if the
hybridization of the electron and hole bands is small compared
to the exciton binding energy, as can be appreciated by noting
that the bilayer system of spatially separated electrons and
holes is the well-known paradigm system for the realization
of an exciton condensate state [9,10]. Indeed, it is now the-
oretically understood that interactions can lead to a plethora
of correlated phases in band-inverted semiconductors [11–17]
and recent experiments have shown evidence of excitonic
phenomenology in InAs/GaSb quantum wells [18–22] as well
as in WTe2 [23,24]. We concentrate on the correlated phases
appearing in the band-inverted electron-hole bilayers shown
in Fig. 1(a) [4]. In these systems, the electron and hole bands
are spatially separated and therefore only weakly hybridized.
Moreover, the electron and hole densities (and hence also
the band-inversion parameter EG) can be controlled in situ
with front and back gate voltages, Vf and Vb, allowing the
possibility to study the phase transition between trivial and
QSH insulator phases [4,22,25], as schematically illustrated
in Fig. 1(b). It has been theoretically predicted that, due to
the excitonic correlations caused by the Coulomb interactions,
a third phase with spontaneously broken time-reversal sym-
metry (TRS) will appear in the transition regime between the

two topologically distinct phases [11]. Within this phase, the
helical edge states, originating from the QSH insulator phase,
can exist but they are not protected against backscattering, and
it was theoretically demonstrated [11] that these unprotected
edge states can explain the temperature-independent mean-
free path observed in InAs/GaSb bilayers in the presence
of reasonably large applied currents [7,26,27]. However, an
unambiguous experimental demonstration of the existence of
the exotic insulating phase with spontaneously broken TRS
symmetry is still lacking in these systems.

Here we demonstrate that the transport properties of the
system in the TRS broken phase are also consistent with
more recent transport experiments in InAs/GaSb bilayers
with small applied currents [28], so the spontaneous TRS
symmetry breaking provides a comprehensive explanation
of the temperature, voltage, and length dependencies of the
observed conductance [7,26–28]. Finally, we propose an ex-
periment which can be used to unambiguously demonstrate
the existence of the spontaneous TRS breaking in this system,
namely, we show that the edge becomes smoothly conducting
and the bulk remains insulating when one tunes across the
TRS broken phase appearing between the trivial and QSH
insulator phases in the Corbino geometry, where the bulk
and edge contributions to the conductance can be separated
[29]. In the presence of TRS symmetry, the bulk transport gap
must close when the system is tuned between topologically
distinct phases, and hence the experimental demonstration of
a transition without a bulk transport gap closing constitutes a
proof of an existence of TRS broken insulating phase.
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FIG. 1. Schematic illustration of the setup. (a) The densities of
the electrons and holes can be controlled with gate voltages Vf and
Vb in a heterostructure supporting spatially separated electron and
hole bands. (b) This way, the gate voltages determine whether the
electron and hole bands are inverted at the � point (EG > 0) or not
(EG < 0), as well as whether the Fermi level (thick black line) is in
the conduction band, band gap, or valence band. The insulating phase
with EG > 0 (EG < 0) is the QSH (trivial) insulator phase.

II. SPONTANEOUS TRS BREAKING
IN ELECTRON-HOLE BILAYERS

In Ref. [11], it was shown using a full Hartree-Fock
calculation that the Coulomb interactions in the Bernevig-
Hughes-Zhang (BHZ) model [3] developed for InAs/GaSb
bilayers [4,30] lead to three different phases as a function
of the hybridization of the electron and hole bands A and
the band-inversion parameter EG, which is defined here so
for EG > 0 (EG < 0) the electron and hole bands are (not)
inverted at the � point, see Fig. 1(b). As intuitively expected,
for small (large) A and EG one realizes a trivial (QSH) in-
sulator phase. However, interestingly, it was found that at
intermediate values of A and EG there exists an insulating
phase with spontaneously broken TRS symmetry separating
the topologically distinct phases. In this section, we describe
a simplified minimal model that fully captures all the essential
results obtained using the full Hartree-Fock calculations in
Ref. [11].

The single particle BHZ Hamiltonian is

H0 =
(

h̄2k2

2m
− EG

)
τzσ0 + Akxτxσz − Akyτyσ0 + �zτyσy,

(1)

where τ ’s and σ ’s denote the Pauli matrices in the electron-
hole and spin basis, respectively. The electron band is made
out of s orbitals and the hole band is made out of only two
p orbitals because the electric confining potential and the
atomic spin-orbit coupling remove the degeneracies of the

p orbitals. The tunneling between the layers is dominantly
odd in momentum and opens a hybridization gap ∝ A. Here,
we have assumed the same effective mass m for electrons
and holes, and included only the momentum-independent
spin-orbit coupling term �z arising due to bulk inversion
asymmetry. We have ignored the asymmetry of the masses and
the momentum-dependent spin-orbit coupling terms because
they are not essential for understanding the phase diagram of
the InAs/GaSb bilayers [11].

The main effect of Coulomb interactions is the binding of
the electrons and holes into excitons with the characteristic
size d0 and binding energy E0 determined by the relation
E0 = h̄2/(md2

0 ) = e2/(4πεε0d0) [31]. This leads to an exci-
tonic mean field [11],

HEC = Re[�1]τyσy + Re[�2][kxτxσz − kyτyσ0]

+ Im[�1]τxσy − Im[�2][kxτyσz + kyτxσ0], (2)

where �1 and �2 are complex bosonic fields describing
s-wave and p-wave excitonic correlations, respectively. For
simplicity, we have expanded the fields �1 and �2 only to
the lowest order in momentum and neglected the full |k|
dependence, which is present in the numerical solution of the
Hartree-Fock equations [11]. It is easy to see by straightfor-
ward calculation that the terms on the first line of Eq. (2)
obey the TRS T = iτ0σyK (K is the complex conjugation
operator) and the terms in the second line break it. Therefore,
the imaginary parts of the fields Im[�1], Im[�2] �= 0 result in
spontaneous TRS breaking.

We can solve the complex bosonic mean fields �1 and �2

by substituting the ansatz Eq. (2) to the Hartree-Fock mean
field equations. This way, we arrive at the following mean field
equations (see Appendix A for more details):

�1 = gsd2
0

(2π )2

∫
d2k [〈c†

k↓2ck↑1〉 − 〈c†
k↑2ck↓1〉] (3)

and

�2 = gpd4
0

(2π )2

∫
d2k[−〈c†

k↑2ck↑1〉(kx − iky)

+ 〈c†
k↓2ck↓1〉(kx + iky)], (4)

where gs (gp) is the effective interaction strength for s-wave
(p-wave) pairing and c1σk (c2σk) is the electron annihilation
operator with spin σ and momentum k in electron (hole) layer.
In our numerical calculations, the integration is performed
over the range |k| � 2.26/d0, but the exact values of the
integration limits are not important. The effective interaction
strengths gs and gp can be considered as fitting parameters,
whose values should be fixed so one approximately repro-
duces the results obtained from Hartree-Fock calculations
[11].

The values of the model parameters for InAs/GaSb can be
estimated by combining theoretical calculations [4,10,11,30]
and the experimentally observed energy gaps [7,18]. This way,
we arrive at parameter values that are used in our calculations:
E0/kB = 200 K, d0 = 10 nm, A/(E0d0) = 0.06, �z/E0 =
0.02, gs/E0 = 1.0, and gp/E0 = 0.2. The band-inversion pa-
rameter EG is a gate-tunable parameter (see Fig. 1), which is
varied in our calculations to tune the system from a trivial
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insulator to QSH insulator phase. As shown in Fig. 2, our
simplified mean field approach, defined by Eqs. (1)–(4), repro-
duces the results obtained from full Hartree-Fock calculations
[11]. For small (large) values of EG, the system is in a trivial
(QSH) insulator phase and, importantly, these two phases are
separated from each other by an insulating phase with spon-
taneously broken TRS, where Im[�1], Im[�2] �= 0. The bulk
gap �bulk remains open for all values of EG because the in-
termediate TRS broken phase enables the connection of the
topologically distinct phases without bulk gap closing. The
edge gap �edge decreases monotonously when one starts from
the trivial phase and tunes the system across the TRS broken
phase to the QSH phase, where the gapless edge excitations
are protected by the topology. Here, �bulk and �edge have
been computed from the spectra of an infinite system and
a wide ribbon with open boundary conditions, respectively.
The width of the ribbon W = 500d0 is sufficiently large so
the finite size effects are negligible. The formation of the
edge gap �edge due to the breaking of the TRS occurs in two
different ways. The excitonic mean field Im[�1] couples the
spin-up and spin-down edge modes directly, whereas Im[�2]
contributes to the gap via a higher order process where it is
combined with a spin-orbit coupling term �z and excitonic
mean field Re[�1].

The appearance of spontaneous TRS breaking can be un-
derstood with the help of topological considerations. The
topological invariant distinguishing the QSH phase from the
trivial insulator can change only if (i) the bulk energy gap
closes or (ii) TRS is broken in a regime between the topologi-
cally distinct phases. The case (i) would be the only possibility
if the local order were fixed. However, in an interacting system
the order parameter corresponds to a minimum of the free
energy, and it is energetically favorable to keep the system
gapped. Due to this reason, there is a general tendency for the
appearance of a TRS broken phase in the transition regime
between QSH and trivial insulator phases.

III. LENGTH, TEMPERATURE AND VOLTAGE
DEPENDENCE OF THE CONDUCTANCE

The identification of the edge states in InAs/GaSb bilayers
was initially problematic due to finite bulk density of states
in the minigap [6]. The main breakthrough in eliminating the
bulk conduction came from insertion of Si to the interface
between the InAs and GaSb layers during the growth pro-
cess [7]. After achieving a truly insulating bulk this way, Du
et al. [7] managed to demonstrate in mesoscopic samples wide
conductance plateaus quantized to the values expected for
nonlocal helical edge transport (variations less than 1%). The
accurate conductance quantization was reported for several
devices of various lengths and three different geometries in
Ref. [7]. Moreover, by imaging the distribution of the current
flow inside the sample it has been confirmed that the current
flows along the edge in agreement with helical edge con-
duction [27]. More careful measurements of temperature and
voltage dependencies are also consistent with single-mode
edge conduction [28]. In a different type of sample, where Si
was not inserted and the observed thermal activation gap for
the bulk transport is an order of magnitude smaller, multimode
edge conduction has been reported by another group [33]. The

Δbulk Δedge

Δbulk Δedge

Δedge=0Δbulk
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 broken
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FIG. 2. (a) Phase diagram as a function of EG. The trivial and
QSH phases obey the TRS. In the TRS broken phase, the s- and
p-wave excitonic mean fields obey Im[�1], Im[�2] �= 0. The bulk
gap �bulk remains open for all values of EG and the edge gap �edge

decreases from the bulk gap value to zero, when one tunes EG across
the TRS broken phase toward the QSH phase. The model parameters
are described in the text. Energy bands in (b) trivial phase with
EG = 0.3E0, (c) TRS broken phase with EG = 0.86E0, and (d) QSH
phase with EG = 1.12E0. The eigenenergies are obtained by diago-
nalizing the tight-binding Hamiltonian which is generated from the
continuum Hamiltonian, defined by Eqs. (1)–(4), using the KWANT

software package [32].
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explanation of the remarkably different transport properties
observed in the presence and in absence of Si doping remains
an open theoretical problem, but one possible explanation is
that there exists additional unprotected edge modes [34] in the
absence of Si doping, which are then shifted out of the energy
gap in the presence of the Si doping. Because these observa-
tions in the two different types of samples are so different that
they cannot be explained with the same model Hamiltonian,
we concentrate here on the transport experiments in Si-doped
samples with a large activation gap [7,28]. We show that
these experiments are consistent with the transport properties
theoretically obtained in the TRS broken phase.

In long samples, the conductance is not observed to be
quantized [7], indicating that backscattering processes occur
between the counterpropagating edge channels. It was found
that in the limit eV � kBT , the resistance is independent on
temperature between 20 mK–4.2 K and it increases linearly
with the edge length L. These observations are not surprising
once the elastic backscattering processes are allowed and large
voltage is applied, because under these conditions the inelastic
scattering rate is expected to be approximately equal to the
elastic one [35] and therefore the localization effects can be
neglected and the resistance is expected to be temperature
independent. In the QSH phase, the elastic backscattering
is forbidden in the presence of TRS due to the topological
protection, so these observations are not consistent with the
system being in the QSH phase without additional assump-
tions about the existence of charge puddles that may lead to
enhanced backscattering rate [36]. On the other hand, the TRS
broken phase supports edge states but the elastic backscatter-
ing is now allowed, so the experimental observations are fully
consistent with the system being in the TRS broken phase.
Thus, the TRS broken phase provides an intrinsic explanation
of these experiments, remaining applicable even if we assume
that the samples are of high quality so no charge puddles are
present in the system.

In short mesoscopic samples with small applied voltage
and temperature, the voltage and temperature dependencies of
the conductance are more complicated and we need to use a
quantum transport approach to describe them. The disorder-
averaged differential conductance Gd = dI/dV is obtained
from

Gd (EF + eV, T ) =
∫ +∞

−∞
dE

2G0 exp[−L/�(E )]

4kBT cosh2 E−EF −eV
2kBT

, (5)

where G0 = e2/h, EF is the Fermi energy, V is voltage, T
is temperature of the reservoirs, L is the length of the sam-
ple, and �(E ) is the energy-dependent elastic mean-free path,
which for E � �edge is given by [11]

�(E ) = 4ah̄2v2E2

ξV 2
dis�

2
edge

. (6)

Here, E is the energy relative to the energy of the crossing
of the edge states, v is the edge velocity, Vdis is the strength
of the disorder potential, ξ is the disorder correlation length,
and a ∼ 1 is a numerical factor. Although the exact expression
for �(E ) is model dependent, it must always satisfy �(E ) →
∞ for E � �edge, so Gd ≈ 2G0 for kBT � �edge. Therefore,

FIG. 3. (a) Differential conductance Gd as a function of T for
(EF + eV )/EL =: 1.5, 1, 0.75, 0.5. (b) Gd as a function of V for
2kBT/EL =: 2.5, 2, 1.5, 1.1.

there exists robust asymptotic limits

Gd ≈
{

2G0[1 − L/�(EF + eV )], kBT  EF + eV,

2G0, kBT � �edge,
(7)

which guarantee that Gd undergoes a crossover from non-
quantized value to the quantized value Gd = 2G0, both with
increasing temperature and voltage.

To study the full temperature dependence, we introduce an
energy scale EL, which is defined in such a way that

�(EL ) ≡ L, i.e. EL =
√

LξV 2
dis�

2
edge

4ah̄2v2
. (8)

The differential conductance Gd , which depends on two pa-
rameters (EF + eV )/EL and 2kBT/EL, is shown in Fig. 3.
In this analysis, we have neglected the effects of electron-
electron interactions beyond the mean-field theory and the
energy and temperature dependence of the excitonic mean
fields. Nevertheless, our results for the Gd crossovers from
a nonquantized to the quantized value Gd = 2G0 with in-
creasing voltage and temperature are in reasonable agreement
with the experimental observations [28]. We consider the
observations of these crossovers as very strong evidence of
single-mode edge transport.

In the experiment [28], the temperature dependence of the
conductance

G(EF ,V, T ) = 1

V

∫ V

0
dV Gd (EF + eV, T ) (9)
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FIG. 4. (a) Conductance G as a function of T for EF = 0
and eI/(G0EL ) =: 2, 1.5, 1, 0.5. (b) Same for EF /EL = 0.7 and
eI/(G0EL ) =: 0.4, 0.2, 0.1, 0.02.

was reported also in a current I biased situation. The theoret-
ical predictions for this situation, obtained using Eqs. (5), (6),
(9), and I = GV , are shown in Fig. 4. In this case, the shapes
of the curves in the crossover regime depend on the Fermi
energy EF and they resemble the experimental observations
[28] more in the case of reasonably large values of EF . In
a more detailed microscopic description, the crossing of the
edge states may be buried within the bulk bands [37,38] so
reasonably large EF compared the energy of the crossing
could naturally be realized in the experiments.

The qualitative features observed in the transport experi-
ments discussed above have been previously explained using
various different mechanisms. The advantage of our approach
is that a single mechanism provides a unified and comprehen-
sive explanation for all these observations and this mechanism
is also consistent with the other evidence of excitonic phe-
nomenology in InAs/GaSb quantum wells [18–22]. We point
out that the experimentally observed crossovers as a function
of voltage and current already show clear saturation toward
the quantized value [28], but the observation of an equally
clear signature as a function of temperature may require op-
timization of the sample size because the saturation should
occur at sufficiently low temperature so thermally activated
bulk transport does not contribute significantly to the conduc-
tance. The quantitative comparison to the experiments goes
beyond the scope of this paper because, in the crossover
regime, the conductance depends on the Luttinger parameter

describing the interactions at the edge and the temperature
and energy dependencies of the excitonic mean fields. We
expect that once these effects are taken into account, our
theory provides a reasonably good quantitative description of
all the transport regimes as a function of temperature, voltage,
current, and sample size.

IV. DECOUPLING OF BULK AND EDGE TRANSPORT
IN CORBINO GEOMETRY

We have shown that the transport experiments performed
so far with InAs/GaSb devices are consistent with the system
being in the TRS broken phase. However, it is difficult to rule
out other theoretical explanations [36,39–43] based on these
experimental observations. In this section, we propose a trans-
port experiment, which could be used to prove the existence
of the exotic TRS broken phase based on robust topological
arguments. This kind of experiment would also directly probe
the main difference between the transport theories because our
theory is so far the only proposal where the backscattering
originates from the spontaneous TRS breaking in the bulk.

For this purpose, we consider a Corbino device where
the differential conductances corresponding to the bulk Gbulk

and edge Gedge transport can be decoupled as illustrated in
Fig. 5. The dimensions of the Corbino disk Rin ≈ 1 µm and
Rout = 2 µm are chosen so the transport is (approximately)
ballistic and the decay lengths of the evanescent bulk modes
in the middle of the bulk gap are much shorter than the
transport paths. This guarantees that Gbulk ≈ 0 for the applied
voltage satisfying |eVdc| < �bulk/2. Importantly, this allows
us to demonstrate that the transport gap does not close when
the system is tuned from trivial to the QSH insulator phase
by varying EG [see Fig. 5(b)]. On the other hand, the edge
conductance changes smoothly from Gedge = 0 (trivial phase)
to Gedge = 2G0 (QSH phase) upon increasing EG, demon-
strating the closing of the edge gap �edge at the transition
to the QSH insulator phase [see Fig. 5(c)]. Importantly, the
bulk and edge conductances can be elegantly measured in the
same device when the system is tuned in situ from the trivial
to the QSH insulator phase using the gate voltages. Such
kind of experimental demonstration of a topological transition
without a bulk transport gap closing would constitute proof of
the existence of TRS broken insulating phase.

In Appendices B and C, we consider the effects of mass
asymmetry and disorder on the bulk and edge conductances
in the Corbino device. We find that although the high-energy
bulk transport is significantly affected by these effects, all
the important qualitative features in the low-energy transport
are robust also in the presence of large mass asymmetry and
strong disorder.

V. CONCLUSIONS AND DISCUSSION

We have discussed the possibility of unconventional topo-
logical phase transition between trivial and QSH insulator
phases in band-inverted electron-hole bilayers. The hallmark
of this transition is the existence of an intermediate insulating
phase with spontaneously broken TRS. We have demon-
strated that the transport properties of the system in the
TRS broken phase are consistent with the observed transport
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FIG. 5. (a) Schematic illustration of a Corbino device and the
transport paths corresponding to the bulk and edge differential con-
ductances Gbulk and Gedge. The dimensions of the Corbino disk Rin ≈
1 µm and Rout = 2 µm are chosen so the transport is (approximately)
ballistic and the decay lengths of the evanescent bulk modes in the
middle of the bulk gap are much shorter than the transport paths.
(b), (c) Gbulk and Gedge as a function of EG and applied voltage
Vdc. The inset in (c) shows Gedge as a function of EG (green line)
for eVdc = 0.012E0. The red dashed line is a guide to the eye. The
conductances have been calculated with the help of the tight-binding
Hamiltonian which is generated from the continuum Hamiltonian,
defined by Eqs. (1)–(4), using the KWANT software package [32].

characteristics of InAs/GaSb devices, and we have shown
that the measurement of the bulk and edge conductances in
a Corbino device can provide unambiguous transport signa-
tures of a topological transition without a bulk transport gap
closing, proving the existence of the TRS broken phase. In this
paper, we have demonstrated that because of the TRS broken
phase the edge becomes smoothly conducting when one tunes
the system from the trivial to the QSH insulator phase, and

we expect similar smooth transitions also in other observables
related to the topological invariant. For example, the spin Hall
conductivity is expected to change smoothly in the case of
unconventional transition via the TRS broken phase although
it changes abruptly in the case of a conventional transition
with a bulk gap closing. We expect that the spontaneous TRS
breaking would also show up in the spectrum of the collective
modes. In this work we have assumed that the disorder is not
so strong that it would influence the excitonic mean fields, but
we think that the investigation of the effect of strong disorder
on the appearance of the spontaneous TRS breaking would be
an important direction for future research.

Although we have focused on InAs/GaSb bilayers, we
point out that band-inverted electron-hole systems can be re-
alized in many semiconducting bilayers by creating a strong
electric field at the barrier between the layers [44–48]. In prin-
ciple, all these systems are potential candidates for supporting
the interplay of excitonic correlations and the QSH effect, but
for most of the semiconductors the barrier thickness may have
to be so large that the hybridization gap between the electron
and hole bands becomes too small to realize a sufficiently
large topological gap in the QSH insulator phase. Our theory
may also be applicable to HgTe bilayers [12].

Finally, we point out that if an insulating barrier is inserted
between the electron and hole layers to suppress the tunneling
between the layers, the excitonic correlations can be probed
also with the help of a Josephson-like tunneling anomaly
and counterflow supercurrents as demonstrated in quantum
Hall exciton condensates [49–54] and more recently in double
bilayer graphene systems where the exciton condensate is
realized in the absence of magnetic field [55–57]. The tun-
neling barrier also allows us to study the physics discussed
in this paper in more detail because it affects the competition
between the s-wave and p-wave excitonic mean fields and the
appearance of the TRS broken phase [11].

In a separate work [58], we show that in the presence
of induced superconductivity the spontaneous TRS breaking
allows us to realize Majorana zero modes in the absence of
magnetic field.
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APPENDIX A: MINIMAL MODEL AND MEAN-FIELD
EQUATIONS FOR EXCITONIC CORRELATIONS

Based on the numerical solution of the Hartree-Fock mean
field theory [11], we know that the main effect of intraband
interactions (in the relevant part of the parameter space) is to
renormalize the band structure. Therefore, we consider only

235420-6



INTERPLAY OF QUANTUM SPIN HALL EFFECT AND … PHYSICAL REVIEW B 106, 235420 (2022)

the interband interactions

ĤI = −
∑
s,s′

∑
k,k′

Vk,k′c†
ks1cks′2c†

k′s′2ck′s1, (A1)

where Vk,k′ describes the Coulomb interactions between the
layers. On a mean-field level, the Hamiltonian is

Ĥmf = Ĥ0 −
∑
k,s,s′

[�ss′ (k)c†
ks1cks′2 + H.c.], (A2)

where

�s,s′ (k) =
∑

k′
Vk,k′ fs,s′ (k′), (A3)

fs,s′ (k) ≡ 〈c†
ks′2cks1〉 =

∑
m

nF (Emk )[UkQss′U †
k ]mm, (A4)

Q↑↑ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎠, Q↑↓ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

⎞
⎟⎟⎠,

Q↓↑ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠, Q↓↓ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠,

(A5)

nF (E ) = (eE/(kBT ) + 1)
−1

is the Fermi function, T is the tem-
perature, and the transformation Uk diagonalizes

diag(E1k, E2k, E3k, E4k ) = UkHmf (k)U †
k , (A6)

the mean-field Hamiltonian:

Hmf (k) =

⎛
⎜⎜⎜⎝

h̄2k2

2m − EG 0 (A + �2)(kx + iky) −(�1 + �z )
0 h̄2k2

2m − EG (�1 + �z ) −(A + �2)(kx − iky)
(A + �2)∗(kx − iky) (�1 + �z )∗ EG − h̄2k2

2m 0
−(�1 + �z )∗ −(A + �2)∗(kx + iky) 0 EG − h̄2k2

2m

⎞
⎟⎟⎟⎠. (A7)

Here we have utilized the fact that the excitonic mean field can be approximated as

�mf = i�1σ2 − �2(kxσ3 + ikyσ0), (A8)

where �1 and �2 are complex bosonic fields describing s-wave and p-wave excitonic correlations, respectively.
By inverting the interaction matrix and substituting the ansatz Eq. (A8) to the mean-field equation, we obtain

d2
0

L2

∑
k

[ f↑,↓(k) − f↓,↑(k)] = 2
d2

0

L2

∑
k,k′

V −1
kk′ �1 = 1

gs
�1 (A9)

and

d2
0

L2

∑
k

[− f↑,↑(k)(kx − iky) + f↓,↓(k)(kx + iky)] = 2
d2

0

L2

∑
k,k′

V −1
k,k′�2(kxk′

x + kyk′
y) = 1

gpd2
0

�2, (A10)

where we have defined effective interaction strengths gs and gp for the s-wave and p-wave excitonic correlations as

g−1
s = 2

d2
0

L2

∑
k,k′

V −1
k,k′ , g−1

p = 2
d4

0

L2

∑
k,k′

V −1
k,k′ (kxk′

x + kyk′
y). (A11)

The length scale d0 is introduced to guarantee that the interaction strengths have a unit of energy, and it can in principle be chosen
arbitrarily. However, we know that in the case of Coulomb interaction the natural length d0 and energy E0 scales are determined
so the kinetic and interaction energies are equal:

E0 = h̄2

d2
0

1

m
= 1

4πεε0

e2

d0
. (A12)

This way, we obtain the mean field Eqs. (3) and (4) given in
the main text.

APPENDIX B: EFFECTS OF EFFECTIVE MASS
ASYMMETRY ON THE TRANSPORT CHARACTERISTICS

IN THE CORBINO DEVICES

In typical semiconductors, the effective masses of the elec-
trons me and holes mh are different. It was shown in Ref. [11]
that this does not influence the phase diagram of InAs/GaSb

bilayer qualitatively if one uses the first-principle estimate
for the effective mass asymmetry me/mh = 0.84 [30]. Here,
we study the effects of the effective mass asymmetry on the
results reported in the main text of this paper.

In the presence of the effective mass asymmetry, the ex-
citon binding energy and radius are determined from the
equation

E0 = h̄2

2meffd2
0

= 1

4πεε0

e2

d0
, (B1)
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where the reduced mass meff satisfies equation m−1
eff = m−1

e + m−1
h . Moreover, the mean-field Hamiltonian can be written as

Hmf (k) =

⎛
⎜⎜⎜⎜⎜⎝

h̄2k2

2me
− 2meff

me
EG 0 (A + �2)(kx + iky) −(�1 + �z )

0 h̄2k2

2me
− 2meff

me
EG (�1 + �z ) −(A + �2)(kx − iky)

(A + �2)∗(kx − iky) (�1 + �z )∗ 2meff
mh

EG − h̄2k2

2mh
0

−(�1 + �z )∗ −(A + �2)∗(kx + iky) 0 2meff
mh

EG − h̄2k2

2mh

⎞
⎟⎟⎟⎟⎟⎠. (B2)

Notice that if me = mh = m, we obtain meff = m/2, and there-
fore these equations reduce back to the equations considered
in the main text. Moreover, we have defined EG analogously
with the earlier analysis: tuning EG allows us to vary the
electron and hole densities so they remain equal to each other.

The transport characteristics in the Corbino geometry for
me/mh =: 0.84, 0.3 are shown in Fig. 6. By comparing Fig. 6
to Fig. 5, we conclude that the low-energy transport character-
istics are unaffected by the effective mass asymmetry, but the
asymmetry leads to visible changes in the bulk conductance at
high energies.

APPENDIX C: EFFECTS OF DISORDER ON THE
TRANSPORT CHARACTERISTICS IN THE CORBINO

DEVICES

In Ref. [11], it was shown that in the presence of spon-
taneous TRS breaking the nonmagnetic disorder can cause
backscattering. The more detailed length, temperature, and
voltage dependence of the conductance in the presence of the
disorder was discussed in Sec. III. In Sec. IV, we concentrated
on the transport characteristics in mesoscopic Corbino devices
where the mean-free path of the edge modes is longer than
the distance between the contacts but the decay length of

FIG. 6. Gbulk and Gedge for the Corbino geometry shown in Fig. 5
as a function of EG and Vdc calculated for different values of mass
asymmetry: (a), (b) me/mh = 0.84 and (c), (d) me/mh = 0.30. The
insets show Gedge as a function of EG for small eVdc (green line). We
have used eVdc = 0.013E0 in (b) and eVdc = 0.012E0 in (d).

the evanescent bulk modes in the middle of the gap is much
shorter than the width of the Corbino ring. In such kind of
situation, we expect that the disorder is unimportant for the
low-energy transport characteristics but it can influence the
conductance at energies above the bulk gap. In this Appendix,
we explicitly calculate the effects of a disorder potential on the
conductances in this geometry by modeling the disorder as
uncorrelated uniformly distributed on-site energies between
[−Vdis,Vdis]. We assume that the disorder is not so strong
that it would influence the excitonic mean fields. In partic-
ular, this assumption is justified in the range of the disorder
strengths where the effects of the disorder can be treated using
the self-consistent Born approximation [59,60], because in
this case the disorder just renormalizes the band structure
parameters so the phase diagram remains qualitatively the
same.

In Fig. 7, we show the edge and bulk conductance as a
function of EG and eVdc in the case of moderate Vdis = 0.1E0

and strong Vdis = 0.5E0 disorder strengths. The results show
that the main qualitative transport features, i.e., the bulk
gap remains open while the edge gap smoothly decreases
to zero in the TRS-broken phase, can be observed also in
the presence of strong disorder. The bulk conductance is

FIG. 7. Gbulk and Gedge for the Corbino geometry shown in Fig. 5
as a function of EG and Vdc calculated for different values of the
disorder strength: (a), (b) Vdis = 0.1E0 and (c), (d) Vdis = 0.5E0. The
insets show Gedge as a function of EG for eVdc = 0.012E0 (green
lines). The conductances have been calculated by taking the average
over 20 disorder realizations.
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significantly affected by the disorder in both cases. On the
other hand, in the case of moderate disorder strength the edge
conductance remains practically identical to the clean case,

whereas in the case of strong disorder the interval of EG where
the conductance increases from 0 to the quantized value is
extended.
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