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Nonlinear dynamics, avalanches, and noise for driven Wigner crystals
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We consider the driven dynamics of Wigner crystals interacting with random disorder. Using numerical
simulations, we find a rich variety of transport phenomena as a function of charge density, drive, and pinning
strength. For weak pinning, the system forms a defect-free crystal that depins elastically. When the pinning is
stronger, a pinned glass phase appears that depins into a filamentary flow state, transitions at higher drives into
a disordered flow phase, and finally forms a moving smectic. Within the filamentary flow phase, the conduction
curves can show switching dynamics as well as negative differential conductivity in which switching events
cause some flow channels to be blocked. The velocity noise in the filamentary flow regime exhibits narrow band
characteristics due to the one-dimensional nature of the motion, while the moving smectic has narrow band
velocity noise with a washboard frequency. In the disordered flow state, the noise power reaches a peak value
and the noise has a 1/ f character. Our transport results are consistent with recent experimental transport studies
in systems where Wigner crystal states are believed to be occurring. Below the conduction threshold, we find
that avalanches with a power-law size distribution appear when there are sudden local rearrangements of charges
from one pinned configuration to another.

DOI: 10.1103/PhysRevB.106.235417

I. INTRODUCTION

There is a broad class of particlelike systems that exhibit
transitions from pinned to sliding states as function of driv-
ing when the particles are coupled to a random substrate
[1]. Some examples include depinning of vortices in type-II
superconductors [1,2], colloidal particles driven over rough
landscapes [3,4], frictional systems [5], magnetic skyrmions
[6,7], and active matter [8,9]. In these systems, there is a
critical threshold force that must be applied in order for the
particles to remain in continuous motion. If the quenched dis-
order is weak, the depinning transition can be elastic, with all
of the particles maintaining the same neighbors. In contrast,
for strong quenched disorder, the depinning becomes plastic
and the system breaks up or phase separates into moving and
pinned regions [1]. Even when the quenched disorder is very
strong, at higher drives it is possible for a dynamic reordering
transition to occur into a moving anisotropic crystal [1,10] or
moving smectic state [10–12]. The shape of the velocity-force
curves near depinning varies depending on whether the depin-
ning is elastic or plastic or if thermal creep comes into play
[1]. In some cases, the depinning curves are smooth and have
the form V ∝ (FD − Fc)β [1,13,14], where V is the velocity,
FD is the driving force, and Fc is the depinning threshold. In a
two-dimensional (2D) system, the elastic depinning exponent
β = 2

3 , while for plastic depinning, 1.25 < β < 2.0. At higher
drives, one or more peaks can appear in the d〈V 〉/dFD curves,
serving as signatures of different dynamical transitions.

In the plastic flow regime, an open question is whether
there can be different types of coexisting flow states, such as
plastic flow that is fluctuating or plastic flow that forms spe-
cific stable structures. If so, this would imply that additional

transitions are possible between different types of plastic flow.
For example, one form of plastic flow could be dominated
by a finite number of filamentary flow channels. If the fil-
amentary structures change, the velocity-force curves would
not be smooth but would show switching behavior with a
series of jumps corresponding to the drives at which different
channels of motion open for flow [1,15,16]. Switching effects
and negative differential conductivity occur in systems such
as sliding charge density waves [17], superconducting vortices
in mesoscopic channels [16,18] or near the peak effect [19],
and electron liquid crystals [20,21]; however, it is not well
understood how these effects are connected to plastic flow,
which often produces nonlinear but smooth velocity-force
curves.

Depinning and different sliding phases can also be ex-
plored by measuring noise fluctuations, which can show
distinctive features such as broad band noise in strongly plas-
tic regimes [1,12,22] or narrow band noise [1,12,23–25] when
the system forms a moving crystal. Other studies have shown
that transitions from ordered to disordered states are associ-
ated with a shift from narrow to broad band noise signatures
[20,26–28].

Another example of systems that can exhibit a variety of
threshold and switching behaviors is Wigner crystals [29–42]
and electron liquid crystals [20,21,28,43–49]. Wigner crystals
can arise in a number of 2D systems, and the appearance
of a threshold for conduction has been interpreted as the
depinning of Wigner crystals. More recently, a study of the
sliding of Wigner crystals or electron solids for varied carrier
concentrations in Ref. [37] showed that the depinning thresh-
old decreases with increasing carrier density, and that there
can be a two-step depinning process followed by a cusp above
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which the current increases linearly with increasing drive. In
this same work, there was a peak in the noise power near
depinning as well as 1/ f noise characteristics.

Evidence for Wigner crystal formation has been found with
numerous resonance experiments [50–54], magnetoresistance
measurements [55–58], and commensurability oscillations for
composite fermions encircling charges in a Wigner crystal
[59]. Several experiments have shown finite depinning thresh-
olds accompanied by negative differential resistance in which
the conduction drops with increasing drive [60,61]. There has
also been work on 2D metal-insulator transitions suggesting
that the system could be forming a Wigner crystal [62–64]
or a mixed Wigner crystal and fluid state [65,66], and the
noise behavior is consistent with what is seen for models
of transitions from Wigner crystals to Wigner glasses in the
presence of quenched disorder [67].

More recently, evidence for Wigner crystals has been found
in monolayer semiconductors and dichalcogenide monolayers
[68], moiré heterostructures [69,70], and oxides [71], while
evidence for bilayer Wigner crystals appears in dichalco-
genide heterostructures [72]. There have also been several
predictions for Wigner crystal formation in the insulating
states of moiré systems [71,73]. New methods have recently
been developed for creating high-quality 2D election systems
that should allow for easier access to Wigner crystal states
[74]. A major question is what is the role of quenched disorder
in Wigner crystal phases and dynamics, and how it can be
determined if a system is in a Wigner crystal, Wigner glass, or
fluid state [75].

Given the recent evidence for Wigner crystal formation
and the ubiquity of disorder in most of these systems, it is
interesting to study in detail the different possible threshold
behaviors and charge flow patterns for a Wigner crystal cou-
pled to disorder to see if there are distinct phases, or whether
effects such as switching, negative differential conductivity,
and transitions among narrow band and broad band noise
characteristics can occur.

Here we examine the driven dynamics of a Wigner crystal
interacting with random quenched disorder using molecular
dynamics simulations. Previous work employing this ap-
proach focused on the depinning threshold and how it changes
as a transition occurs from an ordered crystal to a defected
solid as a function of increasing quenched disorder strength
[34,76]. Other work focused on the dynamic ordering tran-
sition from a plastically flowing crystal into a dynamically
ordered moving crystal or smectic state for increasing drive
[35], similar to the dynamic ordering found in driven su-
perconducting vortex lattices [10–12]. In additional studies,
the change in the noise fluctuations across a pinned Wigner
glass to fluid state transition was examined [67]. More re-
cently, molecular dynamics simulations were used to explore
the impact of the magnetic field on the sliding dynamics
of Wigner crystals, and it was shown that the system has a
velocity-dependent Hall angle due to a side jump effect of
the charges moving over the pinning sites [77], similar to the
velocity-dependent Hall angle observed in magnetic skyrmion
systems with pinning [6,7,78].

In this work we focus on the Wigner crystal dynamics
for both elastic and plastic depinning. When the quenched
disorder is strong, a disordered state appears that can depin

into a filamentary flow phase where the motion occurs in
quasi-one-dimensional (q1D) rivers or channels. The opening
of these channels leads to jumps in the conduction and, in
some cases, the motion decreases with increasing drive due to
the closing of a flow channel, leading to negative differential
conductivity. We find that the conduction threshold deceases
with increasing carrier density as a result of the appearance of
interstitially pinned charges that are immobilized only by the
repulsion from other charges and not directly by a pinning site.
This occurs once the charge density is high enough that the
strongest pinning sites are fully occupied by charges. When
a sudden drive is applied in the filamentary flow regime,
a strongly fluctuating transient state can appear before the
system settles into well-defined flowing filaments with a low-
frequency narrow band noise signal. At higher drives, the
filamentary flow is replaced by a strongly fluctuating state in
which the noise has a low-frequency 1/ f α character with an
exponent α = 0.7 that is close to the value found in recent ex-
periments [37]. At higher frequencies, the noise signature has
a 1/ f 2 form. The overall noise power at a specific frequency
shows a strong peak just above the conduction threshold,
similar to what is observed in recent experiments [37]. For
even higher drives, the noise power is reduced and narrow
band noise appears when the system enters a moving smectic
or moving crystal state. In the strong pinning regime there
can be a three-step depinning process in which filamentary
flow is followed by a nonlinear regime and then by a cusp
above which the velocity increases linearly with drive, similar
to transport curves obtained in recent experiments [37].

In the pinned state, as the drive is increased below the
threshold for plastic flow, there can be sudden bursts of motion
or avalanches in the form of q1D flowing channels of differ-
ent lengths. The sizes s of these avalanches are power-law
distributed according to P(s) ∝ s−1.7. In the elastic pinning
regime, the system forms a crystal and depins without the
generation of topological defects, and there is no switching
behavior or filamentary flow. In the plastic depinning regime,
the Wigner crystal exhibits a narrow band noise signal just
above the depinning threshold.

II. SIMULATION AND SYSTEM

We consider a 2D system of size L × L with periodic
boundary conditions in the x and y directions containing N
classical electrons or charges that couple to quenched disor-
der. The charge density is n = N/L2 and we set L = 36. After
obtaining an initial configuration via simulated annealing,
we increase the driving force from zero in small increments
applied over fixed windows of time in order to observe any
transient motion that occurs. The first drive that is strong
enough to produce continuous motion is defined to be the
conduction threshold.

The equation of motion for charge i in the Wigner crystal
is

αd vi =
N∑

j �=i

∇U (ri j ) + Fp + FD, (1)

where αd is the damping constant. The charge-charge interac-
tion potential U = e2/ri j , where ri j = |ri − r j | is the distance
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between electrons located at ri and r j , and e is the electronic
charge. The pinning force Fp is modeled as arising from
Np short-range parabolic traps of finite radius rp that exert
a maximum confining force of Fp on a charge, while the
driving force FD = FDx̂ models an externally applied electric
field. The pinning density np = Np/L2 is fixed to np = 0.25.
We define the filling fraction F = N/Np to be the ratio of
the number of charges to the number of pinning sites. Since
the charge-charge interactions are long range, we employ a
Lekner summation technique for computational efficiency as
used in previous studies of particles with Coulomb inter-
actions [35,67,77]. We also note that if the charges are in
a magnetic field, their motion is subjected to a Hall angle
produced by the Magnus force eB × vi. In general, this term
is small, and in previous work it was shown that the effect
of the Magnus force is particularly weak near the conduction
threshold [77]. Since we focus specifically on the conduction
threshold in this work, we neglect the Magnus force.

We consider a range of pinning forces, charge densities,
and drive values, and employ two types of driving protocols.
In the first, the drive is continuously increased by small in-
crements to mimic an experimental velocity-force curve in
which a current is swept from zero up to a final value. In the
second, we apply a constant drive and hold the drive fixed
for an extended period of time. The latter approach allows
us to obtain long time series for examining conduction noise.
For the continuous sweep protocol, we increase the external
drive in increments of �FD = 0.0001 and wait 18 400 simu-
lation time steps before applying the next increase. At each
drive increment we measure the average velocity per charge
in the driving direction 〈Vx〉 = N−1 ∑N

i vi · x̂. We also cal-
culate the average perpendicular velocity 〈Vy〉 = N−1 ∑N

i vi ·
ŷ, as well as the standard deviations of the velocities for
both directions, δVx =

√
[
∑N

i (vi · x̂)2 − 〈Vx〉2]/N and δVy =√
[
∑N

i (vi · ŷ)2 − 〈Vy〉2]/N . In certain regimes, we increase
the waiting time in order to obtain smoother curves for cal-
culating d〈Vx〉/dFD. This increase also allows us to clearly
delineate bursts or avalanches of motion.

III. SWITCHING AND CONDUCTION

In Fig. 1(a) we plot the velocity 〈Vx〉 versus the driving
force FD for a system with a pinning strength of Fp = 0.5 and
a filling fraction of F = 0.4 under a continuously increasing
drive. A clear conduction threshold appears near FD = 0.34.
In Fig. 1(b) we plot the corresponding standard deviations
of the velocities parallel, δVx, and perpendicular, δVy, to the
drive versus FD. These curves show more clearly that below
the conduction threshold, for 0.24 < FD < 0.34, there are a
series of jumps in the velocity fluctuations in both the x
and y directions, while at FD = 0.34 there is a large peak in
δVx at the transition to the plastic or continuously fluctuating
disordered flow phase. In general, δVy < δVx. For FD > 0.65,
there is an ordering into a moving smectic phase. The onset
of this transition extends down to FD > 0.4, where δVx begins
to drop as the flow gradually becomes less disordered and the
smectic state emerges.

In Figs. 2(a) and 2(b) we show a closeup of 〈Vx〉, δVx,
and δVy versus FD for the system from Fig. 1. There is a
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FIG. 1. (a) The velocity 〈Vx〉 in the driving direction vs the
driving force FD for a system with a filling factor of F = 0.4 and
a pinning force of Fp = 0.5. The onset of conduction occurs near
FD = 0.35. (b) The corresponding standard deviations of the veloc-
ity parallel, δVx (blue), and perpendicular, δVy (red), to the driving
direction vs FD for the same system, showing a pinned regime and a
filamentary flow regime for drives below the jump into the disordered
flow regime.

pinned regime for FD < 0.24 in which 〈Vx〉 = 0, followed
by what we call the filamentary flow phase for 0.24 < FD <

0.34. We note that even within the pinned phase, there are
still a number of isolated jumps in all three quantities that
correspond to avalanches involving the correlated motion of
multiple charges when the drive is increased. At FD = 0.25,
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FIG. 2. Blowups of (a) 〈Vx〉 vs FD and (b) δVx (blue) and δVy (red)
vs FD near the conduction threshold for the system in Fig. 1 with
F = 0.4 and Fp = 0.5. There are finite jumps both up and down in
all three quantities. There are also a number of isolated jumps within
the pinned phase that correspond to avalanche motion.
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FIG. 3. (a) 〈Vx〉 versus FD for the system from Fig. 1 with Fp =
0.5 at fillings of F = 1.4 (dark blue), 1.0, 0.8, 0.6, 0.4, 0.3, 0.2, and
0.1 (light magenta), from left to right. The dashed line indicates the
velocity response in a sample with no pinning. (b) The corresponding
δVx versus FD. The depinning threshold decreases with increasing
charge density, and the filamentary phase only occurs for F > 0.3.

there is a large jump in 〈Vx〉 followed by a region in which
〈Vx〉 increases linearly with increasing FD. This is followed
by a jump down in 〈Vx〉 and then by a smaller and a larger
jump up. Counterparts to these jumps also appear in δVx

and δVy. The upward jumps are associated with switching
events in which well-defined channels of motion appear, while
downward jumps occur when the channels close or change
shape and the flow is reduced. Once a channel has formed,
the velocity of the charges in that channel increases with
increasing FD until there is a sudden rearrangement of charges
somewhere in the system that creates a new channel or shuts
down one or more of the existing channels. The jump down
in 〈Vx〉 for increasing FD is indicative of negative differen-
tial conductivity. For FD � 0.34, the channels become more
chaotic and randomly change over time, causing the overall
flow to be more two dimensional in character.

In Fig. 3(a) we plot 〈Vx〉 versus FD for the system from
Fig. 1 with Fp = 0.5 at different filling factors of F = 1.4,
1.0, 0.8, 0.6, 0.4, 0.3, 0.2, and 0.1, while Fig. 3(b) shows the
corresponding δVx versus FD. As the filling factor, and thus
the charge density, increases, the depinning threshold shifts
to lower drives, in agreement with experimental observations
[37]. The dashed line in Fig. 3(a) indicates the velocity re-
sponse that would appear in a system with no pinning. The
jump in the velocity response at the transition to continuous
disordered flow is sharper for lower fillings. There is a peak
in δVx at the onset of the disordered flow regime, followed by
a decrease in δVx with increasing FD. The δVx curves indicate
that the filamentary flow highlighted in Fig. 2 only occurs for
F > 0.3.

In Fig. 4(a) we show a closeup of the 〈Vx〉 versus FD curve
for the system in Fig. 3 at F = 0.2, where a single depin-
ning transition occurs at FD = 0.44 from a pinned phase to
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FIG. 4. A blowup of the 〈Vx〉 vs FD curves for selected samples
from Fig. 3 with Fp = 0.5. (a) F = 0.2 where there is no filamentary
regime. (b) F = 0.6 showing a filamentary regime. (c) F = 0.8.
(d) F = 1.0. The letters a, b, c in (d) indicate the values of FD at
which the images in Figs. 5(a)–5(c) were obtained.

a disordered or plastic flow phase, and there is no filamentary
flow. Figure 4(b) shows the same system at F = 0.6, which
depins near FD = 0.19 into a filamentary flow phase and then
exhibits several upward and downward jumps in the velocity.
Immediately after most of these jumps, the velocity increases
linearly with FD and shows an oscillatory behavior that we
discuss in Sec. IV. Near FD = 0.25 there is a transition to the
plastic fluctuating flow phase. In Fig. 4(c), a sample with F =
0.8 has an extended filamentary regime, while in Fig. 4(d),
at F = 1.0, there is a filamentary regime showing numerous
switches corresponding to both positive and negative differ-
ential conductivity. As Fig. 4 illustrates, the filamentary flow
regime is robust over a range of fillings, and in general the
extent of the filamentary flow increases as F becomes larger.

To get a better picture of the flow in the different phases,
in Fig. 5 we show the charge trajectories for the drives labeled
with letters in Fig. 4(d). At FD = 0.137 in Fig. 5(a), there are
two q1D winding flow channels or filaments. As FD increases,
the same channels persist but the flow through each channel
becomes faster. At FD = 0.15, there is a sudden rearrangement
of the charges leading to a jump up in 〈Vx〉 since there are now
more channels flowing, as illustrated in Fig. 5(b). The chan-
nels of Fig. 5(b) slowly change over time, whereas the channel
structure in Fig. 5(a) is static. At FD = 0.152, there is a transi-
tion to the single stable channel state shown in Fig. 5(c), and
〈Vx〉 drops below the value it had in Figs. 5(a) and 5(b) even
though FD is higher. This channel structure remains stable
under increasing FD until the next switching event occurs.
In some switching events, there is a transition to fluctuating
channels, while in other events, a transient fluctuating state
settles into a stable filamentary flow state. The general features
found in Figs. 5(a)–5(c) also occur for the other jumps in 〈Vx〉
in the filamentary flow phase of Fig. 4(d). As FD is further
increased, the channel structure eventually breaks down and
is replaced with a disordered and continuously changing flow,
such as that shown in Fig. 5(d) at FD = 0.2. At even higher
drives, the disordered flow becomes more two dimensional in
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FIG. 5. Images of the charge locations (red circles) and trajecto-
ries (lines) for the system in Fig. 4(d) with Fp = 0.5 and F = 1.0.
The letters in Fig. 4(d) correspond to the values of FD at which the
images were obtained. (a) Stable filamentary channels at FD = 0.137.
(b) The filamentary regime just after a switching event at FD = 0.15
where the number of flow channels increases, 〈Vx〉 jumps upward,
and the channels gradually change over time. (c) The filamentary
regime at FD = 0.152 after a switch in which 〈Vx〉 drops and the flow
is confined to a single branched channel. (d) Fluctuating channels at
FD = 0.2.

character and consists of coexisting moving and temporarily
pinned charges, as illustrated in Fig. 6 at FD = 0.3. The short
time trajectories in Fig. 6(a) show that there is a coexistence of
moving and temporarily pinned charges, while the longer time

x(a)

y

x(b)

y

FIG. 6. Images of the charge locations (red circles) and trajecto-
ries (lines) for the system in Fig. 4(d) with Fp = 0.5 and F = 1.0
in the disordered regime at FD = 0.3. (a) A short time trajectory
image shows that the flow is 2D in character and that moving and
temporarily pinned charges coexist. (b) A longer time trajectory
image indicates that all of the charges participate in the motion over
time and the behavior is liquidlike.

trajectories of Fig. 6(b) indicate that there are no permanently
pinned regions and the overall flow is liquidlike in nature.

Flow through q1D channels has also been observed for
other systems of particles moving over quenched disorder [1];
however, in most of these systems there is not a clearly defined
filamentary flow phase. Instead, systems with shorter-range
interactions show a continuous crossover between filamentary
flow and a 2D disordered flow phase. Grønbech-Jensen et al.
[15] considered a 2D simulation of vortices in thin-film su-
perconductors and found a clear region of filamentary flow at
lower drives followed by disordered 2D flow at higher drives.
The interactions between vortices in thin-film superconduc-
tors obey a ln(r) potential or a 1/r force, in contrast to vortex
lines in bulk superconducting crystals, where the interaction is
a Bessel function that is similar to a screened Coulomb poten-
tial. Grønbech-Jensen et al. argued that due to the long-range
interactions in the thin-film system, the shear modulus C66 of
the vortex lattice is much lower than the compression modu-
lus, so the vortices can easily slide past each other, favoring
filamentary motion. The filamentary flow can also be viewed
as a consequence of the existence of interstitial vortices, which
occupy the spaces between pinning sites and are immobilized
only due to the repulsion of neighboring pinned vortices rather
than being trapped directly by a pinning site. If the inter-
action potential between vortices is very smooth, as is the
case for a ln(r) potential, the potential landscape experienced
by an interstitial vortex will be fairly flat. For shorter-range
interaction potentials, the landscape looks more like a series
of obstacles in which the vortices can become trapped. This
suggests that for a Wigner crystal with no screening, where
the charge-charge interactions are of long range, filamentary
flow phases should be a general feature. On the other hand,
if screening is occurring, the behavior will be closer to that
of bulk superconducting vortices or particles with short-range
interactions, and the filamentary flow phase will be lost.

At higher drives, the charges dynamically order into a
moving crystal or moving smectic state. In general, there are
still a small number of lattice defects present, so the system is
best described as a weak moving smectic. In Figs. 7(a)–7(c)
we show Voronoi constructions of the charge positions at
FD = 0.25, 0.45, and 0.8, respectively, where polygon col-
ors indicate the coordination number zi of each charge. The
system is strongly disordered at FD = 0.25 in Fig. 7(a) and
contains numerous topological defects, while at FD = 0.45 in
Fig. 7(b), the number of defects is reduced. In Fig. 7(c) at
FD = 0.8, the lattice is almost completely triangular and con-
tains only sixfold-coordinated charges. The charge trajectories
at FD = 0.8, shown in Fig. 7(d), follow straight q1D channels
that do not intersect. Dynamical reordering transitions for
driven Wigner crystals were studied previously in a system
with long-range pinning sites [35]. In this study, the pinning
sites are of short range, and the Wigner crystal is able to
organize into a state containing almost no topological defects.
In contrast, in Ref. [35], the long-range pinning interfered
with the dynamical reordering and the system only reached a
moving smectic state in which a finite number of topological
defects persist that are aligned so as to glide along the driving
direction.

From the features in the 〈Vx〉, δVx, and FD curves, along
with the images of the topological defects, we construct a
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FIG. 7. (a)–(c) Voronoi constructions of the charge locations (red
circles) in the system from Fig. 4(d) with Fp = 0.5 and F = 1.0.
Polygon colors indicate the coordination number of each electron:
4 (dark gray), 5 (blue), 6 (white), 7 (light red), 8 (dark red), 9
(light gray). (a) FD = 0.25. (b) FD = 0.45. (c) FD = 0.8. The system
becomes more ordered with increasing drive and forms a moving
smectic at the highest drive. (d) Image of the charge locations (red
circles) and trajectories (lines) for the sample in (c) with FD = 0.8,
showing straight noncrossing channels of flow.

dynamic phase diagram as a function of FD versus charge
density n for a system with fixed Fp = 0.5, as shown in Fig. 8.
Since the pinning density is always fixed at np = 0.25, we
have F = N/Np = n/np = 4n and n = F/4. For n < 0.1, the
system depins directly into a disordered moving liquid phase
and the filamentary flow state is absent, as shown in Fig. 4(a).
At high drives, a moving smectic forms if the charge density
is high enough, and in some cases the system is small enough
for this smectic to completely order into a moving crystal
without defects. When the charge density is very low, some
randomly oriented topological defects remain present even at
high drives and the system forms a partially ordered crystal
or semicrystal. For n > 0.075, a window of filamentary flow
phase appears above depinning, as illustrated in Figs. 5(a)–
5(c), followed by a transition into the fluctuating disordered
moving liquid. The filamentary flow phase is lost at low
charge densities because all of the charges are able to occupy
strong pinning sites and there are no interstitial charges. The
depinning threshold marking the end of the pinned phase
drops to lower FD with increasing n, in agreement with recent
experiments [37].

IV. NOISE MEASURES

We next consider the system from Fig. 4(d) with Fp = 0.5
and F = 1.0 but for a pulsed drive, where we apply a fixed
FD and wait for the system to settle into a steady state before
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FIG. 8. Dynamic phase diagram as a function of driving force
FD vs charge density n for the system in Figs. 4 and 5 with Fp = 0.5.
Since the pinning density is always fixed to np = 0.25, the filling
factor F = N/Np = n/np = 4n. The phases are as follows: P, pinned
(yellow); FF, filamentary flow (orange); ML, disordered moving
liquid (pink); SC, moving semicrystallized state (blue); MS, moving
smectic (green).

measuring the noise fluctuations and obtaining the long time
average velocity. In Fig. 9 we plot Vx versus time in sim-
ulation time steps for pulse drive amplitudes of FD = 0.04,
0.075, 0.1375, 0.175, and 0.2. For FD = 0.04, there is some
initial transient motion, but at longer times all of the charges
become pinned and the velocity drops to zero. At FD = 0.075
and 0.1375, after an initial decreasing transient, the velocities
settle into a periodic pattern reflecting the formation of a
filamentary flow state containing one or more flow channels
of repetitive motion. Unlike the simulations of Sec. III in
which the drive is continuously increasing, for the pulsed
drive the filamentary channels adopt a stable configuration
and there is no switching. In general, for the filamentary flow
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FIG. 9. Time series of the velocity Vx after application of a pulse
drive for a system with F = 1.0 and Fp = 0.5. At FD = 0.04 (dark
blue), the system reaches a pinned state. For FD = 0.075 (light
blue) and FD = 0.1375 (green), the system settles into filamentary
flow with a periodic velocity signal. For FD = 0.175 (orange) and
FD = 0.2 (red), the system settles into a fluctuating state.
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FIG. 10. (a) The average velocity 〈Vx〉 (blue) and its derivative
d〈Vx〉/dFD (red) vs FD for the system in Fig. 9 with F = 1.0,
Fp = 0.5, and pulse driving, showing a two-step depinning pro-
cess. (b) The corresponding average fraction of sixfold-coordinated
charges P6 vs FD. The system is the most disordered in the fluc-
tuating phase and undergoes a dynamical reordering transition at
higher FD.

the system settles into a state with a periodic velocity signal.
The periodicity of the signal can be fairly complicated if there
are multiple filaments of flow present that generate multiple
frequencies simultaneously. For FD = 0.175 and 0.2, there is
still an initial transient decay of the velocity, but the system
remains in a fluctuating state at long times.

By performing a series of pulse measurements, we obtain
the average velocity 〈Vx〉 and its derivative d〈Vx〉/dFD as a
function of FD, as plotted in Fig. 10(a) for the system in Fig. 9.
The initial depinning into a filamentary flow state occurs near
FD = 0.0625, and the filamentary flow, which extends from
0.0625 � FD < 0.175, produces a series of small jumps in
d〈Vx〉/dFD. For 0.175 � FD < 0.5, the system enters a disor-
dered strongly fluctuating flow phase associated with a large
peak in d〈Vx〉/dFD, while for FD � 0.5, the velocity increases
linearly with FD and d〈Vx〉/dFD approaches one. The behavior
of the velocity-force curve is similar to recent experimental
observations of nonlinear velocity-force signatures showing
a two-step depinning process into a nonlinear regime at the
onset of conduction followed by a transition to a linear regime
at higher drives [37]. We show in Sec. V that as the strength
Fp of the disorder increases, the multiple-step depinning tran-
sitions become even more prominent. Figure 10(b) illustrates
the fraction of the average number of sixfold-coordinated
particles P6 = N−1 ∑N

i δ(zi − 6) versus FD. A local dip in P6

occurs at the transition from filamentary flow to fluctuating
flow, and there is a large increase in P6 near FD = 0.5 when
the system transitions from the plastic disordered flow state to
a moving smectic.

The different phases produce signatures in the velocity
noise power spectra S( f ), obtained from the time series of
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FIG. 11. Velocity noise power spectra S( f ) for the pulse drive
system from Figs. 9 and 10 with F = 1.0 and Fp = 0.5. (a) At FD =
0.075, for the filamentary flow shown in Fig. 9, there is a narrow
band noise signal. (b) At FD = 0.1375, a filamentary flow phase
at a higher drive also shows narrow band noise. (c) At FD = 0.25,
in the fluctuating regime, for low frequencies we find S( f ) ∝ 1/ f α

with α = 0.75. (d) At FD = 0.35, the low-frequency noise power is
reduced.

the conduction fluctuations shown in Fig. 9 according to

S( f ) = 1

2π

∣∣∣∣
∫

V (t )e(−i2π f t )dt

∣∣∣∣
2

. (2)

In computing the power spectrum, we discard the transient
portion of the velocity time series and only consider the time
period during which the system has reached a steady state.
In Fig. 11(a) we plot S( f ) for the filamentary flow phase at
FD = 0.075 from Fig. 9. Here we find a narrow band signal
with multiple peaks produced by the periodicity of the flow
of charges through the q1D channels. At FD = 0.1375 in
Fig. 11(b), a filamentary flow state at higher drives has narrow
band peaks that are shifted to higher frequency since the
charges are moving more rapidly through the flow channels.
The power spectrum becomes more complicated as additional
channels of flow open, giving multiple different frequencies
of flow. In Fig. 11(c) we plot S( f ) in the fluctuating liquid
regime at FD = 0.25. The peaks associated with the periodic
filamentary flow channels are lost and the noise power at low
frequencies assumes a 1/ f α form, where the solid line is a fit
with α = 0.75. This is close to the exponent values obtained in
recent noise measures on sliding Wigner crystals, where α =
0.6 [37]. As the drive increases further, the low-frequency
noise power is reduced and the spectrum at low frequencies
becomes white, as shown in Fig. 11(d) for FD = 0.35. When
the moving smectic state forms for even higher drives, new
narrow band noise peaks emerge that are associated with the
washboard frequency. Washboard noise signals for moving
crystals or moving smectics at higher drives have been studied
in both simulation and experiment for sliding charge den-
sity waves [17], superconducting vortices [16,24,79,80], and
magnetic skyrmions [26,27,81], and have been predicted to
occur for Wigner crystals [33]. Simulations of Wigner crystals
moving over long-range disorder also produced a washboard
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FIG. 12. S( f ) for the system from Figs. 9 and 10 with F = 1.0
and Fp = 0.5. (a) FD = 0.55 in the moving smectic phase, showing a
narrow band signal at higher frequencies. (b) FD = 1.0, where there
is a pronounced low-frequency washboard signal.

signal [35]; however, in the previous work the narrow band
noise in the filamentary flow regime was not studied [35].

In Fig. 12(a) we plot S( f ) for the system in Fig. 10 at
FD = 0.55. A narrow band noise signal has emerged since the
system is transitioning into a moving smectic with a small
number of topological defects. At FD = 1.0 in Fig. 12(b),
the ordering of the charge lattice has increased and there is
a stronger narrow band noise signal along with a washboard
signal at lower frequencies.

In Fig. 13 we plot S0, the noise power at a low fixed
frequency of f0 = 20, versus FD for the F = 1.0 and Fp =
0.5 system. The noise power is low in the filamentary flow
phase, high in the fluctuating moving liquid, and low in the
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FIG. 13. The noise power S0 at a low fixed frequency of f0 = 20
vs FD for the system from Figs. 9 and 10 with F = 1.0 and Fp = 0.5.
S0 is zero in the pinned (P) phase, low in the filamentary flow (FF)
phase, has a peak in the disordered moving liquid (ML) phase, and
drops again in the ordered moving smectic (MS) phase.

dynamically reordered moving smectic phase. There is a peak
in S0 near FD = 0.25. This falls within the range 0.175 �
FD < 0.3 in which the noise develops 1/ f α characteristics, as
shown in Fig. 11(c). The noise is white at higher drives of
0.3 � FD < 0.5, similar to what is shown in Fig. 11(d). For
0.5 < FD < 0.8, a narrow band noise signal similar to that in
Fig. 12(a) appears, while for FD � 0.8, even fewer topological
defects are present in the lattice and the noise peaks sharpen,
as shown in Fig. 12(b). The peak in the noise power illustrated
in Fig. 13 is similar to low-temperature experimental results
[37] in which the noise power is small at low drives, reaches a
strong peak near depinning, and drops again at higher drives.

The appearance of low-frequency narrow band noise near
depinning and broad band noise at higher drives has also
been observed for Wigner crystals and electron liquid crystals
[20,28]. In the work of Sun et al. [28], transitions among
ordered and disordered phases occur as a function of drive,
and the ordered phases exhibit narrow band noise features.
This could indicate that there are regimes of stable filament
flow interspersed with fluctuating flow regimes, and that at
high drives the system dynamically reorders. In our case,
in the filamentary flow regime the system generally jumps
from one ordered state to another, but there are situations in
which the charges remain in a fluctuating state between the
stable filamentary regimes. This occurs more frequently for
continuous driving, as shown in Fig. 4(c). If temperature is
added, additional fluctuating flow phases might emerge. The
narrow band noise in the filamentary phase does not arise from
the presence of strong ordering, for the filamentary phase is
structurally disordered. Instead, since the q1D filaments are
stable, motion along the filaments repeats very reliably as
a function of time. One question is whether the fluctuating
regimes are transient, meaning that the system might order
after a sufficiently long time interval, or whether they are in
fact stable, meaning that it is only possible for the system to
reach an ordered state for higher drives. In systems where
charged stripes or bubbles can arise, such as in reentrant
quantum Hall systems, experimental measurements show that
there is narrow band noise [82]. In experiments on 2D elec-
tron systems, nonlinear current-voltage curves interpreted as
signatures of the depinning of electron nematics or smectics
are also associated with 1/ f noise [21].

V. VARIED DISORDER STRENGTH

We next consider the effects of changing the pinning
strength Fp. We first focus on a system with fixed F = 1.0
and measure the velocity-force curves and P6 versus FD. From
these data, we construct the dynamic phase diagram as a
function of FD versus Fp plotted in Fig. 14. For Fp � 0.075,
the ground state at FD = 0.0 is a disordered pinned glass
since the pinning is strong enough to induce the formation
of topological defects in the Wigner crystal. This pinned glass
depins into the filamentary flow phase, which exhibits narrow
band noise. At higher drives, there is a transition into the
fluctuating moving liquid phase with 1/ f noise, followed by
dynamical reordering into a moving smectic. The depinning
threshold for the pinned glass increases linearly with Fp, as in-
dicated by the dashed line showing a fit to Fc ∝ Fp, similar to
what has been observed in previous work on plastic depinning
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FIG. 14. Dynamic phase diagram as a function of FD vs pinning
strength Fp for a system with F = 1.0. At low Fp, there is a pinned
crystal (PC, light brown) that depins elastically into a moving crystal
(MC, light blue). For higher Fp, the system is initially in a pinned
glass state (PG, yellow) that depins plastically into the filamentary
flow regime (FF, orange). At higher drives, there is a transition to the
disordered moving liquid (ML, pink) state and a reordering into the
moving smectic (MS, green) state. Fits to the depinning curve are
shown as dashed lines: left, Fc ∝ F 2

p ; right, Fc ∝ Fp.

transitions [1]. The drives at which the system transitions from
the filamentary flow phase to the disordered moving liquid and
from the moving liquid to the moving smectic also increase
linearly with increasing Fp. For Fp < 0.075, the disorder is
weak enough that no topological defects form in the pinned
state, and a pinned crystal appears that depins elastically to
a moving crystal. In this regime, the filamentary flow and
disordered moving liquid phases are absent. In general, when
the pinning is strong, some topological defects form in the
moving state, and since these defects align so as to glide in
the driving direction, the system is best described as a moving
smectic. In contrast, when the disorder is weak, there are no
topological defects and the system is described as a mov-
ing crystal. The depinning threshold in the elastic depinning
regime obeys Fc ∝ F 2

p , as expected for collective or elastic
depinning [1].

In the elastic depinning regime, there is no filamentary flow
and the depinning occurs in a single step, giving transport and
noise signatures that are very distinct from those found for the
plastic depinning transition where filamentary flow occurs. In
Fig. 15 we plot the velocity time series Vx for the system in
Fig. 14 at Fp = 0.05 over a range of FD from FD = 0.0035
to 0.009 that spans the depinning threshold. For Fp < 0.044,
the flow is transient and the system settles into a pinned state.
For FD � 0.044, the motion persists and develops a complex
periodic signal. As FD increases, the magnitude of Vx and
the frequency of its oscillations both increase. This result
indicates that in the elastic depinning regime, a washboard
signal emerges above the depinning threshold.

Figure 16(a) shows 〈Vx〉 versus FD for the system in Fig. 15,
where the dashed line is the pin free response. The corre-
sponding d〈Vx〉/dFD versus FD in Fig. 16(b) has a single sharp
peak at depinning, in contrast to the double peak that appears
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FIG. 15. Time series of the velocity Vx in the elastic depinning
regime for the system in Fig. 14 with F = 1.0 at Fp = 0.05 and FD =
0.0035 (violet), 0.004 25 (dark blue), 0.004 35 (light blue), 0.0044
(teal), 0.006 (green), 0.007 (yellow), 0.008 (orange), and 0.009 (red).
For FD < 0.044 the system evolves to a pinned state. For FD � 0.044,
Vx develops a washboard or periodic noise signal.

in a two-step plastic depinning process. When the depinning is
elastic, both the filamentary flow phase and switching events
are absent. In Figs. 17(a)–17(c) we plot the Fourier transform
V̂ ( f ) of the velocity time series Vx for the system in Fig. 15 at
FD = 0.9, 0.7, and 0.044, respectively. The narrow band noise
peaks shift to higher frequencies as FD increases.

For larger Fp, the velocity-force curves exhibit stronger
cusps at the transitions among the different phases. Recent
experimental work identified a regime in which there is a
clear two-step depinning process, with an initial transition to
a nonlinear regime followed by a second transition to a phase
in which the velocity increases linearly with increasing drive
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FIG. 16. The average velocity 〈Vx〉 (solid line) vs FD for Fp =
0.05 in the elastic depinning regime of the system from Figs. 14 and
15 with F = 1.0. The dashed line is the pin free result. (b) The corre-
sponding d〈Vx〉/dFD versus FD has a single sharp peak at depinning.
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FIG. 17. The Fourier transform V̂ ( f ) of the velocity time series
Vx for the system in Fig. 15 with F = 1.0 and Fp = 0.05 at FD =
(a) 0.9, (b) 0.7, and (c) 0.044. The narrow band noise peaks shift to
higher frequencies with increasing FD.

[37]. In Fig. 18 we plot 〈Vx〉 versus FD for a system with Fp =
1.5 and F = 0.4. To obtain this curve, we increase the driv-
ing force in increments of �FD = 0.004 and spend 888 400
simulation time steps on each increment in order to obtain an
average velocity and produce a smoother velocity-force curve.
As Fig. 18 shows, there is an extended regime of filamentary
flow. The transition from the pinned state to the filamentary
flow state is labeled Fc1, the transition from filamentary flow
to the disordered fluctuating flow state is marked Fc2, and the
transition to the linear flow state is denoted Fc3. In the exper-
imental work of Ref. [37], only Fc2 and Fc3 were observed. It
may be possible that there is a filamentary flow phase that is
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FIG. 18. 〈Vx〉 vs FD for a system with Fp = 1.5 and F = 0.4.
The drive is increased in increments of �FD = 0.004 and we spend
888 400 simulation time steps at each increment to obtain the average
velocity value. Fc1 is the transition from pinned to filamentary flow,
Fc2 denotes the transition from filamentary to disordered fluctuating
flow, and Fc3 is the transition from disordered to linear flow.
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FIG. 19. 〈Vx〉 (dark blue), δVx (light blue), and δVy (red) vs FD

from the filamentary regime through the transition to the plastic flow
regime for the system in Fig. 18 with Fp = 1.5 and F = 0.4.

not resolvable experimentally due to the large fluctuations in
the data. In Fig. 19 we plot 〈Vx〉, δVx, and δVy versus FD from
the filamentary regime through the transition to plastic flow
regime. Within the filamentary regime, a series of upward and
downward jumps occur in 〈Vx〉 corresponding to the opening
and closing of individual flow channels. These jumps are also
correlated with jumps in δVx and δVy. In general, δVx is larger
than δVy, and a large peak in δVx appears at the transition to
the plastic flow regime.

As we vary the filling at Fp = 1.5, we find similar velocity-
force and velocity fluctuation curves. For example, in Fig. 20
we plot 〈Vx〉 and d〈Vx〉/dFD versus FD for a system with
F = 0.8. The filamentary flow phase is visible as a region
of positive and negative peaks in d〈Vx〉/dFD. The transition
to the nonlinear flow regime is accompanied by a large peak
in d〈Vx〉/dFD, followed by small dip after which d〈Vx〉/dFD

approaches 1.0. These results suggest that the two-step
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FIG. 20. 〈Vx〉 (blue) and d〈Vx〉/dFD (red) vs FD for a system with
Fp = 1.5 and F = 0.8. The dashed line indicates that d〈Vx〉/dFD

makes excursions below zero.
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FIG. 21. Vx averaged over a very short time interval vs FD for
a system with F = 0.4 and Fp = 0.5 in the pinned regime showing
a series of avalanches. Inset: Image of the electron locations (red
circles) and trajectories (lines) showing an example of an avalanche
in which the motion occurs along a q1D chain.

depinning process observed in Ref. [37] is likely associated
with a stronger pinning regime.

VI. AVALANCHES

As noted in Fig. 1, there are clear jumps in δVx and δVy

for increasing FD within the pinned regime that are associ-
ated with charge avalanches. In general, the avalanches are
the most prominent in parameter windows where filamentary
flow can occur. In Fig. 21 we plot Vx averaged over a very
short time interval versus FD for a system with F = 0.4 and
Fp = 0.5. The inset shows an image of one of the avalanches
in which the motion occurs along a q1D chain. This motion
resembles what is found in the filamentary flow phase, but the
duration of the motion is finite, indicating that the avalanches
can be viewed as q1D excitations. To obtain better statistics on
the avalanche behavior, we performed a series of 100 different
disorder realizations with different pinning site locations and
swept the value of FD as in Fig. 21. We define the size s
of the avalanche to be the magnitude of Vx. In Fig. 22 we
plot the avalanche size distribution P(s) on a log-log scale.
The behavior is consistent with P(s) ∝ s−τ , where the solid
line is a fit with τ = 1.6. Previous work on avalanches in
three-dimensional Coulomb systems obtained an avalanche
exponent of τ = 1.5 [83]. Among systems of particles mov-
ing over random pinning, the one with q1D avalanches that
is the closest to what we observe here is vortices in type-
II superconductors, where avalanches in the strong pinning
regime form q1D-like chains and the avalanche sizes are
power-law distributed with exponents ranging from τ = 2.0
to 1.6 [84,85]. In a magnetic skyrmion system, avalanches
were observed with an exponent of τ = 1.5 [86]. These results
indicate that the behavior of charges moving over random
disorder is similar to that of superconducting vortices and
magnetic skyrmions. This is reasonable since all of these
systems consist of an assembly of driven particles moving
over quenched disorder. In the case of the Wigner crystal, the
interactions are Coulomb in form, while for superconducting
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FIG. 22. Distribution P(s) of the avalanche sizes measured in
terms of the magnitude of Vx during the avalanche event for 100
disorder realizations of the system from Fig. 20 with F = 0.4 and
Fp = 0.5 in the pinned regime. The dashed line is a power-law fit to
P(s) ∝ s−τ with τ = 1.6.

vortices and magnetic skyrmions, the interactions are closer
to screened Coulomb.

For lower values of F , the avalanches do not occur along
q1D chains but rather consist of single hops, and the avalanche
distributions show a characteristic peak associated with the
velocity of a single electron jumping from one pinning site to
the next. Avalanches also occur below depinning in the elastic
depinning regime, but these avalanches are 2D in nature and
the statistics are much more difficult to obtain. Avalanches in
charge ordering systems have been studied in the presence of
strong pinning, and the largest number of avalanches occur
near what are believed to be critical points as a function of
temperature [87]. Future directions include testing whether
the avalanche shapes show scaling, as found in crackling noise
systems [86,88].

VII. DISCUSSION

In the experimental work of Ref. [37], the current-voltage
curves become much more rounded with increasing tempera-
ture. This can be interpreted as resulting from an increase in
thermal creep. Increasing the temperature also destroyed the
peak in the noise power at depinning and led to an overall
reduction in the noise power. Future work could examine
such thermal effects in greater detail. For example, in the fil-
amentary flow regime, the transport could develop additional
thermal switching effects in which thermally induced random
hops could cause some channels to open or close even at a
fixed drive, giving rise to telegraph noise. It would also be
interesting to determine whether the strong narrow band noise
signals in the filamentary or moving crystal phases are robust
against thermal fluctuations. The impact of thermal noise on a
peak effect phenomenon is explored in Ref. [89].

We consider the case of a uniform electric field. Future
studies could focus on the effect of employing a local con-
tact in order to introduce nonuniform electric fields, which
could produce some plasticity even in clean systems that lack
quenched disorder.
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In our system, the filamentary flow channels are one par-
ticle wide and are essentially one dimensional. Other flow
morphologies are possible, such as large-scale mesoscopic
rivers in which there is a mixture of fluid and solid states,
so that large rivers wind though the sample between pinned
islands. This type of flow could arise if large-scale hetero-
geneities are present, causing the disorder strength to vary
over length scales that are multiple lattice constants of the
periodicity of the Wigner crystal. Much larger-scale simula-
tions would be needed to explore such regimes, which could
include tens to hundreds of thousands of charges.

Another question is the role of screening, which could
modify the electron-electron interactions. If screening is im-
portant, the interactions would be better described as Yukawa
or screened Coulomb in form, exp(−κr)/r. Interactions of
this type could produce behavior more similar to that of
colloidal assemblies moving over random disorder, where
plastic to elastic depinning transitions have been studied [3,4].
Other directions would be to explore critical behaviors in the
velocity scaling or transient effects near the Wigner crystal
depinning transition, and compare these to the scaling found
in other systems, such as superconducting vortices [90,91].

VIII. SUMMARY

We have investigated the nonlinear dynamics of Wigner
crystals driven over random disorder by measuring the
velocity-force curves, the standard deviation of the velocities,
and the fraction of sixfold-coordinated charges. For strong
disorder, the system forms a pinned Wigner glass that can
depin into a filamentary flow state where the motion occurs
in well-defined quasi-one-dimensional channels. As the drive
increases, these channels can open or close, leading to switch-
ing events that have either positive or negative differential
conductivity. In regimes where there is stable filamentary flow,
the noise has a narrow band character, and at the transition
to fluctuating filaments or disordered liquid flow, the noise
becomes broad band and the noise power at low frequencies
grows large. At higher drives, the system enters a continuously

fluctuating state in which pinned and mobile electrons coexist
and there is a rapid exchange between the two. In this case
there is strong broad brand noise of 1/ f α form with α = 0.7.
At even higher drives, the system can reorder into a moving
smectic where most of the charges have six neighbors and
the noise shows a washboard signal. This indicates that for
increasing drive, there is a regime of narrow band noise for
the initial flow, followed by 1/ f noise and a peak of the noise
power in the intermediate plastic flow regime, and then a
reappearance of narrow band noise at high drives. For weak
quenched disorder, the system forms a pinned crystal that
undergoes a single depinning transition into a moving crystal
with a strong narrow band noise signal. Within the strong
pinning regime, there can be a two- or three-step depinning
process, where there is enhanced filamentary flow with re-
gions of negative differential conductivity, a disordered flow
regime, and finally a transition to a regime in which the veloc-
ity increases linearly with drive. These phases produce clear
signatures in the differential conductivity curves. Many of the
transport features we observe are in agreement with recent
transport studies on Wigner crystals in a regime where stripes
or bubblelike charge ordered phases could be occurring. Fi-
nally, we find that below the conduction threshold, as the drive
is increased there can be large-scale rearrangements within
the pinned phase in the form of avalanches. These avalanches
have quasi-one-dimensional characteristics and their sizes are
power-law distributed with an exponent of τ = 1.6, similar
to what is found for avalanches in driven vortices in type-II
superconductors.
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