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We consider two distant spin qubits in quantum dots, both coupled to a two-dimensional topological ferro-
magnet hosting chiral magnon edge states at the boundary. The chiral magnon is used to mediate entanglement
between the spin qubits, realizing a fundamental building block of scalable quantum computing architectures: a
long-distance two-qubit gate. Previous proposals for long-distance coupling with magnons involved off-resonant
coupling, where the detuning of the spin-qubit frequency from the magnonic band edge provides protection
against spontaneous relaxation. The topological magnon mode, on the other hand, lies in between two magnonic
bands far away from any bulk magnon resonances, facilitating strong and highly tuneable coupling between the
two spin qubits. Even though the coupling between the qubit and the chiral magnon is resonant for a wide range
of qubit splittings, we find that the magnon-induced qubit relaxation is vastly suppressed if the coupling between
the qubit and the ferromagnet is antiferromagnetic. A fast and high-fidelity long-distance coupling protocol is
presented capable of achieving spin-qubit entanglement over micrometer distances with 1 MHz gate speed and up
to 99.9% fidelities. The resulting spin-qubit entanglement may be used as a probe for the long-sought detection
of topological edge magnons.
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I. INTRODUCTION

Along the journey towards universal quantum computing
several of the milestones [1] have already been reached,
such as single-qubit gates with long coherence times and
fast readout as well as short-ranged two-qubit gates in
multiple platforms [2–13]. Universality, on the other hand,
requires coherent logical qubits, that can be achieved in
large-scale quantum computers by means of quantum error
correction [14,15]. Owing to the highly developed semicon-
ductor industry qubits defined in semiconductor quantum
dots (QDs) [16–18] are increasingly believed to be an ex-
ceptionally potent candidate for the long term goal: scalable
quantum computers. The challenge incorporates the improve-
ment of single- and two-qubit gate performance as well as
the management of the corresponding control electronics
[19–21]. Leveraging the industry-standard fabrication tech-
niques, Ref. [20] proposed to accommodate elements of the
control electronics on the same chip by arranging small dense
qubit arrays and local control electronics in a checkerboard
pattern, where the qubit arrays are connected via long-range
qubit couplers. For such architectures having means to create
entanglement over large distances (�1 μm) would be highly
desirable.

Long-range entanglement of spin qubits is realizable using
a variety of mediators [18] such as floating gates [22,23], mi-
crowave cavities [24], superconducting resonators [25–29], or
electron shuttling [30–34]. While the fidelity of the aforemen-
tioned protocols may be limited by charge noise, magnetic
insulators are versatile platforms to create entanglement
among distant spins with low dissipation and no heat gen-
eration due to Joule heating [35]. Furthermore, the coupling

to magnons does not require spin-orbit interaction (SOI). In
such systems, the effective coupling between spin qubits can
be established using ferromagnetic (FM) magnons [36–39],
antiferromagnetic domain walls [40] or magnon waveguides
[41]. An other promising approach to mitigate dissipation is to
couple spin qubits via topological edge states in quantum Hall
systems, which are remarkably robust against various types of
disorder [42–46], promising a successful experimental imple-
mentation of high-fidelity quantum gates.

Herein, as shown in Fig. 1, we bring together topological
excitations, magnets, and spin qubits by studying long-
distance entanglement mediated by topological magnons,
capitalizing on the best of the two worlds: resilience
against charge noise and robustness against disorder. The
latter are examples of bosonic topological spin excitations
above topologically trivial magnetic ground states. Topo-
logical chiral magnons are predicted to exist in a large
variety of magnetic systems, ranging from FM [47–55]
and antiferromagnets [56–58] to skyrmion crystals [59–64],
and from two-dimensional to three-dimensional systems
[65–67]. Being nonconserved bosons, chiral edge (or inter-
face [49,68,69]) magnons exist within topological spectral
gaps at finite frequencies, typically between a few GHz
in (artificially manufactured or self-organized) topologi-
cal magnonic crystals [49,50,53,59–62,70–74] up to several
THz in magnetic compounds. Examples for the latter are
Cu(1,3-benzenedicarboxylate) [75], CrI3 [76], CrSiTe3, and
CrGeTe3 [77]. For recent reviews on topological magnons, see
Refs. [78–81].

Once the qubit is brought into proximity to the magnet’s
edge (or interface) and its frequency is tuned within the topo-
logical magnon gap, the qubit is only resonant with the chiral
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FIG. 1. Schematic setup for the long-distance spin-qubit entanglement mediated by chiral magnons in a topological ferromagnet. The light
blue honeycomb lattice represents the ferromagnet with the arrows indicating the ground state spin polarization. The armchair edge of the
ferromagnet hosts the chiral magnon mode propagating along the positive x direction, indicated by the canted edge spins (gold). The spin
qubits (silver arrow embedded in a green ellipse) are lying in a parallel plane close to the FM lattice (qubit layer is not shown explicitly),
located near the edge of the magnet.

edge mode. Coupling the qubit to the FM leads to an emis-
sion of a physical unidirectionally propagating magnon well
localized to the edge of the sample. This magnon can be re-
absorbed by the second qubit thereby mediating entanglement
between the qubits. This nonreciprocal coupling protocol can
be exceptionally fast (∼1 GHz) and we find high gate fidelities
when the interqubit distance is well below the magnon mean
free path, that is to say, well below 1 μm.

Importantly, we report a coupling regime that drasti-
cally outperforms the aforementioned protocol. If the two
qubits are coupled simultaneously with the FM (antifer-
romagnetically), a virtual chiral magnon-mediated process
arises, which is proportional to the direct exchange cou-
pling, with the decoherence rates being suppressed by the
smallness of the dipole-dipole interaction. In this regime, fi-
delities of 99.9% of 1 MHz two-qubit gates can be achieved
even at distances comparable with the magnon mean free
path.

The remainder of this work is structured as follows: in
Sec. II A, the model of a two-dimensional topological FM in
nanoribbon geometry is presented and its chiral edge magnons
characterized. In Secs. II B and II C, we consider two pla-
nar QDs residing in an adjacent nonmagnetic layer, coupled
by both direct exchange and dipole-dipole interaction to an
armchair edge of the FM. In Secs. II D and II E, we identify
a coupling regime with antiferromagnetic exchange coupling
between the QD and the FM. In this scenario, the qubit
relaxation is orders of magnitude slower than the effective
coupling. In Secs. III A and III B, we present the results of
the corresponding numerical study, which we show to agree
well with our analytical estimates. Finally, we consider the

opposite (ferromagnetic) coupling regime in Sec. IV for which
the resonant coupling together with the chiral propagation of
the magnon facilitates qubit entanglement via the exchange
of a physical magnon. After a discussion in Sec. V, we con-
clude in Sec. VI. Several Appendices provide more detailed
information.

II. THEORY

A. Model of the topological ferromagnet

We consider a two-dimensional honeycomb lattice, as
shown in Fig. 1, with each lattice site—indexed by i—hosting
a localized spin operator Si. Nearest neighbors interact via
ferromagnetic Heisenberg exchange interaction, J > 0, and
next-nearest neighbors are coupled via Dzyaloshinsky-Moriya
interaction (DMI) [82,83], originating from spin-orbit interac-
tion. The spin Hamiltonian of the FM thus reads as

HFM = −J

2

∑
〈i, j〉

Si · S j + D

2

∑
〈〈i, j〉〉

νi j ẑ · (Si × S j ) + Hani,

(1)

where νi j = −ν ji = ±1 depending on the relative position of
sites i and j. Here, we adopt the convention that νi j = +1, if
the bond from site i to site j points in anticlockwise direc-
tion as seen from the respective hexagon. We also added an
anisotropy term Hani in Eq. (1) that gaps out the Goldstone
mode by creating a spin-wave gap. Since its microscopic
origin is of no further relevance, we model the anisotropy
by a built-in magnetic field, Hani = −�F

∑
i Sz

i , into which
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potential external fields may be absorbed as well. Then, �F

comprises the energy of the uniform ferromagnetic resonance.
Spin Hamiltonian (1) is well-studied in the context of topo-

logical magnons as it realizes the magnonic version of the
Haldane model [84], as shown in Ref. [85]. Here, we do not
repeat the derivation but only summarize the most important
aspects crucial for the coupling of spin qubits. Assuming that
the spins in the ground state are pointing in the positive z
direction, we perform a Holstein-Primakoff transformation
[86]. To lowest order in the 1/S expansion the spin operators
are expressed as

Sx
i ≈

√
S

2
(ai + a†

i ), (2a)

Sy
i ≈ −i

√
S

2
(ai − a†

i ), (2b)

Sz
i = S − a†

i ai, (2c)

where a†
i and ai are bosonic creation and annihilation oper-

ators, respectively, and S is the spin quantum number. By
plugging Eqs. (2a)–(2c) into Eq. (1), the spin Hamiltonian can
be expanded in bosonic operators. In the harmonic approxima-
tion, only the bilinear piece is retained and found to constitute
the bosonic equivalent of the Haldane model. Both nearest-
neighbor hopping and onsite potentials are proportional to JS.
The time-reversal symmetry breaking complex next-nearest
neighbor hopping is brought about by DMI and, hence, ∝ DS
[87]. The latter causes a topologically nontrivial opening of
a band gap that—according to the bulk-boundary correspon-
dence [88,89]—supports a chiral magnonic edge mode.

In the rest of this work, we consider a two-dimensional
FM in nanoribbon (or “slab”) geometry, infinite along the
x direction, with armchair termination in the y direction.1

The elementary unit cell of size ax × ay contains four atoms
(where ax = √

3a and ay = a), and the slab consists of Ny unit
cells in the y direction. Using periodic boundary conditions
in the x direction, the momentum kx ∈ [− π

ax
, π

ax
), is a good

quantum number and the eigenvalue equation for a given kx

reads as

ĤFM(kx )ϕkx,n = εkx,nϕkx,n, (3)

where n is the band index running from 1 to 4Ny, where
4Ny is the total number of spins in the nanoribbon unit cell.
Here, ĤFM(kx ) is the linear spin-wave matrix, and ϕkx,n an
eigenvector with eigenvalue εkx,n. The eigenvectors satisfy
the usual normalization condition, i.e.,

∑
yi,μ

|ϕμ

kx,n
(yi )|2 = 1,

where yi ∈ [1, Ny] is the index of the armchair unit cell and
μ ∈ [1, 4] a basis site within the armchair unit cell. Further-
more, the eigenvectors are related to the spin waves via S+

i ≈√
2Sai = √

2S/Nx
∑

kx
e−ikxxi

∑
n ϕ

μi

kx,n
(yi )akx,n, where the sec-

ond equality defines the annihilation operator of the magnonic
eigenmode (kx, n), with Nx being the number of unit cells
in the x direction (see Appendix A for further conventions).
The spectrum εkx,n of such a ferromagnetic slab is shown in

1We have chosen armchair rather than zigzag termination because
the latter does not support a chiral edge mode at zero momentum, a
property that turns out to be crucial to couple the edge mode to a QD.

FIG. 2. (a) Magnon spectrum of a honeycomb-lattice ferromag-
netic nanoribbon with armchair termination, D = 0.2 J , and Ny = 20
unit cells in the y direction. Left (right) localized edge states are
shown in blue (red). (b) Localization length λ of the left localized
edge mode [denoted by a blue star on (a)] as a function of DMI
strength. (c) Dynamic magnetic moment of the left localized edge
mode as a function of DMI strength.

Fig. 2(a), where the left- and right-propagating chiral edge
modes are highlighted in blue and red, respectively. For the
numerical results to follow the parameters of the FM slab are
listed in Table I, unless otherwise specified.

Importantly, and in contrast to the electronic Haldane
model, the chiral mode is not “particle-hole” symmetric, i.e.,
its energy is not symmetric with respect to the gap. This
is due to missing nearest neighbors at the edges, resulting
in a reduction of energy for the edge modes [90–92]. This
edge effect does not affect topological protection because the
existence of a chiral mode is still dictated by the nontrivial
topology of the bulk. However, it does affect other properties
of the chiral edge mode that are related to the edge mode’s
eigenvector ϕkx,e (subscript “e” for edge mode) and, as we

TABLE I. Characteristic parameters of the topological ferromag-
netic slab assumed for the numerical calculations throughout this
work. The slab is assumed to be periodic in the x direction and has
armchair termination in the y direction.

Parameter Symbol Numerical value

Exchange coupling J 1 meV
DMI D 0.2 meV
Spin quantum nuber S 3/2
g factor g 2
Ferromagnetic resonance �F 50 μeV
Gilbert damping αG 10−4

Next-nearest-neighbor distance a 1 nm
Slab width Ly 20 nm
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show, crucial for the spin-qubit coupling. These properties are
(i) the edge mode localization length λ = bay, with b being the
largest integer for which

∑b
yi=1

∑4
μ=1 |ϕμ

0,e(yi )|2 � 1 − 1/e,
and (ii) the edge mode dynamic magnetic moment, which
reads as

δμe =
Ny∑

yi=1

4∑
μ=1

ϕ
μ
0,e(yi ) (4)

for the left edge. These quantities are shown as a function of
D/J in Figs. 2(b) and 2(c), respectively. In the following, we
work at D/J = 0.2, which ensures that the edge state is well
localized within the unit cell width, that is to say, λ ∼ ay.

Later on, we need the transversal spin susceptibility of the
topological ferromagnet. In the time domain, we may write it
as

χ⊥
nm(t, kx ) ≡ −iθ (t )〈[S−

−kx,n
(t ), S+

kx,m
(0)]〉, (5)

where S−
−kx,n

(t ) ≡ √
2Seiεkx ,nt/h̄a†

kx,n
encompasses the dynam-

ics associated with the nth magnon normal mode in the linear
spin-wave approximation. In frequency space, we may rewrite
it as

χ⊥
nm(ω, kx ) = −2S

δnm

εkx,n(1 + iαG) − h̄ω
, (6)

where αG is the dimensionless Gilbert damping coefficient
[93]. This phenomenological constant accounts for the ubiq-
uitous magnetization damping processes without specifying
microscopic origins. It brings about a finite spectral broad-
ening ∝ αGεkx,n of the magnon line width proportional to
the magnon energy [94]. In high-quality magnetic insulators
at low temperatures, as considered here, αG � 1, because
metallic Stoner excitations and Landau damping are absent,
defect scattering is minimized, magnon-magnon scattering is
frozen out, and magnon-phonon scattering suppressed. We
take αG = 10−4 throughout, a value found, for example, in
sub-micrometer yttrium iron garnet films [95].

B. Model and requirements for the spin qubits

We assume that the spin qubits are defined by electrostatic
gates in a 2D (nonmagnetic) layer which is deposited directly
on top of the FM layer. The confinement is assumed to be har-
monic in both directions with different confinement lengths
lx � ax and ly � ay (see Fig. 1). The QD under consideration
is in the single-particle filling regime, with the lowest orbital
level occupied. An orbital level splitting �10 meV is assumed.

In order to couple resonantly with the chiral magnon, the
qubit splitting is required to be close enough in energy to
the edge states in the topological gap, approximately at an
energy E/(JS) = 1.2 for zero momentum in Fig. 2(a). This is
ensured by the strong exchange interaction emerging between
the FM and the excess electron occupying the QD. This can
be achieved if the conduction band edge (hosting the QD) is
close enough to the conduction band of the FM allowing for
tunneling, and consequently for exchange interaction between
the QD spin and the spins of the FM lattice. Even though the
qubit experiences the large exchange field of the FM layer,
J⊥ ∼ 1 meV, the spectrum of the magnet remains unaffected
because the nonmagnetic qubit layer remains unpolarized and

the QD spin has only a small weight on the individual lattice
sites. Here, the contribution of the dipole field is neglected
since it is assumed to be sufficiently small, �dip < 1 μeV (see
Appendix B) when compared to the exchange field.

Taking the interlayer exchange interaction into account as
an effective Zeeman field, the corresponding qubit Hamilto-
nian reads

HSQ = −J⊥ ∑
i

|ψQD(xi, yi )|2Si · σ ≈ −wJ⊥Sσ z ≡ �σ z,

(7)

where J⊥ is the interlayer exchange interaction strength (i.e.,
between the FM and the QD layer), ψQD is the orbital part
of the QD wave function, and σ is the spin vector operator
with σ z = 1

2 (|↑〉 〈↑| − |↓〉 〈↓|) being the z component of the
QD spin. Furthermore, we used the fact that in the ground
state of the FM Si = Sez, and therefore the weight of the QD
w = ∑

i |ψQD(xi, yi )|2 � 1 can be factored out. The localized
spin on the QD can be identified with a qubit with basis states
|0〉 ≡ |↑〉 and |1〉 ≡ |↓〉 and a qubit splitting �.

The spins of the FM point in the positive z direction:
〈S〉T =0 = Sez. Therefore, if the ground state |↓〉 of the qubit
is antialigned with the spins of the FM, for example, due to
antiferromagnetic interlayer exchange, J⊥ < 0, the splitting
� is positive. This property is crucial in order to mitigate
magnon-induced relaxation from the higher energy qubit state
because the transition |↑〉 → |↓〉 requires a double spin flip,
S−

i σ− (where S− ∝ a†). This process cannot be assisted by
the strong interlayer exchange but only by dipole-dipole inter-
action that is orders of magnitude weaker.

For qubit applications, it is essential to have means to
control the qubit and to have long enough coherence times,
simultaneously. If the spin and orbital degrees of freedom are
coupled in the QD (i.e., via spin orbit interaction or magnetic
field gradient), coherent flipping of the qubit can be realized
by electric-dipole-induced spin resonance (EDSR) [96–99]. In
the present setup, besides intrinsic spin-orbit interaction, the
induced dipole-field near the edge of the FM can be lever-
aged for this purpose.2 This mechanism opens a channel for
relaxation as well, via coupling to charge noise and phonons.
Nonetheless, due to the weakness of the dipole-dipole interac-
tion we do not expect this to be a severe limitation.

We note that an additional dephasing mechanism appears
near the edge of the FM due to the strong exchange field. Since
the exchange field is zero outside the FM, the effective qubit
splitting �(dy) = −w(dy)J⊥S depends on the QD position as
w(dy) = [1 + erf (dy/ly)]/2, assuming harmonic confinement
for the QD, centered around y = dy. This sharp dependence on
exchange coupling would make the qubit extremely vulnera-
ble against fluctuations of dy, e.g., due to charge noise. In the

2Here, we estimate the dipole-field-induced Rabi frequency to be
tens of megahertz. In the case of EDSR, the Rabi frequency is given
by νRabi = h̄−1ESO(eEyly )��−2

orb, if the driving field is applied in the
y direction. In order to estimate the dipole-interaction-induced Rabi
frequency, we used Ey = 0.5 V/μm for the amplitude of the drive
and ESO = 0.2 μeV, that is the maximal coupling (as a function of
dy for our set of parameters) that the inhomogeneous dipole-field By

eff
can induce between harmonic oscillator basis states in the y direction.
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TABLE II. Characteristic parameters of the QD used in numeri-
cal evaluations.

Parameter Symbol Numerical value

Qubit g factor gQD 2
QD length along the edge 2lx 20 nm
QD length perpendicular to the edge 2ly 2 nm

following, we assume that this dephasing mechanism is pre-
vented by the device design, an assumption that we return to
in Sec. V, and focus on the dynamical (i.e., magnon-induced)
contributions of the decoherence rates.

Even though some of the requirements above might seem
stringent at first, due to generality of the results to be pre-
sented, we believe that there is a large range of materials that
are compatible with the criteria above and can be stacked on
top of each other. We return to a discussion of materials in
Sec. V. For the numerical results in this work, the parameters
listed in Table II were used, unless specified otherwise.

C. Coupling to the ferromagnet

Assuming a general, nonlocal coupling V̂ int(ri − r) be-
tween spin Si and QD spin at position r, the interaction
Hamiltonian between a qubit and the FM spins can be written
as Vp = ∑

i Si · ∑
r V̂ int(ri − r)σ p(r), where σ p(r) is the spin

density of the pth QD and the interaction matrix V̂ int(ri − r)
contains both exchange and dipolar interactions. As long as
SOI is negligible in the QD, the spin σ of the particle in the QD
is independent of the spatial coordinates and we may make the
ansatz

σ p(r) = |ψp(r)|2σ p, (8)

where σ p is acting on the spin space of the pth QD. The
spatial part of the QD wave function is ψp(r) = ψ (r − rp) is
localized around rp = (xp, dy, dz ) and we assume that the two
QD wave functions have no common support. Thus we can
introduce the coupling matrix between the pth QD spin and
the ith FM spin as M̂(rp − ri ) = ∑

r V̂ int(ri − r)|ψ (r − rp)|2.
For notational convenience we introduce the coupling vector
Mα = (Mαx, Mαy, Mαz ) that is the αth row of the coupling
matrix M̂, and M± = Mx ± iMy, and similarly σ± = σ x ±
iσ y.

Writing the convolution between the FM spins and the cou-
pling matrix M̂ in Fourier space and expanding the coupling
terms to first order in magnon creation operators, one obtains

Vp = μBSBeff · σ p

+ 1

2

∑
kx,n

(
eikxxpS+

−kx,n
M−

kx,n
· σ p + H.c.

) + O(S0), (9)

where μBBeff ≈ −wJ⊥ez is the effective field of the FM
ground state acting on the qubit as in Eq. (7), while second-
order terms in magnon creation operators are neglected. The
coupling vector connecting the eigenmodes of the FM to one
of the qubits is M−

kx,n
= 1√

Nx

∑
i e−ikxxiϕ

μi

−kx,n
(yi )M−(xi, yi −

dy). Furthermore, owing to the hermiticity of the Hamilto-
nian, the coupling matrix elements satisfy M+−

kx,n
= (M−+

−kx,n
)∗,

TABLE III. Characteristic parameters of the FM-QD coupling
used in numerical evaluations.

Parameter Symbol Numerical value

Interlayer exchange interaction J⊥ −1.2 meV
QD-QD distance d 1 μm
QD distance from the FM edge dy −0.4 nm
Interlayer distance dz 0.7 nm

M++
kx,n

= (M−−
−kx,n

)∗, and M+z
kx,n

= (M−z
−kx,n

)∗, where M−± =
M−x ± iM−y.

Now, let two spin qubits (SQs) be situated near the edge
of the FM at positions rQD1 = (−d/2, dy, dz ) and rQD2 =
(d/2, dy, dz ), respectively (see Fig. 1). The model Hamilto-
nian under consideration is then

H = �
(
σ z

1 + σ z
2

) + HFM + Ṽ , (10)

where � = −J⊥S, assuming w = 1 for simplicity, and

Ṽ =
∑
kx,n

S+
−kx,n

M−
kx,n

· (
e−ikxd/2σ1 + eikxd/2σ2

) + H.c. (11)

is the coupling between the two qubits and the magnon modes
of the FM. Finally, the parameters of the FM-QD coupling
used in our numerical results are listed in Table III, unless
otherwise specified.

D. Effective qubit-qubit coupling

In this section, we calculate the effective qubit-qubit cou-
pling mediated by the ferromagnet. To this end, we integrate
out the magnons from the Hamiltonian by means of a second-
order Schrieffer-Wolff transformation and write the effective
Hamiltonian as

Heff = �
(
σ z

1 + σ z
2

) + Weff. (12)

The effective coupling between the qubits assumes the form
[36,100]

Weff = − i

2h̄
lim

η→0+

∫ ∞

0
dt e−ηt 〈[Ṽ (t ), Ṽ ]〉FM, (13)

where η is the lifetime of the intermediate virtual excitation
(i.e., magnons). The expectation value 〈· · · 〉FM is taken with
the FM ground state |0〉FM, and Ṽ (t ) = eiH0tṼ e−iH0t with H0 =
HFM + �(σ z

1 + σ z
2 ).

Within the framework of the Schrieffer-Wolff transforma-
tion it is possible to (implicitly) account for the fact that the
pure magnons are not the true eigenstates of the FM. Magnons
are dressed by other quasiparticles, e.g., by phonons, causing
a finite spectral width of the magnon modes. Equation (13)
can be written in the frequency domain as

Weff = 1

2h̄

∫ ∞

−∞

dω

2π

〈[Ṽ (ω), Ṽ ]〉FM

ω + iη
, (14)

where Ṽ (ω) = ∫ ∞
−∞ dt Ṽ (t )e−iωt and h̄η is the linewidth

broadening of the corresponding magnon. In our case the
linewidth broadening of the magnon mode (kx, n) is associ-
ated with Gilbert damping and therefore h̄η → αGεkx,n, which
effectively smears out the magnon density of states cutting
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unphysical singularities. See Appendix C for more technical
arguments.

Expanding H0 on the eigenbasis of the FM and the
qubits, the time evolution of spin and qubit creation operators
takes the form S−

−kx,n
(t )σ−(t ) = √

2Seiεkx ,nt/h̄−i�t/h̄a†
kx,n

σ−.
The Fourier transform Ṽ (ω) then contains terms like
2π h̄

√
2SM++

kx,n
δ(h̄ω − εkx,n + �)a†

kx,n
σ−, facilitating the exact

evaluation of the integral in Eq. (14). Performing the expecta-
tion value over magnons, the resulting qubit-qubit interaction
can be written as Weff = ∑

p,q∈{1,2} Wpq, where Wpq contains
products of qubit operators σp and σq. Expressing each contri-
bution in terms of the susceptibility in Eq. (6), we obtain for
p �= q

Wpq = 1

32

∑
kx,n

eikx (xp−xq )χ⊥
nn(�/h̄, kx )M++

kx,n
σ−

p

× (
M−+

−kx,n
σ−

q + M−−
−kx,n

σ+
q + M−z

−kx,n
σ z

q

) + H.c., (15)

where we have dropped the off-resonant terms proportional to
χ⊥

nm(0, kx ) and χ⊥
nm(−�/h̄, kx ) because they are highly sup-

pressed for antiferromagnetic interlayer exchange J⊥ < 0 in
the relevant limit, d � lx � ax (see Appendix D for further
details). The diagonal terms Wpp simply give a tiny dynamical
contribution δBeff to the effective exchange field Beff. Since
|δBeff| � |Beff|, we omit Wpp in Weff.

The fact that the coupling term of the XY type (i.e., ∝
σ−

1 σ+
2 ) is proportional to |M++|2 instead of |M−+|2 is a direct

consequence of the antiferromagnetic coupling (� ∝ −J⊥ >

0). Furthermore, we note that the dipole-dipole interaction can
contribute to all terms in Eq. (15), while the isotropic direct
exchange only contributes to the M−+ matrix element. The
characteristic energies of these two interactions are strikingly

different: for the dipole-dipole interaction, μ0μ
2
B

a3 ∼ 0.6 μeV
gives an upper bound, while the direct exchange coupling is
|J⊥| ∼ 1 meV. Thus the strongest coupling term is expected
to be ∝ σ−

1 σ−
2 . The full analytical form of the coupling matrix

elements for the exchange and the dipole mechanisms will be
shown below in Secs. III B and III C.

E. Decoherence rates

In the previous section, the (virtual) magnon-mediated
effective qubit-qubit interaction has been discussed. How-
ever, the coupling of the QD spin to the ferromagnet also
gives rise to decoherence of the spin qubits caused by real
magnons. In order to calculate the contribution of magnons to
the decoherence times, we decompose the FM-QD interaction
Hamiltonian of Eq. (9) such that V = 1

2 (V +σ− + V −σ+) +
V zσ z and define the corresponding noise power spectra as

SV b (ω) = ∫
dt{[V b(t )]†,V b(0)} e−iωt . The relaxation and de-

phasing times within the Bloch-Redfield approximation then
read as �1 = 1

4h̄2 SV − (�/h̄) and �∗
2 = 1

4h̄2 SV z (0), respectively
[36,101].

Substituting in the corresponding couplings, to lowest
order of the 1/S expansion, we can relate both the lon-
gitudinal, SV z (ω), and transversal, SV − (ω), noise spectrum
to the transversal magnonic power spectrum S⊥

kx,n
(ω) =

h̄ coth(β h̄ω/2)Im[χ⊥
nn(h̄ω, kx )], where β = (kBT )−1 with T

being the temperature. Finally, for the decoherence rates, one
obtains

�1 = 1

16h̄2

∑
kx,n

|M++
kx,n

|2S⊥
kx,n(�/h̄), (16a)

�∗
2 = 1

2h̄2

∑
kx,n

∣∣M+z
kx,n

∣∣2S⊥
kx,n(0) + O(S0). (16b)

The dephasing rate �∗
2 can be highly suppressed when the

ferromagnetic resonance is shifted to finite energies, for exam-
ple, by an external magnetic field or an easy-axis anisotropy
(�F > 0, cf. Sec. II A).

The appearance of |M++
kx,n

|2 in the formula for the relaxation
rate of Eq. (16a) can be understood as follows: for antiferro-
magnetic coupling (� ∝ −J⊥ > 0) if no magnons are excited,
the excited state of the qubit is |0m ↑〉 which can then relax to
the qubit ground state |1m ↓〉 creating a magnon by means
of the coupling S−M++σ− (note that S− ∝ a†), where we
used the simplified notation |0m〉 for the FM ground state and
|1m〉 for a single magnon excitation with energy �. For the fer-
romagnetic case (� ∝ −J⊥ < 0) the qubit states are reversed
and the transition |0m ↓〉 → |1m ↑〉 describes the relaxation
requiring an interaction term of the type S−M+−σ+. The
relaxation mechanism for ferromagnetic interlayer coupling
is then mediated by direct exchange interaction, as opposed to
dipole-dipole interaction in the antiferromagnetic case. For a
detailed derivation, we refer the reader to Appendix E.

One of the central figure of merits in the field of quan-
tum computing is the gate fidelity F = 2Tr[ρ(top)ρ f ] − 1 ∈
[0, 1] that describes the deviation of the qubit state after
the operation from the targeted final state, quantified by the
respective density matrices ρ(top) and ρ f [1,102]. Let us con-
sider a two-qubit gate implemented by the time evolution
under the static Hamiltonian Weff. Neglecting the sublead-
ing two-qubit terms and the single qubit terms in the time
evolution for simplicity, one may consider only the σ−

1 σ−
2

coupling to get e−iWefftop/h̄ |00〉 = (|00〉 − ieiφ |11〉)/
√

2 where
top = h̄ π

4 | 〈11|Weff |00〉 |−1 is the operation time and φ =
arg(〈11|Weff |00〉). This two-qubit operation, supplemented
with single-qubit rotations, i.e., U√

SWAP ∼ σ x
1 e−iWefftop/h̄σ x

1 , is

equivalent to a
√

SWAP gate up to a phase. Since the relax-
ation rate �1 describes the decay of the diagonal elements of
the density matrix as (ρ00 − ρ11)(t ) ∝ e−�1t , using the opera-
tion time in the exponent, the fidelity of the two-qubit gate is
obtained as

F = exp

(
−π

4

h̄�1

| 〈11|Weff |00〉 |
)

∼ 1 − π

4

h̄�1

| 〈11|Weff |00〉 | ,

(17)

provided that the decoherence is primarily caused by relax-
ation. As it will be shown later, this is indeed the case for the
chiral mode due to the resonant coupling.

III. RESULTS

A numerical simulation of the effective coupling has been
performed by evaluating Wpq in Eq. (15). To this end we
solved the eigenvalue equation of Eq. (3) numerically using
a slab unit cell consisting of Ny = 1000 armchair cells (i.e.,
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FIG. 3. (a) Spectrum of the ferromagnetic slab with Ny = 1000 unit cells as a function of momentum kx . Chiral edge magnons at opposite
edges are indicated by red and blue lines, respectively. (b) Effective qubit-qubit coupling strength (blue) and magnon-induced qubit-relaxation
rate (orange) for T = 100 mK, as a function of qubit splitting. Pronounced in-gap resonances are identified and associated with chiral edge
magnons. Note that at the two resonances the coupling strength largely exceeds the relaxation rate, making them the optimal operation points
for two-qubit gates. (c) Infidelity 1 − F as a function of qubit splitting. Largest fidelities are found in the energy windows of the chiral edge
magnons. Vertical lines correspond to a fidelity of 90%, 99%, and 99.9%, respectively. In (a)–(c), horizontal gray lines indicate the energy of
the chiral edge modes at kx = 0. Dashed grey lines in (b) and (c) correspond to the result of the analytical formulas, i.e., Eqs. (19) and (20)
with the coupling matrices taken from Eqs. (24) and (25).

4000 spins). The resulting eigenvalues εkx,n were used to
obtain the susceptibility according to Eq. (6), while the eigen-
modes ϕkx,n were used in the explicit expressions for the direct
exchange and dipole-dipole couplings [for which we refer the
reader to Eqs. (F3) and (G3) of the corresponding appendices].
The interlayer exchange was varied together with the qubit
splitting as J⊥ = −�/S to account for the effective exchange
field, and the other parameters are listed in Tables I–III.

We obtained pronounced Gaussian resonances for both
the coupling strength and the relaxation rate when the qubit
splitting matches the energy of the edge modes at kx = 0
[see Figs. 3(a) and 3(b)]. The coupling strength for the lower
in-gap resonance can reach up to 1 MHz facilitating fast two-
qubit operations over μm distances with fidelities exceeding
99.9% [see Fig. 3(c)]. Further insight into the dependence
of the coupling on the various parameters of our model can
be obtained via the analytical formulas within the continuum
approximation to be presented below. First we obtain the
coupling strength as a function of the coupling matrices in
Sec. III A, then provide analytical formulas for the coupling
matrices for both the exchange and dipole-dipole interaction
in Secs. III B and III C.

A. Chiral edge mode

If the qubit splitting � lies within the magnonic gap and
is close to ε0 ≡ ε0,e, defined as the energy of the chiral edge
mode at kx = 0, the effective coupling in Eq. (15) simplifies
as the contribution of bulk modes (n �= e) are far off-resonant.
Since the spin density of the QD is distributed over several
lattice sites, the qubit spin σ can only couple to magnon
modes with kx � l−1

x , where the spectrum of the edge mode
can be written as εkx,e

= vxkx + ε0, with vx ∼ 0.39 meV nm.

Finally, the susceptibility near the edge resonance reads as

χ⊥
nn(�, kx ) ≈ −2S

δne

vx(kx + iκ ) − δ
, (18)

where δ = � − ε0 is the detuning from the edge resonance
and κ−1 ≈ vx

αGε0
is the mean free path of the chiral magnon. In

the continuum approximation, we replace the sum over kx by
an integral [as in Eq. (D4)]. Furthermore, close to resonance
the integration limit can be extended to infinity, provided
that |δ/vx| � π/ax. Then, exploiting that M̂kx,n is an analytic
function of kx, we can perform the momentum integral using
the residue theorem [see Eq. (D5)] to obtain

〈01|Weff |10〉 ≈ −i
Sax

16vx
eik0d−|κ|d |M++

k0,e
|2 , (19a)

〈11|Weff |00〉 ≈ i
Sax

16vx
e−i|k0|d−|κ|d M++

k0,e
M−+

−k0,e
, (19b)

〈10|Weff |00〉 ≈ i�(vx )
Sax

16|vx|e−i|k0|d−|κ|d M++
k0,e

M−z
−k0,e

,

(19c)

〈01|Weff |00〉 ≈ i�(−vx )
Sax

16|vx|e−i|k0|d−|κ|d M++
k0,e

M−z
−k0,e

,

(19d)

where k0 = δ/vx and we neglected κ in the coupling, i.e.,
M+α

k0+iκ,e ≈ M+α
k0,e

+ O(κdy). This latter approximation is jus-
tified since every length scale in the coupling is much smaller
than κ−1 ≈ 2.2 μm, for example, dz, dy ∼ 1 nm.

The Gaussian dependence on the detuning around the
resonance in Fig. 3(b) can be understood via the spatial av-
eraging effect of the QD. Since the magnetic moment of the
particle is equally distributed along the QD, the coupling

235409-7



HETÉNYI, MOOK, KLINOVAJA, AND LOSS PHYSICAL REVIEW B 106, 235409 (2022)

to magnon modes with kx > l−1
x is averaged out leading to

M̂kx,n ∝ e−k2
x l2

x /4 (see Appendix F). Furthermore, lx is much
larger than the remaining length scales in the coupling (i.e.,
ly, dy, dz, and a) and therefore one can expand the coupling as
M̂kx,n ≈ e−k2

x l2
x /4M̂0,n + O(ly/lx ).

Using the same assumptions as for the effective coupling,
the contribution of the edge modes to the decoherence rates
can also be estimated using Eq. (16). If the detuning is close
to zero, the relaxation is dominated by the resonant edge mode
at kx = 0 and reads as

�1 ≈ Sax

16h̄vx
|M++

k0,e
|2 coth(βε0/2). (20)

Since the (pure) dephasing rate is proportional to S⊥
kx,n

(0)
[see Eq. (16b)], the contribution of the edge mode is far
off-resonant. In order to estimate it, we expanded the sus-
ceptibility in the Gilbert damping αG to get S⊥

kx,e
(0) ≈

h̄ coth(βε0/2)2αGS/ε0. The dephasing rate can then be writ-
ten as

�∗
2,e ≈ αGS

h̄
√

2πε0

ax

lx

∣∣M−z
0,e

∣∣2
coth(βε0/2), (21)

where we exploited that Mkx,n ≈ e−k2
x l2

x /4M0,n for every mode.
Using Eq. (21), we obtain �∗

2 ∼ 10−4 Hz that is vastly under-
estimating the dephasing rate (as it will be shown later).

In order to find the leading contribution to dephasing, we
need to consider the modes that are closest to zero energy.
We do this in the 2D limit, which is valid deep in the bulk
when the QD is far from the edges of the FM. Here one can
replace the coupling Mkx,n by Mkx,ky , that is the coupling to
the magnon mode with energy εkx,ky , as obtained for periodic
boundary conditions along the x and the y direction. Since
lx � ax, we still restrict ourselves to kx = 0 in the coupling to
get

�∗
2 ≈ αGS

h̄
√

2π�F

ax

lx
coth(β�F /2)

∑
ky

∣∣M−z
0,ky

∣∣2
, (22)

where we neglected the curvature of the magnon band since
�F � ε0,ky .

Using Eqs. (19a) and (20), an important relation can be
deduced, namely,

| 〈01|Weff |10〉 |
h̄�1

= e−|κ|d tanh(βε0/2) ∼ O(1), (23)

meaning that the relaxation provides an upper bound for
the XY coupling, regardless of the strength of the QD-FM
coupling. The same formula is valid in the ferromagnetic in-
terlayer coupling regime (J⊥ > 0), where both quantities are
proportional to |M+−|2. Since the 〈01|Weff |10〉 is the leading
coupling in that case, virtual magnon processes are unable
to create entanglement between qubits while maintaining the
coherence of the two-qubit system. Therefore we have fo-
cused here on the antiferromagnetic case, where the strongest
coupling is 〈11|Weff |00〉; we will revisit the ferromagnetic
coupling case in Sec. IV, where we try to leverage the fast
magnon emission/absorption rate (�1) in a scheme where a
real magnon is mediating the coupling between distant spin
qubits (as opposed to virtual magnons considered so far).

The dependence of the coupling on the inter-QD distance d
is explicitly defined in Eq. (19), however, in order to determine
the coupling strength and to identify the dependence on the
QD size and position we need to calculate the coupling matrix
elements Mkx,e for the case of direct exchange and dipole-
dipole coupling.

B. Exchange coupling

Let us first consider the contribution of (isotropic) direct
exchange interaction between the FM spin Si and the qubit
spin σ that is given by the exchange matrix −Ĵi|ψ (ri − rQD)|2,
where Ĵi is the local spin-spin interaction matrix between the
ith site of the FM and the qubit layer. In this case the effective
coupling between the magnonic mode (kx, n) and the spin
qubit is given by

M−+
−kx,n

= − 1√
Nx

∑
ri,μ

eikx (xi−xQD )ϕ
μ

kx,n
(yi )2J⊥

i |ψ (ri + rμ−rQD)|2

≈ −e−k2
x l2

x /4J⊥Ckx,n, (24)

where we assumed the QD wave function to be Gaussian,
i.e., |ψ (ri )|2 = ax√

π lx
e−x2

i /l2
x |ψ (yi )|2, and we defined Ckx,n =

1
2

∑
yi,μ

ϕ
μ

kx,n
(yi )eikxxμ |ψ (yi − dy)|2. Furthermore, for simplic-

ity, we assumed homogeneous and isotropic coupling, Ĵi ≈
J⊥ 1.

Owing to the Gaussian factor in the coupling the main
contribution of the coupling matrix to the qubit-qubit coupling
in Eq. (19) is given by small momenta (kx � l−1

x ). In this
regime, Ckx,e ≈ C0,e is a good approximation for the coeffi-
cient in Eq. (24). Provided that the DMI is strong enough,
i.e., D > 0.1J , the localization length of the edge mode is
small, i.e., λ � ly [see Fig. 2(c)]. In this limit, we can factor
out δμe and estimate the corresponding coefficient as C0,e ≈

ay

2
√

π ly
δμee−d2

y /l2
y (see Appendix F for further details).

C. Dipole-dipole coupling

Owing to its long-ranged nature, calculations involving
the dipole-dipole interaction are unwieldy and deferred to
Appendix G. Here, we only note that the exponential sup-
pression factor in momentum, e−k2

x l2
x /4, appears regardless of

the form of the interaction potential. Therefore we restrict our
attention to the kx = 0 case and provide an analytical formula,
assuming that the other confinement length of the QD, ly is
sufficiently large, compared to the localization length of the
edge magnon, λ, e.g., λ � ly. The coupling matrix elements
in this limit read as

M−+
0,e = −M−−

0,e = μ0

π

g gQDμ2
B

axl2
y

δμeRe

[
I

(
idy − dz

ly

)]
,

(25a)

M−z
0,e = −i

μ0

π

g gQDμ2
B

axl2
y

δμeIm

[
I

(
idy − dz

ly

)]
, (25b)

where we have introduced the complex function I (x) = 1 +√
πxex2

[1 + erf(x)]. Similarly to the case of the direct ex-
change interaction, it is the λ � ly assumption that allowed

235409-8



LONG-DISTANCE COUPLING OF SPIN QUBITS VIA … PHYSICAL REVIEW B 106, 235409 (2022)

FIG. 4. Coupling matrix elements M−+
kx ,e, M−−

kx ,e, and M−z
kx ,e at kx =

0 including both direct exchange and dipole-dipole interactions as a
function of the QD position dy for (a)–(c) ly = 4 nm and dz = 1.7 nm
and (d)–(f) ly = 1 nm and dz = 0.7 nm. Numerical results (blue
lines) are obtained from Eqs. (F3) and (G3). Analytical results (red
lines) are given in Eqs. (24) and (25). The rest of the parameters are
given in Tables I–III. Direct exchange interaction only contributes
to M−+, therefore this coupling element is orders of magnitude
larger than M−− and M−z. We observe good quantitative agreement
between the numerical and analytical curves in (a)–(c), whereas for
smaller ly and dz values in (d)–(f), the coupling is strongly asymmet-
ric around the FM edge (dy = 0) due to the spatial profile of the edge
magnon that is not taken into account in the analytics.

us to factor out the dynamical magnetic moment δμe of the
chiral edge mode from the integral.

The analytical estimates for the couplings M−+
0,e , M−−

0,e , and
M−z

0,e obtained in Eqs. (24) and (25) are compared with the
numerically evaluated exact expressions given in Eqs. (F3)
and (G3) as a function of dy in Fig. 4. The analytical formulas
are in very good agreement with the numerics as shown in
Figs. 4(a)–4(c) for ly = 4 nm and dy = 1.7 nm. Further pa-
rameters of the QD and the FM were set as in Tables I–III.
The only apparent deviation is the slight shift of the peaks
in the numerics, compared to the edge (dy = 0). We attribute
this effect to the asymmetric nature of the edge mode (i.e.,
the mode terminates with a sharp maximum at the edge and
decays exponentially towards the bulk) that is not taken into
account in the analytical estimate which assumes ϕ

μ
0,e(y) ∼

1
4δμeδ(y).

The FM-QD coupling matrix elements are presented in
Figs. 4(d)–4(f) for the same parameters used in Fig. 3, i.e.,
ly = 1 nm and dz = 0.7 nm. Even though the localization
length λ ∼ 1 nm, is comparable with ly, the qualitative behav-
ior is correct and the maximal coupling strength is reliable in
order of magnitude. As compared to the analytical prediction,
the numerical results exhibit features that are slightly shifted
outwards from the edge [similarly to Figs. 4(a)–4(c)] and
small oscillations appear on the side of the FM (dy > 0).
These effects appear due to the spatial “fine structure” of the
edge mode (exponential decay and oscillations on the scale of
ay) that is not accounted for in the analytical approximation.

In order to complement the estimate of the bulk dephasing
formula in Eq. (22), we provide here the relevant coupling ma-
trix element for kx = 0 as a function of ky (assuming periodic
boundary conditions along y direction). The coupling between
the QD spin and the lower-energy acoustic magnon band reads

M−z
0,ky

≈ μ0μ
2
BggQD

2axay
kye−k2

y l2
y /4e−|ky|dz , (26)

where we neglect the contribution of the optical magnon band,
since their contribution is suppressed by the negligible dynam-
ical magnetic moment as well as the large energy denominator
in Eq. (22). The sum over ky modes can be evaluated in the
continuum limit as

∑
ky

∣∣M−z
0,ky

∣∣2 ≈ 1

2π

ay

ly

(
μ0μ

2
BggQD

2axayly

)2

I2(dz/ly), (27)

where I2(x) = √
2π (1 + 4x2)e2x2

[1 + erf (
√

2x)] − 4x.

D. Position dependence of the effective coupling

Choosing a smaller system size of Ny = 20 and considering
the various couplings and decoherence rates as a function of
dy allows us to compare the full analytical formulas with the
numerics in Figs. 5(a) and 5(b). For this, we have tuned the
qubit energy to be on resonance with the kx = 0 chiral mode
i.e., � = 1.8 meV [see Fig. 3(a)]. Even though, in potential
experiments if the QD is moved outside the FM (in situ), the
decreasing interlayer exchange experienced by the QD would
tune the qubit frequency out of resonance,3 which is not taken
into account in Fig. 5.

As shown in Fig. 5, the peaks of the effective coupling
develop only close to the two edges of the sample at dy = 0
and 20 nm, which provides a natural way to tune the qubits in
and out of the coupling regime. This property is crucial since
the qubit splitting is set by the interlayer exchange interaction
that is challenging to tune in situ. On the other hand, dy

can be changed freely in the range dy ∈ [0, 20 nm] since the
interlayer exchange is constant to a good approximation in this
range.

The strongest coupling is achieved for the 〈11|Weff |00〉
matrix element because this is the only coupling that is pro-
portional to the interlayer exchange J⊥. In order to capture the
exponential decay towards the bulk, we have used Eq. (F8) for
the analytical curve instead of the simplistic formula for C0,e

given in Sec. III B.
The second strongest coupling are the σ±σ z-type of terms

that come about three orders of magnitude smaller than the
〈11|Weff |00〉 term. Importantly, since the propagation direc-
tion is opposite along the left and right edges, from Eq. (19),
we expect only 〈01|Weff |00〉 coupling on the left edge (be-
cause vx < 0) and 〈10|Weff |00〉 on the right edge (because
vx > 0). This is fulfilled up to several orders of magnitude

3Within the present assumptions the detuning from resonance
would change as δ = S|J⊥|

2 {erf[dy/ly] + erf[(Ly − dy )/ly]} − ε0. Note
that depending on the value J⊥, the resonance can be reached at any
dy in principle.

235409-9



HETÉNYI, MOOK, KLINOVAJA, AND LOSS PHYSICAL REVIEW B 106, 235409 (2022)

FIG. 5. Position dependence of the effective qubit-qubit couplings and the qubit relaxation. The parameters are the same as for Fig. 3,
except for the slab width that is set to Ny = 20 in order to show both edges of the FM simultaneously. (a) Numerical results for the matrix
elements of the effective coupling Weff of Eq. (15) for a constant qubit splitting of � = 1.8 meV. (b) Analytical results of the couplings and
the relaxation are given in Eqs. (19) and (20) by substitution of Eqs. (24) and (25). The analytical estimate in the bulk for �∗

2 was calculated
using Eq. (22) with Eq. (27). The excellent quantitative agreement between the numerical simulation (a) and analytical formulas (b) facilitates
the estimation of the various coupling and decoherence time scales in different materials without having to perform the heavy numerical
calculations.

in Fig. 5 (cf. yellow and blue lines) and a clear marker of
chirality.

The excellent agreement between numerical and analytical
results is sustained for the decoherence rates as well. The
ratio of the XY coupling and the relaxation rate in Eq. (23)
being O(1) is confirmed by the numerical results close to the
edge resonances. The dephasing rate estimate for the bulk in
Eq. (22) [using Eq. (27)] turns out to be a very good estimate
a few nm away from the edges.

IV. QUBIT ENTANGLEMENT VIA CHIRAL
MAGNON TRANSDUCTION

As mentioned in Sec. III A, the virtual magnon coupling
strength and the relaxation rate are both proportional to the
coupling |M+−

0,e |2 in the ferromagnetic interlayer coupling
regime (J⊥ > 0). Therefore, since | 〈01|Weff |10〉 | ∼ �1, the
virtual magnon mediated coupling is inefficient in this case.
One possibility to overcome this limitation is through cou-
pling by real magnons (as opposed to virtual ones described
above). Provided that the FM-QD coupling (i.e., J⊥) can
be switched on and off on demand, the first qubit can be
used to emit a chiral edge magnon that propagates and is
subsequently absorbed by the second qubit, coherently. This
protocol is leveraging that the emitted magnon wave packet
will propagate towards the second qubit maintaining its shape
(quasilinear dispersion) because it cannot backscatter at de-
fects due to its chirality and the presence of the topological
gap.

Previous proposals for such a magnon transduction proto-
col have focused on the single magnon mode approximation
[41]. Such an approximation, however, can only be made if the
energy separation from higher magnonic modes is much larger
than the coupling strength. For the case of the chiral magnon
this energy scale is vx/C ∼ 1 neV, where C ∼ 100 μm is a
typical circumference of the sample and vx ≈ 0.39 meV nm.

This energy separation is orders of magnitude smaller than the
achievable FM-QD coupling g ∝ M+−

0,e in Fig. 4(a). Note that
we use Fig. 4(a) as a reference here, because the coupling is
dominated by direct exchange interaction J⊥ and therefore it
agrees up to a sign with the coupling of the ferromagnetic case
(J⊥ > 0).

In order to discuss the limit where g � vx/C, the com-
plete dynamics of the local magnon excitations need to be
considered. To model the scenario when the spin qubits are
on resonance with the chiral edge mode, we consider a one-
dimensional bosonic lattice with the dispersion relation given
by the chiral edge mode. In order to reduce the computational
cost further, we extend the FM unit cell to several lattice sites,
ax → 2lx, thereby backfolding the spectrum as depicted in
Fig. 6(a). We consider only a single mode that used to cross
kx = 0 before the backfolding of the spectrum, which is the
red line in the highlighted area in Fig. 6(a). The coupling
to higher-energy edge modes (originally at kx = nπ/lx) is
negligible, since they are suppressed by the factor e−(nπ )2/4.
Furthermore, we assume that each spin qubit couples to a
single FM unit cell and the coupling is uniform within the
unit cell.

In order to mitigate the contribution of the virtual magnon
processes, only one of the qubits should be coupled to the
magnon mode at any given time. The entangling protocol
then consists of three steps, viz., (i) first qubit is coupled
and emits a magnon; (ii) both qubits are decoupled and the
magnon propagates; (iii) second qubit is coupled and absorbs
the magnon. This could be achieved, for example, when the
effective coupling strength is g = 5 μeV, in which case the
size of the emitted magnon wave packet vx h̄/g ∼ 80 nm
is indeed much smaller than the distance between the two
qubits.

We account for the local coupling and the dynamics
of the emitted magnon wave packet by performing a nu-
merical simulation of the system by solving the Lindblad
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FIG. 6. (a) Backfolded topological magnonic bandgap of the fer-
romagnet with a unit cell size of 2lx = 5ax . Only the coupling to the
highlighted bands are relevant (dashed white box), as discussed in
the main text. (b) Coupling strength c1,2 as a function of time for
the first and second qubit, respectively. (c) Expectation value of the
qubit spins σ z

1 and σ z
2 and the total magnon number nmag in the edge

of the ferromagnet. (d) von Neumann entropy of the first qubit ν1, the
second qubit ν2, and the two-qubit system ν12. Solid lines correspond
to the dissipationless process and dotted lines to αG = 10−4 and
�∗

2 = 100 kHz. It is apparent from (c) and (d) that even small dissi-
pation has a detrimental effect on the entanglement of the qubits with
the environment (i.e., ν12 �= 0 in the end of the protocol) suggesting
that efficient preparation of a two-qubit entangled state requires a
magnon mean-free-path that is much longer than the qubit-to-qubit
distance.

equation [103]

ρ̇ = − i

h̄
[H (t ), ρ] + 1

2
�∗

2

∑
i={1,2}

D
[
σ z

i

]
ρ

+ 2αG

h̄

∑
k

εk{(1 + n̄)D[ak]ρ + n̄D[a†
k]ρ} (28)

where D[O]ρ = Oρ O† − 1
2 (OO†ρ + ρ OO†) and n̄ =

[exp(βεk ) − 1]−1, with εk being the linear dispersion of the
edge mode. The corresponding Hamiltonian is written as

H (t ) = �
(
σ z

1 + σ z
2

) + c1(t, δt )a1σ
+
1

+ c2(t − tprop, δt )aNx σ
+
2 + H.c., (29)

where tprop = h̄d/vx is the propagation time. The time de-
pendence of the coupling is a smeared out box function, i.e.,
ci(t, δt ) = ginF [t/trise]nF [(t + δt )/trise], where δt is the length
of the pulse, nF (x) = (exp(x) + 1)−1 and trise = 70 ps is the
rise time4 of the pulse [see Fig. 6(b)].

4The choice of the rise time is a crucial step in order to create a
magnon wave packet that can be efficiently absorbed by the second
qubit. We found that a pulse with (relatively) long trise time creates a
more symmetric wave packet that can be absorbed with a higher ac-
curacy (i.e., magnon number reduces close to zero after absorption).

From the time series of the density matrix, we evaluate the
von-Neumann entropy of the ith qubit, defined by

νi = − Tr
H\Hi

[ρ ln(ρ)], (30)

where Tr
H\Hi

denotes the partial trace, excluding the subspace

of the corresponding qubit. Additionally, ν12 and νm are the
entropies of the two-qubit system and the magnons with
the environment, respectively. The spin expectation value of
the ith qubit is then calculated as

〈σi〉 = Tr
H\Hi

[ρ σi], (31)

and the magnon occupation number is

〈nmag〉 = Tr
H\Hm

[ρ �l a
†
l al ]. (32)

The time-evolution of the entenglement entropy νi of
Eq. (30), the spin expectation value 〈σi〉 of Eq. (31), and the
magnon number 〈nmag〉 of Eq. (32) are presented in Figs. 6(c)
and 6(d). The density matrix ρ(t ) in the definition of these
quantities were obtained by numerically integrating Eq. (28).
We set 2lx = 14ax and consider Nx = 11 lattice sites along
the one-dimensional chain. After the emission of the magnon,
the wave packet propagates along the chain twice, traveling
a total distance of 42lx ≈ 510 nm before it is reabsorbed by
the second qubit (periodic boundary conditions have been as-
sumed). Two cases are differentiated: dissipationless [αG = 0
and �∗

2 = 0; see solid lines in Figs. 6(c) and 6(d)] and dissipa-
tive evolution [αG = 10−4 and �∗

2 = 100 kHz; see dotted lines
in Figs. 6(c) and 6(d)]

The dissipationless case can be discussed straightforwardly
in the state vector representation. At t = 0, the time evo-
lution starts from a pure state of each subsystems, i.e.,
|↑〉1 |↓〉2 |0〉m. Between t = 200 and 300 ps the first qubit
emits a magnon with 50% probability leading to an entangled
state 1√

2
[|↑〉1 |↓〉2 |0〉m + |↓〉1 |↓〉2 |ψ (x)〉m], where |ψ (x)〉m

is a spatially extended wave packet of a single mangon. At
this point the first qubit has a vanishing spin expectation value
and the magnon occupation number is 1/2. The entanglement
is created between the first qubit and the magnon, there-
fore ν1 = νmax ≡ ln 2 and ν12 = νm = νmax [see solid lines in
Figs. 6(c) and 6(d)]. Until t = 700 ps the magnon wave packet
propagates through the lattice and reaches the position of the
second qubit [|ψ (x)〉m → |ψ (x − d )〉m]5. In the final step of
the protocol, the second qubit needs to absorb the incoming
magnon with 100% probability [thus the doubled coupling
strength in Fig. 6(b)] creating a pure state of the two qubit sys-
tem 1√

2
[|↑〉1 |↓〉2 + |↓〉1 |↑〉2] |0〉m with ν1 = ν2 = νmax and

ν12 = νm = 0.
When the qubit decoherence and the Gilbert damping in

Eq. (28) is included, the main difference compared to the
dissipationless case is the damping of the magnon wavepacket
during its propagation, i.e., 〈nmag〉 < 1/2 at t = 700 ps in
Fig. 6(c). The entanglement with the environment can be

5Since the first qubit is coupled to the first unit cell and the second
to the last unit cell, the effective qubit-qubit distance in the simulation
is d = 42lx ∼ 510 nm.
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tracked via the entanglement entropies in Fig. 6(d). Since the
magnon number goes to zero, the corresponding entanglement
νm needs to vanish (the vacuum of magnons is a pure state).
Nonetheless, ν12 �= 0, meaning that the two qubits are still en-
tangled with another subsystem, the environment. Therefore
considering ν1 = νmax or ν2 ≈ νmax gives a false impression
about ν12/νmax ≈ 0.6 becomes the only appropriate measure
for the infidelity.

We conclude this section by noting that even though
qubit-qubit entanglement can be created through magnon
transduction, the fidelity of the operation is seriously lim-
ited by the magnon mean free path (as also pointed out in
Ref. [41]). Moreover, we note that such a resonant coupling
protocol does not correspond to universal two-qubit logic
[104] with the chirality of the edge magnon restricting the
quantum computing applications of the magnon transduction
protocol even further. In simple terms, the universality of the
two-qubit logic is hindered by the fact that the second qubit
should completely absorb the incident magnon, requiring the
second qubit to be in the |↓〉2 state. Therefore a complete
transduction, where the mediator magnon is fully absorbed,
can not be performed on a general two-qubit state.

V. DISCUSSION

We have shown that spin-qubit entanglement mediated by
topological magnons can be established with 1 MHz coupling
strength, corresponding in a long-distance two-qubit gate fi-
delity exceeding 99.9% for a 1 μm qubit separation. We
emphasize that these numbers depend on the effective Gilbert
damping of the topological magnon mode. Throughout we as-
sumed a pessimistic value based on the bulk Gilbert damping
value. Importantly, the damping of chiral edge magnons is ex-
pected to be much weaker than that of bulk magnons because
of the absence of disorder scattering. A detailed analysis of
topological magnon damping is an interesting open problem.
Both gate speed and fidelity can be exponentially improved by
a reduction of Gilbert damping.

In the setup considered in this paper, the QD needs to
be close to the FM edge in order to achieve sufficiently
strong coupling. However, at this position, due to the large
exchange field gradient, the qubit is susceptible to fluctuations
of its position (i.e., δdy), which would lead to a fluctuating
qubit splitting and thus dephasing. In order for the dephasing
rate to stay well below the two-qubit operation frequencies,
the fluctuations δdy, need to be small enough; we estimate
that e−d2

y /l2
y (〈δd2

y 〉/l2
y )−1/2 � 10−6. There are different ways

to overcome this limitation: (i) The QD can be confined in
a narrow nanowire along the FM edge that fixes its position
and therefore the effective exchange field. In that case, it is
required that the qubit splitting is tuneable by other means
(e.g., via an external field if gQD �= gFM) and thereby the
qubit-qubit coupling can be switched on and off on demand
[as in Fig. 3(b)]. (ii) The qubit can be located close to a domain
wall in DMI instead of the edge, where the magnetization is
constant throughout but the DMI strength D changes sign.
Since the chirality of the edge mode is given by sign(D), for
a given ground state magnetization [85], two well-localized
edge modes are propagating in the same direction along such
a domain wall, potentially increasing the coupling strength by

a factor of two. (iii) The QD layer can be terminated as well
at the edge of the FM layer. In this case, the QD experiences a
constant interlayer exchange J⊥, and therefore the decoupling
has to be performed by moving the QD towards the bulk of the
lattice. Additionally, option (i) and (iii) might offer a solution
to achieve a QD that is narrow enough ly ∼ 1 nm to efficiently
couple to the edge mode.

Throughout this work we concentrated on a honeycomb-
lattice topological magnon insulator. This model is approxi-
mately realized in monolayers of the van der Waals materials
CrI3 [76], CrSiTe3, and CrGeTe3 [77]. These materials
support chiral edge magnons in the low THz range. The
honeycomb-lattice model is also realized in artificial arrays
of magnetic disks hosting topological magnetic solitons that
interact magnetostatically; chiral modes are found in the low
GHz range [72,105]. The general formulas for the effective
two-qubit coupling derived here, for example, in Eq. (19),
are agnostic to the actual realization of the platform hosting
topological magnons. As such, they apply to any topological-
magnon host—be it on the honeycomb or other lattices, in the
GHz or THz range—and provide a guide for the identification
of suitable materials. For GHz topological magnons, poten-
tial candidates are skyrmion crystals [59–62], topological
magnonic crystals built from patterned magnetic nanostruc-
tures [49,50,53,73,74], and artificial spin ice [70,71].

Even though the transduction protocol cannot be applied
directly for quantum information processing it may be used
as a probe for the experimental detection of topological chi-
ral edge magnons, one of the key challenges in the field of
topological magnons [78–81]. Chiral magnetic edge excita-
tions are notoriously hard to detect with common probes of
magnetism that are nonlocal and mostly bulk-sensitive, such
as inelastic neutron scattering and ferromagnetic resonance.
There exist several theoretical proposals to detect chiral
edge magnons, with ideas ranging from electric parametric
amplification [106], Raman scattering [107], spin-polarized
scanning tunneling microscopy [108], and magnon interfer-
ence tunneling spectroscopy [109] to nitrogen-vacancy center
relaxometry [110] and frequency-resolved spin pumping
[111]. The main advantage of using spin-qubit entanglement
for the detection of topological magnons is the locality and
directedness. As shown above, the local coupling to QD spin
qubits can be considerably large. A single spin qubit probes
the local magnonic density of states via relaxation processes.
By taking the difference of detuning-resolved relaxation times
at the edges with that in the bulk, one can verify the existence
of edge-located in-gap magnon modes. Moreover, the detun-
ing dependence of the relaxation time is remarkably distinct
for linearly dispersing bands, as expected for a chiral mode,
and trivial parabolic bands (see Appendix D). On top of that,
the two-qubit setup, in particular the transduction protocol in
Sec. IV, provides a direct experimental handle on chirality
because the entanglement protocol is unidirectional.

VI. CONCLUSION

We have presented a two-layer setup where the FM bot-
tom layer hosts a chiral magnon mode with energy lying in
the magnonic band gap. Coupling spin qubits to the chiral

235409-12



LONG-DISTANCE COUPLING OF SPIN QUBITS VIA … PHYSICAL REVIEW B 106, 235409 (2022)

magnon facilitates two different long range qubit-qubit cou-
pling protocols, both of which have beeen studied in detail.

We have investigated the magnon transduction protocol in
the ferromagnetic interlayer coupling regime. The coupling is
highly fast (∼1 GHz), owing to the excitation of a physical
magnon. Even though the mean-free path of the edge magnon
seriously limits the fidelity of such a two-qubit coupling, the
transduction protocol can be used as an experimental probe of
the chirality of topological edge magnons.

Long-distance two-qubit coupling mediated by virtual
magnons is found to be very promising for quantum com-
puting applications. This protocol requires antiferromagnetic
interlayer exchange interaction J⊥. We have shown the ex-
plicit dependence of gate speeds and fidelities on the effective
Gilbert damping of the chiral edge magnons. Even with a
pessimistic estimate of the damping based on typical bulk
values, for 1 μm qubit separation, 1 MHz coupling strength
has been found with a

√
SWAP gate fidelity up to 99.9%.

We also presented general analytical formulas for coupling
of two-dimensional spin qubits with chiral edge magnons that
can be of great use trying to identify the optimal materials and
dimensions for such a system.
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APPENDIX A: CONVENTIONS

In this Appendix, we guide the reader through the conven-
tions we used throughout the main text and give explicit for-
mulas as examples. First we define the Fourier transformation
of an operator O = ∑

i Oi as follows

Ok ≡ 1√
N

N∑
i=1

e−ikri Oi. (A1)

For the bosonic creation and annihilation operators, this con-
vention results in

ak ≡ 1√
N

N∑
i=1

e−ikri ai, (A2a)

a†
k ≡ 1√

N

N∑
i=1

eikri a†
i = (ak )†, (A2b)

where the corresponding commutation relation is [ak, a†
k′ ] =

δkk′ . For the Fourier transformation of the FM spin operators
in the x direction, this leads to

S+
i ≈

√
2S

Nx

∑
kx

eikxxi

4Ny∑
n=1

ϕ
μi

kx,n
(yi )akx,n, (A3a)

S−
i ≈

√
2S

Nx

∑
kx

eikxxi

4Ny∑
n=1

[
ϕ

μi

−kx,n
(yi )

]∗
a†

−kx,n
. (A3b)

where we have performed a transformation from the band
index n to the index pair (yi, μ) as well, with yi being the
armchair unit cell index, and μ is the index within the unit cell.
Furthermore, the transformed spin operators can be expressed
with the Holstein-Primakoff bosons as

S+
kx,n

≈
√

2Sakx,n, (A4a)

S−
kx,n

≈
√

2Sa†
−kx,n

. (A4b)

Consequently, the time evolution of the transformed spin
operators reads as

S+
kx,n

(t ) ≈ e−iεkx ,nt S+
kx,n

, (A5a)

S−
kx,n

(t ) ≈ eiε−kx ,nt S−
kx,n

, (A5b)

where we point out that S+
kx,n

(t ) = [S−
−kx,n

(t )]†.
We define the susceptibility of the transformed spin opera-

tors as

χ⊥
nm(t, kx ) ≡ −iθ (t )δnm

〈[
S−

−kx,n
(t ), S+

kx,n

]〉
= iθ (t )2Sδnmeiεkx ,nt , (A6)

where we used the time evolution of the spin operators in
Eq. (A5).

Furthermore, in frequency space, the susceptibility as-
sumes the form

χ⊥
nm(ω, kx ) =

∫ ∞

−∞
dt e−iωt−ηtχ⊥

nm(t, kx )

= −2Sh̄

εkx,n − h̄ω + iη
δnm, (A7)

where one can substitute the linewidth as η → αGεkx,n in the
case of Gilbert damping.

APPENDIX B: EFFECTIVE QUBIT-MAGNON COUPLING:
ANALYTICAL FORMULAS

Assuming a general, nonlocal coupling between the qubit
and the ferromagnet spins, the interaction Hamiltonian can
be written as Vp = ∑

i Si · M̂(rp − ri )σ p. Writing the convo-
lution between the FM spins and the coupling matrix M̂ in
Fourier space and expanding the coupling terms to first order
in magnon creation operators, one obtains

Vp = 1

2

∑
kx,n

eikxxQD
(
S+

−kx,n
M−

kx,n
+ S−

−kx,n
M+

kx,n

) · σ p

+ μBSBeff · σ p + O(S0), (B1)

where Beff is the effective magnetic field of the FM ground
state felt by the qubit. The couplings M±

kx,n
= Mx

kx,n ± iMy
kx,n

have three vector components x, y, z and can be expressed
with the real space coupling matrix elements as

M−
kx,n

= 1√
Nx

∑
xi,yi

∑
μ

e−ikxxiϕ
μ

−kx,n
(yi )

× M−(xi + xμ, yi + yμ − yQD), (B2)
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M+
kx,n

= 1√
Nx

∑
xi,yi

∑
μ

e−ikxxi
[
ϕ

μ

kx,n
(yi )

]∗

× M+(xi + xμ, yi + yμ − yQD), (B3)

Beff =
∑
xi,yi

∑
μ

Mz(xi + xμ, yi + yμ − yQD), (B4)

provided that xQD is commensurate with the lattice and there-
fore, the index xi can be shifted by xQD.

Assuming that the QD is very narrow, i.e., l2
y � d2

y + d2
z ,

the QD is subjected to a homogeneous magnetic field that
is given by the dipole field of the FM slab at its position.
For the parameters used in the main text ly ∼ dy, dz, but the
approximation above can still be used to estimate the con-
tribution of the dipole-field to the qubit splitting as shown
in Fig. 4. The dipole-field of the FM ground state may be
estimated by that of a magnetized ribbon substituting m1(r) =
�(y)�(Ly − y)Sez into Eq. (G1), where �(y) is the Heaviside
step function. The dipole field felt by the qubit at a position
r = (x, dy, dz ) is then given by

μBBx
eff = 0, (B5a)

μBBy
eff = − μ0

4π

z0ggQDμ2
B

axay

[
dz

d2
y + d2

z

− dz

(Ly + dy)2 + d2
z

]
,

(B5b)

μBBz
eff = −J⊥ − μ0

4π

z0ggQDμ2
B

axay

×
[
− dy

d2
y + d2

z

+ Ly + dy

(Ly + dy)2 + d2
z

]
, (B5c)

where Ly = Nya, the magnetic moment density of the ribbon
is given by z0μ

2
B/axay (z0 = 4 is the number of spins in the

FM unit cell), and we included the exchange field as well
in the last equation. The contribution of the z component of
the dipole field is ∼0.6 μeV for the parameters presented in
the main text, and therefore one might neglect it compared to
the exchange field. We note that the g-tensor anisotropy in the
QD layer can be straightforwardly accounted for, by replacing
gQDσ with ĝσ, where ĝ is the g tensor of the QD.

APPENDIX C: INCLUDING SPECTRAL BROADENING IN
THE SCHRIEFFER-WOLFF TRANSFORMATION

In this Appendix, we revisit the formula for the second-
order Schrieffer-Wolff transformation and show how spectral
broadening can be included in the subspace to be projected
out. For simplicity, in this section, we consider a single
qubit coupled to the magnons via the effective coupling V of
Eq. (B1), but the calculations we provide here can be extended
straightforwardly to the two-qubit system. Starting from the
definition of Weff in the Fourier space given in Eq. (14) of the
main text, assuming that the linewidth broadening of the qubit
is negligible compared to the broadening of the magnons we

get

Weff = 1

2h̄

∑
α,β

∫ ∞

−∞

dω

2π

〈0|FM [Vαβ (ω) |α〉 〈β| ,V ] |0〉FM

ω + i�[εαβ (ω)]
,

(C1)

where |α〉 , |β〉 are qubit basis states corresponding to the
energies εα, εβ , respectively. The state |0〉FM is the vacuum of
magnons and εαβ (ω) = |h̄ω − (εα − εβ )| is the contribution
of the magnons to the total excitation energy h̄ω. Furthermore,
the relaxation rate �[ε] is the inverse lifetime of the magnon.

Physically the motivation behind this substitution is the
following: the magnons are coupled to the phonons of the
FM lattice and thereby these modes are dressed. However, the
qubits are coupled to each other via the “pure” magnon modes.
Therefore we need to account for the indirect coupling of the
two-qubit system to the phonons of the FM lattice through the
finite lifetime �[ε] of the magnons.

Rewriting the coupling V on the eigenbasis of each subsys-
tems (e.g., the qubits and the ferromagnet) and substituting the
corresponding time dependence, we get

Vαβ (t ) =
√

S

2

∑
kx,n

[
eiεkx ,nt/h̄a†

kx,n

(
M+

kx,n
· σ

)
αβ

+ e−iεkx ,nt/h̄akx,n

(
M−

−kx,n
· σ

)
αβ

]
ei(εα−εβ )t/h̄. (C2)

Taking the Fourier transform in time leads to

Vαβ (ω) =
√

2Sπ h̄
∑
kx,n

[(
M+

kx,n
· σ

)
αβ

δ
(
�αβ + εkx,n − h̄ω

)
a†

kx,n

+ (
M−

−kx,n
· σ

)
αβ

δ
(
�αβ − εkx,n − h̄ω

)
akx,n

]
, (C3)

with �αβ = εα − εβ . Substituting Vαβ (ω) into Eq. (C1), one
obtains

Weff = S

4

∑
α,β

|α〉 〈β|
∑
kx,n

∑
γ

(M−
−kx,n

· σ )αγ (M+
kx,n

· σ)γ β

×
(

1

�αγ −εkx,n + ih̄�(εkx,n)
+ 1

�βγ −εkx,n−ih̄�(εkx,n)

)
,

(C4)

that is the usual second-order perturbative formula extended
with the linewidth broadening of the intermediate state.

The range of validity can be determined from Eq. (C4) by
requiring that the second-order correction δεα = 〈α|Weff |α〉
to the qubit energy level εα is much smaller than the orbital
level splitting of the QD, assumed to be �orb ∼ 10 meV, and
the bandwidth of the respective magnonic subband W ∝ JS ≈
2 meV. In particular, we consider (i) the magnon mode n
that is closest to the qubit splitting; (ii) the transition α =↑
and γ =↓, for which �↑↓ = �. We neglect transitions α = γ

because there are no resonant transitions for �αα = 0 due
to the FM resonance gap (εkx,n � �F ). The correction to the
qubit splitting due the magnon mode n reads as

δ�n = Sax

16π

∫
dk

∣∣M++
kx,n

∣∣2 � − εkx,n

(� − εkx,n)2 + h̄2�2(εkx,n)
,

(C5)
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which we then rewrite in terms of the density of states ρn(ε) =
dkx/dεkx,n as

δ�n = Sax

16π

∫ εmax

εmin

dε ρn(ε)
∑

γ

∣∣M++
kε,n

∣∣2 � − ε

(� − ε)2 + h̄2�2(ε)
,

(C6)

where the integration boundaries correspond to the lowest-
and highest-energy magnon state of εkx,n. We first consider the
case, when the qubit splitting is renormalized by a quadratic
mode εkx,n = ε0 + Dxk2

x with the density of states ρn(ε) =
[4Dx(ε − ε0,n)]−1/2. We exploit that for long QDs the cou-
pling can be estimated as |M++

kx,n
|2 ≈ |M++

0,n |2e−k2
x l2

x /2. Then, the
renormalization of the qubit splitting is given by

δ�n ≈ Sax

16π

∣∣M++
0,n

∣∣2
∫ Dxl−2

x

0
dε′ 1

2
√

Dxε′
δ − ε′

(δ − ε′)2 + h̄2�2
,

(C7)

where δ = � − ε0,n and we have cut the frequency integral at
Dxl−2

x to account for the decay of the coupling V in k space
and approximated �(ε) with a constant linewidth �. First,
we note that for � = 0 the above integral diverges as 1/

√
δ

near resonance. Evaluating the correction in Eq. (C7) for finite
linewidth � and small detunings δ, we get

δ�n ≈ S

32

|M++
0,n |2√

2Dxa−2
x h̄�

[1 + O(δ/h̄�)], (C8)

where we omitted terms that are �l2
x /Dx and δl2

x /Dx. Im-
portantly, the correction is no longer divergent on resonance,
owing to the linewidth that acts as a low-frequency cutoff
in this case. For a very conservative estimate we substitute

|M++
kx,n

| ∼ μ0μ
2
B

a3 ∼ 0.6 μeV and the FM resonance mode with
� = αG�F ∼ 5 neV that leads to δ�n � 30 neV on reso-
nance, that is well within the ∼0.5 meV bandwidth of the
respective magnon mode. Moreover, we note that the density
of states is not singular in the 2D limit (αGNy � 1) leading to
even larger range of validity for the bulk modes.

Now, we turn to the discussion of the chiral magnon mode
εkx,e = ε0 + vxkx that plays a central role in our work. Follow-
ing similar considerations as in Eq. (C7) for the linear mode,
we get

δ�e ≈ Sax

16πvx
|M++

0,e |2
∫ vx/lx

−vx/lx

dε′ δ − ε′

(δ − ε′)2 + h̄2�2
, (C9)

where we get a finite contribution even for � = 0. In fact
for δ = 0, the correction is δ�e = 0 in Eq. (C9) because the
spectrum is symmetric around the qubit splitting leading to no
renormalization of the excited qubit state. However, note that
the upper (ε > �) and the lower (ε < �) parts of the integral
are both logarithmically divergent if � = 0. Taking the con-
tribution of the magnon modes above resonance (ε > �) into
consideration, we get

δ�e,ε>� ≈ Sax

16πvx
|M++

0,e |2
∫ vx/lx

0
dε′ δ − ε′

(δ − ε′)2 + h̄2�2

≈ − Sax

32πvx
|M++

0,e |2
[

log

(
1 + v2

x

h̄2�2l2
x

)
+ O(lxδ/vx )

]
,

(C10)

where we assume δ = 0 to arrive at the second line. In a
very pessimistic estimate we might replace the logarithm
with −2 log αG ≈ 18, which leads to δ�e,ε>� ∼ 10−2 neV for
|M++

0,e | ∼ 100 neV and the parameters used in the main text.
This qubit splitting correction is several orders of magnitude
smaller than the bandwidth of the chiral mode.

APPENDIX D: EFFECTIVE QUBIT-QUBIT COUPLING

Here, we show first how to obtain Eq. (15) of the main text
and the analytical formulas for linear and quadratic magnon
modes in the subsequent sections. For this, we use the real
time expression for Weff defined in Eq. (13) and the coupling
V defined in Eq. (B1) in the Heisenberg representation as

Ṽ (t ) = 1

2

∑
p∈{1,2}

∑
kx,n

eikxxp
(
eiεkx ,nt S+

−kx,n
M−

kx,n

+ e−iε−kx ,nt S−
−kx,n

M+
kx,n

) · σ p(t ), (D1)

where we dropped terms of O(S0), furthermore σ±(t ) =
e±i�tσ± and σ z(t ) = σ z. Using Eqs. (A6) and (A7), we can
identify the susceptibility in each terms of the coupling in the
form of χ⊥

nn(ω, kx ) = i
h̄

∫ ∞
0 dt e−i(ω−εkx ,n )t−ηt . As it is shown

in Appendix C, the linewidth η can be replaced by the Gilbert
damping h̄�(εkx,n) = αGεkx,n. Finally, we get

Weff = 1

8

∑
p,q

∑
kx,n

eikxxpq M−
−kx,n

· σq

{
1

2
M++

kx,n
σ−

p χ⊥
nn(�/h̄, kx )

+ 1

2
M+−

kx,n
σ+

p χ⊥
nn(−�/h̄, kx ) + M+z

kx,n
σ z

pχ
⊥
nn(0, kx )

}

+ H.c., (D2)

where xpq = xp − xq. Dropping the off-resonant terms
χ⊥

nn(−�/h̄, kx ) and χ⊥
nn(0, kx ) and expanding M−

−kx,n
· σq

leads to Eq. (15). For ferromagnetic interlayer coupling, i.e.,
J⊥ > 0 (that is � < 0), the χ⊥

nn(−�/h̄, kx ) term becomes the
resonant contribution. In this latter case, the leading contri-
bution to the coupling would be ∝ |M+−|2 that is of the
same order as the magnon-induced relaxation rate in the
ferromagnetic coupling case [see Eq. (E6)]. This is a reason
why in our work we focus on the antiferromagnetic interlayer
coupling.

We note that the off-resonant terms cannot be dropped
for the qubit splitting corrections [i.e., the p = q terms in
Eq. (D2)]. Considering � ≈ ε0, where ε0 is the energy of
the chiral mode at kx = 0, the resonant term gives a con-
tribution on the order of the coupling strength (∼1 neV),
and the χ⊥

nn(0, kx ) term is expected to be even smaller. The
contribution of χ⊥

nn(−�/h̄, kx ) on the other hand contains
terms of the order of |M+−|2/(2�) (second order in exchange)
that are orders of magnitude stronger than the formers, i.e.,
|M+−| ∼ 100 μeV, leading to a dynamical contribution to the
effective field of the order of 1 μeV. Since this contribution
is still a small corrections to the static exchange field one can
simply redefine Beff accordingly.

1. Linear spectrum

The chiral edge mode has a linear dispersion around kx ∼
0 and it is well separated in energy from the bulk modes.
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Therefore the main contribution to the susceptibility at the
corresponding energy range is given by

χ⊥
nn(�/h̄, kx ) ≈ −2Sh̄

δne

vx(kx + iκ ) − δ
(D3)

where δ = � − ε0 and κ−1 ≈ vx
αG�

is the mean free path of the
chiral magnon. The other chiral branch with opposite group
velocity is localized on the other edge of the sample and
therefore is neglected in the effective qubit-qubit coupling.

First we convert the sum over kx to an integral as

Wpq = 1

16

ax

2π

∫ π/ax

−π/ax

dkx eikxxpq M++
kx,n

σ−
p χ⊥

ee(�/h̄, kx )

× M−
−kx,n

· σq + H.c., (D4)

assuming that the sample is large enough, i.e., 2π/Lx → 0.
If the integral is extended to infinity, i.e., ax → 0, it can
be performed using the residue theorem. However, this ap-
proximation is only valid in the low-energy limit, or in our
specific case for |δ| � |vx/ax| ∼ JS, such that the pole of the
integrand remains at finite kx. The integral of interest can be
evaluated using residue theorem as

− Sax

π

∫ ∞

−∞
dkx

eikxxi j

vx(kx + iκ ) − δ
f (kx )

= �(−vxxi j )
2iSax

|vx| eik0xi j−|κxi j | f (k0 − iκ ), (D5)

where k0 = δ/vx, Furthermore, we have assumed that f (kx ) is
a holomorphic function and the contribution of the upper arc
goes to zero if the contour is extended to infinity. Thus, for the
two-qubit couplings (p �= q), we have

W12 + W21 = iSax

8|vx|e−|κ|d M++
k0,n

M−
−k0,n

× [�(vx )e−ik0dσ−
1 σ2 + �(−vx )eik0dσ−

2 σ1]

+ H.c., (D6)

which can be rewritten as

W12 + W21 = iSax

16|vx|e−|κ|d(M++
k0,n

M−+
−k0,n

e−i|k0|dσ−
1 σ−

2

+ sgn(vx )|M++
k0,n

|2e−ik0dσ−
1 σ+

2 + M++
k0,n

M−z
−k0,n

× e−i|k0|d(�(vx )σ−
1 σ z

2 + �(−vx )σ z
1σ−

2

) + H.c.

(D7)

The individual two-qubit matrix elements can be read off
directly to obtain Eq. (19) of the main text.

2. Quadratic spectrum

Similarly to the case of the chiral edge magnon, we can
discuss the effect of a topologically trivial magnonic mode
that is localized at the edge of the FM. To this, we assume
that the energy of the trivial mode εkx,e = ε0 + Dxk2

x is well
separated from the two bulk bands and therefore the single

FIG. 7. Real and imaginary parts of the complex wave number
K = D−1/2

x

√−δ + iαG�, describing the decay and the period of the
oscillations in the effective coupling of Eq. (D8), respectively.

mode approximation is adequate. The effective interaction
matrix elements then read as

〈01|W12 |10〉 ≈ −Sax

Dx
Re

[
e−K|d|

K

]
|M++

−K,e|2, (D8a)

〈11|W12 |00〉 ≈ − Sax

DxK
e−K|d|M++

−K,e(M+−
−K,e)∗, (D8b)

〈10|W12 |00〉 ≈ − Sax

DxK
e−K|d|M++

−K,e

(
M+z

−K,e

)∗
, (D8c)

〈01|W12 |00〉 = 〈10|W12 |00〉 , (D8d)

where K = D−1/2
x

√−δ + iαG� is a complex wave number,
the real and imaginary parts of which describe the decay
and the oscillations of the effective couplings, respectively.
In Fig. 7, the real and imaginary parts of K are shown as
a function of the detuning, δ. We see that below resonance
(δ < 0) the real part of K is large and positive, leading to fast
decay of the effective couplings in Eq. (D8) as a function of
qubit-qubit distance d , whereas the imaginary part becomes
larger above resonance (δ > 0) leading mostly to oscillations
in the coupling strength.

Furthermore we note that the formulas above are only valid
for |K| � π/ax, or equivalently δ � Dx/a2

x ∼ JS. Therefore,
in the case of the bulk modes (harmonic spectrum), the expo-
nential decay in the coupling is only valid close enough to the
corresponding resonance. Consequently, the finite coupling
in the middle of the gap is not captured by these analytic
formulas.

APPENDIX E: DECOHERENCE

In this section, we show how to relate the transversal SV −

and longitudinal SV z qubit noise spectra to the transversal
noise spectrum of the magnons. The transversal noise spec-
trum of magnons is defined as

S⊥
kx,n(ω) ≡

∫ ∞

−∞
dt e−iωt

〈{
S−

−kx,n
(t ), S+

kx,n

}〉
, (E1)

substituting the time dependence of the FM spin operators in
Eq. (A5) the integral can be evaluated as

S⊥
kx,n(ω) = 2π h̄δ

(
h̄ω − εkx,n

)〈{
S−

−kx,n
, S+

kx,n

}〉
, (E2)
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where we can replace 2π h̄δ(h̄ω − εkx,n) by 1
S Im[χ⊥

nn(ω, kx )] in
the dissipative case. Furthermore, using the time dependence
of the FM spin operators in Eq. (A5) and substituting it into
Eq. (E1), one can easily show that

S⊥
kx,n(−ω) =

∫ ∞

−∞
dt e−iωt

〈{
S+

kx,n
(t ), S−

−kx,n

}〉
. (E3)

Exploiting the commutation relations between the magnon
creation and annihilation operators one obtains

S⊥
kx,n(ω) = Im[χ⊥

nn(ω, kx )] coth(βεkx,n/2), (E4)

as stated in the main text. We note that this is just a form of
the well-known fluctuation-dissipation theorem.

Writing down the transversal qubit noise spectrum accord-

ing to its definition as SV − (ω) = ∫
dt{[V −(t )]†,V −(0)} e−iωt ,

where V − is the term multiplying σ+
p in Eq. (B1), leads to

SV − (ω) = 1

4

∑
kx,n

∫ ∞

−∞
dt e−iωt

[∣∣M++
kx,n

∣∣2〈{
S−

−kx,n
, S+

kx,n

}〉

+ ∣∣M−+
kx,n

∣∣2〈{
S+

kx,n
(t ), S−

−kx,n

}〉]
, (E5)

where we exploited that 〈{S−
−kx,n

, S+
k′

x,n
′ }〉 ∝ δkx,k′

x
δnn′ . In the

equation above, the perpendicular magnon noise spectrum
appears in the form of Eqs. (E1) and (E3). Finally we get

SV − (ω) = 1

4

∑
kx,n

coth
(
βεkx,n/2

)[∣∣M++
kx,n

∣∣2
Im[χ⊥

nn(ω, kx )]

+ ∣∣M−+
kx,n

∣∣2
Im[χ⊥

nn(−ω, kx )]
]
, (E6)

where the second term can be dropped for ω = �/h̄ as it is
strongly suppressed even in the dissipative case. An analogous
derivation leads to the longitudinal qubit noise spectrum as

SV z (ω) =
∑
kx,n

coth(βεkx,n/2)
∣∣M+z

kx,n

∣∣2

× [Im[χ⊥
nn(ω, kx )] + Im[χ⊥

nn(−ω, kx )]]. (E7)

Afterwards, the noise power spectra obtained in Eqs. (E6)
and (E7) can be used to obtain the decoherence rates in Bloch-
Redfield approximation as

�1 = 1

4h̄2 SV − (�/h̄), (E8a)

�∗
2 = 1

4h̄2 SV z (0), (E8b)

where �1 is the qubit relaxation rate and �∗
2 is called pure

dephasing.

1. Decoherence due to a quadratic magnon mode

In the main text, we focused on the decoherence rates due
to the resonant interaction with the chiral magnon mode. Here
we provide analogous formulas for the case of a quadratic
mode, e.g., a bulk mode or a topologically trivial edge mode.
We start the discussion with the nondissipative limit αG = 0,
where the noise spectrum of the edge mode assumes the form

FIG. 8. Relaxation rate �1 from Eq. (E9a) plotted as a function
detuning δ. The relaxation is caused by to a trivial (1D) edge magnon
for Dx = 0.5 meV nm2. The effect of the van Hove singularity at zero
detuning is smoothed out by the finite Gilbert damping.

S⊥
kx,e

(ω) ∝ δ(Dxk2
x + ε0 − h̄ω) [see Eq. (E2)], and the deco-

herence rates of Eqs. (E8a) and (E8b) become

�1 = �(δ)
Sax

2h̄Dxk0
(|M++

k0,e
|2 + |M++

−k0,e
|2), (E9a)

�∗
2 ∼ O(S0), (E9b)

where we used Eqs. (E6) and (E7) and substituted them into
Eqs. (E8a) and (E8b). Furthermore, k0 = √

δ/Dx and we as-
sumed that the FM spectrum is gapped (e.g., via external
magnetic field) and therefore S⊥

kx,e
(0) = 0. The divergent be-

havior at k0 = 0 is due to the van Hove singularity of the
density of states that can be observed in Fig. 8.

In order to account for the effect of Gilbert damping, we
assume dy, dz � lx and neglect the dependence of the cou-
pling on kx except for the Gaussian factor e−k2

x l2
x /2. In contrast

to Eqs. (E9a) and (E9b), we consider the imaginary part of
the susceptibility with quadratic dispersion in Eq. (A7) with
a finite linewidth η = αGεkx,e, the integral over momentum is
exactly solvable leading to

�1 = − Sax

h̄Dx
|M++

0,e |2 Im

[eK2l2
x /2 Erfc

(Klx√
2

)
K

]
, (E10a)

�∗
2 ≈ αG

2
√

π

ax

lx

∣∣M−z
0,F

∣∣2

h̄�F

(
1 + DF

l2
x �F

)
, (E10b)

where we listed the relaxation rate for a trivial edge mode,
assuming |M++

0,e |2 ∼ 100 μeV for the coupling matrix ele-
ment, and the dephasing rate for the FM resonance mode.
Furthermore, �F is the ferromagnetic resonance energy and
DF is the curvature of the lowest magnonic band at kx = 0.
Even though the damping smoothens out the divergence of
the density of states at resonance, the relaxation rate is still
highly enhanced (see Fig. 8) rendering the trivial edge mode
unfavourable in practical applications.

APPENDIX F: EXCHANGE INTERACTION: ANALYTICAL
FORMULAS

In this section, we provide details of the direct exchange-
induced FM-QD coupling and derive the effective analytical
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formula presented in Eq. (24) of the main text. Since the QD
layer is adjacent to the FM layer, the wave function of the
particle on the QD can have a finite overlap with the FM spins.
In real space, the interaction can be written as

−
∑
i,μ

Si,μ · Ĵi,μσ|ψ (ri + rμ − rQD)|2. (F1)

Assuming that the interlayer exchange interaction Ĵi is homo-
geneous and isotropic with a strength of J⊥ and keeping the
leading terms only in the 1/S expansion, we get

−SJ⊥σ z + 1

4

∑
kx,n

(
S+

−kx,n
M−+

kx,n
σ− + S−

−kx,n
M+−

kx,n
σ+)

. (F2)

Here, the first term provides the effective magnetic field as
Beff = − 1

μB
SJ⊥ez as well as we get

M−+
kx,n

= − 2J⊥ ∑
i,μ

e−ikxxiϕ
μ

−kx,n
(yi )

× |ψ (xi + xμ, yi + yμ − yQD)|2. (F3)

In what follows, the QD wave function is assumed to be
Gaussian in both spatial directions, i.e.,

|ψ (xi + xμ, yi + yμ)|2 = axay

4π lxly
e−(xi+xμ )2l−2

x e−(yi+yμ )2l−2
y .

(F4)

Next we derive the estimate for the coupling to the chiral
edge mode in the continuum approximation. To this end, we
convert the sum over x to an integral and evaluate it as

1√
π lx

∫ ∞

−∞
dx e−ikxxe−(x+xμ )2l−2

x = e−k2
x l2

x /4+ikxxμ

. (F5)

The coupling matrix element then reads as

M−+
kx,e

≈ − J⊥ay

2
√

π ly
e−k2

x l2
x /4

∑
yi,μ

e−ikxxμ

ϕ
μ

−kx,e
(yi )e

−(yi+yμ−dy )2l−2
y .

(F6)

Next, we exploit that the edge state is well localized around
yi ∼ 0 and neglect xμ � lx and yμ � ly in the formulas to
arrive at

M−+
kx,e

≈ − J⊥ay

2
√

π ly
e−k2

x l2
x /4e−d2

y l−2
y

∑
yi,μ

ϕ
μ

−kx,e
(yi ). (F7)

Finally, since kx � l−1
x � π/ax, the last sum can be replaced

by δμe leading to Eq. (24) of the main text.
We can also account for the exponential envelope of the

edge mode and arrive at

M−+
kx,e

≈ −J⊥ay

4λ
e−k2

x l2
x /4e−dy/λ+l2

y /(4λ2 )

[
1 + erf

(
ly
2λ

− dy

ly

)]
.

(F8)

This approximation is necessary to capture the qualitative de-
pendence of the coupling for large dy due to the short-ranged
nature of the direct exchange interaction.

APPENDIX G: DIPOLE-DIPOLE INTERACTION
ANALYTICAL FORMULAS

In this section, we provide details of the dipole-induced
FM-QD coupling and derive the effective analytical formula
presented in Eqs. (25) and (26) of the main text. The dipole-
dipole interaction between localized magnetic moments reads
as

Hd−d = − μ0

4π

3(m1 · r̂)(m2 · r̂) − m1 · m2

|r1 − r2|3

+ μ0
2

3
m1 · m2 δ(r1 − r2), (G1)

where the magnetic moments are m1 = −μBgSi with Si being
the FM spin at position r1 and m2 = −μBgQD|ψ (r2)|2σ, and
we define r̂ = (r1 − r2)/|r1 − r2|. Using the wave function of
the QD, ψ (x′, y′), given in Eq. (F4), the coupling between the
QD and a lattice spin at position (x, y) is given by

M−+(x, y) = −μ0μ
2
BggQD

4π

∑
x′,y′

|ψ (x′, y′)|2

× (x − x′)2 + (y − y′)2 − 2d2
z[

(x − x′)2 + (y − y′)2 + d2
z

]5/2 , (G2a)

M−−(x, y) = −μ0μ
2
BggQD

4π

∑
x′,y′

|ψ (x′, y′)|2

× 3[(x − x′) − i(y − y′)]2[
(x − x′)2 + (y − y′)2 + d2

z

]5/2 , (G2b)

M−z(x, y) = −μ0μ
2
BggQD

4π

∑
x′,y′

|ψ (x′, y′)|2

× 3[(x − x′) − i(y − y′)]dz[
(x − x′)2 + (y − y′)2 + d2

z

]5/2 , (G2c)

where dz is the distance between the QD and the FM
planes. Furthermore we note that M+−(x, y) = M−+(x, y),
M++(x, y) = [M−−(x, y)]∗, and M+z(x, y) = [M−z(x, y)]∗.

Using the couplings in Eq. (G2), we write the coupling of
the QD to a given magnon mode (kx, n) as

M−
kx,n

=
∑
i,μ

e−ikxxiϕ
μ

−kx,n
(yi )

∑
i′,μ′

|ψ (r′
i + rμ′

)|2

× D−(�x,�y, dz ), (G3)

where we have used Eq. (B2). Furthermore we defined

D−(�x,�y, dz ) = − μ0μ
2
BggQD

4π
(
�x2 + �y2 + d2

z

)5/2

×
⎛
⎝�x2 + �y2 − 2d2

z
3(�x − i�y)2

3(�x + i�y)dz

⎞
⎠ +

−
z
, (G4)

with �x = xi − x′
i + xμ − xμ′

and �y = yi − y′
i + yμ − yμ′

.
Note that D− is not given in a vector form, but the first
(second, third) element of the column correspond to the D−+
(D−−, D−z) coupling elements. This notation is emphasized
next to the corresponding row.
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In order to obtain the formulas for the edge mode in
the continuum approximation, we convert the sums over x
coordinates to integrals, switch to the center-of-mass frame,
and neglect xμ, xμ′ ∼ ax since the QD wave function changes
slowly on this scale. Furthermore, we make use of Eq. (F5) to
get ∑

xi,x′
i

e−ikxxi |ψ (x′
i )|2D−(�x,�y, dz )

= e−k2
x l2

x /4 1

ax

∫ ∞

−∞
dx e−ikxxD−(x,�y, dz ), (G5)

where the Fourier transformation of the D− is analytically
solvable and reads as

1

ax

∫ ∞

−∞
dx e−ikxxD−(x,�y, dz )

= −μ0μ
2
BggQD

4πax

×

⎛
⎜⎜⎜⎝

− 2
3 k2

x K0 + 2
3

∣∣ kx
d⊥

∣∣K1 + 2
3

k2
x

d2
⊥

(
�y2 − 2d2

z

)
K2

−2k2
x K0 + 2

∣∣ kx
d⊥

∣∣(1 − 2kx�y)K1 + 2
3

k2
x �y2

d2
⊥

K2

−2idz
(∣∣ kx

d⊥

∣∣kxK1 + k2
x

d2
⊥
�yK2

)

⎞
⎟⎟⎟⎠

+
−
z
,

(G6)

with Kn ≡ Kn(|kx|d⊥) being the nth modified Bessel functions
of the second kind, and d⊥ = √

�y2 + d2
z .

From this point onwards, we will be focusing on the kx ∼
0 case since lx � dy, dz, ly. In this case, Eq. (G6) for kx = 0
simplifies to

1

ax

∫ ∞

−∞
dx D−(x,�y, dz ) = μ0μ

2
BggQD

2πaxd4
⊥

⎛
⎝d2

z − �y2

�y2 − d2
z

2i�ydz

⎞
⎠ +

−
z
.

(G7)

Assuming yi, y′
i � ly we substitute Eq. (G7) back into

Eq. (G3) to get

M−
kx∼0,e = μ0μ

2
BggQD

2πax
e−k2

x l2
x /4

∑
yi,μ

ϕ
μ
0,e(yi )

× ay√
π ly

∑
y′

i

e−
(

y′
i−d2

y

)
l−2
y 1

d4
⊥

⎛
⎝d2

z − �y2

�y2 − d2
z

2i�ydz

⎞
⎠ +

−
z
.

(G8)

Once again we assume that the edge mode is well localized
around yi ∼ 0 and therefore �y = y′

i. Then the sum over y′
i

can be converted to an integral and coupling acquires its final
form

M−
kx∼0,e = μ0μ

2
BggQD

πaxl2
y

e−k2
x l2

x /4δμe

×

⎛
⎜⎝ 1 + √

πRe
[
xex2

(1 + erf (x))
]

−1 − √
πRe

[
xex2

(1 + erf (x))
]

−i
√

π Im
[
xex2

(1 + erf (x))
]

⎞
⎟⎠ +

−
z
, (G9)

FIG. 9. (a) Real and (b) imaginary parts of the function I (x) in
Eq. (G10) with x = (idy − dz )/ly. These functions determine the de-
pendence of the dipolar FM-QD coupling of Eq. (G9) on the relative
length scales dy/ly and dz/ly.

where x = (idy − dz )/ly and the formula is valid for k−1
x �

ly, dy, dz, if the QD covers several lattice sites, i.e., lx, ly � a
and the edge mode is very well localized e.g., ly � λ. Further-
more we note that for dz � a the coupling starts to depend on
the lattice structure rμ that we have neglected in the calcula-
tion above. Finally, we introduce the complex function

I (x) = 1 + √
πxex2

[1 + erf(x)], (G10)

in order to simplify the formula for the dipole interaction-
induced couplings M−+

0,e , M−−
0,e , and M−z

0,e in Eq. (25) of the
main text. The real and imaginary parts of I (x) determine
the dependence of the coupling matrix elements M−

0,e on the
relative length scale x = (idy − dz )/ly. This functional depen-
dence is shown in Fig. 9.

Lastly, we show the derivation of the dipole coupling to
the FM resonance mode deep in the bulk, where the magnonic
eigenmodes can be labeled by the quantum numbers kx and ky.
The final result for this coupling has been shown in Eq. (26)
of the main text. Starting from

M−z
kx,ky

=
∑
xi,yi

e−ikxxi−ikyyi
∑
i′,μ′

|ψ (r′
i + rμ′

)|2

× D−z(�x,�y, dz ), (G11)

we separate center-of-mass and relative coordinates obtaining
the Gaussian factors e−k2

x l2
x /4e−k2

y l2
y /4 from the center-of-mass

integrals. Considering kx = 0 in the relative coordinates, we
are left with the integral

1

axay

∫
dxdy e−ikyyD−z(x, y, dz ) = μ0μ

2
BggQD

2axay
e−|ky|dz ky,

(G12)

which together with the Gaussian factors yield Eq. (26). Fi-
nally we note that the g-tensor anisotropy in the QD layer can
be taken into account as in Eq. (B5) for the dipole field, by
replacing gQDσ with ĝσ, where ĝ is the g tensor of the QD.
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