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In this paper, we provide a systematically convergable and efficient numerical approach to simulate multitime
correlation functions in the Mahan-Nozières-De Dominicis model, which crudely mimics the spectral properties
of doped two-dimensional (2D) semiconductors such as monolayer transition metal dichalcogenides. We apply
this approach to study the coherent 2D electronic spectra of the model. We show that several experimentally
observed phenomena, such as peak asymmetry and coherent oscillations in the waiting-time dependence of the
trion-exciton cross peaks of the 2D rephasing spectrum, emerge naturally in our approach. Additional features
are also present which find no correspondence with experimentally expected behavior. We trace these features to
the infinite hole mass property of the model. We use this understanding to construct an efficient approach which
filters out configurations associated with the lack of exciton recoil, enabling the connection to previous work and
providing a route to the construction of realistic 2D spectra over a broad doping range in 2D semiconductors.
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I. INTRODUCTION

Over the last decade, the study of two-dimensional (2D)
semiconductors and heterostructures constructed from them
has greatly enhanced our understanding of fundamental quasi-
particle excitations such as excitons, trions, and biexcitons,
and it has opened a path toward the construction of optoelec-
tronic devices [1–3]. Among this class of materials, transition
metal dichalcogenides (TMDCs) stand out due to the relia-
bility with which they can be created and manipulated. Their
unique physical properties, such as large spin-orbit coupling
and distinguished spin and valley degrees of freedom, create
an ideal playground for the observation of physical phenom-
ena [4–10]. Indeed, a variety of experimental approaches have
been employed to reveal behavior ranging from the individual
properties of dark excitons to collective behavior such as
Wigner crystallization and exciton condensation [11–16].

One experimental technique that has been applied to the
study of TMDCs is 2D electronic spectroscopy [17–19]. In
principle, 2D spectroscopy has the potential to uncover prop-
erties such as coherent coupling between excitations that
cannot be revealed via linear optical techniques such as
absorption or photoluminescence. On the other hand, 2D spec-
troscopy can be difficult to perform and interpret and often
requires a complimentary theory to unlock its full potential.
In the latter regard stands the important work of Tempelaar
and Berkelbach [20], who presented a detailed, microscopic
theory of 2D spectra in TMDCs. One possible limitation of
their approach, however, is the fact that it is confined to a
regime of relatively low electron doping. Authors of recent
work have emphasized the important role played by collective
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dressing of excitons by excess electrons in the higher doping
regime, where the trion peak may be interpreted as emerging
from a lower energy branch of a collective exciton-polaron
spectrum [21,22].

In this paper, we aim to enhance our understanding of the
emergent features in the 2D spectra of 2D semiconductors by
considering a simple model for which exact simulation (i.e.,
the simulations are systematically convergable toward the ex-
act solution) of the various 2D signals is possible [23,24].
The downside of such an approach is that the model is less
realistic than that studied in Ref. [20], but the advantage is
that the calculations are nonperturbative and thus can describe
the evolution over the full doping range. Interestingly, we find
that several features that arise from our calculations agree with
expectations from experiments and past work, while some
do not. A closer examination of the spectral features which
appear unique to our approach enable the facile elimination
of these features and afford a direct link to the work of
Ref. [20]. This bridge between our phenomenological ap-
proach and past microscopic ones should enable the future
construction of theoretical tools for the description of non-
linear 2D spectra that contain microscopic information but
are still capable of capturing nonperturbative effects at high
doping [25].

Our paper is organized as follows. In Sec. II, the theory
of 2D coherent electron spectroscopy for a simple model of
2D semiconductors, a Mahan-Nozières-De Dominicis (MND)
Hamiltonian-based model of electron-exciton scattering, is
presented. In Sec. III, the 2D rephasing spectra obtained
from this theory are presented, the various features observed
are compared against previous theoretical and experimen-
tal spectra, and the origin of the features present in the
spectra are discussed. Section IV provides a summary and
outlook.
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II. 2D SPECTROSCOPY OF A MND MODEL
FOR 2D SEMICONDUCTORS

A. MND Hamiltonian for electron-exciton scattering

We will consider an idealized model for describing
electron-exciton scattering in electron-doped semiconductors.
We take an electron-exciton scattering Hamiltonian of the
form of the MND Hamiltonian [25–27]:

Ĥ = EX̂ †X̂ +
∑

k

εkĉ†
kĉk +

∑
kk′

Vkk′ ĉ†
kĉk′ X̂ †X̂ . (1)

Here, X̂ † and X̂ are creation and annihilation operators for
an immobile exciton, ĉ†

k and ĉk are creation and annihila-
tion operators for an electron in the conduction band with
quasimomentum k, E is the exciton transition energy, εk =
|k|2/2me is the electron kinetic energy with me the electron
mass, and Vkk′ the scattering potential.

Assuming a 1s exciton state, we take the scattering poten-
tial to be [25]

Vkk′ = −νk−k′

A

[
1 − exp

(
−1

2
|k − k′|2ζ 2

)]
, (2)

where ζ is the exciton radius, A is the area, and νk−k′ is
the screened Coulomb potential and here is taken to be the
Rytova-Keldysh potential [28–30]:

νk−k′ = 2πe2

|k − k′|(1 + r0|k − k′|) , (3)

where r0 is the screening length. We note that this form of
the potential is microscopically derived in the limit of in-
finite exciton effective mass, which is the correct limit for
the MND model [31]. If, however, we endeavor to more
realistically treat the nearly equal electron and hole masses
as found in TMDCs, a different effective potential should be
employed [32].

Within this model, electron doping may be included by
considering an initial electron distribution (nk) given by a 2D
noninteracting electron gas with

nk = 1

exp [β(εk − ε f )] + 1
, (4)

where ε f is the Fermi energy, and β the inverse temperature.
In the zero temperature limit, this reduces to

nk = 1 − �(εk − ε f ). (5)

This model ignores spin degrees of freedom and exchange
interactions and, as mentioned above, assumes a single, im-
mobile (infinite mass) exciton with a purely 1s character that
couples to a noninteracting Fermi sea. As such, it is not
expected to quantitatively describe experimental results. How-
ever, this model can qualitatively capture the emergence of a
trion peak, oscillator strength transfer, and doping-dependent
line shapes in the linear absorption spectrum of monolayer
TMDCs even at relatively high electron doping [25]. Here, we
employ this simplified model to gain insight into the nonlinear
2D spectrum of 2D materials such as TMDCs, including its
doping dependence. While limited, the depth with which we
can investigate physical features enables an understanding
of the more realistic microscopic situation probed in real
experiments.

B. Multitime correlation functions

Here, 2D coherent spectroscopy provides a means of mon-
itoring coherent and incoherent dynamics of a system. This
technique employs a sequence of three ultrafast pulses to
produce a nonlinear optical response in the material [17,33].
By measuring this response and its dependence on the timing
between pulses, it is possible to resolve couplings between
distinct states in the system and to differentiate between co-
herent and incoherent energy transfer processes [17,34].

For the electron–single immobile exciton scattering model,
we consider here the light-matter interaction operator takes
the form [25]:

V̂ = c∗X̂ † + cX̂ , (6)

where c is a scalar proportional to the transition momentum
matrix element. With this definition and within the rotating
wave approximation, a total of four distinct multitime corre-
lation functions (and their complex conjugates) can provide
significant contributions to the nonlinear optical response of
this model [33]. These are the nonrephasing stimulated emis-
sion R1, the rephasing stimulated emission R2, the rephasing
ground state bleach R3, and the nonrephasing ground state
bleach R4 contributions. In principal, additional multitime cor-
relation functions that contain contributions from states with
more than a single excited exciton could be probed through
2D coherent spectroscopy experiments. Here, for simplicity
and to allow for qualitative comparisons with previously ob-
tained experiments [17], we only consider the two rephasing
contributions which are given by

R2(t1, t2, t3) = Tr[V̂ (t1 + t2)V̂ (t1 + t2 + t3)V̂ (t1)ρ̂V̂ ], (7)

R3(t1, t2, t3) = Tr[V̂ (t1)V̂ (t1 + t2 + t3)V̂ (t1 + t2)ρ̂V̂ ]. (8)

The corresponding 2D rephasing spectrum can be obtained
from this correlation functions as

SRP(ω1, t2, ω3) = S2(ω1, t2, ω3) + S3(ω1, t2, ω3), (9)

where

Si(ω1, t2, ω3) =
∫ ∞

0
dt1 exp(−iω1t1)

×
∫ ∞

0
dt3 exp(iω3t3)Ri(t1, t2, t3), (10)

for i = 2, 3. Here, ω1 and ω3 are the excitation and emission
energies, respectively, and t2 is the waiting time. In Fig. 1,
we illustrate the quantum mechanical pathways that contribute
to this spectrum. Similar expressions can be obtained for the
nonrephasing pathways. A treatment of pathways involving
states with more than a single excited exciton would require
an extension of the MND model discussed in Sec. II A.

C. 2D spectroscopy of the MND model

If we assume that the system is initially in a state with
no exciton and with an initial thermal (or ground state if
at zero temperature) configuration of the conduction elec-
trons, it becomes possible to efficiently evaluate the multitime
correlation functions [given in Eqs. (7) and (8)] for the
electron-exciton scattering form of the MND model. A given
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FIG. 1. Illustration of the pulse time ordering used for obtain-
ing two-dimensional (2D) rephasing spectra (top). The double-sided
Feynman diagrams representing the Liouville space pathways that
contribute to the 2D rephasing spectrum (bottom). These contribu-
tions are accounted for by the correlation functions R2(t1, t2, t3) (left)
and R3(t1, t2, t3) (right) and correspond to stimulated emission and
ground state bleach spectra, respectively. Here, we have used |0〉 and
|1〉 to represent zero and one exciton states, respectively, and at each
stage, arbitrary configurations of the conduction band electrons are
allowed.

multitime correlation function can be expressed as

Ri(t1, t2, t3) = det[(1 − n) + nRi(t1, t2, t3)], (11)

where 1 is the identity matrix, and n is the matrix with ele-
ments [n]kk′ = δkk′nk. Restricting ourselves to the rephasing
contributions, we have

R2(t1,t2,t3) = � exp[iε̃(t1 + t2)]�† exp(iεt3)

×� exp[−iε̃(t2 + t3)]�† exp(−iεt1), (12)

R3(t1,t2,t3) = � exp(iε̃t1)�† exp[iε(t2 + t3)]

×� exp(−iε̃t3)�† exp[−iε(t1 + t2)], (13)

where ε is a matrix with elements [ε]kk′ = δkk′εk, and � and
ε̃ are obtained by solving the eigenvalue problem:

∑
kk′

[(εk + E )δkk′ + Vkk′]�k′n = �knε̃n. (14)

In the zero temperature limit, Eq. (11) reduces to

Ri(t1, t2, t3) = det[Ri(t1, t2, t3)]εk�ε f
, (15)

where the determinant is only evaluated over the rows and
columns of the matrix Ri with εk less than or equal to the
Fermi energy. Similar expressions can be obtained for the
nonrephasing contributions.

D. Computational details

Before we can numerically evaluate Eqs. (12), (13), and
(15), it is necessary to specify a discretization of the model.
We use a finite-sized square box with square lattice points

given by

k = (kx, ky) =
{

π [2κx − (N − 1)]

L
,
π [2κy − (N − 1)]

L

}
,

(16)
where κx, κy = 0, 1, . . . , N − 1. Here, N is the number of grid
points in one direction, and L = Na
 is the box length, where
a
 is a cutoff length that is set by the choice of a cutoff energy
E
 = max(k2

x /2me) (here taken to be E
 = 1 eV). We have
used N = 140 grid points per dimension for all calculations
presented here.

In our calculations, we have chosen the screening length,
electron mass, and exciton transition energy consistent with
those of MoSe2. We have taken a screening length of r0 =
51.7 Å (obtained from the 2D polarizability used in Ref. [20]
obtained via the approximate relation r0 = 2πχ2d ) [10], elec-
tron mass of me = 0.52m0 [35], and exciton transition energy
E = 1.66 eV [20]. As was the case in Ref. [25], the exciton
radius ζ = 8 Å was taken as an adjustable parameter that was
used to control the trion-binding energy. We again emphasize,
however, that the form of our exciton-electron scattering po-
tential is only consistent in the limit mex → ∞, a situation
distinct from that of typical TMDCs [32].

To compute the 2D rephasing spectrum (Eq. 9) for a given
waiting time, it is necessary to evaluate the two rephasing
multitime correlation functions over a dense set of time points
(t1, t3). We have used a 2000 × 2000 grid of points (t1, t3) to
obtain the spectra presented here. For each time point, we
need to construct the two (N2 × N2) dense matrices R2 and
R3 for which we need to evaluate the determinant. For the
large matrices and grid sizes considered here, this process
can be rather costly; however, it can be rendered significantly
more efficient via GPU acceleration. All results presented here
were obtained using a GPU implementation of Eqs. (12), (13),
and (15).

III. 2D REPHASING SPECTRA

A. Doping-dependent 2D rephasing spectra

In Fig. 2, we present the linear absorption spectra and
absolute value of the 2D rephasing spectra obtained with
a waiting time t2 = 0, at zero temperature, and for vary-
ing values of the Fermi energy ε f . Consistent with previous
experimental and theoretical studies [17,20], each spectrum
shows four peaks arranged in a square pattern, readily at-
tributed to the bound trion and exciton states. The significant
asymmetry that is observed in the line shapes of the linear
absorption spectra [25] is evident in the 2D spectra as the
long tails of the peaks (most evident in the exciton-exciton
peak).

As the Fermi energy increases, there is considerable os-
cillator strength transfer from the exciton-exciton peak to
the trion-trion peak, consistent with the linear spectra [25].
The two cross peaks, corresponding to excitation at the exci-
ton(trion) and emission at the trion(exciton) energies which
we will refer to as the X-X −(X −-X), are more significant
as the Fermi energy increases, becoming the dominant fea-
ture at ε f = 10 meV. Additionally, as the Fermi energy
increases, it becomes possible to resolve an additional peak
(that for smaller Fermi energies appears as a shoulder in the
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FIG. 2. Doping dependence of the linear absorption spectrum and the amplitude two-dimensional (2D) rephasing spectrum of the Mahan-
Nozières-De Dominicis (MND) model calculated with a waiting time of t2 = 0. Here, we have normalized each of the 2D amplitude spectra
so that the maximum amplitude is 1. The dashed line along the diagonal corresponds to ω1 = ω3 (excitation energy = emission energy).

exciton-exciton peak). We discuss the origin of this peak in
Sec. III B. The presence of the cross peaks in the spectra
is indicative of exciton-trion coupling. Such peaks can arise
from both coherent and incoherent processes. To distinguish
between these distinct mechanisms, it is necessary to consider
2D spectra evaluated for different values of the waiting time
t2. In Fig. 3, we present the absolute value of the 2D rephasing
spectrum at varying values t2 for a Fermi energy of ε f =
10 meV. The diagonal peaks remain relatively unchanged.
In contrast, oscillations are observed in the amplitudes of
the cross peaks, with the amplitudes significantly diminished
at t2 = 60 fs compared with either t2 = 0 or 120 fs. This
behavior is qualitatively consistent with the experimental 2D
rephasing spectrum obtained for MoSe2 [17]. In addition to
this, we note that the intensity of the shoulder peak decreases
with increasing waiting time.

The oscillation in the amplitude of the cross peaks is made
more explicit in Fig. 4, where we present the waiting-time-
dependent amplitude of the X-X − and X −-X cross peaks for
the MND model with ε f = 5 and 10 meV. Here, we observe
well-defined oscillations in the peak amplitudes supporting
the fact that the system undergoes coherent interconversion
between exciton and trion states, as well as a decay with time,
consistent with experimental spectra [17]. The frequency of
the oscillation in the cross peaks increases with increasing
Fermi energy ε f due to the increase in the energy splitting
between the exciton peak and the trion peak with increasing
doping. Additionally, significant asymmetry in the X-X − and
X −-X peak amplitudes is observed, in contrast to the spectra
of Ref. [20]. In the next section, we will explore the origin
of this asymmetry and of the additional peak observed in the
spectra.

FIG. 3. Amplitude two-dimensional (2D) rephasing spectrum of the Mahan-Nozières-De Dominicis (MND) model with ε f = 10 meV
calculated for a range of waiting times t2 (shown on each panel). Here, each of the 2D amplitude spectra have been normalized by the
amplitude of the largest peak of the t2 = 0 spectrum. The dashed line along the diagonal corresponds to ω1 = ω3.
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FIG. 4. The waiting time t2, dependent normalized amplitude of
the two-dimensional (2D) rephasing spectrum at the lower (X-X −)
and upper (X −-X) cross peaks obtained for the Mahan-Nozières-De
Dominicis (MND) model with ε f = 5 (top) and 10 (bottom) meV.
The two curves in each panel have been normalized by the same
constant so that the maximum value obtained by either of the curves
is 1.

B. Restricted final state spectra

In addition to the expected four peaks that can be attributed
to the bound trion and exciton states and coherences between
them, the 2D rephasing spectra shown in Fig. 2 exhibit an ad-
ditional peak at large doping corresponding to excitation at the
exciton energy followed by emission at an energy between the
exciton and trion energies. The identification of the origin of
this peak in the 2D spectra is complicated by the large number
of distinct Liouville space pathways that contribute to the 2D
rephasing spectra. While the state of the exciton following the
application of a pulse is restricted to those shown in Fig. 1, the
conduction electrons are free to take any dynamically allowed
configuration.

In an effort to obtain a better understanding of the source
of the additional peak observed in the 2D rephasing spectra at
high Fermi energies, we restrict the possible Liouville space
pathways by restricting the final configuration of the conduc-
tion electrons. This can be done by replacing the light-matter
interaction term at time t1 + t2 + t3 in Eqs. (7) and (8) with
a new term that involves a projection onto the desired final
conduction electron state |� f 〉, that is,

V̂ (t1+t2+t3) → V̂f (t1+t2+t3), (17)

with

V̂f = V̂ ⊗ |� f 〉〈� f |. (18)

Here, we will note that, at t2 = 0, the two contributions to the
rephasing spectra are equivalent, and we thus only provide
explicit results for rephasing stimulated emission correlation

function R2:

R f
2 (t1, t2, t3)

= det
{
M(1)

[k0][k f ](t1, t2, t3)M(2)
[k f ][k0](t1, t2, t3)

}
, (19)

where

M(1)(t1, t2, t3) = � exp[iε̃(t1 + t2)]�† exp(iεt3), (20)

M(2)(t1, t2, t3) = � exp[−iε̃(t2 + t3)]�† exp(−iεt1), (21)

and we have used the notation A[a][b] to denote the matrix
formed from the rows a and columns b of the matrix A. Re-
lated expressions hold for the other three multitime correlation
functions.

Constraining the final state of the conduction electrons to
be the ground state, we can obtain the 2D-rephasing spectrum
using R0

2. At t2 = 0, this spectrum is identical to the non-
rephasing stimulated emission spectrum with the final state
constrained to be in the ground state, which is the spectrum
that was considered in Ref. [20]. In Fig. 5, we present this
constrained rephasing spectrum for a waiting time of t2 = 0
and for a range of Fermi energies. As with the full spectrum
present in Fig. 2, the asymmetric line shapes of the one-
dimensional spectra are strongly reflected by the shapes of
the peaks in the 2D spectra, and these spectra capture most
of the transfer of oscillator strength from the exciton to trion
peak with increasing Fermi energy. Additionally, these ground
state restricted spectra are symmetric around the line ω1 = ω3,
consistent with the results in Ref. [20]. This is a consequence
of restricting the final state of the bath; it follows immediately
from Eq. (19). As a result, the asymmetry present in the full
spectra is not observed when the final states of the conduction
electrons is constrained to the ground state. The additional
peak (and asymmetry in the cross peaks) arise from pathways
in which, following the application of the three pulses and
subsequent emission from the sample, there is at least one
conduction electron that has been excited out of the Fermi sea.
The remaining question is: Which states give rise to this peak?

Now, it is clearly impractical to perform an exhaustive
search of all final states, as there are too many individual
states, and it is not immediately clear that a contribution from
a given state will necessarily correspond to a feature in the
spectrum. As such, we now turn to looking at the contributions
to the spectra from pathways ending in states with a specific
number of excitations of the Fermi sea.

For the set of all states that contain a single excitation of
a conduction electron from the Fermi sea, the modified light-
matter interaction that is to be employed is

V̂f = V̂ ⊗
∑
i∈k0

∑
j∈\k0

ĉ†
j ĉi|�0〉〈�0|ĉ†

i ĉ j, (22)

where the sum over i runs over the set of all K initially
occupied orbitals k0 and j over the set of all unoccupied
orbitals, here denoted by \k0. Introducing the notation k j

i to
denote the set of orbitals occupied by ĉ†

j ĉi|�0〉, the singly
excited state restricted multitime correlation functions may be
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FIG. 5. Amplitude two-dimensional (2D) rephasing spectrum of the Mahan-Nozières-De Dominicis (MND) model with the final state of
the conduction electrons restricted to the ground state configuration at a waiting time t2 = 0 and with varying Fermi energies. The dashed line
along the diagonal corresponds to ω1 = ω3.

expressed as

R(1)
2 (t1, t2, t3) =

∑
i∈k0

∑
j 
∈k0

det
{

M(1)

[k0][k j
i ]

(t1,t2,t3)
}

×det
{
M(2)

[k j
i ][k0]

(t1,t2,t3)
}
. (23)

Given the potentially large number terms in each of these
sums, evaluation of this expression is infeasible. Instead, we
note that, with some rearrangement and the use of the Cauchy-
Binet formula, the sum over j may be performed analytically,
giving

R(1)
2 (t1, t2, t3) =

∑
i∈k0

{
det

[
R(i)

2 (t1,t2,t3)
]}

−KR0
2(t1, t2, t3). (24)

Here, R(i)
2 (t1,t2,t3) is a (2K − 1) × (2K − 1) matrix of the

form:

R(i)
2 (t1, t2, t3)

= (−1)K−1

[
0(K−1)×(K−1) A(t1, t2, t3)
B(t1, t2, t3) C(t1, t2, t3)

]
, (25)

where 0(K−1)×(K−1) is the (K − 1) × (K − 1) matrix of zeros,
and the matrices A, B, and C are the (K − 1) × K , K × (K −
1), and K × K matrices:

A(t1, t2, t3) = M(2)
[k0\i][k0](t1, t2, t3), (26)

B(t1, t2, t3) = M(1)
[k0][k0\i](t1, t2, t3), (27)

C(t1, t2, t3) = M(1)
[k0][\k0](t1, t2, t3)M(2)

[\k0][k0](t1, t2, t3), (28)

where [k0 \ i] denotes the set of K − 1 indices obtained after
removing i from the set k0. In Fig. 6, we compare the real

FIG. 6. Real part of the two-dimensional (2D) rephasing spectrum of the Mahan-Nozières-De Dominicis (MND) model for ε f = 10 meV
and a waiting time t2 = 0 with (a) the final state of the conduction electrons restricted to the ground state configuration, (b) all singly excited
state configurations, and (c) all higher excitation configurations. Here, each spectrum is normalized by the normalization constant required to
ensure that the peak in the full amplitude spectrum has amplitude 1. Note, we have used a finer spacing of contour lines in (c) to better show
the structure in the spectrum. The dashed line corresponds to ω1 = ω3.
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parts of the t2 = 0 rephasing spectra obtained with (a) the
final state constrained to the ground state of the conduction
electron bath, (b) the set of all singly excited states, and (c)
the remaining contributions coming from all final states with
more than a single excitation for a system with a Fermi energy
of ε f = 10 meV. From panel (a), we observe that the dominant
contributions to the peaks arising from the exciton, trion, and
their coherences can be attributed to pathways in which the
conduction electrons return to their final state. The singly
excited state contributions shown in panel (b) introduce asym-
metry to the spectra, providing small contributions to each of
the peaks present in the ground state spectra, and introduce
the additional peak. All pathways in which the final state
of the conduction electron bath contains more than a single
excitation above the Fermi sea provide very minor changes to
the spectra.

These results demonstrate that the presence of the addi-
tional peak and asymmetry in the 2D spectra can entirely
be attributed to terms in which, following the three-pulse se-
quence and emission of a photon, the system returns to a state
with no exciton but with a single conduction electron excited
above the Fermi sea. Now such a state will in general have
a different linear momentum from the initial configuration
of the system, and so for realistic 2D coherent spectroscopy
experiments (in which conservation of photon momentum and
therefore the system momentum is used to resolve different
pathways), these states should not contribute to the spectrum.

Within the electron-exciton scattering form of the MND
Hamiltonian [Eq. (1)], the presence of such features is not
surprising. In arriving at this model, it is necessary to take
the infinite exciton mass limit. Upon doing so, the original
scattering model becomes an impurity model that does not
preserve linear momentum during interactions between the
conduction electrons and exciton. As such, we can view this
feature as an artifact of the immobile exciton model. It is
important to note that, consistent with the above discussion,
the physically filtered case [Fig. 6(a)] looks nearly identical
to the spectrum obtained in a different manner in Ref. [20],
where the mass of the exciton is finite.

IV. CONCLUSIONS

In this paper, we have applied a MND Hamiltonian based
model of electron-exciton scattering to the evaluation of 2D

spectroscopy for 2D materials. This simple model, in which
we assume that the exciton is immobile, qualitatively captures
many of the features that have been observed in experimental
and previous theoretical treatments of the multidimensional
spectroscopy of monolayer TMDCs. Furthermore, the fact
that the model is solved in a numerically exact manner en-
ables the treatment of high doping density. This numerically
exact solution is facilitated by the use of GPUs, which greatly
increases the efficiency of the the evaluation and manipulation
of the large determinants that arise in the theory.

In making the immobile exciton approximation, the dy-
namics arising from this model do not conserve linear
momentum. As a consequence, the resultant 2D spectra con-
tains an additional peak that arises from pathways that result
in a singly excited final state of the conduction electrons. We
can effectively remove these pathways via a modification of
the light-matter interaction. Once so modified, the resulting
2D spectra bear a striking resemblance to that presented in
Ref. [20], where the hole and electron masses are treated as
finite.

The connection between the 2D spectra of Ref. [20] and
that of Fig. 6 provides some promising avenues for future
studies. The use of the modified light-matter interaction term
in conjunction with the exactly solvable Eq. (1) provides a
route to the study of 2D spectra that removes some of the
unrealistic features of the recoilless nature of our model while
preserving the ability to study the high doping limit where
Fermi-polaron features should be prominent. A detailed study
of this regime and the explication of the features revealed
in the 2D electronic spectroscopy will be presented in future
work.

The data supporting this paper are available from the cor-
responding author upon reasonable request.
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