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Geometry-induced monopole magnetic field and quantum spin Hall effects
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For a relativistic particle confined to a Möbius strip, the effective Dirac equation is first given in the thin-layer
quantization formalism. We find that an effective gauge potential results from the rotation transformation of the
adapted frame moving on the Möbius strip, and that an effective mass results from the rescaling transformation
determined by the metric tensor of the Möbius strip. It is intriguing that the geometry-induced gauge potential
can provide an effective monopole magnetic field for the particle with spin, and can induce quantum spin Hall
effects. As potential applications, an effective monopole magnetic field and spin Hall effects can be generated
and manipulated by designing the geometry of a two-dimensional nanodevice.
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I. INTRODUCTION

With the rapid development of artificial microstructure
technology, theoretical and experimental physicists are try-
ing to investigate novel phenomena of Hall physics in thin
films with complex geometries. Those investigations boost
the research interest in effective quantum dynamics for two-
dimensional (2D) curved systems. A much more suitable
scheme, the thin-layer quantization, was primitively employed
to study the geometric quantum effects of curved surface by
introducing a confining potential [1,2], and then the scheme
was extended to a low-dimensional manifold embedded in a
high-dimensional manifold [3]. In order to eliminate the ambi-
guity order, the quantization approach was clearly regularized
in a fundamental formalism [4], in which the geometric ef-
fects mainly manifest as a scalar geometric potential [2], a
geometric momentum [5,6], and a geometric gauge potential
[3,7]. The scalar geometric potential was proved to construct
a topological band structure for periodically minimal surfaces
[8], to generate bound states for spirally rolled-up nanotubes
[9], to eliminate the reflection for bent waveguides [10], to
provide the transmission gaps for periodically corrugated thin
layers [11,12], and so on. It was found that the geometric
momentum can contribute [13] and modify the spin-orbit cou-
pling [6,14,15]. As empirical evidences, the scalar geometric
potential was realized by an optical analog in a topological
crystal [16], and the geometric momentum was demonstrated
by the propagation of surface plasmon polaritons on metallic
wires [17]. In other words, the thin-layer quantization formal-
ism is valid for low-dimensional curved systems.

To the best of our knowledge, the thin-layer quantization
formalism was successfully employed to deduce the effective
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Schrödinger equation [1,2,18–25] and the effective Pauli
equation [26–28]. Most of the known geometric effects are
induced by curvature that can be directly determined by
the relationship between the three-dimensional (3D) metric
tensor and the 2D metric tensor [1,2]. In other words, the
curvature-induced effects can be given by a diffeomorphism
transformation. As a crucial ingredient, the geometric poten-
tial in the nonrelativistic case does not appear in the effective
Dirac equation [29–32]. Therefore, for a relativistic particle
confined to a curved surface the geometric effects need further
investigation. Because the spinor is not a representation of
a diffeomorphism group, we have to additionally consider
the rotation transformations of dreibein fields that are local
Lorentz rotations [33]. In the thin-layer quantization formal-
ism, the effective quantum dynamics is obtained by reducing
normal degrees of freedom. Specifically, one finds that the
geometric effects can be induced by not only curvature, but
also torsion [7]. The torsion-induced effects have been demon-
strated in a twisted quantum ring [34,35], on a Möbius ladder
[36,37] and a space curve [38] as an effective magnetic mo-
ment, a Zeeman-like coupling, and an anomalous phase shift
[39], respectively. Therefore, in the torsion-induced gauge
structure, the nontrivial properties of geometry-induced mag-
netic fields and the topological properties of torsion Landau
levels need further investigation.

The Dirac magnetic monopole is an Abelian monopole that
results from the singularities of an electromagnetic field [40].
Decades later a non-Abelian magnetic field was generalized
for the non-Abelian Yang-Mills gauge field [41–43]. Although
the magnetic monopole is not an active research topic, the
related researches are still published from time to time. Theo-
retically, the magnetic monopole was constructed in the pure
Yang-Mills theory [41], in the Georgi-Glashow model [44],
and in the “complementary” gauge-scalar model [45], respec-
tively. Experimentally, the magnetic monopole was realized in
bilayer graphene [46,47]. Particularly, the discussions of mag-
netic monopole were triggered by the appearance of SU(2)
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gauge theory in the classification of four manifolds [48]. In
a more general case, the effective quantum dynamics on a 2D
manifold or a one-dimensional manifold can be endowed with
SU(2) gauge structures by introducing a confining potential
with SO(3) symmetries to reduce two degrees of freedom
[38,49]. For a specific case, it was proved that the effective
dynamics confined to a particular curved surface is endowed
with U (1) gauge structure by introducing a confining potential
with SO(2) symmetries to reduce one degree of freedom [50].
Mathematically, those Abelian and non-Abelian gauge fields
can be induced by the geometry of a curved system as well as
that induced by strain [51] or the tensor monopole [52]. As an
important result in the present paper, the SU(2) structure of an
effective gauge potential can be determined by the geometry
of a Möbius strip, and provides an effective monopole mag-
netic field. For spin [53], the topology of a Möbius strip plays
the role of an effective magnetic field.

The quantum spin Hall effect is a new topological state
of quantum matter without an applied magnetic field, which
is different from the traditional quantum Hall effect with an
applied magnetic field. It is striking that the quantum spin
Hall effect was primitively and independently predicted as the
spin-orbit coupling [54,55] and as the presence of strain gra-
dients [56]. Subsequently, the new topological phenomenon
was experimentally realized in HgTe quantum wells [57]. For
the quantum Hall effect, the quantized Hall conductances are
determined by the quantum Landau levels that are created by
applied magnetic fields, while the quantum spin Hall effect is
determined by the degenerate quantum Landau levels that are
created by the spin-orbit coupling in conventional semicon-
ductors [58,59]. In virtue of that, the geometrical structures of
curved systems can provide an effective gauge potential for
particles with orbital spin [7,60], it is worthwhile to further
investigate the relationship between the nontrivial topology
of quantum Hall state [35] and that of a 2D curved surface.
As the nontrivial topological states can be constructed by the
topology of a Möbius band [35] and the quantum spin Hall
effect can be induced by the curvature of a Möbius strip [61].

As previous;y mentioned, we will deduce the effective
Dirac equation for a relativistic particle confined to a Möbius
strip, and will specifically study the quantum effects induced
by the nontrivial properties of a Möbius strip. The present
paper is organized as follows. In Sec. II the geometrical
properties of a Möbius strip are reviewed. In Sec. III the thin-
layer quantization formalism is briefly discussed, and then it
is employed to deduce the effective Dirac equation for the
relativistic particle confined to a Möbius strip. In Sec. IV we
discuss that an effective monopole magnetic field is induced
by a torsion, which is the topology of a Möbius strip. In Sec. V
we find that quantum spin Hall effects can be induced by
the geometry of a Möbius strip, which can be taken as the
response of spin to torsion. In Sec. VI the conclusions and
discussions are given.

II. THE GEOMETRICAL PROPERTIES
OF A MÖBIUS STRIP

For a curved surface S2, one can adapt a suitable curvilin-
ear coordinate system to describe it as r(q1, q2), a function
of q1 and q2, where q1 and q2 are two tangent coordinate

FIG. 1. Schematic of a Möbius strip. �er and �es are two tangent
unit basis vectors, and �en is the normal unit basis vector of a Möbius
strip. The local frames F1, F2, and F3 are localized at θ = 0, 4π

3 , 8π

3 ,
respectively.

variables of S2. For a point near S2, an additional coordinate
variable q3 normal to S2 has to be introduced to parametrize
as R(q1, q2, q3) = r(q1, q2) + q3n, where n denotes the unit
basis vector normal to S2. The presence of S2 will deform
its near space denoted as �S2. The deformation can be de-
scribed by a diffeomorphism transformation that belongs to
GL(3,R). As usual, a relativistic particle can be described
by a spinor. Without a spinor representation, GL(3,R) can-
not be employed to describe the actions of diffeomorphism
transformation on the spinor confined to S2. However, the
confined spinor will obey the rotation transformation connect-
ing the local frames at different points on S2 [62], which is
a generator of SO(3). In order to further learn the specific
actions of the diffeomorphism transformation and the rotation
transformation on the spinor confined to a curved surface in
a special case with nonvanishing torsion, we will consider a
Möbius strip. In view of the reality, an actually curved surface
has a certain thickness. As the scale size of the thickness is
small enough, the gap between the ground and first excited
normal states would be large enough. In that case, the confined
particle will permanently stay at the ground state, and the
thin-layer quantization scheme is valid. A Möbius strip of
half-width w with a midcircle of radius R and at height z = 0
can be parametrized by r(r, θ ) = (rx, ry, rz ) with

rx(r, θ ) =
[

R + r cos

(
θ

2

)]
cos θ,

ry(r, θ ) =
[

R + r cos

(
θ

2

)]
sin θ,

rz(r, θ ) = r sin

(
θ

2

)
, (1)

where r and θ are two variables with r ∈ [−w,w] and θ ∈
[0, 4π ], and R can be taken as a constant. The Möbius strip is
denoted by M2 and sketched in Fig. 1. For convenience we
adapt an orthogonal frame spanned by two tangent vectors
er and es and a normal vector en. It is worth noting that
the direction of the adapted local frame is moving on M2.
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According to Eq. (1), we can obtain the three basis vectors as

er =
(

cos
θ

2
cos θ, cos

θ

2
sin θ, sin

θ

2

)
,

es = 2

N

[
−

(
R sin θ + 3

2
r cos θ sin

θ

2
+ r sin

θ

2

)
,

× R cos θ + 1

4
r cos

θ

2
+ 3

4
r cos

3θ

2
,

1

2
r cos

θ

2

]
,

en = 2

N

[
R sin

θ

2
cos θ − r sin2 θ

2
sin θ,

× R sin
θ

2
sin θ + 1

2
r(sin2 θ + cos θ ),

− R cos
θ

2
− r cos2 θ

2

]
, (2)

respectively, where N is a normalized constant as

N =
(

4R2 + 8Rr cos
θ

2
+ 2r2 cos θ + 3r2

)1/2

. (3)

It is straightforward that (er, es, en) can be obtained by the
usual basis vectors (ex, ey, ez ) through a rotation transforma-
tion UR in the following form:⎡

⎣er

es

en

⎤
⎦ = UR(r, θ )

⎡
⎣ex

ey

ez

⎤
⎦, (4)

where UR can be specifically expressed as

UR(r, θ ) =
⎡
⎣ex

r ey
r ez

r
ex

s ey
s ez

s
ex

n ey
n ez

n

⎤
⎦, (5)

through the dreibeins ei
α (α = r, s, n) and (i = x, y, z), which

can be written as

ex
r = ∂rx

∂r
= cos

θ

2
cos θ,

ey
r = ∂ry

∂r
= cos

θ

2
sin θ,

ez
r = ∂rz

∂r
= sin

θ

2
,

ex
s = 2∂rx

N∂θ
= − 1

N

(
4R cos

θ

2
+ 3r cos θ + 2r

)
sin

θ

2
,

ey
s = 2∂ry

N∂θ
= 1

N

(
2R cos θ + 1

2
r cos

θ

2
+ 3

2
r cos

3θ

2

)
,

ez
s = 2∂rz

N∂θ
= 1

N
r cos

θ

2
,

ex
n = ey

rez
s − ez

rey
s

= 2

N

(
R sin

θ

2
cos θ − r sin2 θ

2
sin θ

)
,

ey
n = ez

rex
s − ex

r ez
s

= 1

N

[
2R sin

θ

2
sin θ + r(sin2 θ + cos θ )

]
,

ez
n = ex

r ey
s − ey

rex
s

= − 2

N

(
R cos

θ

2
+ r cos2 θ

2

)
. (6)

It is easy to check that UR(r, θ ) is a generator of SU(2) group,
the universal cover of SO(3), for θ ∈ [0, 4π ].

As an immediate result, the geometry of a Möbius strip will
deform its near normal space that can be denoted as �M2. The
deformation will bring the information of normal space into
the tangent space, which can be described by a rescaling factor
f that relates the 3D metric tensor Gαβ and the 2D metric
tensor gab. With the definition gab = ∂ar · ∂br (a, b = 1, 2),
the metric tensor defined on M2 can be given by

gab =
[

1 0
0 N2

4

]
, (7)

and the corresponding determinant and the inverse matrix can
be obtained as

g = N2

4
(8)

and

gab =
[

1 0
0 4

N2

]
, (9)

respectively. With the definition hab = en · ∂2r/∂qa∂qb

(a, b = 1, 2), the second fundamental form hab can be
given by

hab =
[

0 R/N
R/N N2+r2

2N sin θ
2

]
. (10)

Furthermore, the Weingarten curvature matrix can be calcu-
lated as

αb
a =

[
0 −4R/N3

−R/N − 2(N2+r2 )
N3 sin θ

2

]
, (11)

with αb
a = −hacgcb.

In terms of M2, the position vector of a point in �M2 can
be parametrized by

R(θ, r, q3) = r(θ, r) + q3en, (12)

where q3 is the coordinate variable normal to M2. With the
definition Gαβ = ∂αR · ∂βR (α, β = 1, 2, 3), the covariant el-
ements Gab can be described as

Gab = gab + (αg + gT αT )abq3 + (αgαT )ab(q3)2 (13)

by gab and αb
a, and G33 = 1 and the rest elements vanish. It

is easy to prove that g, the determinant of gab, and G, the
determinant of Gαβ , satisfy the following simple relationship:

G = f 2g, (14)

where f is the rescaling factor,

f = 1 + Tr(α)q3 + det(α)(q3)2. (15)

The Dirac equation contains only a one-order derivative op-
erator. In the thin-layer quantization formalism, f

1
2 and f −1/2

can be further approximated as

f ∓1/2 ≈ 1 ∓ 1
2 Tr(α)q3. (16)
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Obviously the determinant of αb
a disappears from Eq. (16). In

other words, the geometric effects resulting from the rescaling
factor depend only on the mean curvature M of M2, not on
the Gaussian curvature K . M and K can be expressed in the
following form:

M = 1

2
Tr(α) = (N2 + r2) sin θ

2

N3
,

(17)

K = det(α) = −4R2

N4
,

respectively. However, in the nonrelativistic limit the effective
Hamiltonian will contain two-order derivative operators, the
factors f 1/2 and f −1/2 have to contain the terms of (q3)2, and
K will then contribute additional geometric effects. As a con-
sequence, in the case of a curved surface with nonzero K , the
thin-layer scheme does not commutate with the nonrelativistic
limit, the measurement was recently discussed [63].

III. THE EFFECTIVE DIRAC EQUATION
ON A MÖBIUS STRIP

In this section, for a relativistic particle confined to M2,
the effective Dirac equation will be given by using the thin-
layer quantization scheme. In the semiclassical formalism, a
confining potential is first introduced to reduce the degree of
freedom normal to M2. Without loss of generality, the strength
of the confining potential cannot be strong enough to create
particle and antiparticle pairs [30]. In other words, the number
of particles is conserved in the quantization procedure.

A. A rescaling transformation

In quantum mechanics, the particle number conservation
can be described by∫

|�†�|dτ =
∫

|�|2
√

Gd3q

=
∫

|
√

f �|2(
√

gdrds)dq3, (18)

where � is a wave function describing a relativistic particle
in a usual 3D space, q stands for the three curvilinear co-
ordinate variables, G is the determinant of the metric tensor
Gαβ defined in the subspace �M2, and g is the determinant of
the metric tensor gab defined on the curved surface M2. The
final aim of the thin-layer quantization scheme is to obtain
the effective Dirac equation that is separated from the normal
component analytically. Notice that the rescaling factor f is in
general a function of q1, q2, and q3. The q dependence of G is
difficult for the final separation, and which is determined by
the diffeomorphism transformation induced by M2. Specifi-
cally, the separation of

√
Gd3q into a q3-dependent part and

a q3-independent part can be accomplished by introducing a
new wave function χ , χ = √

f �, which can eliminate f from√
Gd3q.
Under the diffeomorphism transformation, the wave func-

tion � and an ordinary physical operator Ô satisfy the
following transformations:

χ = f 1/2�,
(19)

Ô′ = f 1/2Ô f −1/2,

where f is the rescaling factor that is defined in Eq. (15). In
view of the original intention of the introduction of χ , the
above transformation can describe the redistribution of the
spatial probability of a particle near M2. However, this trans-
formation cannot describe well the geometry-induced effects
on a spinor. As a consequence, for the spinor on M2, one
has to consider the rotation transformations defined by the
background dreibein fields of the Möstrip M2.

B. A frame rotation transformation

In contrast to the particle described by the Schödinger
equation, the particle described by the Dirac equation has an
additional intrinsic degree of freedom, spin. Since the spinor
is not a representation of GL(3,R), the diffeomorphism trans-
formation cannot describe well the dynamics of a spinor on
M2. As usual, in �M2 the spinor is taken as the eigenstate
of σ3, where σ3 is a Pauli matrix. It is easy to check that
the basis vectors (er, es, en) can be obtained by (ex, ey, ez )
through a rotation transformation UR, which connects the
local frames at different points of M2. Specifically, σ3 can be
also obtained by σz through the rotation transformation UR.
In the Pauli-Dirac representation, for the spinor on M2, the
new wave function χ and the rescaled physical operator Ô′
specifically satisfy the following transformations:

χ ′ = URχ,
(20)

Ô′′ = URÔ′U −1
R ,

where UR is the rotation transformation connecting (er, es, en)
and (ex, ey, ez ), and U −1

R is the inverse of UR.
As a conclusion, for a spinor on M2, the wave function

� and an ordinary physical operator Ô in general satisfy the
following transformations:

� ′ = UR f 1/2�,
(21)

Ô′ = UR f 1/2Ô f −1/2U −1
R ,

where f is the rescaling factor with the form of Eq. (15)
and UR is the rotation transformation describing the adapted
frame moving on M2. Furthermore, the effective physical
operator describing the spinor confined on M2 can be given
by

Ôeff = lim
q3→0

(
UR f 1/2Ô f −1/2U −1

R
) − Ô⊥, (22)

where Ô⊥ is the normal component of Ô. This equation is a
key result in the present paper, which condenses the initial
spirit of the thin-layer quantization scheme [4]. Interestingly,
it is can be extended to vector fields, such as an electromag-
netic field [13].

C. Effective Dirac equation

In the spirit of a thin-layer quantization scheme, a relativis-
tic particle is initially described by a usual Dirac equation, that
is

(iγ μ∂μ − m)� = 0, (23)

where ∂μ is a derivative operator in (3+1)-dimensional space-
time, m is the static mass of a particle, and γ μ (μ = 0, 1, 2, 3)

235403-4



GEOMETRY-INDUCED MONOPOLE MAGNETIC FIELD AND … PHYSICAL REVIEW B 106, 235403 (2022)

are the 4 × 4 Dirac matrices that satisfy the following anti-
commutation relationship:

[γ μ, γ ν]+ = γ μγ ν + γ νγ μ = 2ημν, (24)

where ημν = diag(1,−1,−1,−1). In Eq. (23), � is a four-
component spinor, which can be separated into a scalar
component ψ and a vector component ŝ under the transfor-
mations Eqs. (19) and (20). In the Pauli-Dirac representation,
the Dirac matrices γ μ can be given by

γ 0 =
(

I 0
0 I

)
, γ i =

(
0 σ i

−σ i 0

)
, (25)

where I is a unit 2 × 2 matrix, and σ i (i = x, y, z) stand for
three Pauli matrices:

σ x =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
,

(26)

respectively.
For a relativistic particle in �M2, one can adapt a local

frame, in which the four-component wave function � and
the Dirac Hamiltonian H in Eq. (23) should be replaced by
a new wave function χ and a new Hamiltonian H ′ that can be
expressed as

χ = UR f 1/2�,
(27)

H ′ = UR f 1/2H f −1/2U −1
R .

Subsequently, a confining potential is introduced to reduce the
normal degree of freedom. In the presence of an introduced
potential, the relativistic particle is going to stay a long time
at the ground normal state of M2. With the ground normal
state and Eq. (22), the effective Dirac Hamiltonian can be
specifically determined by

Heff = lim
ε→0

〈χ⊥0 |
(
UR f 1/2H f −1/2U −1

R
) − H⊥|χ⊥0〉

= 〈χ⊥0 |
(
UR f 1/2H f −1/2U −1

R
) − H⊥|χ⊥0〉0, (28)

where ε describes the scaling size of a normal degree of
freedom, and χ⊥0 is the ground normal state. In order to obtain
the solution of ground state, the transformed wave function χ

has to be divided into a tangent part χ||(r, s) and a normal part
χ⊥(q3) as

χ (q) = χ⊥(q3)χ‖(r, s). (29)

In the process, the time dimension is conveniently taken as
a constant variable, and the confining potential cannot be
strong enough to create particle and antiparticle pairs [30] to
conserve the particle number. For the sake of simplicity, the
confining potential Vc can be chosen [64] as an infinitely deep
potential well in the following form:

Vc = lim
ε→0

{
0, − ε

2 � q3 � ε
2 ,

∞, q3 < − ε
2 , q3 > ε

2 ,
(30)

where ε describes the width of the potential well. And the
Dirac equation (23) can be rewritten into

(iγ α∂α − m + Vc)� = E�, (31)

where α = 1, 2, 3 describes the three coordinate variables of
the adapted frame, and E is the eigenenergy.

For the extreme limit of Vc, the normal component of Dirac
equation can be directly given as

(iγ 3∂3 + Vc)χ⊥ = E⊥χ⊥, (32)

where E⊥ is the normal component of energy that satisfies
E‖ + E⊥ = E , wherein E‖ is the tangent component of energy.
In the presence of Vc, the Dirac particle is strictly confined in
the interval [−ε/2, ε/2], and thus Eq. (32) can be simplified
as

iγ 3∂3χ⊥ = E⊥χ⊥. (33)

Without spin, the above equation can be further simplified and
formed as

−∂2
3 χ⊥ = E2

⊥χ⊥. (34)

With the boundary continuous conditions, the specific solution
of χ⊥ can be easily solved as

χ⊥(q3) =
√

2

ε
cos(knq3), (35)

where kn is the normal component of momentum quantized as
kn = (2n + 1)π/ε. With the limit ε → 0, the gap between the
ground state and the first excited state becomes large enough,
the Dirac particle will permanently stay in the ground state
|χ⊥0〉.

In the Pauli-Dirac representation, the spinor on M2 can
be taken as the eigenstates of σ3, where σ3 is a Pauli matrix
in the adapted frame. Based on the previous discussions, the
new Dirac matrices γ α and the new derivative operators Dα

can be described by the usual Dirac matrices γ i and the usual
derivative operators ∂i through a rotation transformation UR,

γ α = URγ i = eα
iγ

i

=
[

0
∑

i=x,y,z eα
iσ

i

−∑
i=x,y,z eα

iσ
i 0

]
,

Dα = U −1
R ∂i + ∂i

(
U −1
R

) = ei
α∂i + (

∂ie
i
α

)
. (36)

Practically, the rotation transformation UR can be accom-
plished by performing three rotation transformations Uz, Uy,
and Ux in turn, where Uz is a rotation around ez, Uy is a
rotation around e′

y that stands for the y axis rotated by Uz, and
Ux is a rotation around e′′

x that stands for the x axis rotated
by performing Uz and then Uy. In the Cartesian coordinate
system, Uz is

Uz(θ ) =
⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦, (37)

Uy is

Uy(θ ) =
⎡
⎣cos θ

2 0 − sin θ
2

0 1 0
sin θ

2 0 cos θ
2

⎤
⎦, (38)

and Ux is

Ux(r, θ ) =
⎡
⎣1 0 0

0 cos θx sin θx

0 − sin θx cos θx

⎤
⎦, (39)
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respectively, here cos θx = 2(R + r cos θ
2 )/N and sin θx =

r/N . It is easy to prove that UR = UxUyUz. In the presentation
of σ3, UR can be reexpressed as

UR(r, θ ) = e−iθ·σ, (40)

where θ = (θx, θy, θz ) and σ = enσ3, with θx = arcsin(r/N ),
θy = θ/2, θz = θ .

Substituting Eqs. (16), (35), and (40) into Eq. (28), we
can obtain the effective Hamiltonian Heff that describes the
relativistic particle confined to M2 as

Heff = iγ a(∂a − iσ3Aa) − (m + meff ), (41)

where σ3 just takes its eigenvalues σ3 = ±1, A is a geometric
gauge potential with Aa = ∂a(θ · σ) (a = r, s), and meff is
an effective mass induced by the geometry of M2, meff =
1
2 Tr(α), wherein α is the Weingartein curvature matrix. For
Eq. (41), the effective Dirac equation can be written as

[iγ a(∂a − iσ3Aa) − (m + meff )]|χ‖〉 = E‖|χ‖〉, (42)

where E‖ is the tangent component of eigenenergy, and |χ‖〉
stands for the tangent part of the wave function. Strikingly,
the geometry of M2 plays the role of gauge potential for the
spinor and the mean curvature of M2 contributes an effective
mass.

Obviously the geometric gauge potential Aa is given by
∂a acting on UR

−1, and the effective mass meff results from
the action of ∂3 on f −1/2. It is worth noting that all the
high order terms of q3 in f −1/2 vanishes by performing the
integral 〈χ⊥0 |χ⊥0〉0. Meaning, the high power terms are losing
the actions of ∂3 before performing the nonrelativistic limit.
In other words, the thin-layer quantization scheme does not
commute with the nonrelativistic limit process. Importantly,
the effective Pauli equation on M2 should be performed in a
certain order [4]. Specifically, the nonrelativistic limit is prior
to the thin-layer quantization scheme.

IV. GEOMETRY-INDUCED MONOPOLE
MAGNETIC FIELD

The rotation UR describes the connection of the local
frames at different points on M2, which can be described
by two tangent coordinate variables r and s of M2 without
the normal coordinate variable q3. It is easy to obtain that
the three components of the geometric gauge potential are
Ar = 2R/N2,

As = 1√
N2 − r2

sin2 θ

2
sin2 θx

(
cos θ cos2 θx +cos

θ

2
sin 2θx

)

+ 1

N

[(
sin θ sin

θ

2
+2 cos

θ

2

)
cos θx − cos θ sin θx

]
,

(43)

and An = 0, respectively. And the geometry-induced mag-
netic field can be then obtained by

Bn = ∂rAs − ∂sAr (44)

and Br = Bs = 0, because Ar and As do not depend on the
coordinate variable q3 and A3 = 0. Therefore, the geometry-
induced magnetic field B is along the negative normal
dimension of M2 that is sketched in Fig. 2(a) as an effective

FIG. 2. (a) In the case of a half-integer linking number, there is
an effective monopole magnetic field B that is described by blue
arrows. The deep blue and light blue arrows denote the magnetic
fields on the visible and hidden parts of M2. (b) The monopole field is
projected onto a sphere. (c) In the case of an integer linking number,
there is an effective ordinary magnetic field. The blue and red arrows
are employed to distinguish the effective ordinary magnetic fields at
the different sides of M2 with opposite normal directions. The deep
color and light color arrows denote the magnetic fields on the visible
and hidden parts of M2. (d) The ordinary field is projected onto a
sphere.

monopole magnetic field. The result is described in Fig. 2(b).
Apparently, the geometry-induced magnetic field always ori-
entates to M2. The particular monopole magnetic field just
appears in the case of a half-integer linking number [65]

1
2π

∫
τdθ = n + 1

2 (n ∈ Z ), with Z being an integer. In the
half-integer case, by performing one tour on M2, one arrives
at an opposite magnetic field at the opposite side of M2 at
the same position. Therefore, the geometry-induced magnetic
field has a source at M2. For an integer linking number

1
2π

∫
τdθ = n + 1, the effective magnetic field becomes an

ordinary magnetic field which is sketched in Fig. 2(c), and
also projected onto a sphere described in Fig. 2(d). In the
integer case, the geometry-induced magnetic field is ordinary
with free sources at M2. The blue arrows denote the effective
magnetic field whose direction is determined by the adapted
frame moving on one side of M2. The red arrows stand
for the effective magnetic field whose direction is defined
by the adapted frame moving on the other side of M2 in
an opposite normal direction. In the blue and red cases, by
performing one tour on M2 with an integer linking number,
one arrives at the same magnetic field at the same side of
M2. As a consequence, the effective monopole magnetic field
is completely determined by the topology of M2. And the
geometry-induced magnetic field Bn is specifically described
in the plane spanned by r and θ as sketched in Fig. 3.

Noticeably, the geometry-induced magnetic field is dis-
tinctly different from the usual magnetic field. The geometry-
induced magnetic field acts on a particle by coupling with
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FIG. 3. The contours of a geometry-induced magnetic field in the
plane spanned by r and θ with R = 4, r ∈ [−1, 1] and θ ∈ [0, 4π ].

spin, while the usual magnetic field acts on a particle by
coupling with electric charge. Specifically, the effective mag-
netic field is determined by the geometries of M2, and the
nontrivial monopole properties are defined by the nontriv-
ial topological properties of M2. Once the nontrivial single
side vanishes, the nontrivial monopole will disappear and an
effective ordinary magnetic field will appear. Furthermore,
the geometry-induced magnetic field is a non-Abelian gauge
field, in general UR(θ1)UR(θ2) �= UR(θ2)UR(θ1), which de-
termines the gauge structure of the effective Hamiltonian
confined on M2. Under a rotation transformation UR(θ ), the
geometric gauge potential A and the tangent component of
wave function |χ‖〉 transform as an SU(2) gauge transforma-
tion,

|χ‖〉 → UR(θ )|χ‖〉,
At → UR(θ )AtU

−1
R (θ ) + UR(θ )∂tU

−1
R (θ ), (45)

where t = r, s stand for the two tangent component of geo-
metric gauge potential A. In other words, the gauge structure
of effective dynamics can be constructed by the geometry
of a curved surface. As potential applications, the effective
gauge field can be generated and manipulated by designing
the geometry of a 2D nanodevice.

V. GEOMETRY-INDUCED QUANTUM SPIN HALL EFFECT

In the presence of A, the Dirac particle moving on M2

will feel a pseudo-Lorentz force induced by the geometry of
M2. Because the spin of the particle initially couples with the
geometry of M2 to contribute the term σ3A in Eq. (42) [50],
which plays the role of spin-orbit coupling [54] in a conven-
tional semiconductor. The effective coupling can be given by
a strain gradient [56], and can be partially replaced by another
[66]. The geometry-induced coupling can be rewritten into the
form u3Bn in the nonrelativistic limit, where u3 denotes the
normal component of a spin magnetic moment. According to
the left-hand rule, for a certain section of M2 the spin-out
particles gather to one side, the spin-in particles aggregate

FIG. 4. Schematic of a spin Hall effect on a part of a Möbius
strip. The blue arrows denote the geometry-induced magnetic field,
the green balls with pink upward arrows are the electrons of spin up,
the yellow balls with cyan downward arrows are the electrons of spin
down, and the big pink arrow and the big cyan arrow stand for the
moving directions of electrons.

toward the other side, which are sketched in Fig. 4. The
spin-out means that the spin orientation is the normal direction
of M2, while the spin-in means that the spin orientation is
the negative normal direction of M2. As a result, on M2

the spin-out particles and the spin-in particles are completely
separated into two groups, they are gathering on the two sides
for a specific section, respectively, and they are collecting
on two different faces for a specific edge, respectively. Most
strikingly, the spin-in particles and the spin-out particles are
moving in the same direction with the same spin polarization
as a full spin current for the specific edge that is sketched in
Fig. 5(a). Interestingly, the spin polarization is entirely deter-
mined by the nontrivial topology of M2, which determines
the degeneracy of pseudo-Landau levels in momentum space.
The twofold pseudo-Landau levels are separated by the width
of M2 in configuration space. Mathematically, the Möbius
strip is a 2D compact manifold with a single boundary and
a one-sided surface. In other words, the topological struc-
ture of M2 can spontaneously flip the “spin-down” into the
“spin-up” to provide a pure spin current. For a half-integer
number 1

2π

∮
τds = n + 1

2 (n ∈ Z), the pure spin current is
contributed by a combination of spin-out particles and spin-in
particles. In the case of 1

2 , the big cyan arrows and the big
pink ones contribute equally to the spin current along the
same edge as sketched in Fig. 5(a). In the case of an integer
number 1

2π

∮
τds = n, the pure spin current is contributed by

one type of particle, either the spin-out or the spin-in. The
result is sketched in Fig. 5(b) in the presence of the effective
magnetic field described by blue arrows as in Fig. 2(c). Distin-
guishingly, the spin-out particles and the spin-in ones do not
have the same contribution to the spin current, and they are
impossibly along the same edge. For the effective magnetic
field denoted by the red arrows in Fig. 2(c), the same spin
polarization will appear on the other side of M2. The spin
polarization is also completely induced by the geometry of
M2 with an integer linking number.

As a classical analogy, this can be thought of in terms of
the magnus effect, a spinning soccer ball will “stray” from its
normal straight path in a direction dependent on its sense of

235403-7



WANG, ZHAO, JIANG, LIU, AND CHEN PHYSICAL REVIEW B 106, 235403 (2022)

FIG. 5. (a) Spin Hall effect on the Möbius strip of a half-integer
linking number 1

2 . (b) Spin Hall effect on the Möbius strip of an
integer linking number 1. The blue arrows stand for the geometry-
induced magnetic field, the green balls with pink outward arrows
denote the spin-out particles, and the yellow balls with cyan inward
arrows are the spin-in particles. The big pink arrows stand for the
current consisting of spin-out particles, and the big cyan arrows stand
for the current consisting of the spin-in ones.

rotation. Therefore, the spin-out particles will initially gather
toward one side, while the spin-in ones aggregate toward the
other side for a specific section of M2. In the case of the half-
integer linking number, the “so-called” two edges are really
the same one. The emergence of quantum spin Hall effect is
eventually determined by the geometry of M2. In the case
of an integer linking number, the two edges are completely
different, the spin current vanishes for the whole of M2, and
the spin-out current emerges along one edge, while the spin-in
current emerges along the other. For the adapted frame mov-
ing on different sides of M2, the spin-out and spin-in currents
have the same amplitude. The result agrees well with that
given by Ref. [35].

VI. CONCLUSIONS AND DISCUSSIONS

For the quantum particles confined to a 2D curved system,
the geometric effects are a long-standing interesting topic.

The required effective dynamics can be given by using the
thin-layer quantization scheme, which is valid. Because the
two important geometric effects, the geometric potential and
the geometric momentum, have been proved by experiments.
The two effects both result from the rescaling factor that is a
function of the normal coordinate variable. The dependence
of normal space directly originates from the metric tensor
defined in the 3D subspace spanned by the two tangent co-
ordinate variables and the normal variable of M2. So far, the
fundamental framework of the thin-layer quantization scheme
is suitable and sufficient for the geometric potential and ge-
ometric momentum [2,5,6]. Unfortunately, the fundamental
formalism cannot give the geometric gauge potential that is
related to the symmetries of the introduced confining potential
[7] for the curved surface embedded in the 3D Euclidean
space [50]. In order to remove the difficulty, the formula of
geometric effects are rediscussed, which is clearly evidenced
by the geometric effects that are not only from the rescal-
ing transformation, but also from the rotation transformation
intimately connected to the local frames. These results will
enable the thin-layer quantization formalism to play a more
important and effective role in the effective quantum dy-
namics for the particles confined to low-dimensional curved
systems.

For the particles confined to a Möbius strip, the effective
Dirac equation is given by using the developed thin-layer
quantization formalism. There are two important results from
the geometric effects. One is the effective mass that results
from the rescaling factor. The other is the effective gauge
potential that results from the rotation transformation con-
nected to the local frames. The presence of the rescaling factor
determines that the thin-layer quantization formalism does
not commute with the nonrelativistic limit. Interestingly, the
effective magnetic field that is determined by the single face
of a Möbius strip is monopole. This result provides a feasible
way to generate a non-Abelian monopole magnetic field, and
the gauge structure can be constructed by designing the ge-
ometry of a low-dimensional curved system. In the presence
of a monopole effective magnetic field, the spin-out particles
and the spin-in ones are completely separated as a full spin
polarization. The pure spin current is also determined by the
geometry of a Möbius strip due to the coupling of geometry
and spin. As a conclusion, the nontrivial topological prop-
erties of a Möbius strip entirely determine the emergences
of the monopole magnetic field and the quantum spin Hall
effect. In other words, the complex geometries and topologies
of 2D systems can provide a new perspective to investigate
new phenomena of Hall physics implied in a high-dimensional
space.

With the rapid development of flexible electronics, flex-
ible spintronics, and metastructure physics, the geometric
quantum effects play a more and more important role in the
effective quantum dynamics for 2D curved systems. As the
considered example, a nanodevice with a Möbius strip can be
constructed from the twisted particular lattice strips with do-
main walls [67], in which one can use multiple domain walls
to obtain various higher quantized conductance plateaus. For
a monolayer graphene Möbius strip, a geometry-induced spin
Hall effect can be observed [61]. And in rf circuits emulating
the Möbius strip, the spin flip can be also observed in the
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measurements of time-resolved dynamics [68]. Therefore, the
geometries of nanodevices can be employed to improve the
development of nanodevices and topological quantum com-
putation and topological quantum commutation. Altogether,
our results demonstrate a viable manner to control the elec-
tronic levels and transpose properties of 2D curved systems,
shedding new light on the design of novel electronics devices
by geometry engineering.
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