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Probing details of spin-orbit coupling through Pauli spin blockade
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Spin-orbit interaction (SOI) plays a fundamental role in many low-dimensional semiconductor and hybrid
quantum devices. In the rapidly evolving field of semiconductor spin qubits, SOI is an essential ingredient that
can allow for ultrafast qubit control. The exact manifestation of SOI in a given device is, however, often both hard
to predict theoretically and probe experimentally. Here, we develop a detailed theoretical connection between the
leakage current through a double quantum dot in Pauli spin blockade and the underlying SOI in the system. We
present a general analytic expression for the leakage current, which allows to connect experimentally observable
features to both the magnitude and orientation of an effective spin-orbit field acting on the moving carriers.
Motivated by the large recent interest in hole-based quantum devices, we further zoom in on the case of Pauli
blockade of hole spins, assuming a strong transverse confinement potential. In this limit we also find an analytic
expression for the current at low external magnetic field, that includes the effect of hyperfine coupling of the
hole spins to randomly fluctuating nuclear spin baths. This result can be used to extract information about both
hyperfine and spin-orbit coupling parameters for hole spins in devices with a significant fraction of nonzero
nuclear spins.

DOI: 10.1103/PhysRevB.106.235312

I. INTRODUCTION

Spin-orbit interaction (SOI) couples the spin degree of
freedom of a charge carrier moving in an electromagnetic
field to its momentum. This interaction is an essential in-
gredient for many semiconductor-based quantum devices. In
semiconductor-superconductor hybrid structures, SOI plays a
crucial role for the realization of Majorana bound states [1–6],
with potential applications in topologically protected quantum
computation [7–10]. For spin-based quantum technologies
SOI enables spin manipulation via electric control, allow-
ing for enhanced spin-cavity couplings [11–13] and electric
dipole spin resonance [14–16].

In the field of semiconductor spin qubits [17–21], the
electric control over spin provided by SOI enables fast qubit
operation [22,23], while also being a source of qubit decoher-
ence and relaxation [24–26]. Lately, there has been substantial
progress with Si- and Ge-based spin qubits that use the spin
of valence-band holes instead of conduction-band electrons
[27–34]. The p-type nature of the valence band leads to a
mixing of the orbital and spin degrees of freedom of the
carriers, yielding a potentially strong effective SOI that de-
pends on the details of the confinement. This can give rise
to several interesting phenomena such as a highly anisotropic
and electrically tunable g tensor [35–47], and it could also
allow for very fast spin-qubit manipulation [48–54] and strong
spin-photon coupling [55].

Despite SOI being crucial for the working of many semi-
conductor quantum devices, its exact manifestation for a given
system is often hard to predict or deduce from experiments.
This is partly a result of the total SOI having often sev-
eral, qualitatively different contributions in strongly confined

systems [56,57]. Common contributions are Rashba terms
stemming from structural inversion asymmetry, e.g., created
by a confining potential, and Dresselhaus terms originating
from the lack of a crystallographic inversion center in semi-
conductors with zinc-blende structure. In addition to this, both
the so-called dipolar SOI [58] and strain-induced mixing of
different hole states [59] can strongly affect the total effective
SOI for valence-band spins.

In an experiment, the relevant spin-orbit parameters often
emerge on a phenomenological level as an effective spin-orbit
field that acts on the moving carriers. The manifestation of
this field can be probed using several different approaches,
the most common ones being dispersive gate sensing [60]
and current measurements as a function of the orientation
of an externally applied magnetic field [61–65]. Since such
measurements are the most straightforward way to access
the details of the effective spin-orbit field, it is essential to
develop a thorough understanding of the connection between
the experimentally accessible quantities and the underlying
SOI.

In this paper, we focus on a double quantum dot tuned
to the regime of Pauli spin blockade, where the most im-
portant effect of SOI is that it effectively allows for interdot
tunneling accompanied by a spin rotation [66], which funda-
mentally changes the nature of the blockade. We theoretically
investigate the leakage current through the system, focus-
ing on its dependence on the details of the SOI. Building
on the approach of Refs. [67,68], which found expressions
for the current in absence of SOI, we derive a general ana-
lytic expression for the leakage current including SOI. Based
on this result we present a straightforward connection be-
tween the details of the emerging spin-orbit field and the
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FIG. 1. Illustration of the two tunnel-coupled quantum dots con-
nected to two leads, showing the orientation of the different fields:
the spin-orbit vector is assumed to be pointing along ẑ, whereas the
Zeeman fields EZ,i and Overhauser fields Ki are arbitrary.

dependence of the current on experimentally tunable param-
eters. We also discuss the role of the hyperfine interaction
between the localized spins and randomly fluctuating nuclear
spins of the host material, most relevant for devices based
on III-V semiconductors. For the case of hole-based systems
defined in a strongly confined two-dimensional hole gas we
present an analytic expression that captures the combined ef-
fects on the leakage current of SOI and coupling to randomly
polarized nuclear spin baths. Comparing this expression to an
experimentally measured current could reveal details about
both the effective nuclear fields on the dots and the spin-orbit
field in the system.

The rest of the paper is organized as follows. In Sec. II we
present our model Hamiltonian used to describe the double-
dot system. In Sec. III we then derive an analytic expression
for the leakage current as a function of arbitrarily oriented
spin-orbit and Zeeman fields. Based on this expression we
characterize special points in parameter space where the cur-
rent vanishes. In Sec. IV we consider the collection of these
stopping points and we present straightforward connections
between clear features of the current (such as sharp minima)
and the orientation and magnitude of the effective spin-orbit
field in the system. In Sec. IV A we assume fully controllable
effective Zeeman fields on the two dots and in Sec. IV B we
assume a homogeneous field but allow for additional random
nuclear fields on the dots, focusing on hole-spin systems with
strong transverse confinement.

II. MODEL

The system we consider consists of two tunnel-coupled
quantum dots that both are connected to a lead, as illustrated
in Fig. 1. We assume that the system is tuned close to the
(1,1)-(0,2) charge transition, where (n, m) indicates a state
with n (m) excess charges on the left (right) dot, which can
be either electrons or holes. Applying a voltage bias between
the two leads can then induce a current to run through the
double dot, say from the left to the right lead. Assuming a
large onsite orbital level splitting (typically ∼meV) compared
to the applied bias voltage, states involving excited orbitals
can be disregarded, and the Pauli exclusion principle then
dictates that the two charges in the (0,2) configuration must
be in a singlet state, |S02〉. In the (1,1) charge configuration
all four spin states are accessible: three triplets |T±,0〉 and one
singlet |S〉 [69]. This can lead to a so-called spin blockade,
where the system is stuck in one of the (1,1) triplet states,
which cannot transition to |S02〉.

We include two spin-mixing ingredients that can modify
or lift this blockade. First, each of the two dots experiences
a Zeeman field BL,R, which we allow to be different on the

two dots. These (effective) magnetic fields can originate from
an externally applied field, nearby on-chip micromagnets, or
hyperfine interaction between the localized spins and the nu-
clear spins of the host material. Second, we also allow for
strong spin-orbit coupling. This can result in spin flips during
tunneling between the dots, but it can also renormalize the g
tensors on the two dots, potentially contributing to a difference
in the effective Zeeman fields on the two dots.

Focusing on the five levels mentioned above, we describe
the system with a simple model Hamiltonian

H = He + Ht + HB. (1)

Here

He = −δ|S02〉〈S02| (2)

accounts for the relative detuning δ of the four (1,1) states
with respect to the (0,2) singlet. The interdot tunnel coupling
is described by

Ht = ts|S〉〈S02| + itSO · |T 〉〈S02| + H.c., (3)

where |T 〉 = {|Tx〉, |Ty〉, |Tz〉} is the vector of unpolarized
triplet states along the three orthogonal coordinate axes [66].
The first term in Ht accounts for spin-conserving tunneling,
whereas the second term parametrizes the effect of spin-
orbit interaction on the interdot tunneling, effectively yielding
spin-nonconserving tunneling terms. The magnitude and ori-
entation of the vector tSO depend on microscopic details of
the spin-orbit interaction. Finally, due to the singlet nature of
|S02〉, magnetic fields only yield a Zeeman effect within the
(1,1) subspace, which we describe by

HB = 1
2 [(BL · σL ) ⊗ 1R + 1L ⊗ (BR · σR)], (4)

with σL (R) being the vector of Pauli matrices acting on the
left (right) spin and BL (R) being the total Zeeman field on the
left (right) dot. These fields can contain a contribution from
externally applied magnetic fields as well as the Overhauser
fields that are due to hyperfine interaction with the spinful
nuclei in each dot.

III. LEAKAGE CURRENT

The current through the double dot, and thus the degree
of spin blockade, is governed by an interplay between the
structure of the coupling Hamiltonian (3) and the degree of
spin mixing within the (1,1) subspace due to the fields BL,R.
Because of the resulting complexity it will be convenient to
perform a basis transformation which makes the Hamiltonian
take a simpler form, from which the current can be calculated
analytically.

The first step is to define the z direction of our coordinate
system to point along tSO. This rotates the coupling Hamilto-
nian into Ht = ts|S〉〈S02| + itSO|T0〉〈S02| + H.c., where |T0〉 =

1√
2
[|↑↓〉 + |↓↑〉] is the (usual) unpolarized spin triplet along ẑ

and tSO is the magnitude of the spin-orbit vector tSO. We then
introduce a dimensionless parameter η = arctan[tSO/ts] that
parametrizes the relative strength of the spin-orbit-induced
tunnel coupling and apply a basis transformation to all (1,1)
states

|ψ̃〉 = ei η

2 (σ z
L−σ z

R )|ψ〉. (5)
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In this new basis we find that |S̃〉 = cos η |S〉 + i sin η |T0〉
is a “bright” state that is coupled to |S02〉 with strength
t ≡ √

t2
s + t2

so, and |T̃0〉 = i sin η |S〉 + cos η |T0〉 is a “dark”
state that is not coupled; the polarized triplet states |T̃±〉 =
|T±〉 are unchanged by the transformation. Therefore, in
the new basis only one (1,1) state is coupled to |S02〉, the
price to pay being that the transformed Zeeman Hamiltonian
e−i η

2 (σ z
L−σ z

R )HBei η

2 (σ z
L−σ z

R ) acquired an η dependence and now
incorporates all spin-orbit effects included in our model. The
transformation thus gauges away the spin-orbit interaction,
yielding a Hamiltonian that can be mapped exactly to the case
without spin-orbit coupling (tSO = 0), simply by redefining
the two effective Zeeman fields. For the case without spin-
orbit interaction steady-state expressions for the current have

been derived before [67,68] and one can thus apply a similar
approach to include spin-orbit coupling.

We assume the system to be tuned to the open regime,
where the couplings to the reservoirs, characterized by the
tunneling rates �in,out (see Fig. 1), are the largest relevant en-
ergy scales. This ensures that the sequential tunneling process
(0, 2) → (0, 1) → (1, 1) is effectively instantaneous, and the
interesting dynamics happen during the transition (1, 1) →
(0, 2) which involves only the five levels we included in the
Hamiltonian (1). An analytical expression for the current is
then obtained by solving the steady-state master equation (see
the Appendix for more details). In the limit � � δ, t, BL,R

we find the relatively compact expression (setting h̄ = 1 from
here on)

I

e�s
= |eiζ sin θR cos θL − sin θL cos θR|2 + sin2 ζ sin2 θL sin2 θR

�2
s Q2+

4B2
LB2

R

[
3 + Q2+Q2−(

B2
L−B2

R

)2

]
+ 1

, (6)

where we used BL,R = |BL,R| and the rate �s ≡ t2/�, which
sets the scale of the effective decay rate of the (1,1) states, and
we introduced the notation

Q2
± = ± 2BLBR(cos θL cos θR + sin θL sin θR cos ζ )

+ B2
L + B2

R. (7)

The angles θL,R are the polar angles of BL,R (i.e., the angles
between BL,R and the z axis, which is aligned with tSO) and
the angle ζ = 2η − φR + φL with φL,R the azimuthal angles
of BL,R (i.e., tan φL,R = By

L,R/Bx
L,R) [see the illustration in

Fig. 2(a)].
Equation (6) thus describes the current through a double

quantum dot in the spin-blockade regime, including the effect
of SOI and with two possibly different Zeeman fields on the
two dots. This expression is the most important analytic result
of this work; it generalizes the result presented in Ref. [68],
by including arbitrarily oriented non-spin-conserving interdot
tunneling processes. The relative importance of these pro-
cesses is described by the parameter η = arctan[tSO/ts], so

(a) (b)

FIG. 2. (a) For two Zeeman fields with the same orientation
b = B/B but different magnitudes the current only vanishes when
the two fields are oriented along the spin-orbit vector marked in red.
(b) Tuning the Zeeman fields away from the spin-orbit vector, the
current vanishes when the two fields have the same latitude but a
difference in longitude of δφ = 2η, which happens along the red
dashed lines.

that eiη = (ts/t ) + i(tSO/t ), and the direction of the vector tSO

is encoded in the choice of coordinate system, by defining the
z direction along tSO.

From Eq. (6) we can identify special configurations of BL,R

for which the current vanishes, so-called “stopping points”
[67,68]. We find four of such points: (i) The first arises when
the magnitude of the two effective Zeeman fields is equal,
BL = BR, making the term Q2

+Q2
−/(B2

L − B2
R)2 in the denom-

inator diverge. The blockade at this point can be understood
from considering the (1,1) states in the basis of spin up and
down along the local fields on the left and right dots. In this
basis, the two states |↑↓〉 and |↓↑〉 are both eigenstates of
HB with zero total Zeeman energy. This means that they can
be rearranged into a bright and a dark state (again in terms
of coupling to |S02〉) and the system will thus get blocked in
the dark state. (ii) The second point occurs when either of the
two fields is zero, BL,R = 0, making the factor �2

s Q2
+/4B2

LB2
R

diverge. This corresponds to a situation with two doubly de-
generate subspaces which can again be rearranged in dark
and bright states. (iii) The two other points are obtained for
field configurations where the numerator in Eq. (6) vanishes.
One configuration for which this happens is when both fields
are parallel or antiparallel to the spin-orbit vector tSO, i.e.,
θL,R = 0, π . In this case the two triplets |T±〉 are eigenstates of
HB that are not coupled to |S02〉, resulting in a blockade of the
current. (iv) The numerator also vanishes when ζ = 0 (and
thus φR − φL = 2η) and θR − θL = 0, π . This configuration
corresponds to the two fields having the same “latitude” but a
relative azimuthal angle of δφ ≡ φR − φL = 2η, as illustrated
in Fig. 2(b) (or one of the two fields can have an overall
minus sign compared to this situation). This stopping point
can be understood from considering the non-spin-conserving
tunneling that underlies the coupling Hamiltonian (3): Ht can
be interpreted as being a projection to our five-level basis of
the general non-spin-conserving tunneling Hamiltonian

Ht = 1√
2

ĉ†
L,α[ts1 + itSO · σ]αβ ĉR,β + H.c., (8)
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where ĉ†
L(R),σ is the creation operator of a charge with spin

σ on the left (right) dot. With the z axis oriented along
tSO we see that this tunneling Hamiltonian reduces to Ht =

1√
2
ĉ†

L,α[t eiησz ]αβ ĉR,β + H.c., which describes charge tunnel-
ing with amplitude t that is accompanied by a z rotation of
the spin over an angle of ±2η (depending on the direction of
tunneling). With this in mind we understand that the eigenstate
of HB where both spins are aligned with (or exactly opposite
to) two local fields that have a relative azimuthal angle of 2η

will evolve during the interdot tunneling into a fully polarized
spin-1 state, which has no overlap with |S02〉.

IV. EFFECTS OF SPIN-ORBIT COUPLING

A. Independently controllable Zeeman fields

The collection of stopping points discussed above provides
a potentially useful tool for characterizing the spin-orbit in-
teraction in a double-dot system: Mapping out the stopping
points as a function of BL,R in a given basis allows in principle
to identify both the orientation and magnitude of the spin-orbit
tunneling vector tSO in that basis. For this, one would need
independent control over the two fields on the dots, which
could be achieved either through local control of the applied
magnetic fields or, e.g., via local manipulation of the g tensor.
Recent experiments indeed demonstrated electrical control
over the orientation of the resulting Zeeman fields up to 25
degrees on average [45]. Of course, since fully arbitrary inde-
pendent control over the two effective Zeeman fields is hard
to achieve in reality, the procedure presented below should be
seen as conceptual.

If one would make sure that the two Zeeman fields are both
nonzero and have different magnitudes, then only the last two
stopping points will be probed. In this case, the orientation
of the spin-orbit vector (up to a sign) can be identified from
making the two Zeeman fields parallel to each other and
finding the field orientation for which the current vanishes,
i.e., by probing stopping point (iii).1 Knowing the orientation
of the spin-orbit vector, its magnitude can then be found by
identifying stopping points of type (iv): One tilts both fields
away from tSO, in any direction, and then one rotates one
of the fields along tSO while measuring the leakage current.
From the point where the current vanishes the parameter η,
and thus the relative magnitude tSO/ts, follows via η = (φR −
φL )/2 [see Fig. 2(b)]. We note here that there is no require-
ment on the actual magnitude of the difference |BL − BR|:
As long as the line shape of the resulting leakage current
can be detected, the stopping points can be located. Also if
the fields are equal in magnitude but there still is a sizable
leakage current due to, e.g., spin relaxation processes, then the
stopping points related to tSO are still detectable by locating
the minima of the current. Control over the angle between BL

and BR up to 25◦ [45] would in this context allow to detect a
spin-orbit coupling strength up to tSO/ts ∼ 0.2.

1The current also vanishes for θ = π/2 and η = π/2, where the
couplings between |S02〉 and {|↑↓〉, |↓↑〉} (in the eigenbasis of the lo-
cal fields) are zero. However, the case η = π/2 corresponds to the
extreme case where tSO = t and ts = 0, which we will ignore here.

0
0

(a) (b)
1

-10 10 0
0

0.03

0.06

FIG. 3. (a) Calculated current as a function of a uniformly ap-
plied external field Bext, assuming two different g tensors on the
two dots. We used BL = {0.76, 0.32, 0.34}Bext and BR = {1, 0, 0}Bext

with �s = 0.1 µeV. The blue line shows the case with no nuclear
spins present, and the red line shows how adding two small random
nuclear fields KL,R, drawn from a normal distribution with an r.m.s.
value of 0.1 µeV, drastically changes the behavior of the current at
small fields. (b) Current as a function of φR with BL = 0.9, BR = 1,
θL = θR = 3π/8, and φL = 0. In the absence of nuclear fields (blue
line) the current vanishes when the relative azimuthal angle δφ of two
fields of different magnitude is equal to 2η. After averaging the cur-
rent over random nuclear fields (red line) with the same distribution
as used in (a) the current still has its minimum at δφ = 2η.

In the above we assumed accurate control over the two
Zeeman fields BL,R separately. In many systems, however,
especially in devices based on III-V materials such as GaAs
and InAs, but also in some Si- and Ge-based systems, atoms
that carry finite nuclear spin yield small quasistatic, but ran-
dom effective magnetic fields acting on the localized spins,
sometimes of the order of a few mT when there is a significant
fraction of spinful nuclei. This means that the total Zeeman
fields BL,R = Bext

L,R + KL,R are the sum of the externally ap-
plied fields Bext

L,R and random components KL,R that cannot be
controlled.

However, since only the direction of the two total Zeeman
fields matters for the procedure described above, the effect of
the random contribution from the nuclear fields can be sup-
pressed simply by working in the large-field limit Bext

L,R � K ,
where K is the typical magnitude of the nuclear fields on the
dots; residual details depending on the specific configuration
of KL,R will average out in a typical experiment, where the
total measurement time exceeds the correlation time of the
nuclear fields.

We illustrate this in Fig. 3. First, in Fig. 3(a) we exemplify
the effect of one single static configuration of KL,R on the
leakage current: The blue line shows the current as given by
Eq. (6), as a function of a uniformly applied magnetic field
Bext, in the absence of nuclear fields but assuming different
g tensors on the two dots (see the caption for the details).
For the red line we added two randomly oriented nuclear
fields with magnitudes drawn from a normal distribution with
〈K2

L,R〉1/2 ≡ K = 0.1 µeV. We see that the difference is sub-
stantial at small fields, but vanishes at larger applied field.
In Fig. 3(b) we assume two external fields with BL = 0.9,
BR = 1, and θL = θR = 3π/8, looking for the current mini-
mum as a function of their relative angle δφ, in the absence of
nuclear fields (blue line) and after averaging over many (finite)
nuclear field configurations (red line). Figure 3(b) confirms

235312-4



PROBING DETAILS OF SPIN-ORBIT COUPLING … PHYSICAL REVIEW B 106, 235312 (2022)

that the averaging removes all sharp features, but still allows to
locate the minimum in the current that is related to spin-orbit
coupling, in the same way as in the case without nuclear fields.

B. Homogeneous external field: Hole-spin qubits with strong
transverse confinement

Finally, we turn our attention to the more common situation
where one can only control a homogeneous external field, and
we will also assume that the g tensors on the two dots are very
similar in structure. Since the situation with equal effective
Zeeman fields on the two dots, i.e., BL = BR, corresponds to
one of the stopping configurations discussed above, different
Zeeman fields are required for obtaining a finite leakage cur-
rent. In the case of a homogeneous external field and equal
g tensors, a difference in Zeeman fields can originate from
finite quasistatic but random nuclear fields acting on the two
localized spins. To include these nuclear fields, Eq. (6) has
to be averaged over the random nuclear fields KL,R to find
the leakage current that would be measured in a typical ex-
periment. This is straightforward to do numerically, but is in
general hard to do analytically.

One case, however, that can be treated analytically is po-
tentially relevant for hole-based transport in quantum dots
hosted in a quasi-two-dimensional carrier gas. The valence
band of most semiconductors is of p type, which adds another
threefold orbital angular momentum degree of freedom to the
hole states. SOI splits off the states with total (orbital and
spin) angular momentum J = 1

2 , leaving a four-dimensional
J = 3

2 low-energy subspace. Out-of-plane confinement, used
to create a two-dimensional hole gas, results in further split-
ting inside this subspace, lowering the energy of the so-called
heavy holes (HHs) with Jz = ± 3

2 relative to the light holes
(LHs) with Jz = ± 1

2 . For strong confinement this HH-LH
splitting can become significant, in which case the low-energy
states will mostly have a HH character. Due to the ± 3

2 angular
momentum carried by the two basis states, these states are
to lowest order not expected to be coupled directly by the
in-plane angular momentum operators J±. This is the rea-
son why in the absence of significant HH-LH mixing most
spin-dependent phenomena are usually highly anisotropic
in the HH subspace: The in-plane g factor can be up to
an order of magnitude smaller than the out-of-plane one
[35–38,41–43,45–47] and hyperfine interaction with the resid-
ual nuclear spins could become effectively almost purely
Ising type [70–73] (although some experiments suggest that
a significant d-shell state admixture can result in a much
less anisotropic coupling than naively expected [74,75]). De-
pending on the symmetry of all confining potentials (the
out-of-plane potential as well as the in-plane quantum-dot
potentials), Rashba-type SOI can in principle result in nonzero
effective spin-orbit fields coupling to all three components of
J. As with all other fields, these spin-orbit fields can acquire
additional anisotropy in the presence of strong HH-LH mixing
when projected to the HH subspace.

For a thin two-dimensional hole gas we can thus assume
that the two nuclear fields are mostly out of plane, whereas
the behavior of the other vectors (BL,R and tSO) is harder to
predict. The simplest case to treat using the theory developed
above is tSO ‖ KL,R: then the current (6) becomes a function of

FIG. 4. Illustration of the orientation of the fields assumed for
the analytical derivation in Sec. IV B: The spin-orbit vector tSO and
both nuclear fields KL,R are assumed to be pointing along ẑ. The
external Zeeman field Bext is equal on the two dots, but can point
in any direction.

the fields BL,R = Bext + KL,Rẑ, as illustrated in Fig. 4 (where,
for simplicity, we set the g tensor to be proportional to the unit
matrix). The experimentally measured current follows from
averaging Eq. (6) over KL,R:

Iav =
∫

dKLdKR
e−(K2

L +K2
R )/2K2

4πK2
I (BL, BR), (9)

where we have assumed the nuclear-field distributions to be
Gaussian with mean zero and variance K2. Signatures of the
hyperfine interaction that survive this averaging are again
expected to be most prominent at small fields, where Bext �
K . We will thus focus on the small-field limit �s � K, Bext,
where the integral can be solved, and we find the approximate
analytic result

Iav�s

eK2
= 2 f (α + ibz )

{
1 + 6 f

(
1
2β

)
β2

}
− f

(
1
2α + ibz

){
2 + 3 f

(
1
2β

)
β2

}
, (10)

where we have used the function

f (x) =
√

π

3
Re{x}Re

{
ex2

erfc(x)
} − 1

3
, (11)

with erfc(x) being the complementary error function. Fur-
thermore, we introduced α = b‖ cos η and β = b‖ sin η where
bz = Bz

ext/K and b‖ =
√

(Bx
ext )2 + (By

ext )2/K give the out-of-
plane and in-plane components of the external Zeeman field,
respectively, in units of K .

In Fig. 5 we plot the current given by Eq. (10) as a function
of the magnitude of the external magnetic field, for different
orientations of the field and different strengths of SOI. The
four plots [Figs. 5(a)–5(d)] show the current for different
magnitudes of SOI and each plot contains four traces that
assume a different orientation of Bext, the angle θ being the
polar angle of the applied field (see Fig. 4). For all values of
η the current vanishes when the Zeeman field points along
ẑ (i.e., is parallel to KL,R and tSO) and at the point where
Bext = 0, both of which are cases of the third stopping point
mentioned above.

The spin-orbit-free case η = 0 is shown in Fig. 5(a). For
most orientations of Bext, but most prominently for an in-
plane field, we observe a peak in the current around zero
field, with a width ∼K , that is split into a double peak by
the stopping point at Bext = 0. For large fields the current
converges towards a direction-dependent limiting value I∞

av ≈
2e(K2/�s) sin2 θ/(4 + tan2 θ ). This large-field current van-
ishes for θ = 0 (see above), but also for θ = π/2, where the
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FIG. 5. The current as given by Eq. (10), as a function of the
magnitude of the applied field Bext. The four plots have an increas-
ing magnitude of spin-orbit interaction: (a) η = 0, (b) η = 0.02,
(c) η = 0.1, and (d) η = 0.5. In each plot the four traces correspond
to four different orientations of the applied field, the corresponding
polar angles of Bext are indicated in (a) (same colors represent same
orientations in all plots).

nuclear fields do not affect the magnitude of the total fields
to leading order, resulting effectively in a blockade due to
stopping point (i).

As illustrated in Figs. 5(b)–5(d), adding a finite SOI
changes the current profiles: On top of the narrow current
peaks caused by the nuclear fields, we observe in most cases
the characteristic spin-orbit-induced low-field current dip, the
shape and width of which depend on η and the direction of
the applied field. The large-field limiting current is typically
larger than in the case of η = 0, due to the efficient spin-orbit-
induced spin mixing, which becomes more effective at larger
fields.

As explained above, in Fig. 5 we assumed the spin-orbit
vector to point out of plane, which is one of the directions
that has been observed in experiment [64]. If, however, only
the out-of-plane confinement is asymmetric enough to cause
significant SOI, then one expects most of the spin-orbital
coupling to be in plane, i.e., along Jx,y. In this case, with
tSO in plane, we cannot solve the integral (9) analytically
and thus revert to numerical integration. Since we assumed
tSO to point along ẑ throughout Secs. II and III, we need to
rotate our coordinate system to incorporate an in-plane spin-
orbit vector: We thus insert BL,R = Bext + KL,Rx̂ into Eq. (9),
which implicitly defines x̂ to be the out-of-plane direction, and
solve the integral numerically. This yields a leakage current as
shown in Fig. 6, with θ again the angle between the applied
field and the out-of-plane direction, where we assumed Bext

to lie in the xz plane. This implies that θ = 0 and θ = π/2
now correspond to Bext ‖ KL,R and Bext ‖ t so, respectively. In
absence of SOI, as shown in Fig. 6(a), the current is identical

0
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FIG. 6. The current found from numerical integration of Eq. (9)
where the spin-orbit vector tSO is now in plane, i.e., perpendicular
to the nuclear fields. We again plot the current as a function of the
magnitude of the applied field Bext and for different strengths of spin-
orbit interaction: (a) η = 0, (b) η = 0.02, (c) η = 0.1, and (d) η =
0.5. The color coding is the same as in Fig. 5, where θ again gives
the angle between Bext and KL,R, i.e., the out-of-plane direction. The
angle θ = π/2 corresponds in this case to Bext ‖ tSO. We further used
�s = 15 µeV and K = 0.1 µeV.

to in Fig. 5(a). Making η finite we again observe the char-
acteristic spin-orbit-induced low-field current dip, where the
largest currents at larger fields are now observed for θ = 0,
which indeed corresponds to Bext ⊥ t so, as expected.

Comparing Eq. (10) (or numerical results such as presented
in Fig. 6) with the experimentally measured low-field leak-
age current could thus give insight in the typical magnitude
of the effective nuclear fields in the system as well as the
total strength of the effective spin-orbit field, for the case of
hole-based transport in systems with strong transverse con-
finement. We note here that features similar to some observed
in Figs. 5 and 6 (such as a low-field split peak on the back-
ground of a wider zero-field dip in the current) are indeed
sometimes observed in such systems [63,64].

V. CONCLUSION

Spin-orbit interaction is an important ingredient in low-
dimensional semiconductor and hybrid structures, and un-
derstanding the detailed manifestation of the interaction is
therefore essential. One of the mechanisms that couples the
spin dynamics of localized carriers to the more easily de-
tectable charge dynamics is the Pauli spin blockade that can
occur in multi-quantum-dot structures.

In this paper we investigated in detail how the leakage
current through a double quantum dot in spin blockade is af-
fected by spin-orbit interaction. The main effects of spin-orbit
interaction in such a situation are that it yields effectively a
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non-spin-conserving interdot tunnel coupling and can renor-
malize the g tensors on the dots. Using a simple few-level
model Hamiltonian to describe the coupled spin-charge dy-
namics in the system, we derived a relatively compact analytic
expression describing the leakage current through the block-
ade in terms of the spin-orbit parameters in the model. From
this result we could identify different so-called stopping
points, for which the current vanishes, which allowed us to
connect qualitative features in the current to both the magni-
tude and orientation of the effective spin-orbit field acting on
the tunneling carriers. This connection could thus provide a
tool for characterizing relevant spin-orbit parameters in multi-
quantum-dot devices.

We then investigated the leakage current in more detail in
the presence of randomly fluctuating nuclear spin baths that
can couple to the spin of the localized carriers. For the case
of hole spins in a strongly confined two-dimensional hole gas,
we derived an analytic expression for the low-field leakage
current that includes averaging over the random effective nu-
clear field configurations on the two dots. Comparing these
results with the experimentally measured leakage current at
small fields could provide additional information about the
details of both the hyperfine and spin-orbit coupling in a
system.
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APPENDIX: DERIVATION OF THE CURRENT

We write the Hamiltonian (1) in the rotated ba-
sis |ψ̃〉 = ei η

2 (σ z
L−σ z

R )|ψ〉 of one bright and three dark
states, as explained in the main text. Then, we intro-
duce the (anti)symmetric magnetic fields B± = 1

2 (BL ±
BR) and we define the auxiliary fields E± = {Bx

± cos η −
By

∓ sin η, By
± cos η + Bx

∓ sin η, Bz
±} that incorporate the η de-

pendence of the Zeeman Hamiltonian. In terms of these new
fields, we can write the Zeeman terms as

HB = 1√
2

∑
±

[(Ex
+ ± iEy

+)|T̃0〉〈T̃±|

+ (∓Ex
− − iEy

−)|S̃〉〈T̃±| + H.c.]

+ Ez
+{|T̃+〉〈T̃+| − |T̃−〉〈T̃−|}

+ Ez
−{|S̃〉〈T̃0| + |T̃0〉〈S̃|}, (A1)

which has exactly the same form as the usual (1,1) Zeeman
Hamiltonian (4) when written in a singlet-triplet basis [67],
under the substitution B± → E±.

The 3 × 3 block of the Hamiltonian governing the sub-
space {|T̃+〉, |T̃0〉, |T̃−〉} thus describes a spin-1 system coupled
to the spin-orbit-rotated effective field E+. Applying the

appropriate spin-1 rotation exp(iαJ · n̂) (where J is the vector
of spin-1 matrices and n̂ is the unit vector of rotation), we can
diagonalize this block such that the full five-level Hamiltonian
becomes

H =

⎛
⎜⎜⎜⎜⎝

E+ 0 0 c 0
0 0 0 −d 0
0 0 −E+ −c 0
c −d −c 0 t
0 0 0 t −δ

⎞
⎟⎟⎟⎟⎠, (A2)

where t =
√

t2
s + t2

SO, and the (real) couplings between the
triplets and the bright state |S̃〉 read as

c = E−√
2
{[cos θ+ sin θ− cos(φ+ − φ−) − cos θ− sin θ+]2

+ sin2 θ− sin2(φ+ − φ−)}1/2, (A3)

d = E−[cos θ− cos θ+ + sin θ− sin θ+ cos(φ+ − φ−)], (A4)

with

θ± = arccos

[
Ez

±
E±

]
, φ± = arg[Ex

± + iEy
±], (A5)

being the angles that define the orientation of the fields E±.
Having the Hamiltonian on this form is advantageous when
calculating the current since it reduces the number of inde-
pendent parameters from eight to five.

To obtain an analytical expression for the current through
the system we then solve the master equation in steady state

∂ρ̂

∂t
= −i[H, ρ̂] + �(ρ̂) = 0, (A6)

where ρ̂ is the five-level density matrix and �(ρ̂ ) =
− 1

2�{P̂02, ρ̂} + 1
4�(1 − P̂02)ρ̂02,02 the superoperator describ-

ing the fast tunneling processes to and from the reservoirs.
Here, � is the characteristic rate of decay of |S02〉 and subse-
quent reloading of one of the (1,1) states, and P̂02 = |S02〉〈S02|
is the projector onto the state |S02〉. After solving Eq. (A6)
for the steady-state density matrix ρ̂ss, the current through
the double dot can be calculated from the expression I =
e�ρ̂ss

02,02, giving

8e�t2c2d2E2
+

I
= 4c4d2(4E2

+ + �2 + 4δ2)

+ d2[4E6
+ + 4E2

+t4 + d4(4E2
+ + �2 + 4δ2)

− 2d2E2
+(4E2

+ − 4t2 + �2 + 4δ2)]

+ 2c2[E2
+t4 + 2d4(4E2

+ + �2 + 4δ2)

+ 2d2E2
+(4E2

+ + 2t2 + �2 + 4δ2)]. (A7)

Equation (6) in the main text then follows from assuming that
we are in the regime where � � δ, B±, and introducing the
rate �s ≡ t2/�, which sets the scale of the effective decay of
the (1,1) states.
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