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Ballistic-electron coherent spin precession in a Rashba two-dimensional electron system
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The prodigious career of E. I. Rashba produced numerous creative and novel theoretical discoveries. One
contribution that has had significant impact is his theoretical explanation of spin-orbit effects that arise from
materials and heterostructures that are characterized by a structural asymmetry. This theory has created entire
subfields in condensed matter physics. The focus of this paper is the empirical demonstration of one topic in one
of these subfields. Spin-polarized carriers injected into a high-mobility two-dimensional electron system with a
Rashba spin-orbit interaction will exhibit conductance oscillations over a length scale of a ballistic mean free
path. Two separate experimental demonstrations are discussed.
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I. INTRODUCTION

The 1950s decade was a time when pioneering theoretical
treatments of spin-orbit interactions in semiconductors were
developed [1,2], even though experimental progress was yet
to come. In the period 1959–1960, E. I. Rashba derived a
theory for the electron energy bands of a semiconductor with
a crystal structure lacking inversion symmetry [3–5]. The
theory described a spin-orbit interaction that resulted in spin-
split subbands. Further theoretical progress was made in the
1960s and 1970s [6]. In the early 1980s, unexplained features
in electron spin resonance experiments on two-dimensional
modulation-doped semiconductor heterostructures [7] moti-
vated new work. Rashba and Bychkov described a spin-orbit
interaction in some two-dimensional electron systems (2DES)
with structural inversion asymmetry [8]. These seminal the-
oretical insights opened new subfields in condensed matter
physics. Many decades later, Rashba’s impact is evident in
currently active topics of research that range from layered
two-dimensional materials and novel superconducting mate-
rials to quantum computing [9]. This paper discusses two
experiments that verified an extraordinary phenomenon that
relies on the Rashba spin-orbit interaction.

One theoretical outcome of Rashba’s seminal work was
the prediction of a novel carrier transport effect by Datta
and Das [10]. These authors described a planar field-effect
transistor (FET) structure with a source and drain connected
by a channel of length L along the x axis. Length L is chosen
to be less than a ballistic mean free path of electrons in
the channel. When the electrons injected at the source are
spin polarized with spin orientation along x̂, the spins would
precess about the y axis as a consequence of the Rashba
spin-orbit interaction (SOI) in the channel. If the drain had a
conductance that was sensitive to the spin polarization of the
carriers, then the source-drain conductance would have a max-
imum when the precessional wavelength was equal to L and
a minimum when L equaled half a precessional wavelength.
In their model, the ballistic carriers in the channel could be
represented by a spin-polarized current with spin orientation

that was nearly coherent because all the carriers traveled at
the Fermi velocity. Therefore, an experiment would observe
that the source drain conductance GSD would show a periodic
modulation as a function of channel length L, GSD ∝ L. There
would be no spatial variation of source-drain conductance if
the carriers injected at the source were spin polarized with
spin orientation along ŷ. Going a step further, Datta and
Das noted that an external gate voltage would modulate the
SOI and the rate of precession. Therefore, one could observe
the source-drain conductance modulation by keeping L fixed
but varying the gate voltage VG. An experiment would show
a periodic conductance modulation as a function gate volt-
age GSD ∝ VG. Two different experimental techniques have
verified the unique Datta-Das prediction [11,12]. These ex-
periments involve many cutting edge advances in condensed
matter and materials physics: high-mobility two-dimensional
electron systems (2DES), ballistic carrier transport, thin fer-
romagnetic films as spin polarizers for injection and detection
of carriers, spin coherence, and the details of interface spin
transport.

In a two-dimensional electron system, an intrinsic electric
field from inversion asymmetry in the confinement poten-
tial of the quantum well will cause a spin-orbit interaction
between carrier spin and momentum. Consider an electron
in a microstructured, narrow 2DES channel [Fig. 1(a)] with
momentum �k along the +x̂ axis, and intrinsic field �Ei perpen-
dicular to the plane of the 2DES. The spin-orbit term in the
Hamiltonian, called the Rashba Hamiltonian, is

HSO = α(�s × �k) · ẑ, (1)

where �s is the carrier spin and the interaction between the field
and carrier spin is described by α, the spin-orbit parameter.
This term causes a spin splitting in the energy states E (k, s)
of the carrier. There are two populations (two spin subbands)
of electrons, n↑ and n↓, with spin-split energies given by
[Fig. 1(b)]

E (k, s) = E0 + (h̄kx )2

2m∗ ± 1

2
αkx. (2)
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FIG. 1. (a) Schematic top view of a narrow wire mesa litho-
graphically patterned from high-mobility 2DES with a Rashba SOI.
Spin-up and spin-down carriers have momentum along the x̂ axis.
(b) Spin-orbit splitting of the energy dispersion of the carriers.
(c) The Fermi sea is the conjoined paraboloid that results from
revolving the dispersion curves about the vertical axis. (d) The Fermi
surface is comprised of two concentric circles, obtained as a slice
of the Fermi sea by a plane taken at the Fermi energy. Spin eigen-
states are shown for momentum states along the x̂ and ŷ axes. (e)
Spin-polarized carriers injected with spin orientation along x̂ have a
superposition of ±ky momentum states. The intrinsic electric field is
along the ẑ axis. There is an effective magnetic field, −H∗ŷ, in the
rest frame of the weakly relativistic carriers.

Parameter α is material specific and also is a function of any
applied gate voltage, α = α(VG), m∗ is the electron mass, h̄
is Planck’s constant divided by 2π , and E0 is the energy at
the bottom of the band. In the Datta-Das model, α uniquely
depends on details of the heterostructure and the quantum
well.

For the system described by Eq. (2), the Fermi sea is
described by two conjoined parabaloids [Fig. 1(c)], given by
revolving the two subbands in Fig. 1(b) about the E axis [13].
The Fermi surface is the slice of the Fermi sea that intersects
the plane at the Fermi energy. As shown in Fig. 1(d), the
Fermi surface is two concentric circles in the kx-ky plane.
The outer (inner) circle has clockwise (counterclockwise) spin
orientation.

The Datta and Das prediction of a ballistic spin precession
effect is derived using the spin-orbit parameter α, but some
physical insight about the precession can be gained by not-
ing that the carrier Fermi velocity is weakly relativistic. As
depicted in Fig. 1(e), an electric field Ez will transform as an
effective magnetic field H∗

y in the frame of the carrier having
momentum kx. An electron injected along the kx axis with spin
orientation along the same axis will precess about the ŷ axis
because of the torque �s × �H∗, and the spin-orbit term αkx can
be associated with the effective Zeeman energy μBH∗. This
model will be presented in greater detail below.

The Datta-Das calculation can be summarized by consid-
ering the electron in Fig. 1(e). As seen in Fig. 1(d), the spin
eigenstates are parallel with the ky axis, and the wave func-
tion of the injected carrier must be a superposition of states
〈kx1, sy,↓〉 and 〈kx2, sy,↑〉:

E (kx1, sy,↓) = E0 + (h̄kx1)2

2m∗ − 1

2
αkx1,

E (kx2, sy,↑) = E0 + (h̄kx2)2

2m∗ + 1

2
αkx2.

Requiring the energies to be equal, we can find the difference
kx1 − kx2:

h̄2

2m∗
(
k2

x1 − k2
x2

) = α(kx1 + kx2).

For a spin injected with initial orientation along x̂, traveling
with a ballistic trajectory, the precessional angle θ accumu-
lated when it traverses a distance L is [10]

�θ = (kx1 − kx2)L = 2m∗αL

h̄2 . (3)

Note that �θ is independent of kx. This is important exper-
imentally because observing the Datta-Das precession does
not require a one-dimensional wire. There is evidence that the
magnitude of the effect may be larger in a channel with narrow
width, but it is not necessary to have transport with a single kx

value.
Given an integrated method for injecting a spin-polarized

electron at one position and detecting the phase angle �θ

of the spin orientation at a position at distance L, Eq. (3)
then shows explicitly the two methods for a demonstration
of the precessional oscillation that were introduced above:
(I) With L fixed, a gate voltage can be varied to modulate
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α(VG) and variations of �θ can be recorded. (II) With α fixed,
measurements of �θ can be made on a set of samples that are
identically prepared except for varying length L. Results of
both techniques will be reviewed in this paper.

A. Spin injection technique and a nonstandard geometry

The method for injecting spin-polarized electrons and de-
tecting the spin polarization and phase angle of those electrons
at a second electrode comes from the spin injection tech-
nique [14]. The technique is common knowledge within the
magnetism and spintronics subfields, and in the following a
brief review is given for readers outside of these topical areas.

Building on early theoretical and experimental work on
carrier transport in ferromagnetic materials, from Mott [15]
and Meservey [16], the spin injection/detection tech-
nique [17] was developed for diffusive transport. It demon-
strated that a portion of a steady state electric current
driven from a single domain ferromagnetic electrode (F1)
into a nonmagnetic material would be spin polarized and
a nonequilibrium population of polarized electrons, called a
spin accumulation M̃, would diffuse into the nonmagnetic (N)
material for a distance of a spin diffusion length, δs = √

Dτs,
with D the carrier diffusion constant and τs the spin relaxation
time in N . This length is the same as that which is measured
in the analogous phenomenon of transmission electron spin
resonance (TESR), with the substitution τs ≈ T2, where T2 is
the transverse spin relaxation time. A second ferromagnetic
electrode (F2) could be fabricated with interfacial contact to
N, at a distance comparable with δs. When F2 is connected
with a high-impedance voltmeter, a converse effect of spin
injection develops a small voltage at F2. The voltage is pro-
portional to the density of polarized carriers in the vicinity of
the N-F2 interface and F2 is an effective spin detector.

In practice, F1 and F2 are microfabricated ferromagnetic
films, typically using transition ferromagnetic materials such
as Ni0.8Fe0.2 (Permalloy). The polarization efficiency, for both
injection and detection, of such a film is the order of a few
percent and spin detection voltages are typically small. In
order to minimize background ohmic voltages, an unconven-
tional geometry was developed for the first spin injection
demonstration [14] and has been used in subsequent experi-
ments [18,19]. Often called the “nonlocal geometry,” Fig. 2(a)
shows a schematic top view of a narrow “wire” of sample
material N that extends along the x axis. For this initial dis-
cussion, we ignore the gate and dielectric, as well as length
�. Narrow electrode F1 spans the width of the wire near
its center, x = 0. When bias current I is injected at F1 and
grounded at the left end of the wire, x = −b, there is a linear
voltage drop from x = 0 to −b, depicted by the regularly
spaced equipotential (dotted-dashed) lines in Fig. 2(a). How-
ever, there is no net current flow in the region x > 0 and the
wire is at a constant potential from x = 0 to x = b. A voltage
measurement between the end of the wire x = b and a narrow
electrode that spans the wire at x = L is necessarily a null
measurement, V = 0.

Injected spin-polarized electrons diffuse equally along ±x̂.
The density of diffusing spin-polarized electrons is depicted
in Fig. 2(a) by the shaded region, with darker shades rep-
resenting higher density. For a ferromagnetic electrode F2,

FIG. 2. (a) Nonlocal geometry that is typical of spin
injection/detection experiments. The shaded gray areas represent
the density of diffusing carriers, decreasing exponentially on either
side of x = 0, for standard spin diffusion experiments in metals.
The gray areas represent the density of ballistic carriers for spin
injection experiments in the Datta-Das structure. The gate electrode
is an addition for the Datta-Das structure. (b) The nonlocal geometry
applied to a Datta-Das oscillation measurement using method II,
explained in the text. Spin phase detection uses the spin Hall effect
and a number of Hall crosses with varying distance L from the
injector.

a measurement V records a spin-dependent voltage that is
relatively high (low) when the magnetization orientation M2
is parallel (antiparallel) with M1. Since V = 0 in the absence
of nonequilibrium spin effects, a measurement in this geome-
try uniquely discriminates against any background voltages.
Both films F1 and F2 are sufficiently thin that magnetiza-
tions M1 and M2 are constrained to lie in the x-y plane and
constructed to have a magnetization anisotropy so that M1
and M2 can be determined and retained using small external
fields.

Structures of the kind in Fig. 2(a) are sometimes called
“lateral spin valves” or “nonlocal lateral spin valve” (NLSV)
to distinguish them from the thin-film magnetic sandwich
structures which are simply called “spin valves.” The structure
in Fig. 2(b) is a variation of the nonlocal geometry used for
method II and will be discussed further below. Regarding the
lateral spin valve in Fig. 2(a), the spin diffusion length in
N can be determined by measuring the spin accumulation at
several electrodes with variable distance x from the injector.
Alternatively, the spin relaxation time can be determined by
the Hanle effect [20], applying an external magnetic field
along an axis perpendicular to the ẑ, H⊥. In a direct analog
of TESR, the steady state diffusion of M̃ in the presence of
H⊥ results in a Lorentzian line shape of M̃(H⊥) at a single
detecting electrode. Relaxation time τs is deduced from the
Lorentzian. For ballistic electrons, application of field H⊥
would result in a measured voltage V that varied periodically
with L. Known as Larmor waves, this effect is observed with
TESR [21], and it is a direct analog with the Datta-Das effect.
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B. Spin injection in semiconductors: Practical considerations

Applying the spin injection technique to semiconducting
materials involves two issues worthy of discussion. First, the
details of charge and spin transport at an interface between
two metals are fairly straightforward. By contrast, it is pos-
sible that spin transport may be less robust for the case of a
metal-semiconductor interface. This question caused consid-
erable confusion [22] and was finally clarified by Rashba [23].
The issue of conductance mismatch at the interface was first
treated by Johnson and Silsbee [24] for any nonmagnetic
material. The relevant parameters are the resistivities of the
ferromagnetic and the nonmagnetic (metal of semiconductor)
materials, ρ f and ρn, respectively, the resistance of the in-
terface Ri, and spin diffusion lengths in both N and F, δs,n

and δs, f . Specifically, the efficacy of spin transport across the
interface is governed by the relative values of three resis-
tances (units of resistance per unit area): the intrinsic interface
resistance Ri, the resistance of a length of nonmagnetic ma-
terial equal to a spin diffusion length, rn = ρnδs,n, and the
resistance of a length of ferromagnetic material equal to a
spin depth, r f = ρ f δs, f . It also is governed by the fractional
polarization of carriers near the Fermi surface in F and the
fraction of polarized carriers that the interface can deliver to
N, p f and η, respectively. The general solution for the fraction
of electric current Je that is delivered across the interface as
spin-polarized current JM is [24]

JM = ημB

e
Je

[
1 + G(p f /η)r f (1 − η2)

/(
1 − p2

f

)
1 + G(1 − η2)

[
rn + r f

/(
1 − p2

f

)]
]
, (4)

where μB is the Bohr magneton and e the electron
charge. For metal films, typical values of the resistances
are estimated [25]: r f ∼ 10−11 � cm2, rn ∼ 2 × 10−11–2 ×
10−10 � cm2, and Ri ≈ 10−11 � cm2. Since all of the charac-
teristic values fall within a range of a factor of ten, all of the
terms in Eq. (4) are important for metal films.

One limiting case of Eq. (4) is that of low interfacial
resistance, Ri → 0, and the equation reduces to the simpler
form [26],

JM = p f
μB

e
Jq

[
1

1 + (rn/r f )
(
1 − p2

f

)
]
. (5)

The polarization of the injected current is reduced by a back-
flow of nonequilibrium spins from N to F. The net polarization
across the interface is independent of η and is reduced from
that in the bulk ferromagnet by the resistance mismatch factor
(1 + M ′)−1 = [1 + (rn/r f )(1 − p2

f )]−1. Using estimates for
r f and rn, and Ri for UHV-deposited F/N metal sandwich
films, the mismatch factor can be as large as M ′ ∼ 20.

The opposite limiting case is that of high interfacial resis-
tance. Spin accumulation in N can be large but the resistive
barrier prevents back diffusion. The nonequilibrium spin pop-
ulation in F remains small, and therefore the voltage drop
across the interface is almost entirely due to Ri. The interfacial
magnetization current is now given by [24]

JM = η
μB

e
Jq, (6)

and the fractional polarization is dominated by the phe-
nomenological interface parameter η. The resistive barrier

FIG. 3. Cross-sectional schematic of the spin injected FET (spin
FET) proposed by Datta and Das [10].

may be asymmetric with respect to spin and, in general, the
limit η � p f is imposed. For structures involving transport
across a ferromagnetic metal film/semiconductor interface,
the presence of a Schottky barrier introduces a large resistance
Ri and Eq. (6) is valid. The experiments described herein
use high-mobility indium arsenide heterostructures, which are
known to have low Schottky barriers. As described below, thin
tunnel barriers were formed between the InAs 2DES and the
ferromagnetic metal electrodes and provided a high interface
resistance. While this topic was a source of confusion, Rashba
clarified this confusion [23] with a careful and definitive
tunneling calculation. Rashba’s results confirmed the above
model when parameters and limits are properly identified.

A second issue, briefly controversial at one time but of less
concern, is the presence of magnetic fields that may be prox-
imal to ferromagnetic films. Associated with ferromagnetic
metal films are fringe magnetic fields that are part of the “de-
magnetizing field.” The magnitude of these fields can be large
near the edges of the film. These fringe fields have little effect
on carrier transport in metals. However, the Hall coefficient
in semiconductors is substantially large and the fields may
affect transport in a semiconductor device. Measurements of
the magnitudes of the fringe fields [27] and direct measure-
ments of the Hall effect driven by these fields [28] found that
typical values are the order of 10−2 T or less. These fields
are negligible in the experiments reported below, where the
transport is modulated by the effective Rashba field of order
1 T.

II. METHOD I: THE DATTA-DAS DEVICE

Datta and Das proposed a simple InGas field-effect struc-
ture (Fig. 3), often called a spin-injected FET or spin FET.
In their structure, a ferromagnetic source and drain are con-
nected by a two-dimensional electron gas (2DEG) channel.
The magnetizations of both source and drain were oriented
along the axis of the channel, x axis. An intrinsic electric field
Ez perpendicular to the 2DEG plane transforms, as discussed
above, in the rest frame of the weakly relativistic carriers, as
an effective magnetic field H∗

y . Carriers are injected at the
source with their spin axes oriented along x̂, precess under
the influence of H∗

y , and arrive at the drain with a spin phase
φ that depends on their time of transit, φ ∝ L/vF , where vF is
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the Fermi velocity. By applying a gate voltage to the channel,
the field Ez, the effective field H∗

y , and spin phase φ could
be varied and a modulation of source-drain conductance as a
function of VG would result.

The nonlocal geometry of Fig. 2(a) can be adapted to
the Datta-Das device. In a different description of Fig. 2(a),
the gradient of gray shadings represents the density of
spin-polarized ballistic electrons. The ferromagnetic gate is
fabricated at a distance L less than the ballistic mean free path
�. A dielectric layer and a thin-film metal gate are fabricated
to cover the channel between source and drain, and a variable
gate voltage VG can be applied. An external magnetic field
applied along the x axis, H ∼ 0.1 T, aligns the magnetizations
M1 and M2 aligned parallel and along x̂. Method I experi-
ments are performed by measuring the drain voltage V (VG) as
VG is varied.

An excellent materials system for demonstrating Datta-Das
oscillations is a single quantum well (SQW) in an epitaxial
indium arsenide heterostructure. This two-dimensional elec-
tron system (2DES) has carriers with a ballistic mean free
path of 1 µm or more at 4 K, and there is a very large
spin-orbit interaction. The SOI can cause spin precession of
a ballistic electron with a spatial wavelength λ � �. Using
high-resolution electron beam lithography, a device structure
can be fabricated to have a narrow channel with current and
voltage electrodes with sufficiently small separation, L < �.

A. Detailed transport model

A pedagogical model [11] is useful for a detailed under-
standing of the experiment and is described with reference
to Fig. 4. As mentioned above, the Rashba SOC mechanism
in this 2DES derives from the structural asymmetry of the
confining potential of the SQW. A doping layer inserted on
one side of the SQW, or band bending that results from
boundary conditions imposed by a surface, are examples of a
structural asymmetry. The gradient of the confining potential
represents an intrinsic electric field; fields on opposite sides
of the SQW have opposite sign but do not cancel because
of the structural asymmetry. It follows that there is a residual
intrinsic electric field at the position of the 2DES. The field is
perpendicular to the plane of the substrate (and of the 2DES)
and has substantial magnitude even in the absence of gate
voltage.

In Figs. 4(a) and 4(b), a current source is connected to a
ferromagnetic film injector that has in-plane magnetization
with orientation along the x axis of a narrow 2DES channel.
Using the nonlocal geometry, the current is grounded at the
left end of the channel. A ferromagnetic electrode detector is
added to the structure, distance L from the injector, with its
magnetization also along the x axis. Spin-polarized carriers
are injected into the channel with the spin axis aligned along
the x axis. A fraction of the injected carriers have ballistic
trajectories along the +x̂, moving with a weakly relativistic
Fermi velocity, vF,x ∼ c/300, where c is the speed of light.
If the intrinsic electric field is negligible and no gate voltage
is applied (VG = 0), then H∗ = 0 and the carrier spin has the
same orientation for the lifetime of the trajectory [Fig. 4(a)].
The detected voltage V is relatively high [Fig. 4(c)].

FIG. 4. Schematic representation of the Datta-Das experiment,
adapted to the nonlocal lateral spin valve (NLSV) geometry as
method I. In the pedagogical model described in the text, the intrin-
sic electric field is negligible but the gate voltage VG can strongly
modulate the field �E . (a) VG = 0. The electric field is negligible.
The detector magnetization orientation and the spin orientation of
proximal carriers are parallel, and detector voltage V is high [solid
symbol in (c)]. (b) VG = 1.5 V (chosen to correspond with spin
precession by π rad). The detector magnetization orientation and
the spin orientation of proximal carriers are antiparallel, and detector
voltage V is low [solid symbol in (c)]. (c) As VG is varied, the wave-
length λ changes and the detector records a periodic conductance
oscillation �V (VG). This figure is reproduced from Ref. [11].

When Ez �= 0, the field, in the rest frame of the carrier,
is transformed as an effective magnetic field H∗. In this
case, electrons precess under the torque of the effective field.
Figure 4(b) depicts the case with the value of VG chosen such
that H∗ causes spin precession by π rad during the transit
from injector to detector. The carrier spin is antiparallel with
the detector magnetization at position x = L, and the detected
voltage V is relatively low [Fig. 4(c)]. By monotonically in-
creasing VG, the magnitude of H∗, the spin-orbit parameter α,
and the wavelength λ(α) all change and the detector voltage
at fixed L varies between the peak and trough values. This was
the prediction of Datta and Das [10].

As mentioned earlier, Datta-Das oscillations are an analog
of Larmor waves. The controlling experimental parameter is
an electric field for the former and a magnetic field for the
latter. Larmor waves are observed in transmission electron
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spin resonance (TESR) experiments [21]. A thin, high-purity
nonmagnetic metal foil is mounted between send and received
microwave cavities. At low temperature, the ballistic mean
free path of conduction electrons in N may be longer than the
thickness of the coil. If this is the case, the detected microwave
power will show sinusoidal waves, with a wavelength that
corresponds to the Larmor frequency of the ballistic carriers,
superposed on the resonant Lorentzian feature that results
from diffusive transport. For the Datta-Das oscillations, the
SOI in the 2DES of a spin FET is very large and the spin
relaxation rate 1/τs is very rapid. There is no steady state
spin accumulation because injected spin orientation becomes
random after only a few scattering events. The Hanle effect,
which is the diffusive analog of the TESR Lorentzian, is not
observed, even though the Datta-Das ballistic-electron oscil-
lations are present.

B. Method I results

A demonstration of the Datta-Das conductance oscilla-
tions using a variable gate voltage was provided by Koo
et al. [11]. The devices consist of two Ni81Fe19 electrodes
on top of an InAs high electron mobility transistor (HEMT)
channel and a gate electrode. The InAs HEMT was grown
by molecular beam epitaxy on a semi-insulating InP (100)
substrate. The single quantum well, which functions as a
2DES channel, has a depth of 35.5 nm from the top sur-
face. Bilayers of InAlAs/InGaAs form both the top and
bottom barrier layers. Doping is provided by an n+ layer
of InGaAs below the SQW. The carrier density and mobility
of the 2DES are nS = 1.8 × 1012 to 2.8 × 1012 cm−2 and
μ = 50 000–60 000 cm2 V−1 s−1 at temperature T = 1.8 K,
respectively. The channel, defined by a mesa etch, is oriented
with x along the 〈110〉 direction and has a width w = 8 µm.
The two ferromagnetic (FM) electrodes were fabricated with
electron beam lithography, thin-film deposition, and lift-off
and have lateral dimensions of 0.4 × 80 and 0.5 × 40 µm. A
thin aluminum oxide layer was deposited prior to deposition
of the ferromagnetic layer, providing an appropriate interface
transport barrier Ri. Samples were made with FM electrode
spacings of L = 1.25 and 1.65 µm, measured center to center.
After fabrication of the structure, the device was covered by a
dielectric and a metal gate electrode.

Figure 5 shows examples of the observed Datta-Das con-
ductance oscillation. A magnetic field, with magnitude Ba,x =
0.5 T, is externally applied to orient the source and drain
magnetizations to be along the x̂ axis. The gate voltage is var-
ied monotonically over the range −3 � VG � 3 V while the
nonlocal channel conductance is measured. Describing the top
(gray) trace (L = 1.65 µm) first, the injected spin orientation
along +x̂ is perpendicular to the effective magnetic field. As
described above, an oscillation of the voltage detected at the
drain, as a function of gate voltage VG, is observed because
the rate of spin precession is proportional with gate voltage.
The range of VG is sufficiently large that Fig. 5 shows more
than a full cycle of conductance oscillation. Data for a similar
spin FET, with L = 1.25 µm, also are shown in Fig. 5 as the
bottom trace (black).

The fits shown in Fig. 5, for the voltage V (VG) recorded
at the detector, were generated using the theory of Datta and

FIG. 5. Method I results. Datta-Das voltage oscillation V (VG) for
two devices with different values of L. Symbols: Data. Solid lines:
Fits. Details of the fits are found in Refs. [11,32]. This figure is
reproduced from Ref. [11].

Das, Eq. (3),

V = A cos(2m∗αL/h̄2 + φ). (7)

In the above equation, φ is a small phase shift that may
be related to shielding effects from the ferromagnetic films.
The analysis required direct measurements of the oscillation
amplitude A and the spin-orbit parameter α(VG) for the range
of gate voltages applied. The amplitude was determined us-
ing standard nonlocal lateral spin valve magnetoresistance
measurements and a small in-plane magnetic field externally
applied along the y axis. Hysteretic dips were observed in
the small range of field between the values of switching field
for the injecting and detecting films, where magnetizations
M1 and M2 are antiparallel. The magnitude of the dips,
A = �V = 6 ± 0.2 µV (�R = 6 ± 0.2 m�), is used as the
amplitude of the fitting functions in Fig. 5. To determine the
SOC parameter α(VG), Shubnikov–de Haas oscillations were
measured and the observed beat patterns were analyzed [11].
As examples of several parameters of interest, the spin-orbit
parameter with zero gate voltage is α(0 V ) = 9.0 × 10−12

eV m and the magnitude of the effective magnetic field (also
at zero gate voltage) is H∗

y = 8.5 T.
The two data sets, for L = 1.65 and 1.25 µm, can be dis-

cussed by comparing their half wavelengths. As the channel
length L decreases from 1.65 to 1.25 µm the half wavelength
increases from �VG = 1.24 to 1.53 V. The detailed shape of
the fit has been reproduced by numerical simulations [10] that
are accompanied by a more detailed physical explanation.

III. METHOD II: CONSTANT α AND VARIABLE L

For method II, α is held fixed and the SOI is only provided
by the intrinsic asymmetry of the single quantum well. There
is no gate and no gate voltage is applied.

A. Experimental geometry

Measurements of �θ can be made on a set of samples that
are identically prepared except for varying length L. As with
method I, the measurements are facilitated by using a nonlocal
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geometry. Referring to Fig. 2(b), the bias current is supplied
to a ferromagnetic electrode at x = 0 and grounded at the far
left of the narrow “wire.” Ballistic, spin-polarized electrons
are injected in equal numbers to the right and left, along ±x̂.
There is no net diffusive current to the right, and the region
x > 0 is equipotential.

An experimental demonstration was provided by Choi
et al. [12]. Instead of using a ferromagnetic film as a detector,
the authors employed the spin Hall effect (SHE) [29,30]. They
confirmed their measurements using the inverse spin Hall
effect (ISHE) [31]. The detector took the form of a Hall cross
with narrow transverse arms [Fig. 2(b)]. The spin Hall effect
force �F is a cross product of �vF and �s and is perpendicular
to both. Along the ballistic-electron trajectory, �F is maximum
when �s is along the z axis and here �VH has maximum value,
either positive or negative. When �s is along the x axis, �F
is zero and �VH = 0. For a constant value of spin injected
current, the voltage between the arms was measured as an
external magnetic field Hx changed the magnetization orienta-
tion of the ferromagnetic injector from parallel to antiparallel
with the x axis. Since this change corresponds to changing
the initial spin orientation by π rad, the spin Hall voltage at
the detector changes signs. The difference �VH (x) is therefore
proportional to the spin orientation �s of the ballistic electrons
at the detector position, x.

In Fig. 2(b), a linear array of electrodes extends over a
region that is longer than the Datta-Das wavelength λ. The
width of each voltage probe wV must be much smaller than
the wavelength, wv � λ, and, in practice, limitations of litho-
graphic fabrication require that a number n of individual
samples must be made, one for each distance x = Ln. Any
small fabrication error in the spatial offset of each pair of
electrodes would result in a large offset resistance and voltage
in the presence of diffusive current. The nonlocal geometry
reduces such offsets substantially.

B. Method II results

A demonstration of the Datta-Das conductance oscillations
using variable length L was provided by Choi et al. [12].
In these experiments, the width of the 2DES channel was
750 nm. The following sample characteristics were de-
termined (at 1.8 K): carrier density n = 2.0 × 1012 cm2,
mobility μ = 60 000 cm2 V−1 s−1, and mean free path � =
1.61 µm. From the beat frequency in Shubnikov–de Haas
measurements [11], the spin-orbit parameter was found to be
α = 8.93 × 10−12 eV m, at VG = 0. Using these numbers and
m∗ = 0.05m0 (m0 = 9.1 × 10−31 kg), the Datta-Das wave-
length can be calculated, λ = 0.54 µm (�� = 1.6 µm).

Figure 6 plots values of �RH (L) and two complete wave-
lengths of the conductance oscillation are observed. The fit
represented by the dotted line in the figure uses the wavelength
λ of Eq. (3), λ = π h̄2/αm∗,

�VH

I
= �RH = A cos(2πL/λ − π/2), (8)

where A is the measured amplitude. The solid line modifies
the above expression by including an exponential decay e−L/�,
where the ballistic mean free path was independently deter-
mined [11], � = 1.61 µm. The only free fitting parameter is

FIG. 6. Method II results. Resistance oscillation �VH (L)/I ,
where I is the bias current and the channel length is L. There are
14 individual sample devices, nominally identical. Each device has
channel width wC = 0.75 µm. I = 0.1 mA, T = 1.8 K. The dotted
line fit is from the ballistic transport model, Eq. (3). The solid line
fit is the same model modified to include the exponential decay of
ballistic trajectories. Error bars are smaller than the symbols except
where shown. This figure is reproduced from Ref. [12].

the amplitude, experimentally measured as �RH for the sam-
ple device with L = 0.64 µm. It is important to note that there
is no arbitrary phase shift in the data of Fig. 6; the data values
are determined only by the injector and detector distance L.
The authors provided further confirmation by adding a gate to
one of the samples and making a method I measurement.

IV. SUMMARY

Four decades ago, Rashba’s seminal theory of spin-orbit
interactions in a high-mobility 2DES with an asymmetric
confining potential opened the door to predictions of novel
transport effects. Two decades later, Datta and Das proposed
an experiment involving spin injection, detection, and spin
precession of ballistic electrons caused by a gate voltage and
the Rashba spin-orbit interaction. The nonlocal lateral spin
valve geometry in two configurations was used to provide
independent demonstrations of the Datta-Das conductance os-
cillations. An InAs single quantum well proved to be an ideal
material. The carrier mean free path is longer than 1 µm at
low temperature, and a large spin-orbit interaction modulates
a Rashba field by several tesla with a gate voltage range of
a few volts. High-precision electron beam lithography was
used to fabricate mesa structures with narrow channels. In one
configuration, the source and drain were thin-film ferromag-
netic metal electrodes and the entire device was gated. The
voltage at the drain, V (VG), showed oscillations as the gate
voltage was varied. In a second configuration, 14 samples
were prepared, each with a ferromagnetic thin-film source.
The detected voltage for each sample was a function of the
spin Hall effect and was measured with a Hall cross at a short
distance from the source. The set of voltages from all samples,
V (x), showed the predicted oscillation. In both configurations,
the results agreed very well with theory and confirmed the
theories of Rashba and Datta and Das.
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